
Correctness Criteria for Replicated Database Systems with

Snapshot Isolation Replicas ∗

J.E. Armendáriz1, J.R. Juárez1, J.R. González de Mend́ıvil1, F.D. Muñoz2

1 Universidad Pública de Navarra, Spain 2 Instituto Tecnológico de Informática, Spain
{enrique.armendariz, jr.juarez, mendivil}@unavarra.es, fmunyoz@iti.upv.es

Abstract. In this work we present the correctness criteria which a replicated database system
with SI replicas must verify when deferred update protocols are used in a crash failure sce-
nario. Our criteria proposal ensures that the replicated database system behaves like a single
copy database system where transactions see a weaker form of SI, called Generalized-SI.

Introduction. Database replication is a well-known technique to enhance system performance
and afford site failures. However, there must be some coordination mechanism so that each
transaction is committed at each database replica in some consistent order; this is done by a
replication protocol. The classical approach assumes that each database provides serializable,
but most database systems (e.g. Oracle and PostgreSQL) provide Snapshot Isolation (SI) [1]
level for the sake of performance; specially for read-only transactions that never block. Thus,
several replication protocol proposals with SI replicas [2, 3, 5] have been presented. These
replication protocols are a sort of distributed algorithm, though no previous work uses a for-
malization tool that formally specifies the correctness criteria under the simplest failure model
scenario such as the crash one. These criteria should be useful to guarantee the correctness of
the protocols and to analyze their advantages and limitations. In this brief announcement, due
to space limitations, we outline the proposal of using the Input/Output Automaton Model [6]
to provide the specification of a database replication system with SI replicas. This is thoroughly
explained in [4]. The presented specification stresses the properties which must fulfill compo-
nents and not their specific implementations. The replicated system is shown as the composition
of an abstract replication protocol and a set of databases with extended functionalities (those
ones that make easier the protocol implementation). The system explicitly considers the crash
failure model scenario. Actually, most of the proposed protocols are designed to tolerate at
least such failure scenario. Correctness criteria require to: respect the behavior of each database
replica; apply transactions in the very same order to generate the same global set of snapshots;
transactions are either committed, or aborted, at all replicas or none; transactions must be
allowed to progress at correct replicas. These criteria allow us to assure that transactions are
executed in the replicated system as if there was a single database which executes transactions
under a slightly weaker isolation level than SI, known as Generalized-SI (GSI) [3].

Replicated Database System Abstraction. The replicated database system is specified by
means of a module denoted RDBS = RP × (Πn∈NEDBn). This module is the composition
of an abstract replication protocol and a group of extended databases, one at each site of the
distributed system. The set of site identifiers is denoted as N . We assume that at most f sites
may fail by crash and |N | > f . At each site n ∈ N there is an extended database module
denoted EDBn. We consider a full replicated system. The set of transactions operating in the
system is T ; and the set of possible versions for the items I and transactions T is V . There is a

∗This work has been supported by the Spanish Government under research grant TIN2006-14738-C02-02.

1

mapping site : T −→ N which associates to each transaction t ∈ T a unique site, site(t) ∈ N , in
the system. The site(t) is called the delegate site of the transaction. It is where the transaction
starts its execution. The transaction is considered as local at that replica and remote at the rest
of the sites.

The EDB module models the operation of a database following the SI level which includes
some facilities for simplifying the control a replication protocol exercises over the database. The
signature of the EDB module is:

in(EDB) = {crash}∪ {commit(t, ws), apply(t, ws) : t ∈ T, ws ∈ 2V }
out(EDB) = {begin(t), committed(t), aborted(t) : t ∈ T} ∪ {deliverws(t, ws) : t ∈ T,ws ∈ 2V }

By means of the action begin(t), the module notifies the fact that a new transaction has
been initiated. The actions committed(t) and aborted(t) represent the final decision about such
a transaction. This module is intended to work in collaboration with a replication protocol. At
some point in the execution of a transaction t ∈ T , after its action begin(t), the EDB informs
about the writeset the transaction is ready to install. This is done by the action deliverws(t, ws).
The EDB allows only the replication protocol to request the commit of the transaction via
the input action commit(t, ws). A transaction following such a pattern of operation is a local
transaction. The transaction starts under the control of the extended database; and it passes
the control of the transaction to the replication protocol in order to terminate it. When the
replication protocol takes the decision that a transaction t ∈ T has to be committed, it requires
either the replication protocol produces the action commit(t, ws) or the database applies the
updates of the transaction; i.e. its writeset. Thus, the EDB provides as input action the action
apply(t, ws). The extended database is responsible of programming such a transaction in the
underlaying database in a transparent way for the replication protocol. A transaction following
such a pattern of operation is a remote transaction. The properties of the EDB module are
introduced by presenting properties over its behaviors [6]. EDB must provide SI and generate
the proper snapshot versions comprised of a sequence of update committed transactions. It must
also ensure that after a crash it will stop its activity, but it will have generated well-formed
transactions until that moment. Finally, it will produce no unilateral aborts and a remote
transaction will only be aborted if it can not satisfy its isolation level. Other possible causes
of abortion are filtered by the replication protocol. A detailed discussion of these properties
are given in [4]. On the other hand, the protocol is responsible for guaranteeing the whole
correctness criteria in the whole system. The signature of RP is:

in(RP) = ∪n∈N (out(EDBn) ∪ {crashn})
out(RP) = ∪n∈N {commitn(t), applyn(t, ws) : n ∈ N, t ∈ T,ws ∈ 2V }

In the following, we present and explain the correctness criteria for the replicated database
system. Let β be a behavior of RDBS. We use the predicate local(t, n, β) ≡ beginn(t) ¹
β|acts(EDBn, t) to indicate that a transaction t ∈ T has started in the site n ∈ N as a local
transaction in the behavior β. The correctness criteria are indicated in the following axioms1.
For every behavior β ∈ behs(RDBS):

Well-formedness Conditions.
(a) β|EDBn ∈ behs(EDBn)
(b) local(t, n, β) ∧ local(t, n′, β) ⇒ n = n′ = site(t)
(c) πi = applyn(t, ws) ⇒∃ k : k < i : πk = deliverwssite(t)(t, ws) ∧ n 6= site(t)

Conflict Serializable.
(a) πi ∈ {applyn(t, ws), commitn(t, ws)} ∧ πj = applyn(t′, ws′) ∧ i < j ∧ ws ∩ ws′ 6= ∅ ⇒
∃ k : i < k < j : πk ∈ {committedn(t), abortedn(t)}
1Free variables in the expressions are universally quantified in their domains for the scope of the entire formulas

2

(b) πi ∈ {applyn(t, ws), commitn(t, ws)} ∧ πj1 = beginn(t′) ∧ πj2 = commitn(t′, ws′) ∧
i < j2 ∧ ws ∩ ws′ 6= ∅ ⇒ ∃ k : i < k < j1 : πk ∈ {committedn(t), abortedn(t)}

Uniform Prefix Order Database Consistency.
For every finite prefix β′ of β: log(β′|EDBn) ¹ log(β′|EDBn′) or vice versa.

Uniform Decision.
(a) πi = committedn(t) ⇒ ∀n′ ∈ N : (∃ k : πk ∈ {commitn′(t, wst), applyn′(t, wst), crashn′}
(b) πi = abortedsite(t)(t) ⇒ (β|{applyn(t, ws) : n ∈ N,ws ∈ 2V } = empty)

Local Transaction Progress.
πi = deliverwssite(t)(t, ws) ⇒ ∃ k : k > i : πk ∈ {commitsite(t)(t, ws), crashsite(t)} ∨ πk ∈

{commitsite(t)(t′, ws′), applysite(t)(t′, ws′) : ws ∩ ws′ 6= ∅}.
Criterion 1 groups three different aspects: Criterion 1.(a) states that every behavior of the

RDBS has to respect the behavior of each EDBn module. Criterion 1.(b) indicates that the
first event of a transaction t ∈ T in the system may only be beginsite(t)(t) at its delegate site;
t is local at that replica and remote otherwise. Criterion 1.(c) avoids the spontaneous creation
of remote transactions in the system. All these previous criteria are grouped and form what
we have denoted as Well-formedness Conditions. Criterion 2 (Conflict Serializable) guarantees
that transactions with a non-empty writeset intersection are serialized. Criterion 3 (Uniform
Prefix Database Order Consistency) imposes on the system to build the same snapshots at every
database; actually, it obliges committed transactions to follow the same commit ordering at ev-
ery site (not only the conflictive ones). Notice that if a database fails, this criterion ensures that
the last installed snapshot is also a valid snapshot for the rest of the correct sites. The Criterion
4 (Uniform Decision) the replication protocol decides the same outcome for a transaction at all
replicas (committed or aborted). Moreover, if a transaction committed at one site (correct or
faulty) then the protocol would eventually apply or request the commit of the same transaction
in every correct site; otherwise, if a transaction aborted at one site (correct or faulty) then it
would be its delegate site and no one of its remote transactions will be programmed in the
system. To conclude, Criterion 5 (Local Transaction Progress) indicates that if the replica is
correct, then for each of its local associated transactions that requests the commit, the replica-
tion protocol either requests the commit or knows it will be aborted.

Conclusions. In this work it has been presented a new insight into how to think about formal-
izing replication protocols with the I/O automaton model in the presence of crash failures and
SI replicas. Hence, it represents a case study that shows how to reason about a system in an
abstract and compositional way.

References

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In SIGMOD, 1995.

[2] K. Daudjee and K. Salem. Lazy database replication with snapshot isolation. In VLDB, 2006.

[3] S. Elnikety, F. Pedone, and W. Zwaenopoel. Database replication using generalized snapshot isolation.
In SRDS. IEEE-CS Press, 2005.

[4] J. R. González de Mend́ıvil, J. E. Armendáriz, and J. R. Juárez. Correctness criteria for replicated
database systems with snapshot isolation replicas. Technical Report ITI-ITE-08/03, Mar 2008.

[5] Y. Lin, B. Kemme, M. Patiño-Mart́ınez, and R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In SIGMOD, 2005.

[6] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Quarterly, 2(3):219–246,
1989.

3

