
Optimizing Recovery Protocols
for Replicated Database Systems

Departamento de Sistemas Informáticos
y Computación

Tesis Doctoral

Presentada por:
Luis Héctor Garćıa Muñoz

Dirigida por:

Dr. Francisco Daniel Muñoz-Escóı
Dr. José Enrique Armendáriz-́Iñigo

Julio 2013, Valencia

Agradecimientos

En primer lugar quiero agradecer a quien considero un gran profesor y amigo,
mi director de tesis Dr. Francisco Muñoz, gracias Paco por todo tu apoyo y
paciencia durante el desarrollo de este trabajo, gracias por mostrarme lo que
la dedicación y empeño pueden lograr, gracias por todo el conocimiento que
has compartido conmigo y tu gran capacidad para tener siempre una pronta y
acertada respuesta.

Gracias a Enrique Armendáriz un gran compañero y también director de tesis.
Gracias Enrique por esa gran capacidad para generar ideas y llevarlas a la
práctica y por tu orientación en este interesante y algunas veces árido camino
de la investigación.

Ambos son un gran ejemplo a seguir.

Gracias al Instituto Tecnológico de Informática por haberme permitido cola-
borar en el grupo de investigación de Sistemas Distribuidos. Gracias a todos
los miembros del grupo, en particular quiero dar las gracias a Rubén de Juan
Maŕın, Idoia Ruiz, Jerónimo Pla y Hendrik Decker con quienes he colaborado
para la realización de los trabajos de investigación.

Gracias también a Pedro Blesa cuyas primeras instrucciones en el campo de la
investigación fueron fundamentales.

Gracias a mis compañeros del Instituto Tecnológico de la Laguna, en especial a
Roberto Dominguez por su apoyo invaluable.

En el apartado personal quiero dar las gracias a toda mi familia, a mis padres
a quienes debo todo lo que soy. A mis hermanos que siempre han créıdo en mı́.
A mis suegros José y Consuelo en quienes he encontrado unos segundos padres.

A Mayela, mi amada esposa, no encuentro palabras para agradecerte todo el
apoyo que me has dado, siempre conmigo y alentándome cuando el camino
parece indescifrable. A mis hijos por su cariño y comprensión. A Paty y Victor
por su apoyo incondicional.

Contents

Abstract 1

Resumen 3

Resum 5

1 Introduction 7
1.1 Motivation . 7
1.2 Methodology . 10
1.3 About This Thesis . 11
1.4 Structure of the Thesis . 14

2 Data Recovery 17
2.1 Introduction . 17
2.2 General Recovery in Highly Available Systems 18
2.3 Replication and Recovery Protocols 22
2.4 Conclusions . 42

3 Optimizing Certification-Based Database Recovery 45
3.1 Introduction . 45
3.2 System Model . 46
3.3 Certification-Based Replication 47
3.4 Replication Protocol . 47
3.5 Recovery Strategies . 49
3.6 Performance Study . 52
3.7 Related Work . 58
3.8 Conclusions . 59

4 Improving Recovery in Weak-Voting Data Replication 61
4.1 Introduction . 61
4.2 System Model . 62
4.3 Weak Voting Replication . 63
4.4 Basic Recovery Protocol . 63
4.5 Amnesia Support . 65
4.6 Compacting Recovery Information 66

i

ii CONTENTS

4.7 Recovery Simulation . 68
4.8 Related Work . 71
4.9 Conclusions . 72

5 Correctness 75
5.1 Introduction . 75
5.2 Correctness of Certification-Based Database Recovery 76
5.3 Correctness of Weak-Voting Based Database recovery 78
5.4 Conclusion . 80

6 Conclusion 81
6.1 Summary . 81
6.2 Future Research Direction . 83

Bibliography 83

List of Figures

2.1 Consistent and inconsistent global states 19
2.2 The domino effect . 19

3.1 SIR-SBD algorithm at replica Rk 48
3.2 Recovery without compacting . 55
3.3 Recovery with compacting . 56
3.4 Recovery events . 57

4.1 Item Compactness: (a) 5 nodes, (b) 9 nodes, (c) 25 nodes. 72

iii

List of Tables

2.1 Protocol Classification. 28

4.1 Simulator Parameters. 70
4.2 Recovery times in seconds. 71

v

Abstract

Nowadays, information technology and computing systems have a great rele-
vance on our lives. Among current computer systems, distributed systems are
one of the most important because of their scalability, fault tolerance, perfor-
mance improvements and high availability.

Replicated systems are a specific case of distributed system. This Ph.D. thesis is
centered in the replicated database field due to their extended usage, requiring
among other properties: low response times, high throughput, load balancing
among replicas, data consistency, data integrity and fault tolerance.

In this scope, the development of applications that use replicated databases
raises some problems that can be reduced using other fault-tolerant building
blocks, as group communication and membership services. Thus, the usage
of the services provided by group communication systems (GCS) hides several
communication details, simplifying the design of replication and recovery pro-
tocols.

This Ph.D. thesis surveys the alternatives and strategies being used in the repli-
cation and recovery protocols for database replication systems. It also summa-
rizes different concepts about group communication systems and virtual syn-
chrony. As a result, the thesis provides a classification of database replication
protocols according to their support to (and interaction with) recovery proto-
cols, always assuming that both kinds of protocol rely on a GCS.

Since current commercial DBMSs allow that programmers and database ad-
ministrators sacrifice consistency with the aim of improving performance, it is
important to select the appropriate level of consistency. Regarding (replicated)
databases, consistency is strongly related to the isolation levels being assigned
to transactions.

One of the main proposals of this thesis is a recovery protocol for a replication
protocol based on certification. Certification-based database replication proto-
cols provide a good basis por the development of their recovery strategies when
a snapshot isolation level is assumed. In that level readsets are not needed in
the validation step. As a result, they do not need to be transmitted to other
replicas. Additionally, these protocols hold a writeset list that is used in the
certification/validation step. That list maintains the set of writesets needed

1

2 ABSTRACT

by the recovery protocol. This thesis evaluates the performance of a recovery
protocol based on the writeset list tranfer (basic protocol) and of an optimized
version that compacts the information to be transferred.

The second proposal applies the compaction principle to a recovery protocol
designed for weak-voting replication protocols. Its aim is to minimize the time
needed for transferring and applying the writesets lost by the recovering replica,
obtaining in this way an efficient recovery. The performance of this recovery
algorithm has been checked implementing a simulator. To this end, the Om-
net++ simulating framework has been used. The simulation results confirm
that this recovery protocol provides good results in multiple scenarios.

Finally, the correction of both recovery protocols is also justified and presented
in Chapter 5.

Resumen

En la actualidad, el uso de tecnoloǵıas de información y sistemas de cómputo
tienen una gran influencia en la vida diaria. Dentro de los sistemas informáticos
actualmente en uso, son de gran relevancia los sistemas distribuidos por la ca-
pacidad que pueden tener para escalar, proporcionar soporte para la tolerancia a
fallos y mejorar el desempeño de aplicaciones y proporcionar alta disponibilidad.

Los sistemas replicados son un caso especial de los sistemas distribuidos. Esta
tesis está centrada en el área de las bases de datos replicadas debido al uso
extendido que en el presente se hace de ellas, requiriendo caracteŕısticas como:
bajos tiempos de respuesta, alto rendimiento en los procesos, balanceo de carga
entre las replicas, consistencia e integridad de datos y tolerancia a fallos.

En este contexto, el desarrollo de aplicaciones utilizando bases de datos repli-
cadas presenta dificultades que pueden verse atenuadas mediante el uso de servi-
cios de soporte a mas bajo nivel tales como servicios de comunicacion y pertenen-
cia. El uso de los servicios proporcionados por los sistemas de comunicación de
grupos permiten ocultar los detalles de las comunicaciones y facilitan el diseño
de protocolos de replicacion y recuperación.

En esta tesis, se presenta un estudio de las alternativas y estrategias empleadas
en los protocolos de replicación y recuperación en las bases de datos replicadas.
También se revisan diferentes conceptos sobre los sistemas de comunicación
de grupos y sincronia virtual. Se caracterizan y clasifican diferentes tipos de
protocolos de replicación con respecto a la interacción o soporte que pudieran
dar a la recuperación, sin embargo el enfoque se dirige a los protocolos basados
en sistemas de comunicación de grupos.

Debido a que los sistemas comerciales actuales permiten a los programadores y
administradores de sistemas de bases de datos renunciar en alguna medida a la
consistencia con la finalidad de aumentar el rendimiento, es importante determi-
nar el nivel de consistencia necesario. En el caso de las bases de datos replicadas
la consistencia está muy relacionada con el nivel de aislamiento establecido entre
las transacciones.

Una de las propuestas centrales de esta tesis es un protocolo de recuperación
para un protocolo de replicación basado en certificación. Los protocolos de
replicación de base de datos basados en certificación proveen buenas bases para

3

4 RESUMEN

el desarrollo de sus respectivos protocolos de recuperación cuando se utiliza el
nivel de aislamiento snapshot. Para tal nivel de aislamiento no se requiere que los
readsets sean transferidos entre las réplicas ni revisados en la fase de cetificación
y ya que estos protocolos mantienen un histórico de la lista de writesets que es
utilizada para certificar las transacciones, este histórico provee la información
necesaria para transferir el estado perdido por la réplica en recuperación. Se
hace un estudio del rendimiento del protocolo de recuperación básico y de la
versión optimizada en la que se compacta la información a transferir. Se presen-
tan los resultados obtenidos en las pruebas de la implementación del protocolo
de recuperación en el middleware de soporte.

La segunda propuesta esta basada en aplicar el principio de compactación de la
informacion de recuperación en un protocolo de recuperación para los protoco-
los de replicación basados en votación débil. El objetivo es minimizar el tiempo
necesario para transfeir y aplicar la información perdida por la réplica en re-
cuperación obteniendo con esto un protocolo de recuperación mas eficiente. Se
ha verificado el buen desempeño de este algoritmo a través de una simulación.
Para efectuar la simulación se ha hecho uso del entorno de simulación Omnet++.
En los resultados de los experimentos puede apreciarse que este protocolo de
recuperación tiene buenos resultados en múltiples escenarios.

Finalmente, se presenta la verificación de la corrección de ambos algoritmos de
recuperación en el Caṕıtulo 5.

Resum

Actualment, l’ús de tecnologies d’informació i sistemes de còmput té una gran
influència en la vida diària. Entre els sistemes informàtics actuals, els sistemes
distribüıts són de gran importància per la capacitat que tenen per a escalar,
proporcionar suport per a la tolerància a fallades, millorar el rendiment de les
aplicacions i proporcionar alta disponibilitat.

Els sistemes replicats són un cas especial de sistema distribüıt. Aquesta tesi
està centrada en l’àrea de les bases de dades replicades, degut a l’ús estés que es
fa d’elles, demanant caracteŕıstiques com: baixos temps de resposta, alt rendi-
ment dels seus processos, equilibrat de càrrega entre les rèpliques, consistència
i integritat de dades i tolerància a fallades.

En aquest context, el desenvolupament d’aplicacions utilitzant bases de dades
replicades presenta dificultats que poden veure’s atenuades utilitzant serveis de
suport a més baix nivell, tals com els serveis de comunicació i de pertinença.
L’ús dels serveis proporcionats pels sistemes de comunicació de grups permeten
ocultar els detalls de les comunicacions i faciliten el disseny de protocols de
replicació i recuperació.

En aquesta tesi es presenta un estudi de les aternatives i estratègies utilitzades en
els protocols de replicació i recuperació en bases de dades replicades. També es
revisen diferents conceptes sobre els sistemes de comunicació de grups i sincronia
virtual. Es caracteritzen i classifiquen diferents tipus de protocols de replicació
respecte a la interacció o suport que poden donar a la recuperació. No obstant
això, l’enfocament es dirigeix als protocols basats en sistemes de comunicació
de grups.

Com els sistemes comercials actuals permeten als programadors i administradors
de sistemes de bases de dades renunciar en alguna medida a la consistència amb
la finalitat d’augmentar el rendiment, és important determinar el nivell de con-
sistència necessari. En el cas de les bases de dades replicades la consistència està
fortament relacionada amb el nivell d’äıllament establit entre les transaccions.

Una de les propostes centrals d’aquesta tesi és un protocol de recuperació per
a un protocol de replicació basat en certificació. Els protocols de replicació
de bases de dades basats en certificació proporcionen una bona base per al
desenvolupament dels seus respectius protocols de recuperació quan s’utilitza el

5

6 RESUM

nivell d’äıllament snapshot. Per a tal nivell d’äıllament no cal que els readsets
siguen transferits entre les rèpliques ni revisats en la fase de certificació ja que
aquests protocols mantenen un històric de la llista de writesets que s’utilitza
per a certificar les transaccions. Aquest històric conté la informació necessària
per a transferir l’estat perdut per la rèplica en recuperació. Es fa un estudi
del rendiment del protocol de recuperació bàsic i de la versió optimitzada on es
compacta la informació a transferir. Es presenten els resultats obtinguts en les
proves de la implementació del protocol de recuperació sobre el middleware de
suport.

La segona proposta està basada en aplicar el principi de compactació de la
informació de recuperació en un protocol de recuperació per als protocols de
replicació basats en votació dèbil. L’objectiu és minimitzar el temps necessari
per a transferir i aplicar la informació perduda per la rèplica en recuperació
obtenint aix́ı un protocol de recuperació més eficient. S’ha verificat el bon
rendiment d’aquest algorisme mitjançant una simulació. Per a fer la simulació
s’ha utilitzat l’entorn Omnet++. En els resultats dels experiments pot apreciar-
se que aquest protocol de recuperació té bons resultats en múltiples escenaris.

Finalment, es presenta la verificació de la correcció d’ambdós algorismes de
recuperació al Caṕıtol 5.

Chapter 1

Introduction

1.1 Motivation

The technological development in the last decades has motivated the integration
of technology with greater work capability in small and even more accessible
devices. The number of computers and embedded systems has increased and
they have become ubiquitous. These characteristics combined with the growing
network and internet infrastructure, allows the integration of these devices in
private and public computer networks. Because of this, everyday’s life becomes
to be more influenced by the use of complex computer systems, from recreational
applications to critical life application systems.

These characteristics allow the integration of these devices into private and
public communication networks, giving the possibility to forming distributed
systems. The advantages of distributed systems are that they make easier to
integrate different applications running on different computers into a single sys-
tem. The system, if it is properly designed, can scale well with respect to the
size of the underlying network. But, it may have a cost such as more complex
software, performance degradation and weaker security.

The developments in the distributed system area in the last three decades, such
as interprocess communication, remote invocation, cryptographic security, dis-
tributed file systems, data replication and distributed transaction mechanisms,
provide the run-time infrastructure supporting today’s networked computer ap-
plications.

1.1.1 Distributed Systems

A distributed system can be defined as a collection of autonomous computers,
connected through a network, sharing the resources of the system and coordi-

7

8 CHAPTER 1. INTRODUCTION

nating their activities, so that users perceive the system as a single, integrated
computing facility.

Two aspects are relevant in distributed systems, the first one is the hardware:
it is composed of multiple nodes. Those nodes are independent regarding their
probability of failure. The second one is the software, through this one the users
can see as if they are dealing with a single system. Depending on the underlying
operating system, may be necessary to organize the system by means of a layer
of software placed between the higher-level layer, i.e. applications and users,
and a layer underneath consisting of the operating systems. This intermediate
layer is a distribution middleware [8].

So, distributed systems are generally built by means of additional layers of
software. This relies on middleware support through the use of software frame-
works that provide abstractions such as distributed shared objects, and services
including secure communication, authentication and access control, mobile code,
transactions and persistent storage mechanisms.

Nowadays, distributed applications enable closer cooperation between users
through replicated data and multimedia data streams, and will support user
and device mobility using wireless and spontaneous networking.

At this time, distributed systems, particularly the Web-based and other Internet-
based applications such as banking, flight booking, financial investment, etc.,
are of unprecedented interest and importance. Several of these applications
make use of replication.

1.1.2 Replication

Replication is an increasingly important topic in many areas, especially in dis-
tributed systems and in database systems although with different purposes. In
database systems, replication is used for performance and fault tolerance rea-
sons. In distributed systems, some of the main objectives are to provide guar-
antees of message order and delivery, as well as providing fault tolerance, this
last is provided by means of the replication. Replication is obtained maintaining
multiple copies of the data in different computers.

However, replication introduces the consistency problem: whenever a replica
changes it becomes different from the rest. So, we need to propagate all updates
if we want to keep all replicas consistent. Nonetheless, it may degrade the
system performance, especially in large-scale distributed systems, such as large
replicated database systems.

1.1.3 Database Replication

Just about three decades, database replication has been an object of research,
in to the first publications in this area we can find [56, 59].

1.1. MOTIVATION 9

In replicated databases, identical copies of data items are stored on different
computers at different, possibly very distant sites. As a subarea of distributed
systems and database theory and practice, the field of replication has acquired
great relevance. It is increasingly used for supporting performance, fault toler-
ance and high availability.

Among all available replicas, clients can improve their throughput by transpar-
ently accessing the server replica that is closest to them. Suitable protocols
cater for the mutual consistency of the data at each replica. Whenever a replica
fails or the connection to it is broken, client transactions are redirected to other
available servers. In order to maintain high availability, a need for efficient re-
covery procedures arises, for bringing failed or temporarily disconnected replicas
back into the network of active servers as fully functional peers.

1.1.4 Replicated Database Recovery

In Replicated database systems it is very important for fault-tolerant and high
availability purposes to recover a previously crashed replica and its state to be
reconciled with the actual state from the rest of the replicas.

The recovery task basically consists in transferring the updates lost during fail-
ure from one or more active replicas to one or more recovering replicas, without
impeding the overall system capability of providing normal application services.
Since recovery must re-establish consistent data, the development of recovery
protocols must take the idiosyncrasies of the used replication protocols into ac-
count. Under this premise, various recovery protocols have been proposed in
the literature, among them [3, 12, 13, 33, 38, 39, 43].

Ideally, a good replication system should use mechanisms that are simple (so
as to reduce overhead), cope well with network overload, maintain consistency,
provide continuous operability and avoid transaction rollbacks [33]. Similarly,
a good recovery protocol should be simple, efficiently distribute the recovery
work among available replicas, and seamlessly allow for simultaneous concur-
rent transactions. All of this must be done reducing the temporal cost of the
recovery process and reducing to a minimum amount the information to transfer
for the recovery purposes. Additionally, both replication and recovery protocols
must take into account the concurrency of transactions, which in many applica-
tions are required to comply with the ACID requirement [9], i.e., the atomicity,
consistency, isolation and “durability” (a.k.a. persistence) of updates.

Typically, a synchronization mechanism for supporting the updating of alive
and recovering replicas is deployed, since otherwise, recovery may become too
complicated. A straightforward way to synchronize replicas would be to inter-
rupt the ongoing application, but then, high availability is sacrificed. However,
with a suitable Group Communication System (GCS) [15] and virtual synchrony
[10], it is possible to generate synchrony points between failed and recovering
replicas, taking the set of messages delivered to non-failed replicas into account.

10 CHAPTER 1. INTRODUCTION

The GCS provides a membership service and a reliable multicast. Membership
services maintain a list of available, i.e., currently active and connected replicas,
and implement the view concept [15], distinguishing between different states of
the update history in which data items are seen by mutually isolated groups of
servers.

1.2 Methodology

In this thesis we employ the methodology described on the next to deal with
proposed improvements.

1. A bibliographical research must be done in order to set the background
ideas and works existing about replication and recovery algorithms. This
first work provides us with references and some related issues about prob-
lems and solutions. To this end, a survey is very helpful. Whenever a
survey does not exist, it is highly convenient to generate one.

2. As a second step, new proposals must be formalized through a theoretical
analysis.

3. To select a solution, if more than one is generated, discarding those that
do not meet the requirements or have poor contribution. This is made
checking the validity and correctness based on the theoretical analysis.
We have to compare the solutions with the aim of discarding the less
promising ones.

4. Measure the results through implementing the algorithms or simulation
results that would provide its implementation, generating a cycle of im-
provements between the current step and the preceding steps in the event
that the results obtained are not satisfactory.

5. Analysis of the performance of the new proposals.

6. Technical reports and papers containing the related information of all the
precedent steps and the research results are written and sent for publica-
tion in specialized conferences of this area. Technical reports and papers
must be improved according with the comments and suggestions from con-
ference reviewers. In case of the work was not accepted for publication,
the improved work may be presented in another conference. In order to
ensure the quality of the work, papers are only sent to conferences which
publish at IEEE-CS Press, Association of Computer Machinery (ACM)
Press and Springer LNCS, or some included in the CORE classification
available at http://www.core.edu.au/

For the design, development and implementation of the recovery protocols we
must use the software development process detailed in the next:

1.3. ABOUT THIS THESIS 11

• Analysis. The first step in software design and development is the anal-
ysis. Normally the analysis is divided in domain analysis and software
elements analysis. Domain analysis is concerned with the possibility that
the developers are not sufficiently knowledgeable in the subject area of the
new software, the first task is to investigate the so-called ”domain” of the
software.

In the software elements analysis the developers try to establish the re-
quirements for all system elements and then allocating some subset of these
requirements to software. This is necessary because typically, people know
what they want, but not what software should do.

• Design. This step involves two items, the specification and the software
architecture. In the specification the goal is precisely to describe the
software to be written. It is also done for understanding applications that
were already developed. In the software architecture, the overall structure
for the software and its nuances are defined in terms of the database
design, the data structure design, etc. The software architecture refers
to an abstract representation of that system. Architecture is concerned
with making sure the software system will meet the requirements of the
product.

• Prototyping/simulation. Once the requirement analysis and the design
is done we can construct a prototype to make some tests and to give
feedback to the developer who refines the product according to the exact
expectation. Alternatively, we can construct a simulation model to make
the tests. Actually, there are a large number of software simulation tools
that help the developers to easily construct models for testing purposes.
In order to evaluate the performance of the optimizations proposed in this
work, we use the Omnet++ discrete event simulation environment [35].

• Implementation or code generation. In this step, the design is translated
into a system with a machine-readable form. With a well-performed de-
sign, reducing it to code can be accomplished without complications.

• Testing. Once the code is generated we must test it with the objective of
detecting faults and bugs that where committed in the previous steps.

1.3 About This Thesis

This thesis is situated in the distributed systems and database research field,
so it has an inter-disciplinary nature. As stated in [61], the mechanisms and
techniques used in both fields are very similar. Albeit, due to the many subtleties
involved, mechanisms that are conceptually identical, end up being very different
in practice and the results obtained in one field can not be applied directly in
the other one.

12 CHAPTER 1. INTRODUCTION

We have centered this research in to the replicated database systems, and more
specifically in the recovery process for crashed database replicas.

This research is enclosed inside the “CONDEP –From static to dynamic envi-
ronments: CONsistency, Recovery and DEPendability Issues / CONFIA –De
los entornos estáticos a los entornos dinámicos: cuestiones de CONsistencia,
recuperación y FIAbilidad” research project (TIN2006-14738-C02), a Spanish
research project co-developed by Instituto Tecnológico de Informática from the
Universidad Politécnica de Valencia and the Universidad Pública de Navarra,
Spain.

The main goals of this project are:

• Definition and design of a basic support system for distributed agreement
on dynamic environments

• Dependability improvement on dynamic environments from distributed
agreement

• Component development to improve dynamic systems dependability

• Improve a data replication middleware

• Flexible replication protocols development

• Efficient recovery/recociliation protocols development

• Use of fuzzy logic based techniques in distributed systems

• Support development for the evaluation of integrity constraints in repli-
cated databases

Within this project, the goal of this thesis has been to provide optimizations for
the developed recovery/reconciliation protocols, for improving its performance.

1.3.1 Objectives

The main research and thesis objectives are:

1. The first objective is to present a survey of alternative options and strate-
gies employed by replication and recovery protocols developed in recent
years. The main characteristics are summarized in a table. If we pretend
to optimize the recovery protocols, it is mandatory to fully understand the
currently proposed replication and recovery protocols. Then, this survey
and this table are helpful to understand and to have “on one hand” the
main characteristics of the surveyed protocols. There is not a previous
work that surveys and compares these protocols.

1.3. ABOUT THIS THESIS 13

2. Enhance the recovery process with compacting techniques that minimize
the total amount of information to transfer and to process for recovery
purposes. In a first proposal for optimization, trying to minimize the
recovery information will help us to reduce the workload in both replicas
and the communication network overload.

3. Improve the recovery process with compactness an considering the amnesia
phenomenon [20].

4. Verification of the improvements presented through experimentation and
simulation.

1.3.2 Publications

In order to accomplish with the requirements of the internal regulations of the
Ph.D. Program of the Universitat Politècnica de València, some results related
to this thesis and previously published in conference proceedings are listed in
this subsection. These publications are original work and do not appear as part
of any other Ph.D. thesis.

• Improving Recovery in Weak-Voting Data Replication. L. H. Garćıa-
Muñoz, R. de Juan-Maŕın, J. E. Armendáriz-́Iñigo, F. D. Muñoz-Escóı.
7th International Symposium on Advanced Parallel Processing Technolo-
gies (APPT), November 2007, Guangzhou, China. Lecture Notes in Com-
puter Science, vol. 4847, pgs. 131-140, Springer, ISSN 0302-9743.

– The conference “7th International Symposium on Advanced Parallel
Processing Technologies (APPT)” in which this paper was published
is included in ISI-PROCEEDINGS.

• Optimizing Certification-Based Database Recovery. J. Pla-Civera, M. I.
Ruiz-Fuertes, L. H. Garćıa-Muñoz, F. D. Muñoz-Escóı. 6th International
Symposium on Parallel and Distributed Computing (ISPDC), July 2007,
Hagenberg, Austria. Proceedings, pgs. 211-218. ISBN 0-7695-2917-8.
IEEE-CS Press.

– As before, the international symposium where this paper was pub-
lished, is also included in ISI-PROCEEDINGS.

• Recovery Protocols for Replicated Databases - A Survey. L. H. Garćıa-
Muñoz, J. E. Armendáriz-́Iñigo, H. Decker, F. D. Muñoz-Escóı. Interna-
tional Symposium on Frontiers in Networking and Applications (FINA),
Track of The IEEE 21st International Conference on Advanced Informa-
tion Networking and Applications (AINA-07), May 2007, Niagara Falls,
Ontario, Canada. Proceedings, pgs. 220-227, IEEE-CS Press. ISBN 0-
7695-2847-3.

14 CHAPTER 1. INTRODUCTION

– As a track of the “IEEE 21st International Conference on Advanced
Information Networking and Applications (AINA-07)”, the interna-
tional symposium where this paper was published has a CORE B
classification.

• Associating Replication and Recovery Protocols for Replicated Databases.
L. H. Garćıa-Muñoz, J. E. Armendáriz-́Iñigo, F. D. Muñoz-Escóı. 15th Eu-
romicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP) (work in progress track), February 2007, Naples,
Italy. Proceedings, pgs. 5-6, SEA-Publications, ISBN 978-3-902457-12-7.

• Recovery Protocols for Replicated Databases - A Minimal Survey. L. H.
Garćıa-Muñoz, J. E. Armendáriz-́Iñigo, F. D. Muñoz-Escóı. 15th Euromi-
cro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP) (work in progress track), February 2007, Naples, Italy.
Proceedings, pgs. 3-4, SEA-Publications, ISBN 978-3-902457-12-7.

– As the same as the “International Symposium on Frontiers in Net-
working and Applications (FINA)”, the “15th Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Pro-
cessing (PDP)” where this last two papers were published has a
CORE B classification.

1.4 Structure of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 presents a survey of database replication and recovery protocols, it
classifies and analyzes every protocol according to the classification presented
in [31, 60]. This Chapter is generated based on two previous publications [28,
29] about surveying replication protocols and associating them with recovery
protocols.

Chapter 3 presents our first optimization proposal focused on certification-based
replication protocols. Mainly, this optimization consists in dividing the recovery
in two stages, reducing the certification load and the amount of information to
be recovered in the second stage. The second technique scans and compacts the
set of items to transfer, sending only the latest version of each item. We show
that these techniques can be easily combined, reducing with this the time needed
for the recoverer replica to transfer this information and avoiding network over-
load. Besides, it reduces the time needed for the recovering replica to apply the
updates. This Chapter arises from a published work [16] in collaboration with
Jerónimo Pla-Civera and Idoia Ruiz-Fuertes.

Chapter 4 introduces our second proposal for optimizing recovery protocols, This
focused on Weak-Voting replication protocols. Based on the proposal made in
[2], we review the functionality of the original recovery protocol and enhance it

1.4. STRUCTURE OF THE THESIS 15

incorporating a compacting method for improving its performance and providing
an accurate amnesia support. To this last, we consider some related works
[21, 30, 23], and I want to thank to Rubén de Juan Maŕın for his extensive and
valuable contribution to this work by providing the foundation basis for analysis
and incorporation of a solution to the amnesia phenomenon in the recovery
protocol implemented. As before, this Chapter is almost a transcription of the
published article [30].

The Chapter 5 provides the correctness of the recovery algorithms detailed in
the previous chapters.

Finally, Chapter 6 summarizes our conclusions from this work and outlines
future research directions.

As can be seen, this thesis is based on a collection of previous works published,
whose contents has been in force, and on minor adaptations of other previous
works.

Chapter 2

Data Recovery

The aim of this chapter is to present a survey of alternative options and strate-
gies employed by replication and recovery protocols in database systems de-
veloped in recent years. In that context, different concepts for Group Com-
munication Systems and virtual synchrony are also reviewed. We characterize
and classify different kinds of replication protocols in regard to their interplay
with recovery. We narrow the focus on replication protocols based on group
communication and discuss them broadly. Finally a conclusion for this chap-
ter is given. We present a tabular comparison that summarizes and highlights
significant characteristics as distinguished in Subsections 2.3.1 - 2.3.3.

2.1 Introduction

Nowadays, distributed systems are ubiquitous and provide support to many ap-
plications of several kinds, we can mention world wide web applications, client-
server systems, databases, etc. This promising computing power is threatened
by their susceptibility to failures. In recent years various techniques have been
developed to integrate reliability and high availability to distributed systems.

As stated in [47] reliability, R(t), is the conditional probability that a system
can perform its designed function at time t, given that it was operational at time
t = 0. Thus R(t) is a function of the fault processes affecting the system, and of
any mechanisms that prevent system failure when a fault occurs. Availability,
A(t), is a useful measure for systems subject to failure and repair; it is defined
as the probability that a system is operational at time t. Availability is often
expressed as a steady-state value, either as the probability that the system is
operational at any random time, or as a given amount of downtime over a
specified interval. High availability is then reached when the system has a very
short time of unavailability, e.g., less than 300 seconds per year.

17

18 CHAPTER 2. DATA RECOVERY

Reliability can be improved with fault-tolerance. The fault-tolerance mecha-
nisms should be directed to the most likely faults to obtain cost-effective system
design. A system may be able to tolerate a given set of faults, but if the fault
probabilities are high, may still not be sufficiently reliable for the application.
Several mechanisms such as automatic fault-detection, diagnosis, repair and re-
covery could significantly reduce or eliminate downtime improving availability.

Fault-tolerance in distributed systems can be supported through redundancy of
modules also known as replication. Replicated systems constitute a subset of
distributed systems.

Replication has been the subject of study in several areas and has been im-
plemented for various reasons. In distributed systems has been used primarily
for fault-tolerance purposes and in replicated databases has been mainly used
for performance reasons. When a replica fails or is disconnected from the repli-
cated system, the client requests are forwarded to the non-failed replicas, thereby
obtaining fault-tolerance and high availability. Performance can be improved
redirecting client requests to the closest replica obtaining short response times
and may be work load balancing.

2.2 General Recovery in Highly Available Sys-

tems

In order to maintain fault-tolerance and high availability, a need for efficient
recovery procedures arises. Essentially there are two forms of recovery [58]:

• Backward recovery, the main goal is to bring the system from its present
erroneous state back to a correctly previous one. For this purpose, it is
necessary that each process periodically saves its state during failure-free
execution on stable storage. The saved state contains sufficient informa-
tion to restart process execution. Upon a failure, a failed process restarts
from one of its saved states, thereby reducing the amount of lost compu-
tation. Each of the saved states is called a checkpoint [44, 18, 26].

Checkpoint-based recovery protocols rely solely on checkpointing for sys-
tem state restoration. Checkpointing is uncoordinated if each process takes
its checkpoints independently. To recover from a failure or disconnection
the construction of a consistent global state from these local states is
needed, the best is the most recent distributed snapshot, also known as
the recovery line, as shown in Figure 2.1.

In pursuing of this recovery line, a problem known as the domino effect [50,
53] may occur especially in message-passing systems, because of messages
induce inter-process dependencies during failure-free operation. Upon a
failure in one or more processes in the system, these dependencies may
force some non-failed processes to perform a rollback and could lead to the

2.2. GENERAL RECOVERY IN HIGHLY AVAILABLE SYSTEMS 19

P1

P2

Initial state

Checkpoint

Failure

Time

m3 m4m2m1 m5

Message sent

Recovery line Inconsistent cut

Figure 2.1: Consistent and inconsistent global states

phenomenon of rollback propagation. In order to illustrate this, consider
the situation in which a process that sent a message m rolls back to a
state prior to sending the message. The receiver of m must also make
a roll back to the state that precedes the reception of the message m,
otherwise the states of the processes would be inconsistent since one of
them had received a message not yet sent, which should not be possible in
a failure-free execution. In a more extreme scenario, rollback propagation
may be extended to the initial system state, losing all the computational
process performed, as depicted in Figure 2.2.

P1

P2

Initial state

Checkpoints

Failure

Time

m6 m7m5m1 m2 m3 m4

Figure 2.2: The domino effect

Consider the processes P1 and P2 that exchange messages during execu-
tion, upon a failure or disconnection, P1 is restored to the most recently
local checkpoint. In the same fashion, P2 needs to be restored to its most
recent checkpoint. Unfortunately, this two most recently saved states do
not form a recovery line because the message m7 has been received by P1.
However, no other processes can be identified as sender of this message.
So, P1 needs to be restored (rolled back) to an earlier local checkpoint.
Nevertheless, even P1 was rolled back to an earlier previous state, this can
not be considered as a recovery line, because P2 would have recorded the
receipt of the message m6 which could not identify the sender. Therefore,
it is necessary to return P2 to a previous state. As same as before, when
the process P2 is rolled back again to the next earlier local checkpoint, no
sender can be identified for the message m5 ; and so on. For this example,
in the searching for a consistent global state, the initial state is reached.

Many protocols have been proposed that selectively employ local check-

20 CHAPTER 2. DATA RECOVERY

points in order to eliminate the possibility of the domino effect (see the
survey paper in [26]).

Checkpointing is coordinated if processes coordinate their checkpoints in
order to record a consistent global state [14, 50, 53, 5]. So, the domino
effect can be avoided bounding the rollback propagation by restarting the
system from a consistent global state.

Checkpointing can be communication-induced, enforcing to each process
to make checkpointing based on the information piggybacked on the ap-
plication messages it receives from other processes. In addition to taking
application-specific basic checkpoints, each process can also be asked by
the protocol to take additional forced checkpoints, based on the piggy-
backed information as well as local control variables.

• Forward Recovery, in this case, an attempt is made to bring the system
in a correct new state from which it can continue to execute. The main
problem with this issue is that we must know in advance which errors may
occur.

And the following categories of recovery schemes can be distinguished:

• Application Specific Recovery. In this kind of recovery, the recovery pro-
cess is programmed in an explicit way and as part of the application. The
resulting code involves both, knowledge about the application domain and
the underlying hardware. The changes made at the underlying hardware
or at the application level may require a substantial redesign of the recov-
ery algorithms.

• Transaction Recovery. In the transaction model, computation is divided
in transactions. In distributed environments, transaction commitment
involves synchronous checkpointing (“force-writing”) to stable storage by
each of the processors at each transaction boundary.

The protocols supporting the committing and aborting of transactions
are easily extended to handle recovery from machine failures by treating
failures as aborts. These protocols can be built into an operating system
and can therefore be made transparent to applications.

However, not all programs can be expressed as transactions. Transaction
systems are based on several assumptions like required serializability, the
probability that different transactions contend for the same data is low and
finally, transactions are long enough, that is, involve enough computation
to amortize the I/O delays of synchronous commits at each transaction
boundary.

So, transaction-based recovery is suitable for applications that are struc-
tured as transactions and that satisfy the above assumptions. This recov-
ery is likely to be cost effective, since there is little additional overhead
involved.

2.2. GENERAL RECOVERY IN HIGHLY AVAILABLE SYSTEMS 21

• Pessimistic Recovery [26]. The systems that synchronize communication
and computation with checkpointing are called pessimistic, since they de-
lay processing each message until both the state of sender and the state of
the receiver have been checkpointed to avoid an inconsistency in the rare
case of a failure. To avoid the substantial delays associated with check-
pointing onto a stable storage medium such as mirrored disks, pessimistic
systems typically use a backup process on another processor to hold check-
points. All communication then requires a multiway synchronization of
the primary and backup of both sender and receiver, and multiple failures
can no longer be tolerated: If both the primary and the backup processors
fail, recovery is no longer possible.

• Optimistic Recovery [57]. Optimistic recovery protocols ensure that the
externally visible behavior of the system is equivalent to some failure-
free execution. State is recovered by first restoring an earlier checkpoint
from stable storage and then replaying logged messages, system never rolls
back too far and the reason is that, in order to avoid domino effect [53]
the extent of rollback in the optimistic recovery is controlled by replaying
the correct number of messages.

Optimistic recovery is a transparent recovery mechanism. This means that
the applications can be written as if they were to be executed on an ideal
failure-free machine.

Transparent recovery will save programming effort and reduce the risk of
introducing errors. Optimistic recovery applies to any system that can be
viewed as a collection of recovery units communicating by message passing.
It is not restricted, as transaction-based recovery is, to applications that
can be structured as units of work accessing a global database to which
concurrency control is applied.

Unlike pessimistic recovery techniques, there is no synchronization re-
quired upon communication. Therefore, as long as the I/O bandwidth
to the disk is sufficiently high, logging delays do not slow down compu-
tation. Because logging may be asynchronous, several log entries may be
blocked into a buffer and written out in a single I/O operation. Provided
that an input message is logged by the time the computation it engendered
has completed and is ready to return a result to the external user, there
is no response time delay.

Message logging and checkpointing can provide fault tolerance in distributed
systems in which all process communication is through messages. Based on this
last, Johnson and Zwaenepoel [40] propose a recovery algorithm using optimistic
message logging and checkpointing for the distributed system recovery.

Damani and Vijay K. Garg in [19] propose an algorithm for recovering asyn-
chronously from failures.

22 CHAPTER 2. DATA RECOVERY

2.3 Replication and Recovery Protocols

As stated in [61] the mechanisms and techniques used to provide replication
in both fields, distributed systems and databases are very similar, but due to
the subtleties involved such as model, assumptions, guarantees provided and
implementation, mechanisms that conceptually could seem equal, end up being
very different in practice. So, it is very difficult to directly apply the results
obtained from an area into the other one.

In replicated databases, identical copies of data items are stored on different
computers at different, possibly very distant sites. As a subarea of database
theory and practice, the field of replication is acquiring growing relevance. It
is increasingly used for supporting performance, fault tolerance and high avail-
ability.

Among all available replicas, clients can improve their throughput by transpar-
ently accessing the server replica that is closest to them. Suitable protocols
cater for mutual data consistency at each replica. Whenever a server site fails
or the connection to it is broken, client transactions are redirected to other
available servers. For maintaining high availability, a need for efficient recovery
procedures arises, for bringing failed or temporarily disconnected nodes back
into the network of active servers as fully functional peers.

The recovery task basically consists in transferring the updates lost during fail-
ure from one or more active nodes to one or more recovering sites, without
impeding the overall system capability of providing normal application services.
Since recovery must re-establish consistent data, the development of recovery
protocols must take the idiosyncrasies of the used replication protocols into ac-
count. Under this premise, various recovery protocols have been proposed in
the literature, among them [43, 33, 39, 38, 12, 13, 3].

Ideally, a good replication system should use mechanisms that are simple (so as
to reduce overhead), cope well with network overload, maintain consistency, pro-
vide continuous service and avoid transaction rollbacks [33]. Similarly, a good re-
covery protocol should be simple, efficiently distribute the recovery work among
available nodes, and seamlessly allow for simultaneous concurrent transactions.
Additionally, both replication and recovery protocols must take into account the
concurrency of transactions, which in many applications are required to comply
with the ACID requirement [9], i.e., the atomicity, consistency, isolation and
“durability” (a.k.a. persistence) of updates.

Typically, a synchronization mechanism for supporting the updating of alive and
recovering replicas is deployed, since otherwise, recovery may become too com-
plicated. A straightforward way to synchronize replicas would be to interrupt
the ongoing application, but then, high availability is sacrificed. However, with
a suitable Group Communication System (GCS) [15] and virtual synchrony [10],
it is possible to generate synchrony points between failed and recovering sites,
taking the set of messages delivered to non-failed sites into account. The GCS

2.3. REPLICATION AND RECOVERY PROTOCOLS 23

provides a membership service and a reliable multicast. Membership services
maintain a list of available, i.e., currently active and connected sites, and imple-
ment the view concept [15], distinguishing between different states of the update
history in which data items are seen by mutually isolated groups of servers.

This part of the work is focused on replication and recovery strategies designed
for the primary partition model [51, 15]. It enforces that, in case of network
partitioning, only the subgroup that has a majority of the system replicas (if
any) can continue processing transactions. Thus, consistency is easily main-
tained since no other group of active replicas can cause conflicts in the recovery
procedures. Hence, there is always a group of replicas that maintains an up-to-
date database state, and any other subgroup can recover by obtaining such state
from some replica of the majority subgroup. This model is typically assumed
in recent works about database replication and recovery. Partitionable models
have been assumed in the field of mobile databases, but we do not survey such
kind of systems in this document.

2.3.1 Basic Questions for Replication Protocols

Since recovery is usually embedded in the replication process, the following
questions must be answered (cf. [31, 51, 60, 61]). The various concepts as men-
tioned and labeled with acronyms below, are going to be explained in subsequent
subsections.

1. Server Architecture (A): are transactions executed in primary-copy (P) or
update-anywhere (U) mode?

2. Server Interaction (I): is interaction between replica servers constant (C)
or l inear (L)?

3. Transaction Termination (T): do transactions terminate by voting (V) or
non-voting (N)?

4. Update Propagation (U): is it eager (E) or lazy (L)?

Clearly, answers to some of the questions establish a distinction between various
kinds of replication protocols. These are going to be used in Section 2.3.2 for
classifying replication protocols that host the recovery protocols as addressed
in Section 2.3.3.

Generally, the objectives listed below should be considered by the protocols.

1. Enable and optimize transaction concurrency. Two basic kinds of concur-
rency control mechanisms are distinguished as follows.

• Optimistic Concurrency Control. This assumes that transaction con-
flicts are unlikely to occur when shared data are accessed. In that

24 CHAPTER 2. DATA RECOVERY

case, remote server resources can remain largely untapped until trans-
action commit time. And if conflicts do occur, then transactions are
aborted without further ado, so that they may be re-tried later.

• Pessimistic Concurrency Control. Conflicts are expected to occur,
and remote resources must be ready to be tapped on demand at
any moment during transaction time. Unless a deadlock occurs, pes-
simistic concurrency control makes sure that transactions will termi-
nate successfully. Implementations of this pessimistic policy are the
well-known Two Phase Locking (2PL), Strict 2PL and Timestamp-
ing (which, however, is occasionally used with optimistic control as
well).

2. Minimize transaction abortions. This depends on the used concurrency
control (as indicated in the previous point) and on the type of transactions,
in the sense that, the more write operations there are and the longer the
transactions last, the more conflicts are likely.

3. Maintain replica consistency. This is strongly though not inextricably
related to concurrency control. In general, applications differ in their
requirements of consistency, so that the isolation level of transactions may
vary.

2.3.2 Classification of Replication Protocols

In [31], the following two modes for propagating updates to replicas are distin-
guished:

1. Eager. All replicas are updated during transaction execution time, i.e., no
transaction is committed before all network nodes are updated. This guar-
antees a very high degree of replication consistency but increases transac-
tion response times and thus slows down performance, due to the multi-
plicity of updates and message rounds. Moreover, eager updating is not a
viable solution in mobile networks where nodes may be disconnected for
extended periods.

2. Lazy. The updates of a transaction generally are executed in a single dedi-
cated replica, typically the nearest one or the owner node of updated items.
Updates are propagated to all remaining replicas asynchronously, which
in general amounts to a separate transaction per node. Thus, lazy update
propagation permits a wide variety of synchronization points, which how-
ever are needed because temporary inconsistencies may easily arise, due
to the lack of synchrony.

According to [61], eager replication protocols can be classified along to the
following three dimensions.

2.3. REPLICATION AND RECOVERY PROTOCOLS 25

1. Server Architecture: It determines where transactions are executed in the
first place. According to [31], the two main options are:

• Primary copy [39]. Transactions always are directed to a designated
node, which holds the “primary copy” of updated items. It is the
only one to actively process updates solicited by transactions.

• Update anywhere [41]. Any replica can directly process any transac-
tion, i.e., transaction updates can be directed to and processed by
any replica.

2. Server Interaction. The degree of communication among database servers
at transaction time, i.e., the amount of network traffic generated by a given
replication protocol, is measured by the number of interchanged messages.
Two cases can be distinguished:

• Constant Interaction. Independently of the number of operations in
the transaction, a constant number of messages is used to synchronize
the servers. Typically, protocols in this category group all operations
of the transaction into a single message [1, 3, 12, 13, 33, 38, 39, 43].

• Linear Interaction. Here, each operation of a transaction is dealt
with separately. Operations can be sent either as SQL statements
or as log records that contain the results of executing operations in
particular servers [10, 33].

3. Transaction Termination. This is related to how atomicity is guaranteed.
Two cases can be distinguished:

• Voting Termination. Replicas are coordinated by an extra round of
messages. It can be as complex as an atomic commitment protocol,
or as simple as a single confirmation message [3, 10, 41].

• Non-voting Termination. Nodes can decide on their own to commit
or abort a transaction [25, 45].

In a later work, [63] distinguish the following five replication techniques. In all
of them, a reliable total order broadcast is needed in order to propagate the
updates:

1. Active. Based on the state machine replication approach [54], in this tech-
nique the delegate server receives a transaction requests from the client,
the whole transaction is put into a message, and this message is broad-
cast to the servers (using total order) by the delegate server on behalf the
client. All servers process the transaction and different transactions can
use different delegate serves. A complete determinism in the execution of
a transaction is required. All operations should be known at the start of
the transaction. Because the entire transaction is sent and processed on
all servers, read sets are also processed on all servers losing with this the
benefit of load balancing for read operations.

26 CHAPTER 2. DATA RECOVERY

2. Certification-based. Also known as “database state machine” [48]. In
this replication technique the client sends the transaction to the delegate
server. Unlike the active replication at this point nothing is broadcast,
the delegate server process the transaction until the commit is required
making the total order broadcast of both, the write set and the read set.
So, all replicas share the same history of delivered messages and can detect
conflicts, if any, with concurrent transactions. This allows to each replica
to individually decide if the transaction commits or aborts. This technique
can handle interactive transactions because write operations are deferred
until the transaction commit is requested.

3. Weak-voting. This technique is similar to certification-based, except that
when the transaction commit is required, the total order broadcast is only
done for the writeset. When the writeset is delivered, the delegate server
decides whether the transaction is committed or aborted in case of conflict
with any previously committed transaction. Once the outcome is decided,
it is communicated to other servers through a second broadcast that may
not be totally ordered, but must be reliable. Note that two broadcasts per
transaction are needed while in previously techniques only one is required.

4. Primary copy. In the primary copy replication all transactions are sent
to a primary server, all other servers do not accept transactions and only
apply the updates of the transactions processed in the primary server.
A reliable broadcast is used for the primary server to communicate the
updates. Abort or commit for the transactions are decided on the primary
server, so as the serialization order.

5. Lazy. As described at the beginning of this section in lazy replication the
updates of the transaction are sent to all other replicas once the trans-
action has committed. Even though this may allow faster transaction
completion, when it is used with an update everywhere approach lazy
replication can violate ACID properties.

As indicated before, it is also important to take the network’s partition model
into account [10, 15, 51]. Mostly, the primary partition model is employed. It
enforces that, in case of network partitioning, only the sub-group that has a
majority of alive nodes can continue to process transactions. Thus, consistency
is maintained easily, since no other group of active servers can then cause con-
flicts. Hence, there always is a group of sites that maintains an up-to-date state
of replicas, and any other sub-group can recover by obtaining this state from
some replica of the majority sub-group.

Generally, eager update algorithms are preferable to lazy ones whenever replica
consistency is achieved with update anywhere protocols. However, if perfor-
mance is key and consistency can be compromised to some degree, better re-
sults are obtained with lazy update algorithms, mainly when a primary copy
algorithm is used.

2.3. REPLICATION AND RECOVERY PROTOCOLS 27

The oldest works [9, 11] did not consider the diffusion protocols based on GCSs,
and they became on pessimistic and optimistic concurrency controls with voting
techniques for transaction termination.

2.3.3 Recovery Protocols

Dealing with site failures is not an easy task, in most of cases some issues for
the recovery are needed to be present in the replication protocol and during
the failure free execution of transactions. We need to assume a partial amnesia
crash failure model [17] so we can perform the recovery of a failed site. This
model assumes that, at restart, some part of the state is the same as before the
site crash, while the rest of the state is reset to a predefined initial state. For
recovering a failed site, the actual state of the database needs to be transferred
to it. Only after that is accomplished, the recovering site can again accept
requests from other sites or from clients. To transfer the current state, three
options can be distinguished: either to copy over the whole database, or to only
transfer incrementally the last versions of all data items that were modified
during the failure period, or to resend the update messages that did not reach
the failed node.

Note that the checkpoint-based techniques described in Section 2.2 can not
be used here due that backward recovery implies a violation to “Durability”
property included in the ACID properties, so a recovery of this kind is not
allowed.

Despite dismissing the above restriction, the amount of state that a database
recovery protocol must manage necessarily involves the use of algorithms to
“remember” everything that the recovering site has accepted and persisted and
does not involve any kind of backtrack. Neither message logging nor checkpoint-
ing protocols consider the case in which the sites need to handle a large amount
of state so they can hardly be adapted to this environment.

For classifying different kinds of recovery protocols, it is useful to answer the
following questions. Answers to each of them are going to be addressed in more
detail in subsequent subsections.

1. Transfer Model (TM): Is it a full database transfer (FT), or a version-based
incremental transfer (IT) or are lost messages resent (LR)?

2. Concurrency control during recovery: (a) Regarding optimism (O), is it
optimistic (O) or pessimistic (P)? (b) Considering the number of managers
(M), does it use a single (S) or multiple (M) managers? (c) Is it multi-
versioned (V) (Y(es)/N(o))?

3. Recovery-work distribution (W): is it centralized (C) or distributed (D)?

28 CHAPTER 2. DATA RECOVERY

Replication Recovery
A I T U TM O M V W

Full DB transfer U C N E FT P S N C
Version number U C N E IT P S N C

[43] Restrict set U C N E IT P S N C
Log filter U C N E IT P S Y C
Lazy transfer U C N L IT P S N C

[33]

Bcast Writes Log Update U L N E LR P S N C
Bcast Writes Augm. Bcast U L N E LR P S N C
Delayed Bcast Log Update U C N E LR P S N C
Delayed Bcast Augm. Bcast U C N E LR P S N C
Single Bcast U C N E 1 P S N C

[39] Jiménez P C N E LR P S N D
[38] COLUP U C V 2 IT O M Y D
[12] CLOB U C N E 3 O M Y C
[13] FOBr U C V E IT O M Y D

[3]

BRP U C V E IT O M Y C
ERP U C N E IT O M Y C
TORPE U C N E IT O M Y C

Table 2.1: Protocol Classification.

1. Considers full database transfer, is needed if a site is new or if it is not in the record of

views in the logger. Otherwise, it uses LR.

2. It is configurable, and may be hybrid.

3. IT for long-term failures, and LR for short-term ones.

Recovery Protocols by Kemme, Bartoli and Babaoglu

In [43] the authors propose solutions to transfer the state of the database to the
recovering replicas without interrupting the transaction process in the rest of the
system. To this end, they consider a replication model that applies eager update
anywhere, with a constant interaction and non-voting transaction termination.
Basically two ways for transferring the recovery information are discussed: (a)
the GCS regular state-transfer when a view-change event arises, or (b) using a
specially tailored recovery protocol. Option (a) is immediately discarded since
the amount of state to be transferred is very big (the entire database) and this
is impractical.

We describe on the sequel the five recovery alternatives presented in [43], plus
the enriched view synchrony[6] mechanism assumed in that paper and used in
all its recovery protocols.

Full Database Transfer. Despite discarding a database transfer when it is
initiated by the common GCS behavior (GCS are usually employed in the active
replication model; when a replica is added, they transfer the current state of

2.3. REPLICATION AND RECOVERY PROTOCOLS 29

the replicated object to such recovering replica), transferring the entire database
still has sense in a few cases. Indeed, this management is mandatory for new
replicas, but also attractive if the size of the database is small or if most of data
has been changed during the failure interval. In this case we have a pessimistic
and centralized concurrency control with a unique manager. The advantages of
this method are its simple implementation and that it does not fully suspend
the execution of the application, since the write operations are only delayed on
the objects that are not yet transferred, and read transactions are allowed. The
disadvantages are that it is made under a data transfer transaction schema that
sets a read lock, which is released when the data has been read, and transferred
to the recovering replica. Additionally, this could be highly inefficient in cases
where the failure time for a replica was short.

Incremental Transfer Using Version Numbers. If the recovering replica
was not active for a very short time, or the data updates were few, may be more
advisable to determine which part of the database needs to be transferred. To
do so, global identifiers for the transactions are used, so that the replica that
will send the information for the recovery, can determine the last transaction
that was correctly executed in the recovering replica and with this, the pend-
ing updates to send. It has the same replication model exposed before. For
the recovery it uses the version-based transference model, with pessimistic con-
currency control, a unique manager for the concurrency and the recovery work
does not fully suspend the execution of the application, the write operations
are only delayed on the objects that are not yet transferred, only the changed
data are transferred to recovering replicas and the read lock can be released im-
mediately on the not changed data. The disadvantages are that it is necessary
to review the entire database to determine the objects to transfer, which can
cause overload. An updated object is locked since the begin of the data trans-
fer transaction until it is either transferred or considered non-relevant. Finally,
note that not all the DBMSs can mark the objects with version numbers (i.e.,
with the identifiers of the transactions that generated their current values) as is
required by this recovery protocol.

Reducing the Amount of Data to Check. Using a so-called “reconstruction
table” can alleviate the disadvantages exposed in the previous subsection. It is
a data structure to store information about recently updated data. A record in
this table consists of a row identifier and a global identifier for the last transac-
tion that updated the row. Each update is recorded in the reconstruction table,
unless all sites have successfully performed the update.

In contrast to the row level locks of the previously discussed protocol options,
this one only needs to set a single lock on the entire database. Once the in-
cremental data set to be transferred is determined, that lock is replaced by
fine-grained row level locks on the respective data items.

Replication is as before, and the incremental recovery is accomplished with
pessimistic concurrency control and a unique centralized version-based manager
site for controlling concurrency and the distribution of recovery tasks.

30 CHAPTER 2. DATA RECOVERY

The main advantages are that version numbers are not needed. Hence, its im-
plementation is more independent of the underlying DBMS, since labelling takes
place modularly in a separate table that can be straightforwardly implemented
as a relational table. Also a scan of the entire database is no longer needed, and
non-relevant data are locked only for a very short period. The disadvantages
are that the use of the reconstruction table demands additional space (that,
however should be negligible even for very small devices, which nowadays also
dispose of vast amounts of memory). And in spite of a relatively fast release
of non-relevant data locks, the read-locking time span of relevant data could be
considerable.

Filtering the Log. Up to now, sites have been supposed to set read locks
for synchronizing the data transfer with concurrent transaction processing. In
the previously discussed optimization, locking of non-relevant data is reduced,
but locks on relevant data may still last long. To avoid locks, multiple versions
of data can be used, i.e., the use of multi-version concurrency control, as in
PostgreSQL, Oracle and optionally in MS SQL Server. In that case, transactions
can continue to update the database while earlier versions that have been missed
by the recovering site are transferred to it.

Recovery is version-based and incremental, concurrency control is pessimistic,
and a unique centralized version-based manager site is used to distribute recov-
ery tasks. Advantages are that transaction execution is not suspended, data
transfer is not needed and locks are fully avoided. The disadvantage is that
multiple data versions must be kept, but that can be left to the underlying
DBMS, as in PostgreSQL, so that recovery is not burdened with that.

Lazy Data Transfer. Up to this point, all mentioned solutions use view
changes as synchronization points. That is a simple approach but has several
drawbacks:

1. The recovering site has to delay transaction processing on data that must
be transferred (not necessary in version-based concurrency control).

2. If workload is high and data transfer takes long, then a recovering site
might not be able to store all transaction messages delivered during data
transfer, or it might not be able to apply these transactions fast enough
to catch up with the rest of the system.

3. If the recoverer site fails, the recovering site needs to be reset so that
recovery process can re-start all over again.

These drawbacks can be avoided if we decouple the synchronization point from
the view change.

Initially the recovering site discards the messages delivered in the view change
and the recoverer site starts the transfer. When the transfer is about to com-
plete, the recoverer and the recovering sites determine a delimiter transaction
to be delivered in the view change. The recoverer site then transfers all changes

2.3. REPLICATION AND RECOVERY PROTOCOLS 31

performed by transactions with an identifier that is smaller than the identifier
of the delimiter transaction. The recovering site starts queuing transaction mes-
sages with identifier greater than the identifier of the delimiter transaction and
finally applies these transactions once the data transfer is completed. The latter
is done in several rounds. Only in the last round (when the delimiter transac-
tion is determined), the transfer is synchronized with concurrent transaction
processing by setting appropriate locks. The idea is to send in each round those
data that were updated during the data transfer of the last round.

Again, the version-based incremental transfer mode is used for recovery, concur-
rency control is pessimistic, using a unique centralized multi-versioned manager
to distribute recovery tasks. The significant variant of this protocol is that the
transfer of the actual database state takes place in lazy mode. So, at least the
failures at the recoverer site are handled more efficiently. The disadvantage is
that this protocol requires a reconstruction table to maintain the information
about recently modified data.

Enriched View Synchrony[6]. EVS makes use of an online reconfiguration of
recovering nodes. Hence, the following key problem of all solutions for recovery
as discussed so far requires even more attention: view changes can happen before
reconfiguration is completed. View changes that occur during reconfiguration
can cause considerable complications. For example, suppose that a site X acts
as the recovering site of a node that joins the primary view and that X leaves the
present view before reconfiguration is completed. At this point, only the node
X and the recoverer node knows that reconfiguration has not been completed.
All other nodes do not know whether the recovering node is qualified to process
transactions nor which nodes need to continue with the reconfiguration process.
At worst, this could lead to a primary view in which no member would be able
to process transactions.

This complication is due to the fact that a member of a primary view is not
necessarily an up-to-date member. In order to handle such situations, an exten-
sion of the traditional group communication abstraction is proposed in [43], the
enriched view synchrony (EVS). Instead of ordinary views, EVS deals with so-
called “enriched views”, also called e-views. An e-view is a view with additional
structural information. Sites in an e-view are grouped into non-overlapping
sub-views that in turn are grouped into non-overlapping sub-view-sets. A view
change then notifies about a change in the composition of the e-view (sites that
appear to be reachable); such changes are performed automatically by the EVS.
Additionally, EVS introduces e-view change events that notify about changes
in the structure of the e-view in terms of sub-views and sub-view-sets. In con-
trast to view changes, e-view changes are requested by the application through
dedicated primitives.

The characteristics of EVS can be summarized as follows: It maintains the
structure of e-views across view changes. E-view changes between two consec-
utive view changes are totally ordered by all sites in the view. Finally, if a site
installs an e-view Ev and then sends a message m, then any site that delivers

32 CHAPTER 2. DATA RECOVERY

m delivers it after installing Ev. Note that the original definition of EVS does
not consider total order and uniform delivery. However, accommodating these
properties will be simple since they are orthogonal to the properties of EVS.

EVS provides simpler algorithms in regard to virtual synchrony. In particular,
it provides the subsequently explained characteristics with respect to the in-
corporation of a site into the primary view (even though it is the DBMS who
decides when to start the database transfer). When a site joins a primary view,
it is done locally, i.e., it does not matter whether an operational primary view
exists or not. When a recoverer site fails before terminating the data transfer to
the recovering site, the remaining sites in the primary sub-view know that the
recovering site is not updated, so it still is a member of their set of sub-views,
but not of their sub-view. When a site enters the primary sub-view, all sites in
that view know that the site now is updated and operational.

In short, with EVS, we are able to encapsulate the reconfiguration process, and
the database system receives a more realistic picture of what is going on.

Recovery Protocols by Holliday

In [33], protocols called Broadcast Writes, Delayed Broadcast and Single Broad-
cast (the latter already presented in [1]) for recovery and replication are dis-
cussed. According to the classification in [60] as discussed in section 2.3.1,
these are update-anywhere and non-voting protocols. Concurrency control is
performed by the DBMS with strict two phase locking (Strict 2PL). These pro-
tocols use a GCS providing virtual synchrony. Virtual synchrony is used to
ensure that messages are delivered in the same view in which they were broad-
cast and that two sites that pass to a new view have delivered the same set
of messages in the previous view. These protocols use total order multicast
primitives as provided by the GCS for controlling transactions. The explicitly
stated objective of these recovery protocols is to minimize system downtime and
disruption caused by failures.

Single Broadcast Recovery. When a site fails, the multicast subsystem
detects the failure and the membership protocol creates a new view from which
the failed site is excluded. The operational sites will receive a view change
message. If a commit request message for a transaction T was delivered in the
previous view, then it has been delivered to all sites that comprised that view
and the transaction was committed or aborted by all the sites in the view. When
the failed site that was excluded in the following view recovers locally, it will
have obtained the effects of T and all transactions that committed in the view
to which it belonged, but not later effects of any later view.

Some GCSs with virtual synchrony provide recovery mechanisms that log deliv-
ered messages, so that when a site recovers, missed messages can be executed
at this site. That can be used when the Single Broadcast replication protocol
is employed. If the GCS does not provide for global recovery, some sites can be

2.3. REPLICATION AND RECOVERY PROTOCOLS 33

assigned to be loggers for update messages. Note that messages can be logged
intelligently. For example, none of the messages from aborted transactions need
to be logged. Thus, the logger only stores view changes and operations of com-
mitted transactions. Also note that this change log is different from the recovery
log maintained by the DBMS at each site and is used for local recovery. When
a view change is indicated, the logger makes an entry in the change log, record-
ing membership changes. Also delivered broadcast messages with transactional
updates are added to the change log. If the transaction has read obsolete data,
the corresponding entry is erased and the transaction aborted. Otherwise, the
transaction is executed and committed.

The change log is used as follows. When the communication system detects a
membership change and one or more sites are added to the view, no update
transaction messages are delivered to it, or to any other site, until the new site
has exchanged messages with one logger and the logger indicates that recovery
is complete. The logger will then see a view change and a request of the new
site to be updated, and will look for the last view in which the site to recover
was present. If the site has been absent for a long time and the logger does
not have registry of it or is a newly incorporated site, the full database must
be transferred. Otherwise, the transactions that were committed after the last
view in which the recovering site was a member, are sent to the site in their
commit order.

Here, the transfer mode clearly is either FT (cf. Section 2.3.3) or, based on the
log, incremental. Concurrency control during recovery is not needed because no
transaction is processed until the recovery is complete. Recovery is centralized in
a site that also acts as logger. The advantage is that clear decision criteria can be
applied for determining whether full database transfers are really necessary and
when they can be avoided by sending only the messages lost since the last view
to which the failed site belonged. The disadvantages are that no transaction is
processed until recovery is completed. Moreover, data versioning is required so
that write and commit messages can take notice of stale data reads, in which
case the transaction is aborted.

Delayed Broadcast Recovery. The delayed broadcast replication protocol
decouples the writeset broadcast from the commit broadcast for any transaction.
This behavior raises some problems when recovery is being considered. It might
happen that the recovering site was able to deliver the writeset for a particular
transaction, but not its commit or rollback message. So, that writeset was lost
when the site failed and should be retransmitted now by the recoverer site if
its commit message was delivered whilst the recovering site was crashed; i.e.,
messages delivered in a view where the recovering site was up and running might
have to be remembered and resent by the recoverer.

Two possible solutions for the problems caused by the writeset-commit decou-
pling are presented:

1. Log Update Method. The loggers must examine their logs or the state of the

34 CHAPTER 2. DATA RECOVERY

database to determine if there exists on progress transactions in the sites
without failure. If there are, the logger should mark these transactions so
that when the commit or abort message is delivered, if the commit was
successful, the Logger will find the record containing the writes for that
transaction and copy it to the view change record. So when a previously
failed site rejoins to the group, the logger begins with the execution of
the writeset of the transactions that were in progress when the site failed,
following with the operations of the transactions that were originated and
committed while the site was failed. The commit order is the same for all
non-aborted transactions. The operations of the aborted transactions are
not included in the log since their effects are undone in the sites without
failure.

The transfer model for the database update used here is log-based, dur-
ing the recovery a pessimistic concurrency control is used with a single
manager, the recovery work distribution is centralized in a unique site.
This protocol has the advantage that it does not need the data versioning
used in the single broadcast protocol. The flow of messages is executed
in the recovering sites in the original order, recreating with this the same
conditions than in the non-failed sites. As a disadvantage we have that
the loggers must maintain the logs of previous views whether or not a site
fails in case of there were write messages from the terminated transactions
in the those views. Additional work is done by the sites that behave as
loggers.

2. Augmented Broadcast Method. This second method gives additional pro-
cess to the sites of the on-going transactions and requires a change in
the recovery lock manager algorithm. If a site Sj has any transaction in
course when a new view is installed (assuming that such a view change
implies that a replica has rejoined the system), it modifies the commit
protocol in a way that the writesets are included in the commit messages
for all transactions that broadcast their writesets in a previous view; the
sites that have been operating through the change of view will ignore the
writesets and will directly process the commit messages. The sites that are
loggers will log the augmented message. This extension is only needed by
on-going transactions; i.e., not for those that are started once the recovery
process is finished.

Similar to the previous method, the transfer model for the database up-
date used here is log-based, during the recovery a pessimistic concurrency
control is used with a unique manager, the recovery work distribution is
centralized. The advantages of this protocol are that data versioning is not
needed, the messages are executed in the recovering sites in the original
order, recreating with this the same conditions than in the non-failed sites
as the previous protocol, but tries to avoid the overload in the Loggers by
distributing it towards the sites that have on-going transactions. As dis-
advantages we have that additional work is done by sites of transactions

2.3. REPLICATION AND RECOVERY PROTOCOLS 35

in course and requires a change to the recovery lock manager algorithm:
the write requests are included in the commit request.

Broadcast Writes Recovery. When transactions are long, the Broadcast
Writes protocol has a clear advantage over replica update protocols that do not
use multicast. We can assume that when a view change occurs, there will be
many on-going transactions and it is better not to abort all of them at each view
change. Due to this, using database sites as Loggers instead of relying on the
recovery mechanism provided by the multicast system could be of significant
benefit. The Augmented Broadcast global recovery method presented for the
Delayed Broadcast protocol could be used for Broadcast Writes. In Augmented
Broadcast, only the final broadcast for a transaction, the commit request, is
affected by the need to augment it with the writeset. The method then works
as it does for Delayed Broadcast. When the Log Update method is used with
Broadcast Writes, the Logger must be careful to remove messages from the log
for a transaction that is aborted for any reason. In the case of Delayed Broad-
cast, only transactions that were aborted at the time of termination request
had to be removed from the log. However, with the Broadcast Writes protocol,
transactions can be aborted by sites because of deadlocks. If the write requests
of two or more transactions cause a deadlock, all operational sites will abort
one of the transactions (and the same transaction is aborted at each site). The
writes of the aborted transaction are not included in the update portion of the
view change record. However, the last write of the transaction to be aborted
could be logged and replayed to the recovering site.

In these two last recovery protocols, the update transfer mode is log-based.
During recovery, pessimistic concurrency control with a unique manager based
on 2PL is used; the distribution of recovery tasks is centralized. The advan-
tages of these protocols are that they are capable of supporting the most general
transaction types in a distributed database, without the need of data version-
ing. Moreover, the second protocol tries to balance the work among loggers and
the other sites. The disadvantages of the second protocol are the same as for
Delayed Broadcast, i.e., additional work is burdened upon on-going transaction
processing sites, and a change of the recovery lock manager algorithm is needed:
write requests are included in the commit request message so that this informa-
tion is entered into the log. The disadvantage for the case of Log Update Method
is that loggers must take care of clearing messages from the log for a transaction
that is aborted for whatever reason and not only those with an explicit abort
message or whose commit message is rejected.

Parallel Recovery by Jiménez, Patiño and Alonso

The proposal for doing the recovery task in a parallel way exposed in [39] is based
on a model that consists in a set of database replicas in an asynchronous system.
This model is extended with a failure detector. Sites interchange messages
through a reliable channel, and no Byzantine failures are considered.

36 CHAPTER 2. DATA RECOVERY

The system is structured in two layers. The first layer has the replication mid-
dleware and relies on a GCS. In this middleware the replication and recovery
protocols are implemented. Its GCS provides membership service, reliable mul-
ticast and the notion of view. The second layer contains the data being repli-
cated, it is assumed that the data is divided into disjoint partitions (or classes)
and each one has a master site. The transactions that access data in a given par-
tition should be local to the partition master site; i.e., if a transaction requests
processing in a non-master site, this site forwards the request to the partition
master site. A site executes only its local transactions; for remote transactions
only installs their updates. The transactional system supports strict two phase
locking.

The aim of the recovery protocol is to identify the missed transactions in a
failed but now recovering site, obtaining these transactions from an active site
and applying them in such recovering site. Recovery is made on a partition basis,
i.e., each partition is recovered independently from other ones. A partition can
be in one of the next states: (a) online: those partitions that are working
normally; (b) crashed : when its master site has failed; (c) recovering: when
such master site is restarted; (d) pre-online, when the recovering has completed
its first steps but is not yet online.

A partition can be elected as recoverer and it changes to that state. The recov-
ery procedure terminates with a forwarding phase during which the partition is
in forwarding state. A partition can not process transactions from clients during
the crashed, recovering or pre-online states, in which only can process transac-
tions associated with the recovery. When a recovering site joins to a working
group a view change is performed. As part of this procedure, the recovering
site indicates the log sequence number (LSN) of the last committed transaction.
Once a site is elected as recoverer site, it sends the recovery information to the
recovering site. The recoverer site is able to process transactions even in the
recovery process.

This protocol can be extended to support parallel recovery in several sites. Thus,
the same partition master site is able to multicast missed transactions to mul-
tiple recovering sites (if more than one site are restarted at once). Additionally,
when a site is recovering, its missed transactions are sent to it from all the mas-
ter sites that have any transaction to be recovered. So, recovery parallelism is
improved from both of these sides.

This recovery protocol assumes a replication protocol based on a primary-copy
server architecture, with constant server interaction, non-voting transaction ter-
mination, and eager update. The recovery protocol is log-based with a pes-
simistic concurrency control with a single manager, and with recovery work
distribution.

The main advantages of this protocol are that when the recovery task is per-
formed in a parallel form supposes an optimization in the transfer time and
load balancing. The single period in which the transactions are not processed
is during a view change, when the sites are blocked. This protocol presents the

2.3. REPLICATION AND RECOVERY PROTOCOLS 37

disadvantages of processing the transactions solely in the partition master site,
and when failure periods are long the information to transfer may be abundant.

The COLUP Recovery Protocol

In [38] a configurable eager/lazy replication protocol with a lazy recovery pro-
tocol is proposed. This replication protocol, called Cautious Optimistic Lazy
Update Protocol (COLUP), uses the concept of node role, given special impor-
tance to a node where a particular object is created. Such node is referred to as
the owner for all objects created by its local applications. This owner node will
be consulted during the voting phase performed at commit time. In this way the
owner is the manager for the object accesses and is responsible for coordinating
the propagation of the last versions of the object. An identifier for the owner
node is included in the identifiers of the objects. For any object, a set of nodes
will maintain synchronous copies; i.e., consistent replicas of its state. The other
nodes that have a replica of the object constitute the set of asynchronous nodes.
In these nodes the updates to the object will be eventually received, once the
updates have been committed in synchronous replicas.

Conflicts between transactions are solved in an optimistic way, using object ver-
sions and reviewing them during the commit phase. As a result, a transaction is
aborted if it has read obsolete values that were updated by other concurrently
committed transactions. Thus, access to the objects is allowed with no need of
locks. A disadvantage of the lazy updates is that the probability of aborting
transactions gets increased. It is necessary then to establish a threshold for the
probability of aborting a transaction accessing obsolete object values. Thus,
when a transaction tries to access an object, this probability is calculated and
compared with the established threshold. As result, the algorithm obtains an
updated version for the objects that might be obsolete. Using a high threshold
the number of requested updates is minimized, and the number of transac-
tions executed in the system is increased since the used resources for update
propagation are decreased. But this may cause an increase in the number of
aborted transactions because the number of objects with obsolete values is also
increased. This can degrade the system productivity, so it is convenient the use
of an algorithm to dynamically adapt the threshold value to an optimal value.

The recovery protocol considers the existence of a membership monitor that
is executed on each node. The monitor observes a preconfigured set of nodes,
and notifies its local node about the changes in this set. When the membership
monitor detects a failed node a notification is sent to each node that remains
in the system. This causes an update in the “list of alive nodes”. During the
execution of a transaction a number of messages must be sent to the different
owners of the objects. If a message must be sent to a failed owner, then it will
be redirected to a new owner of that object. Each node sends a message with
the previous grants conceded to the objects by the previous owner. The new
owner can process the requests as if it was the original owner node of the object.

38 CHAPTER 2. DATA RECOVERY

When an original owner node recovers from a failure, every alive node is notified
by its membership monitor. Then, further messages must be sent to the original
owner node. In addition, the recovering node sends a message to the node that
managed its owned objects and with this, synchronizes the activity in both
nodes. A recovering node may receive requests for objects that were updated
during the failure interval. In order to handle this situation, the recovering node
must consider each object of which it is owner like an asynchronous replica until
it is updated by a synchronous replica. To ensure that a recovering node achieves
a correct state for its owned objects, an asynchronous low priority process is
executed. This process sends an update request for all non-synchronized objects
including the new objects created during the failure period.

The replication protocol is eager update-anywhere, with constant server interac-
tion and voting transaction termination. Recovery uses a version-based transfer
model. The concurrency control is optimistic with a distributed manager and
multiversioned.

As advantages offered by the recovery protocol we can find that the recovery
task is totally supported by the hybrid replication protocol, so the recovery is
part of the basic algorithm and it is not necessary to add more code. Another
advantage is that the updates are deferred until the recovering node accesses
obsolete data. With object versioning the use of locks is not necessary and the
rate of aborted transactions is reduced. As disadvantage we found that the
time of COLUP for processing transactions is usually greater than in pure lazy
replication protocols.

CLOB: Short-Term Failure Recovery

CLOB (Configurable LOgging for Broadcast protocols) described in [12] is de-
fined as a framework for reliable broadcast protocols that are used as a basis for
database replication. Its aim is to manage the logging of missed messages in the
broadcast protocol core, providing with this automatic recovery for short-term
failures, but discarding the log and notifying the database replication proto-
col modules in case of long-term outages. This kind of support can be easily
combined with version-based recovery protocols. To this end, once a failure is
detected the database replication protocol must follow its traditional version-
based management for recovery purposes, but it will be discarded if the replica
is able to rejoin the system soon. In this case, CLOB automatically propagates
the missed update messages to the recovering replica, which receives and applies
them avoiding any additional waiting time both in the source and destination
replicas. On the other hand, if the outage period exceeds a given threshold,
the reliable broadcast service will notify the replication protocol about that,
discarding the message logs maintained by CLOB and delegating the recovery
management to the upper-layer components.

The replication protocol is eager update-anywhere, with constant server inter-
action but would have to consider some additional parameters to decide when

2.3. REPLICATION AND RECOVERY PROTOCOLS 39

the logged messages can be eliminated. This protocol applies voting transaction
termination. The basic support for the recovery based on logs will be identical
if the transaction termination is voting or non-voting. During the recovery, the
transfer of the state of the database is version-based in long-term failures, but
is log-based in short-term failures.

As advantages we can mention that it combines version-based and log-based
transfer of information for the recovery depending on which is more advisable,
without restricting to a single model of transfer and being able to take advantage
of each one in its case. A minimum blocking time for replicas that participate
in the recovery is also obtained when the log-based recovery is used. As disad-
vantages, it is necessary to maintain the related information to both recovery
methods, and the transaction service time is increased even with no failures
because all messages must be saved in persistent storage.

The FOBr Recovery Protocol

The recovery protocol explained in [13] FOBr, is designed as a complement for
the replication protocol FOB (Full Object Broadcast), which is an optimistic ea-
ger update-anywhere protocol and makes use of a GCS [15] membership service.
In this protocol the concept of replica role is used and it can be:

1. Owner node: Initially it is the node where the object was created; this is
what we call physical ownership. However, the node where a set of objects
was created might have crashed and the ownership migrates (logical own-
ership). This owner node is the manager of access confirmation requests
(ACR) for that object.

2. Synchronous nodes: These nodes did not create the object but are con-
sidered up-to-date replicas of it. They provide us with fault tolerance.

Several transactions can be grouped in a session. Since an ACR management is
used, the session identifiers (SIDs) include information about the node identifier
where it was initiated. The objects are identified in a similar way to the sessions.

Objects are identified similarly as Sessions with object identifiers (OIDs). These
OIDs hold several information, including the owner node, that identify them
univocally through all the nodes. Besides the OID, the consistency protocol
may need (FOB does) to maintain extra information associated to each OID
such as version numbers, timestamps,...

This metadata information will also need to be transferred when a recovering
node receives its updated information. When the user initiates a commit, the
protocol performs several operations before it is effectively applied into the
database:

1. It collects the transaction writeset and groups its OIDs by their owner
node.

40 CHAPTER 2. DATA RECOVERY

2. An ACR is sent to each owner node of these writeset objects. The owner
nodes decide then whether to grant or revoke the access to these OIDs.
This sending is performed sequentially and in ascending order of node
identifiers in order to avoid multiple abortions.

3. The node receives the ACR responses and:

• If any ACR is revoked, the transaction must abort. If any of the
other ACRs was granted, a message must be sent to that node in
order to release the grants.

• If they are all granted, the transaction is propagated with a reliable
broadcast and when delivered, it is committed in all the nodes. When
a node receives this broadcast: (i) It aborts other locally conflicting
sessions that are still in early phases of operation; (ii) It applies the
changes into the database; and, (iii) It releases the ACRs granted to
the finished transaction.

The recovery protocol has two phases:

1. Collection phase: It includes all the events that happen since the moment
a node fails until the moment it joins to the system. Two steps are taken:

• The remaining alive nodes decide in a deterministic way, which ones
of them inherit the ownership of the faulty node objects.

• A structure is created in each alive node in order to hold the OIDs
of all objects that will be updated while these nodes are not present.
The structure needs to be stored persistently in order to allow re-
covery in a total system failure. In this structure a recovery list is
also stored, and it saves the updated OIDs that any site lost during
a view change.

2. Recovery phase: it includes all the steps followed by the nodes of the
system when a failed node initiates operations again. In the recovery
phase we distinguished two roles for the participant nodes: the recovery
node that is the node that is trying to join the system and needs to update
its database, and the previously active node that is the node that has the
information to help the recovering nodes to join the system.

The recovery phase begins when the previously-active nodes receive a noti-
fication, by the membership service, about the recovery of some previously
considered failed node. This notification has two parameters, the recover-
ing nodes list and the actual view number. Then, the following steps are
taken:

• The previously-active nodes build a JOIN UPDATE message to update
the currently owned objects that they know the recovering nodes have
missed. This JOIN UPDATE message is built following this procedure:

2.3. REPLICATION AND RECOVERY PROTOCOLS 41

(i) The recovery list is checked to obtain the set of updated OIDs that
the node currently owns. (ii) The set of OIDs’ states is retrieved from
the database and it is included in the message in order to update the
recovering node database. (iii) The set of missed OIDs and network
views is also included, because the recovering node needs to hold
recovery information until the system is complete. However, this
information is not transferred if the currently recovering node is the
latest one; i.e., no other faulty node exists when it has finished its
recovery.

• The recovering node waits until it has received the JOIN UPDATE mes-
sage from all previously-active nodes. As soon as a JOIN UPDATE mes-
sage arrives, the recovery list is reconstructed with the information
provided by the message. The recovering node will have created a
transaction to apply all the updates that it had to receive. Once
committed, the recovering node sends a MERGED message to all
the previously-active nodes and waits for a NO ACT(NO ACT
stands for “node active”) response.

• When the previously-active nodes receive the MERGED message
they know that the recovering node has applied all the remaining
updates. If the MERGED receiver was not the inheritor of the
recovering node objects, it simply assumes that the recovering node
has recovered the ownership. If the receiver is the inheritor, it has
to migrate this ownership packing the ACR granted locks into a NO
ACT message and send it to the recovering node.

• Finally, when the recovering node receives the NO ACT message, will
be able to manage its objects and the recovery is completed.

According to this, the replication protocol is eager update-anywhere, with con-
stant server interaction and with voting transaction termination. The recovery
protocol has a version-based transfer model, the concurrency control is opti-
mistic with a distributed manager and with multiversion. The recovery work is
distributed.

The advantages offered by the recovery protocol are that minimizes the amount
of data to transfer, balances the recovery work, and allows the execution of trans-
actions during recovery time. It has low space requirements. Its disadvantages
are: (a) it complements a replication protocol (FOB) with a non-standardized
isolation level; (b) for each transaction that commits, we must explore its write-
set (and save the OIDs contained in it) if there was any failed node.

Recovery Protocols by Armendáriz

In [3] three eager update replication protocols are considered, and a recovery
protocol that can be applied to all of them is proposed. The first replication
protocol called Basic Replication Protocol (BRP) is based on the optimistic 2PL

42 CHAPTER 2. DATA RECOVERY

(O2PL). As a result of the addition of improvements and variations to protocol
BRP, is presented the second protocol called Enhanced Replication Protocol
(ERP). This replication protocol reduces response times and transaction abor-
tion rates by removing the Two Phase Commit (2PC) rule and the use of queues.
Finally, the third replication protocol, named Total Order Replication Proto-
col with Enhancements (TORPE), that makes use of the total order multicast
primitive provided by the GCS to ordering the transactions executed by the
system. The main idea for the recovery proposed in [3] once a node re-joins
the network after failure, an alive recoverer node is appointed. It informs the
joining node about the updates it has missed during its failure. Thus a dynamic
database partition (hereafter DB-partition) of missed data items, grouped by
missed views, is established, in recovering and recoverer nodes, merely by some
standard SQL statements. The recoverer will hold each DB-partition as long as
the data transfer of that DB-partition is going on. Previously alive nodes may
continue to access data belonging to the DB-partition. Once the DB-partitions
are set in the recovering node, it will start processing transactions, which are,
however, blocked when trying to access a DB-partition. Once the partitions are
set in the recoverer, it continues processing local and remote transactions as
before. It will only block for update operations over the DB-partition.

The three replication protocol are eager update-anywhere with constant server
interaction. BRP has voting transaction termination, whilst ERP and TORPE
have non-voting termination. The recovery protocol is version-based, the con-
currency control during the recovery is optimistic with a distributed manager
and with multiversion. The recovery work is distributed.

The main advantages are that recovery is distributed, the DB-partition in a
recoverer site can be released even when the recovery process is not concluded,
and that transactions can be accepted and committed in recoverer sites if they
do not interfere with the DB-partitions being recovered. The disadvantage is
that if DB-partitions are defined on the basis of each view modified items, an
object may be transferred several times, to avoid this we must “compact” the
DB-partitioning.

2.4 Conclusions

This Chapter provides a detailed review of several replication techniques and
recovery protocols suitable to these replication protocols.

The use of different replication techniques involves the use of different data
structures. The required information to implement this replication varies from
one protocol to another, so the information available for recovery depends di-
rectly on the replication protocol used. We have emphasized that a replication
protocol should not be considered complete without contemplating how the re-
covery will take place. It would be desirable that alongside the development of
the replication protocol, the recovery protocol was also developed. However, in

2.4. CONCLUSIONS 43

the literature has not always been so. The use of the guarantees that a group
communication system may provide contribute to the development of more ef-
ficient and better structured replication and recovery protocols, yet there are
several opportunity areas in this scope. So, we should consider the hardware
evolution as well as the use of new paradigms, such as the increased use of
portable devices that suggest more customer mobility and the cloud computing.

As a concluding remark we advise to consider recovery algorithms that use
version-based management and that distribute the recovery work among avail-
able replicas to balance the workload during the recovery process. Very few
replicated database recovery systems are capable to combine these techniques
to reduce recovery times. When it has been partially possible (as in [38, 39]),
it was because replication protocols had some special characteristic (the use of
a primary copy schema in [39], that reduces flexibility and might compromise
fault tolerance; the use of lazy updates in [38], that may compromise consis-
tency). The work presented in [3] could be a good exception, but it has not
presented performance measurements that confirm its good theoretical perfor-
mance. This analysis will be used as a basis for designing new recovery protocols
trying to combine the advantages of the protocols analyzed.

Chapter 3

Optimizing

Certification-Based

Database Recovery

Certification-based database replication protocols are a good basis to develop
replica recovery when they provide the snapshot isolation level. For such iso-
lation level, no readset needs to be transferred between replicas nor checked in
the certification phase. Additionally,these protocols need to maintain a historic
list of writesets that is used for certifying the transactions that arrive to the
commit phase. Such historic list can be used to transfer the missed state of a
recovering replica. We study the performance of the basic recovery approach
–to transfer all missed writesets– and a version-based optimization –to transfer
the latest version of each missed item, compacting thus the writeset list–, and
the results show that such optimization reduces a lot the recovery time.

3.1 Introduction

Replication has been the regular solution for achieving high availability. But
such level of availability requires that crashed replicas were recovered. Database
replication is a special kind of highly-available service since in this case replica
recovery implies the application of the missed updates, being inefficient a com-
plete state transfer since it needs a long time to be completed. Even transferring
only the missed updates, there is no easy way to complete such recovery in a
short time.

There have been many good works devoted to database replication recovery
[3, 12, 33, 39, 43], but almost none of them has provided a rigorous performance
study of the proposed approaches. This chapter is focused to show that replica

45

46CHAPTER 3. OPTIMIZING CERTIFICATION-BASED DATABASE RECOVERY

recovery is not easy when the load of the replicated system is not light, and that
some optimizations can partially overcome such problem. To this end, we have
tried to select the database replication kind [63] that provides the best support
for developing an easy recovery: certification-based replication. In this repli-
cation variant a historic list of the applied writesets needs to be maintained in
order to certificate transactions (i.e., validate and locally decide in each replica
about the success of each terminating transaction). Such a historic writeset list
can be stored and used for transferring the missed updates to recovering repli-
cas. Additionally, the resulting replication protocol does not need any voting
termination [60] and provides very good performance if the conflicting rate is low
[63]. Moreover, for the snapshot isolation level, a certification-based replication
protocol is the natural solution, since it does not demand readset transfers. So,
such kind of replication protocol provides an ideal basis to research on replica
recovery and a basic recovery protocol can be easily developed.

But such a basic recovery protocol does not provide good performance (i.e.,
a short recovery time). So, some optimizations are needed in order to get
acceptable results. To this end, we have combined a version-based approach,
similar to those proposed by other research groups (e.g., in some of the recovery
variants of [43]) and in some of the previous papers written by the SiDi group
[12, 13] but specifically adapted to a certification-based replication protocol.
Such optimization introduces a negligible overhead and shortens the recovery
time, as shown in Section 3.6.

The rest of this chapter is structured as follows. Section 3.2 presents the as-
sumed system model. Section 3.4 describes the replication protocol taken as the
basis for our recovery proposals. Section 3.5 thoroughly explains the recovery
strategies. Section 3.6 discusses the performance results. Finally, Section 3.7
presents some related work and Section 3.8 gives the conclusions.

3.2 System Model

We assume a partially synchronous distributed system –where clocks are not
synchronized but the message transmission time is bounded– composed by N
nodes where each one holds a replica of a given database; i.e., the database is
fully replicated in all system nodes. These replicas might fail according to the
partial-amnesia crash failure model proposed in [17], since all already committed
transactions are able to recover but on-going ones are lost when a node crashes.
We consider this kind of failures as we want to deal with node recovery after its
failure.

Each system node has a local DBMS that is used for locally managing trans-
actions. On top of the DBMS a middleware is deployed in order to provide
support for replication. More information about our MADIS middleware can
be found in [37, 46]. This middleware also has access to a group communication
service (GCS, on the sequel).

3.3. CERTIFICATION-BASED REPLICATION 47

A GCS provides a communication and a membership service supporting virtual
synchrony [15]. The communication service features a total order multicast for
message exchange among nodes through reliable channels. Membership services
provide the notion of view (current connected and active nodes with a unique
view identifier). Changes in the composition of a view (addition or deletion)
are delivered to the recovery protocol. We assume a primary component mem-
bership [15]. In a primary component membership, views installed by all nodes
are totally ordered (there are no concurrent views), and for every pair of con-
secutive views there is at least one process that remains operational in both
views. The GCS groups messages delivered in views [15]. The uniform reliable
multicast facility [32] ensures that if a multicast message is delivered by a node
(faulty or not) then it will be delivered to all available nodes in that view. All
these characteristics permit us to know which writesets have been applied in
the context of an installed view. In this work, we use Spread [55] as our GCS.

We use a replication protocol based on certification [63], which does not require
any kind of voting in order to decide how a transaction should be terminated
(either committing or aborting).

3.3 Certification-Based Replication

This replication technique is described in [48] as “database state machine”, with
a similar approach with technique A4 described in [34] and called certification-
based by [63]. As stated in section 2.3.2 the delegate server receives transactions
from clients and executes these transactions, nothing is broadcast until the com-
mit time when the writeset and the readset are broadcast to all servers using
a total order broadcast. Upon delivering this message, a certification phase is
locally executed to decide if the transaction commits or aborts. Because all
replicas share the same history of delivered messages, they can detect conflicts,
if any, with concurrent transactions. Only one total order broadcast per trans-
action is needed.

3.4 Replication Protocol

We have selected the SIR-SBD protocol (see Figure 3.1) described in [46] for
a case study of our recovery mechanisms, because it is a good sample of a
certification-based [63] database replication protocol, providing the snapshot
isolation level [7] and thus avoiding the transfer of transaction readsets.

This protocol uses an atomic multicast [32], i.e., a reliable multicast with total
order delivery, and thus it ensures that the writesets being multicast by each
replica at commit time are delivered in all replicas in the same order. It uses
two data structures for dealing with writesets: ws list, which stores all the
writesets known (i.e., delivered) until now, and tocommit queue, which holds

48CHAPTER 3. OPTIMIZING CERTIFICATION-BASED DATABASE RECOVERY

Initialization:
1. lastvalidated tid := 0
2. lastcommitted tid := 0
3. ws list := ∅
4. tocommit queue k := ∅

I. Upon operation request for Ti from local client
1. If select, update, insert, delete
a. if first operation of Ti

- Ti.start := lastcommitted tid
- Ti.priority := 0

b. execute operation at Rk and return to client
2. else /* commit */
a. Ti.WS := getwriteset(Tik) from local Rk

b. if Ti.WS = ∅, then commit and return
c. Ti.priority := 1
d. multicast Ti using total order

II. Upon receiving Ti in total order
1. obtain wsmutex
2. if ∃ Tj ∈ ws list : Ti.start < Tj .end ∧
Ti.WS ∩ Tj .WS 6= ∅
a. release wsmutex
b. if Ti is local then abort Ti at Rk else discard

3. else
a. Ti.end := ++lastvalidated tid
b. append Ti to ws list and tocommit queue k
c. release wsmutex

III. Ti := head(tocommit queue k)
1. if Ti is remote at Rk

a. begin Tik at Rk

b. apply Ti.WS to Rk

c. ∀ Tj : Tj is local in Rk ∧ Tj .WS ∩ Ti.WS 6= ∅
∧ Tj has not arrived to step II
(this is analyzed by our conflict detector,
concurrently with the previous step III.1.b)
- abort Tj

2. commit Tik at Rk

3. ++lastcommitted tid
4. remove Ti from tocommit queue k

Figure 3.1: SIR-SBD algorithm at replica Rk

3.5. RECOVERY STRATEGIES 49

those writesets locally certified but not yet applied in the local database replica.
Moreover, for each transaction, the attributes start and end hold something
similar to the transaction start and commit timestamps, respectively. Due to
the total order multicast and the behaviour of the protocol, the second counter
is the same for a system transaction in all the replicas, i.e., all the replicas
identify with the same commit timestamp a system transaction –this will be
handy when studying the performance graphs.

Note that we have tacitly assumed that the underlying database system is sup-
posed to be able to check for conflicts, and to abort transactions whose access
patterns violate the snapshot isolation level rules.

This protocol is also based on the existence of a block detection mechanism [46].
We have assigned the following priorities to the transactions. All transactions
are initialized with a 0 priority level. They get level 1 when they are multicast
in their local node or when their writeset is delivered in their remote nodes.
This ensures the correctness of this alternative, since our blocking detection
mechanism aborts a transaction only if all of these conditions are satisfied.
Otherwise, no particular action is taken:

• The transaction to be aborted is local.

• It has not locally requested its commit; i.e., its writeset has not been
multicast.

• The transaction that causes its abortion has been generated for applying
a remote writeset.

This approach satisfies the correctness criteria of the snapshot isolation level,
since the writeset above mentioned is associated to a transaction that has suc-
cessfully passed its global validation phase. It already has a commit timestamp
which of course is in the range of the [start, commit] interval of the local trans-
action, since the latter has not yet requested its commit.

3.5 Recovery Strategies

We describe a basic recovery in Section 3.5.1 and its optimized version in Section
3.5.2. The optimization consists in compacting the list of missed writesets,
maintaining only the last version of each missed item.

3.5.1 Basic Recovery

As a general overview of the main goal of our recovery protocol, let us say
that one node (recoverer) will transfer the missed writesets to the recovering
node arranged by their respective versions. This means that user application

50CHAPTER 3. OPTIMIZING CERTIFICATION-BASED DATABASE RECOVERY

transactions executed on the recovering node will run under GSI [25] in a slower
replica. As it may be seen there are no restrictions to execute user transactions
in the replica and transactions executing at other replicas will behave as if
nothing happens in the system.

A recovering replica Ri joins the group, triggering a view change. As part of this
procedure, the recovering protocol instance running in Ri multicasts an ask-for-
help message indicating the versioni of its last applied writeset –this version
corresponds to the commit timestamp of the last transaction applied in that
node. No message activity in the recovering node is done –all messages delivered
are ignored– until this message is delivered. At this moment, the recovering node
starts to enqueue the total order delivered messages –with writeset information
about other transactions in the system sent by the rest of the replicas– to be
processed later.

In parallel to this, a deterministic procedure takes place to choose a recoverer
replica. The recoverer replica (Rj), after receiving the ask-for-help message,
starts a recovery thread that sends a point-to-point message with all the missed
writesets starting from versioni + 1, i.e., the recoverer node sends the portion
of its ws list that covers from versioni + 1 to the end of the ws list at that
moment. Note that this ws list is one of the elements on which the replication
protocol algorithm is based, and it can also be used for our recovery purposes, as
it contains all the information we need. This way, we reuse the data maintained
by the replication protocol, minimizing the overhead introduced by the recovery
support in normal operation (i.e. no additional data collection is needed to
support possible recovery processes). Note also that this approach guarantees
that the recovering node will receive, on one hand, the writesets from versioni+1
to the last known version of the recoverer at the moment of the ask-for-help
message reception. On the other hand, the writesets delivered in total order
in the system after the ask-for-help message will be enqueued in the recovering
message buffer. This way, it is ensured that the recovering node will not miss
any writeset.

When this point-to-point recovery message is delivered to the recovery protocol,
it stores this information in both the ws list and the tocommit queue, as all these
writesets were already certified in the recoverer node. Then, the replication
protocol is ready to directly apply in the database the writesets in the tocommit

queue and to start certifying its own enqueued total order messages –delivered
after the ask-for-help message. Note that the certification of the enqueued
messages must wait for the recovering information to be stored in the ws list,
as this structure is used in the certification process, but it is not necessary to
wait to the application of these missed writesets in the database. In other words,
just after the storage of the transmitted writesets in both data structures, the
recovering node can act as in normal mode.

This kind of recovery inherits the main ideas of the second approach described
in [43] (”Data transfer within the database system”) and, up to our knowledge,
had been already implemented and studied in other projects (e.g., GlobData,

3.5. RECOVERY STRATEGIES 51

in order to add recovery capacity to the protocols presented in [52], but its
performance results were only described in an internal project report).

3.5.2 Compacting

This basic procedure can be enhanced by compacting the point-to-point message
in order to minimize the transmission and application time. The point-to-point
recovery message has to provide all the changes in the database made from
versioni+1 to the current version of the recoverer node. This information can be
sent in a raw mode, i.e., sending the writesets of all the transactions committed
during this period of time. Then, in the recovering node, each writeset is applied
in a new transaction –like any other replica does in normal function. This is the
way used in the basic recovering protocol explained before.

All this procedure can be enhanced if the recoverer replica elaborates a special
writeset composed by the last version of each modified object in all the trans-
actions committed during the crash time, i.e., if the same object was modified
by more than one transaction, only the last version of it would be transmitted
along with its corresponding end timestamp. This special writeset, built only
in the recoverer replica at recovery time, would be applied by the recovering
replica in a single transaction, which can greatly improve the committing time,
not only for being just one –although possibly big– transaction, but also for
avoiding useless updates of the same object. This way, compacting will reduce
both the transmission and the checking time as we will see later in the perfor-
mance results. The time needed by the recoverer node to prepare this compacted
message is not negligible, but we will see in the graphs that it does not imply
any noticeable overhead.

Note also that the regular function of the replication protocol is not compro-
mised by this optimization. Indeed, the recovering replica can start processing
transactions immediately. The writesets transferred in the recovery message are
not needed by the recovering replica in order to certify any new local writeset,
since such new writesets should be certified against the writesets regularly de-
livered in the new view in which such recovering replica has rejoined the group.
However, such compacted writesets can be needed for certifying remote trans-
actions in such recovering replica, but its compacted version is enough for such
kind of certification. Note that can exist long remote transactions that have
started before the recovery process started, and their [start, commit] interval
might overlap the end of some transactions included in the compacted missed
writesets. Since at least the latest version of each missed updated item is present
in such compacted set, all conflicts detectable with the original writeset list will
be detectable with such compacted sequence. For instance, assume that there
were N transactions T1, T2, ...,TN in the original missed writeset list and that
each writeset contained M items a11, a12, ...,a1M , ..., aN1, aN2, ..., aNM , and
each of these transactions has a consecutive logical commit timestamp (ti for
Ti, being ti+1=ti + 1). Without generalization loss, let us assume that there

52CHAPTER 3. OPTIMIZING CERTIFICATION-BASED DATABASE RECOVERY

are only M/2 items per writeset that have not been updated in any of its suc-
cessive writesets (except in the last writeset of such compacted list that is the
single one that cannot be compacted –their updated items are their trivially
latest versions in the recovery transfer set–), being aiKi

those items (where
Ki⊂{j ∈ N : 1 ≤j ≤M} and |Ki| = M/2). So, if a given ”future” transaction
Tj was started between, e.g. T1 and T2, its writeset should be checked against
all writesets in the range [T2, Tj−1]. Note that Tj has been terminated after
TN , and as a result of this, all items updated by all transactions in the range
[T2, Tj−1] are also included in its ”compacted variant” since N < j−1, and our
compacting process guarantees that only items rewritten during the [T1,TN−1]
interval are removed from the T1..TN writeset sequence (but if any item has not
been rewritten, it appears in such compacted sequence, and this guarantees that
exactly one version of all original writeset elements appears in the compacted
version). Additionally, we have the advantage of a boost in the checking time,
since instead of having the complete sequence of [T1, TN] writesets, we only
have a compacted item sequence a1K1

..aNKN
, as assumed above (i.e., half of

the items, in this hypothetical example).

Our optimization shares some of the characteristics of the fifth recovery strategy
described in [43] (”Restricting the set of objects to check”) but further optimizes
that technique. To this end, our compacting is able to restrict the objects be-
ing checked without needing any additional table where the objects are being
recorded during the crash interval. Additionally, it still shares the advantage of
getting such set of items to be transferred without requiring any read lock nor
global read operation on the items stored in the regular database tables. But,
on the other hand, it is partially dependent on the replication protocol approach
(certification-based), and can not be easily adapted to all other database repli-
cation variants (e.g., the active and weak-voting variants [63] do not need any
historic writeset log).

3.6 Performance Study

In this work we intend to measure several aspects of our recovery implementa-
tion:

• Under which circumstances (work load and crash length) a failed node can
recover and reach the state of the other replicas.

• How long does it take to reach the state of the other replicas.

• Compacting impact.

To accomplish the comparison, we use PostgreSQL [49] as the underlying DBMS,
and a database with a single table with two columns and 10000 rows. One
column is declared as primary key, containing natural numbers from 1 to 10000
as values.

3.6. PERFORMANCE STUDY 53

All protocols have been tested using our MADIS middleware with 4 replica
nodes. Each node has an AMD Athlon(tm) 64 Processor at 2.0 GHz with 2
GB of RAM running Linux Fedora Core 5 with PostgreSQL 8.1.4 and Sun Java
1.5.0. They are interconnected by a 1 Gbit/s Ethernet. In each replica, there
is a varying number of concurrent clients (from 4 to 12). Each client executes
an endless stream of sequential transactions, each one accessing a fixed number
of 20 items for writing, with a fixed pause of 500 ms between each consecutive
transaction. Each test begins with the execution of 500 global transactions, after
that, a failure occurs in a random replica (the failure of a replica consists in the
termination of its process). The failure lasts for a period in which a varying
number of global transactions is executed by the other replicas. After this time,
the failed node restarts and begins the recovery process until it reaches the state
of any of the other replicas. The test continues once the recovery ends, until
the completion of 500 more global transactions, when the experiment finishes.

In the figures we show the evolution of nodes in committing transactions in the
system. All the transactions have a global identifier –the end counter– and must
be committed locally in each replica. This way, one global transaction requires
a local transaction in each replica, and we can know how quick a node goes by
seeing the last committed global identifier at that node (see the vertical axes in
both Figure 3.2 and Figure 3.3). This way, each graph shows this evolution in
three nodes in the system: the failed, the recoverer and another node. The bigger
the slope of that curve, the faster the node goes committing global transactions.

The results obtained show that the basic recovery technique was very poor
in comparison with the compacting approach. Both recovery techniques were
tested allowing the immediate start of new local transactions in the recovering
replica.

The results obtained without compacting (see Figure 3.2.a) and light load show
that the recovering node can easily reach the current state of the system. We
can see in the figure that all the replicas have a linear evolution and when
the failure occurs, the failed node does not make any advance –and so its line
is horizontal. Then, when the recovery process begins, the recovering node
starts to progress with more slope than the other nodes, i.e., it commits more
transactions per second, and thus it can reach the global state and continue
with the same previous linear behavior.

With medium and heavy loads (Figures 3.2.b and 3.2.c) the recovery trend is
too slow and the recovering replica is not able to cope with its intended work.
Note that our MADIS middleware is not a commercial prototype and perfor-
mance is not our main goal. So, the load parameters considered are relative
to the current capabilities of our middleware. This way, with the previously
described conditions and 12 clients per node, the system has to deal with near
20 transactions per second, which is our middleware saturation point. Because
of this, this load parameter combination has been called heavy.

Obviously, the recovering node can catch the other replicas as long as the current
load in the system provides enough idle time (due to no clients to attend) to

54CHAPTER 3. OPTIMIZING CERTIFICATION-BASED DATABASE RECOVERY

apply the missed writesets. Local transactions starting in the recovering node
during the recovery process are very likely to abort because of their outdated
snapshot. These local transactions will delay the application of the missed
writesets due to the conflicts arisen in the underlying database. Thus, the lighter
the load of local transactions in the recovering node, the faster these missed
writesets will be applied. To sum up, the system load affects in two ways: it
determines the idle time available to reduce the gap with the other replicas, and
also the amount of local transactions in the recovering node possibly delaying
the application of these missed writesets. In the light environment, replicas have
an important amount of this idle time and the recovering node has no problem
to catch the rest. In the medium one, the replicas have little idle time, and the
amount of local transactions make impossible to reduce the gap. And in the
heavy case, there is no idle time and local transactions even broaden this gap.

As it can be seen in the graphs, the compacting technique (see Figure 3.3) allows
the failed replica to quickly achieve a state close to those of the other replicas.
In all the tests, the recovering replica is able to do so without too much delay.
Specifically, when the load and the crash time are small, we can observe that the
evolution of the recovering node after the crash is not as progressive as in the
basic technique, but it has two phases. The first one is a big step towards the
global state due to the application of the compacted writeset; and the second,
the final evolution during the application of the enqueued messages delivered in
the meanwhile. Comparing with the previous basic technique, it can be noticed
that the recovery process lasts quite less with the compacting approach. Indeed
the recovery time is only 30 seconds with this approach, while it was 42 seconds
with the basic recovery; i.e., almost a 28.6% reduction.

The next graph (Figure 3.3.b) shows the behavior of the system when both the
load and the crash time are medium. The shape of the curves is similar to that
of a light load and the recovery process is much more faster than with the basic
technique. In the example provided in our figures, the recovery takes only 72
seconds with the compacting optimization, whilst the recovery was not possible
using the basic recovery strategy.

Finally, when the load and crash time are maximum (Figure 3.3.c), the opti-
mized technique increases its completion time, as expected, but it is still able
to complete the recovery in an acceptable time (92 seconds).

Note that in these two last cases –with a medium and heavy load–, the time
needed for completing the recovery is quite long –72 and 92 seconds, respectively–
, but the non-recovering replicas and the recoverer one have been able to process
new transactions at a regular pace; i.e., their availability is not compromised
by the recovery of another replica. Additionally, the recovering replica has ac-
cepted new transactions as soon as possible, and this introduces a non-negligible
delay in its recovery, but also shortens a lot the interval where the service in
such replica is not available.

More tests were performed disabling the start of new local transactions in the
recovering replica in order to quantify the improvement when both techniques

3.6. PERFORMANCE STUDY 55

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120 140 160 180

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Evolution of LCT
Recovering node
Recoverer node

Other node
Recovery start
Recovery end

a) Light load (4 clients), short crash (500 trans)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Evolution of LCT
Recovering node
Recoverer node

Other node
Recovery start
Recovery end

b) Medium load (8 clients), medium crash (1000 trans)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500 600 700 800 900

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Evolution of LCT
Recovering node
Recoverer node

Other node
Recovery start
Recovery end

c) Heavy load (12 clients), long crash (2000 trans)

Figure 3.2: Recovery without compacting

56CHAPTER 3. OPTIMIZING CERTIFICATION-BASED DATABASE RECOVERY

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Evolution of LCT
Recovering node
Recoverer node

Other node
Recovery start
Recovery end

a) Light load (4 clients), short crash (500 trans)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Evolution of LCT
Recovering node
Recoverer node

Other node
Recovery start
Recovery end

b) Medium load (8 clients), medium crash (1000 trans)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Evolution of LCT
Recovering node
Recoverer node

Other node
Recovery start
Recovery end

c) Heavy load (12 clients), long crash (2000 trans)

Figure 3.3: Recovery with compacting

3.6. PERFORMANCE STUDY 57

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 86000 88000 90000 92000 94000 96000 98000 100000 102000 104000 106000

la
st

 c
om

m
itt

ed
 ti

d

time (ms)

s as ar rs rr

ra

Recovering node
Recoverer node

Other node
Recovery events

Figure 3.4: Recovery events

achieve the completion of the recovery process. The results show that, in a
medium loaded environment the compacting technique achieves the completion
of the process in 36 seconds while the basic one lasts 59 seconds (38.98% of
improvement). In the heavy loaded environment case, the reduction obtained
is up to 60.82% (97” versus 38”). Note that the compacting technique, even
allowing new local transactions in the recovering node, is faster than the basic
one without these new local transactions.

In order to analyze more deeply the cost related to each step of the recovery
process, Figure 3.4 has been included showing the recovery events from the
starting point of the recovery process to the compacted writeset application in
the case of a light load environment. These events are the following: s, the
starting point of the recovery (when the failed replica restarts); as, the ask-
for-help message is sent by the recovering node; ar, this ask-for-help message
is received in the recoverer node; rs, the recoverer node sends its compacted
point-to-point message; rr, this point-to-point message is completely received
and preprocessed in the recovering node (the information contained is provided
to the necessary components); ra, the recovering node finishes the application
of the writesets contained in the recovery message. At this point, the recovery
algorithm is done, but the recovery process will last until the the recovering
node, already in a normal function, processes all its buffered messages and the
incoming ones until it reaches the state of the rest of the replicas.

This way, the interval between s and as includes the start of the MADIS replica
and its node recovery process (regarding global issues independent of the repos-
itories and protocols used), as this is not in the scope of this work, no further
analysis is necessary. The interval between as and ar is the time the group
communication toolkit takes to deliver the ask-for-help message. The interval
rs-rr is the time between the end of the submission and the end of the pre-
processing of the recovery message; this time is, in all cases, negligible as the
implementation used overlaps the creation, sending, receiving and processing
of the message (the recovery message is transmitted via a stream). The two
interesting intervals are, therefore, ar -rs and rr -ra. The first one is the time

58CHAPTER 3. OPTIMIZING CERTIFICATION-BASED DATABASE RECOVERY

needed to create and send the compacted message in the recoverer node and
it can be seen in the graph that during this time, the recoverer node decreases
its performance drastically –indeed, it is unable to process more transactions in
such interval– but only momentarily due to the effort required to compact the
data. Note that such compacting period lasts approximately two seconds in this
example, but the regular pace of other nodes is retaken by the recoverer in less
than one additional second. The second important interval is the time needed
to apply locally all the updates contained in the compacted message. This is
the greatest interval, as expected, as it implies interaction with the underlying
database. As showed, the compacting technique introduces an extra step (only
a light overhead compared with the total processing time) but achieves notable
reductions in the recovery time.

The enlarged graphs corresponding to the other two cases show similar results
to the above exposed.

To sum up, the optimization presented in this work has been able to reduce
the recovery time to a 71.4% of the original recovery time in a lightly loaded
environment. Moreover, with 1000 missed transactions, the basic recovery tech-
nique failed to complete the recovery, since the recovering replica was not able
to process the queue of received writesets on time, and its receiving queue was
continuously growing, whilst the optimized version does not get overloaded with
ten times such load.

3.7 Related Work

The use of version-based recovery protocols –the same approach taken as the
basis of our proposed optimization– had been already suggested in the fourth
and fifth recovery variants of [43], but in both cases still demanded a lot of effort
for maintaining the set of versions to be transferred to each crashed replica.
Either a version-based DBMS was assumed or a special additional table needs
to be managed and updated each time a transaction commits. Our research
group used the latter solution in [12, 13] but in both papers such protocols
were designed as a recovery approach for a replication system that did not
provide any standard isolation level. Those solutions were developed in our
COPLA system [27], and such middleware was targeted to provide an object-
relational translation, with an object-oriented programming interface where the
traditional isolation levels did not match. In this work, we have optimized the
version-based approach taking as its basis a certification-based [63] replication
variant in order to support the snapshot [7] isolation level.

Only in [12] and [38] there are some performance analyses of database recovery
protocols. But, as already said, [12] is penalized by its non-standard features
(non-standard API and non-standard isolation level), whilst the replication pro-
tocol assumed in [38] was hybrid (could be configured either as eager or lazy,
but always with a lazy core) and this introduced a high abortion rate that was

3.8. CONCLUSIONS 59

partially compensated with an outdateness estimation function. In all cases,
the advantages of both approaches –and both were developed by our research
group– have been improved by the solution presented now (shortest recovery
time, and lowest abortion rate).

There have been many other works devoted to database replica recovery [3, 13,
33, 39, 43] but, up to our knowledge, none of them has presented a performance
study of their proposed solutions.

3.8 Conclusions

We have presented a first basic recovery approach for certification-based recovery
protocols, analyzing its recovery time when the system load varies. Up to our
knowledge this is the first performance study for such kind of recovery techniques
in the field of database replication. Although certification-based replication
protocols provide a good basis for developing recovery protocols, this first basic
approach can be easily improved. A possible optimization based on a missed
update compacting has also been presented. The performance study shows that
the overall recovery time can be reduced up to a 68% of the recovery time of the
basic approach, in the less favorable configuration for the optimized technique.

Chapter 4

Improving Recovery in

Weak-Voting Data

Replication

Nowadays eager update everywhere replication protocols are widely proposed
for replicated databases. They work together with recovery protocols in order
to provide highly available and fault-tolerant information systems.

In this chapter we provide a compacting mechanism to the recovery information.
With this, we try to minimize the time needed to transfer and apply the missed
information at the recovering replica. The idea of this enhancement is to obtain
a more efficient recovery protocol. Through a simulation, we verify the good
performance of the algorithm with the compacting improvement.

For simplicity’s sake the Omnet++ simulation environment is briefly described.
After that, we explain the developed simulation program. The experimental
parameters are also specified, as well as several considerations related with the
experiments.

4.1 Introduction

As previously stated in Chapter 2 replication protocols can be designed for ea-
ger or lazy replication [31], and for executing updates in a primary copy or at
all node replicas [60]. With eager replication we can keep all replicas exactly
synchronized at all nodes, but this could have an expensive cost. With the lazy
alternative we can introduce replication without severely affecting performance,
but it can compromise consistency. Many replication protocols are based on ea-
ger update everywhere with a read one, write all available (ROWAA) approach

61

62CHAPTER 4. IMPROVING RECOVERY IN WEAK-VOTING DATA REPLICATION

[9]. As we have briefly highlighted before, these replication protocols provide
high availability. However, only a few of them deal with the possible reconnec-
tion of the failed node, which is managed by recovery protocols [12, 39, 43, 2].

The aim of the recovery protocols is to bring failed or temporarily disconnected
nodes back into the network as fully functional peers, by reconciling the database
state of these recovering nodes with that of the active nodes. This could be done
by logging transactions and transferring this log to recovering nodes so they can
process missed transactions, or transferring the current state of the items that
have been updated in the database since the recovering node failed.

This chapter is focused in the recovery protocol for eager update everywhere
replication protocols, proposing one optimization to the work presented in [2].
This enhancements includes amnesia support [20] and a better performance
reducing the amount of data to save in the actions done before recovering and
the amount of data to transfer at recovering time. The main idea in the last
case is to compact recovery data eliminating redundant information.

In addition, we provide a table with the results of a simulation, where the
advantages of the compacting approach are verified.

The rest of this chapter is distributed as follows. Section 4.2 provides the sys-
tem model. Section 4.3 briefly describes the weak-voting replication technique.
Section 4.4 deals with the basic recovery protocol. Section 4.5 explains the nec-
essary actions for the amnesia support. Next, Section 4.6 relates the process
of compacting recovery information. Later, Section 4.7 describes the simula-
tion environment, parameters and shows the simulation results followed by the
related works in Section 4.8. In the final Section 4.9, we provide our conclusions.

4.2 System Model

The basic recovery protocol has been designed for database replicated systems
composed by several replicas –each one in a different node–. These nodes belong
to a partially synchronous distributed system: their clocks are not synchronized
but the message transmission time is bounded. The database state is fully
replicated in each node.

This replicated system uses a group communication system (GCS) [15]. Point-
to-point and broadcast deliveries are supported. The minimum guarantee pro-
vided is a FIFO and reliable communication. A group membership service is also
assumed, that knows in advance the identity of all potential system nodes. These
nodes can join the group and leave it, either explicitly or implicitly by crash-
ing, raising a view change event. Therefore, each time a membership change
happens, i.e. any time the failure or the recovery of one of the member nodes
occurs, it supplies consistent information about the current set of reachable
members as a view. The group membership service combined with the GCS
provides Virtual Synchrony [15] guarantees. A primary component [15] model

4.3. WEAK VOTING REPLICATION 63

is followed in case of network partitioning.

The replicated system assumes the crash-recovery with partial-amnesia [17]
model. This implies that an outdated node must be recovered from two “lost
of updateness”: forgotten state and missed state. This assumption supports
a more realistic and precise way to perform the recovery process. So the as-
sumed model allows to recover failed nodes from their previous crashing state
maintaining their assigned node identifiers.

Consequently, when a node crashes, every active node must abort any transac-
tion started by the failed node whose commit messages have not been yet deliv-
ered. A similar behavior is adopted when the system can not go on because the
progress condition has been lost. In this situation, the nodes in minority (e.g.
disconnected) must also abort the started transactions whose commit message
has not been yet delivered. Thus, the whole activity that was not committed
during the working life is aborted.

4.3 Weak Voting Replication

This replication technique is described in [42] as the “Serializability Protocol”,
and is presented by [63] with the name of Weak Voting. As we mention in
Subsection 2.3.2 the delegate server executes the transactions issued by the
clients delaying the write operations, when the transaction commit is required, a
total order broadcast is only done for the writeset to all servers. Once delivering
the writeset, the delegate sever can determine if conflicting transactions have
been committed and decide if the current transaction is commited or aborted.

This last is communicated to the other servers with a new broadcast that may
not be totally ordered, but must be reliable. The voting is said to be weak as
only the delegate server can decide on the outcome of the transaction. Other
servers cannot influence this decision and must abide by the delegates decision.

4.4 Basic Recovery Protocol

Our basic proposal is inspired in the recovery protocol presented in [2]. It has
been designed for eager update everywhere database replication protocols and
proposes the use of DB-partitions (see below). It was originally designed for
providing recovery support for the ERP and TORPE [2] replication protocols.
Such protocols use a voting termination approach [60], and can be considered
as weak voting replication protocols [63]. This basic recovery protocol can be
outlined as follows:

• The system has a database table named MISSED, which maintains all
the information that will be needed for recovery purposes. Each time a

64CHAPTER 4. IMPROVING RECOVERY IN WEAK-VOTING DATA REPLICATION

new view is installed a new entry is inserted in the MISSED table if
there are failed nodes. Each entry in MISSED table contains: the view
identifier, the identifiers of crashed nodes in this view –SITES–, and the
identifiers list of data items modified during this view –OID LIST –. The
two first ones are set at the beginning of the view, while the last one grows
as long as the view passes.

• When a set of crashed nodes reconnects to the replicated system, the re-
covery protocol will choose one node as the recoverer with a deterministic
function. Then in a first step the recoverer transfers the metadata re-
covery information to all reconnected nodes. This metadata information
contains: the identifiers of modified items, and the crashed node identi-
fiers in each view lost by the oldest crashed node being recovered. The
per-view metadata generates a DB-partition during the recovery process;
i.e., such items will be blocked while they are being transferred to the
recovering node, logically partitioning the database. These DB-partitions
are also used in order to block in each replica the current user transactions
whose modified items conflict with its DB-partitions. Subsequently, the
recoverer starts to recover each recovering node view by view. For each
lost view, the recoverer transfers the state of the modified items during
this view. And, once the view has been recovered in the recovering node,
it notifies the recovery of this view to all alive nodes. The recovery process
ends in each recovering node once it has updated all its lost views.

• As a transaction broadcast is performed spreading two messages –remote
and commit–, it is possible that a reconnected node receives only the sec-
ond one, without any information about the updates to be committed. In
this case the replication protocol will transfer the associated writesets to
these nodes. This behavior implies that transaction writesets are main-
tained in the sender node until the commit message is broadcast.

But this recovery protocol presents the following two problems:

• Amnesia phenomenon. Although we are assuming the crash-recovery with
partial amnesia [17] failure model, many systems do not handle it in a
perfect way. This problem arises because once the replication protocol
propagates the commit message associated to one transaction, and it is
delivered, the system assumes that this transaction is being committed
locally in all replicas. But this assumption even using strong virtual syn-
chrony [15] is not always true. It is possible that a replica receives a
transaction commit message, but before applying the commit the replica
crashes, as it is commented in [62] –the basic idea is that message delivery
does not imply correct message processing–. The problem will arise when
this crashed node reconnects to the replicated system, because it will not
have committed this transaction and the rest of the system will not include
among the necessary recovery information the updates performed by this
transaction, arising then a problem of replicated state inconsistency.

4.5. AMNESIA SUPPORT 65

• Large MISSED table and redundant recovery information. If in the
system there are long-term crashed nodes –meaning nodes failed during
many views– and there are also high update rates it is possible that the
MISSED table enlarges significantly with high levels of redundant in-
formation, situation that is strongly discouraged. Redundant recovery
information will appear because it is possible that the same item has been
modified in several views where the crashed nodes set is very similar. In
this case if an item is modified during several views, only knowing the
last time –meaning the last view– it was updated is enough. Therefore,
it will be interesting to apply algorithms that avoid redundant recovery
information, because the larger MISSED tables the greater the recovery
information management overhead becomes.

In the following section we will present an approach for solving these problems
improving the basic recovery protocol.

4.5 Amnesia Support

In order to provide amnesia support different approaches can be considered.
These approaches can be classified depending on which recovery information
they use. On one hand, there are the ones using the broadcast messages –log-
based– [12, 39] and, on the other hand there are the ones using the information
maintained in the database –version-based– [43, 2].

But before describing how the amnesia support can be provided in the basic
recovery protocol, it must be considered how this amnesia phenomenon mani-
fests. In [23], it is said that the amnesia phenomenon manifests at two different
levels:

• Transport level. At this level, amnesia implies that the system does not
remember which messages have been received. In fact, the amnesia implies
that received messages non-persistently stored are lost when the node
crashes, generating a problem when they belong to transactions that the
replicated system has committed but which have not been already com-
mitted in the crashed node.

• Replica level. The amnesia is manifested here in the fact that the node
“forgets” which were the really committed transactions.

The information maintained in order to perform the amnesia recovery process
will be the broadcast replication messages. In this replication protocol two
messages for each propagated transaction: remote and commit. The amnesia
recovery must be performed before starting the recovery of missed updates –the

66CHAPTER 4. IMPROVING RECOVERY IN WEAK-VOTING DATA REPLICATION

latter will be done by the basic recovery protocol–. The amnesia recovery pro-
cess will consist in reapplying the messages belonging to non really committed
transactions.

A transport-level solution consists in each node storing persistently the received
messages, maintaining them as long as the associated transaction, t, has not
been committed and discarding them as soon as t its really committed in the
replica. But, the message persist process must be performed atomically inside
the delivery process as already discussed in [62] with its “successful delivery”
concept. Moreover, messages belonging to aborted or rolled-back transactions
must be also deleted.

Once the amnesia phenomenon is solved at transport level, it is necessary to
manage the amnesia problem at replica level. At this level the amnesia implies
that the system can not remember which were the really committed transac-
tions. Even for those transactions for which the “commit” message was applied,
it is possible for the system to fail during the commit. Then the amnesia re-
covery process in a replica will consist in reapplying (and immediatly deleting,
in the same transactional context) the received and persistently stored mes-
sages in this replica that have not been already deleted, because it implies that
the corresponding transactions have not been committed in the replica. These
messages are applied in the same order as they were originally received.

It also must be noticed, that in this process is not needed to apply the remote
messages whose associated commit messages have not been received, because it
implies that they have been committed in the subsequent view, and therefore
their changes are applied during the recovery of its first missed view.

Finally, once the amnesia recovery process ends, the basic recovery protocol
mechanism can start.

4.6 Compacting Recovery Information

In order to increase the performance at the moment of determining and trans-
ferring the necessary information for the synchronization of recovering nodes,
we propose some modifications based on packing information that enhance the
basic recovery protocol described in [2]. This could be done by compacting the
records in the MISSED table, and with this, minimize the items to transmit
and to apply them in the recovering node, reducing thus the transmission and
synchronization time.

Originally the MISSED table stores in each record, i.e. view, all nodes that
remain in failure in the view, being able to repeat several times –one by each
view– the identifiers of the nodes that were in failure in previous views. Similar
to crashed nodes, the identifiers of missed updated objects can be repeated in
different MISSED view entries for being modified these objects in two or more
views where there were failed nodes.

4.6. COMPACTING RECOVERY INFORMATION 67

In regard to the failed nodes identifiers the compressing solution relies on the
idea that it is enough to know the first view in which the node was failed and
the view when it reconnected to the replicated system. Therefore, the recovery
protocol must transfer the updates performed from the first view it was failed
until the view it reconnected. Then, it is only necessary to store the identifier
node in the first view it was crashed.

The item identifiers can be packed due to the fact that the recovery information
only maintains the identifiers of updated items. The state of these items is
retrieved by the recoverer from the database at recovering time. Moreover, if
a recovering node, k, has to recover the state of an item modified in different
views lost by k it will receive as many times the item value, but transferring
its state only once is enough. As a consequence, it is not relevant to repeat
the identifier of an updated item across several views, being only necessary to
maintain it in the last view it was modified and can be erased, if it is, in other
previous views.

During DB-partition generation, as user transactions are blocked, there is no
compacting process going on in the system. Hence, possible generation of non-
correct DB-partitions is avoided. Once this metadata has been transferred,
establishing the DB-partitions, the compacting process is restarted. This block-
ing process is not necessary if the whole set of failed nodes in the previous view
is contained in the current set of failed nodes. In fact, it must be remarked that
this work behavior is already provided by the original recovery protocol due to
the established DB-partitions, which block any update access.

Whenever one (or more than one) node fails, the recovery protocol starts the
execution of the actions to advance the recovery of failed nodes. To this end,

• A new view is installed, and a new record in the MISSED table is in-
serted, containing the new view identifier and the identifiers of set of nodes
that was present in the previous view and are no longer present in this new
view, as an initial packing for the MISSED table, only the identifiers of
the recently failed nodes are saved in the field SITES of this record.

• When a transaction commits, the field which contains the identifiers of
the updated items, OID LIST , will be updated in the following way:

1. For each item in the WriteSet, the OID LIST is scanned to verify
if the item is already included in it or not. If it is not, it is included
and is looked for in previous views OID LIST , eliminating it from
the OID LIST in which it appears, compacting thus the OID LIST ,
i.e. the information to transfer when a node recovers.

2. If as a result of this elimination, an OID LIST is emptied, the con-
tent of the field SITES is included into the field SITES of the next
record, and the empty record in the table MISSED can be elimi-
nated.

68CHAPTER 4. IMPROVING RECOVERY IN WEAK-VOTING DATA REPLICATION

When a node reconnects to a replicated system, the new view is installed and
some actions for local recovery may be performed at the recovering node. The
other nodes know who is the recovering node, and every one performs locally
the next actions:

1. A recoverer node is elected with a deterministic procedure, according to
the original protocol, the oldest one with the bigger identifier.

2. The MISSED table is scanned looking for the recovering node in the
field SITES until the view that contains the recovering node is found.
The items for which the recovering node needs to update its state are the
elements of OID LIST of this view and the subsequent views.

3. At the recoverer node, the recovery information is sent to the recovering
node according to the basic protocol.

4. Once the recovering node has confirmed the update of a view, the node
is eliminated from the SITES field in this view, and if it is the last item,
also the record that contains this view is eliminated.

5. If a recoverer node fails during the recovering process, then another node
is elected to be the new recoverer, according to the basic protocol. And
it will create the partitions pending to be transferred, according to the
previous points, and then it will perform the item transfer to recovering
nodes, again as in the basic protocol.

It is important to note that in a view change consisting in the join and leave of
several nodes, we must first update the information about failed nodes, and later
execute the recovery process. As a final remark, this compacting process will
help the recovery protocol to minimize the needed recovery information to be
transferred. However, its compression rate will depend on the user application.
If replication updates concentrate in few data items among several views the
compacting will have high rates, but if these changes are highly scattered the
compacting rate values will be low.

4.7 Recovery Simulation

With the aim of evaluating the performance of the compacting enhancement
for the basic protocol described in Section 4.4 we have developed a simulation
program and execute various experiments analyzing the results.

4.7.1 Simulation Environment

The simulation program is written in C++ and is based on the Omnet++ simu-
lation environment [35]. OMNeT++ has been developed by Andrs Varga based

4.7. RECOVERY SIMULATION 69

on the previous work by Dr. Gyrgy Pongor, Omnet written in Object Pascal at
the Technical University of Budapest, Department of Telecommunications.

OMNeT++ is a discrete event simulation environment. Its primary application
area is the simulation of communication networks, but because of its generic
and flexible architecture, is successfully used in other areas, such in our case.

This simulation environment also provides a component architecture for mod-
els. Components (modules) are programmed in C++, then assembled into larger
components and models using a high-level language called NED. As an addi-
tional remark, Omnet++ has also an extensive graphics user interface – GUI –
support, mainly used for debugging purposes.

4.7.2 Simulation Model

The simulation system model is written in C++, and it is compound of hierar-
chically nested modules. Modules communicate through message passing. The
modules at the lowest level of the module hierarchy encapsulate behaviour.

We have considered three replicated scenarios with 5, 9 and 25 nodes each
one. The replicated database has 100000 data items. All simulations start
having all replicas updated and alive. Then, we start to crash nodes one by
one –installing a new view each time a node crashes–, until the system reaches
the minimum primary partition in each scenario. At this point two different
recovery sequences are simulated. In the first one, denoted as order 1, the
crashed nodes are reconnected one by one in the same order as they crashed,
while in the second, denoted as order 2, they are reconnected one by one but
reversing their crash order. In both cases, each time a node reconnects a new
view is installed, and immediately the system starts its recovery, ending its
recovery process before reconnecting the following one. In any installed view
we assume that the replicated system performs 250 transactions successfully,
and each transaction modifies 20 database items. All simulation parameters are
described in Table 4.1.

The items in the writeset are obtained randomly with a uniform distribution.
We have not used neither a hot spot, as in other previous works [41], nor typical
workloads as TPC-W or TPC-C [36]. In both cases, they would be more favor-
able environments for the compacting method than a uniform distribution, since
they suppose more frequent access to a set of items of the database, removing
a big amount of items in the compacting process. We have also assumed a fast
network, and this reduces the performance difference between the normal and
compacting recoveries, since it only depends on the amount of transferred items.
If we had a slow network, such difference would have been bigger.

70CHAPTER 4. IMPROVING RECOVERY IN WEAK-VOTING DATA REPLICATION

Parameter Value

Items in the database 100.000

Time for a read 4 ms

Number of servers 5, 9, 25

Time for a write 6 ms

Transactions per view 250

Time for an identifier read 1 ms

Transaction length 20 modified items

Time for an identifier write 3 ms

Identifier size 4 bytes

CPU time for an I/O operation 0,4 ms

Item size 200 bytes

Time for point to point message 0,07 ms

Maximum message size 64 Kbytes

Time for broadcast message 0,21 ms

CPU time for network operation 0,07 ms

Table 4.1: Simulator Parameters.

4.7.3 Simulation Results

We have made one hundred repetitions for every experiment obtaining with this,
the guarantees of a low dispersion (see Table 4.2).

This simulation has not considered the costs of managing the recovery informa-
tion compacting because this work is performed online, therefore its associated
overhead penalizes only the replication work performance, but not the recovery.

The simulation results show that the more views a crashed node loses the better
the compacting technique behaves, which is a logical result. In fact, when
more updates a crashed node misses the probability of modifying the same item
increases. Both in the Table 4.2 and in the Figure 4.1 we can observe the same
behavior. When a crashed node has lost only one view the compacting technique
does not provide any improvement because it has been unable to work. But, as
long as the crashed node misses more views the compacting technique provides
better results.

It must be also noticed that the basic recovery protocol could arrive to transfer
a greater number of items than items has the original database. This occurs
because it transfers for each lost view all the modified (and created items in this
view) independently they are transferred when recovering other views where
these items have been also modified. This situation is avoided by our recovery
protocol enhancement. And in the worst case the proposed solution will transfer
the whole database because during the inactivity period of the recovered node
all the items of the database have been modified.

4.8. RELATED WORK 71

Basic Compacted
Order Nodes Views

Avg StdDev Avg StdDev

1 5 2 165.8 0.23 161.7 0.21

2 5 1 82.8 0.20 82.9 0.18

2 5 3 248.7 0.18 236.7 0.16

1 9 4 331.6 0.19 308.1 0.18

2 9 1 82.9 0.17 82.9 0.20

2 9 3 248.7 0.17 236.7 0.18

2 9 5 414.5 0.18 376.0 0.17

2 9 7 580.4 0.18 501.9 0.17

1 25 12 995.1 0.18 767.2 0.12

2 25 1 82.9 0.20 82.9 0.19

2 25 3 248.7 0.19 236.7 0.16

2 25 5 414.6 0.18 376.1 0.15

2 25 7 580.4 0.19 502.1 0.14

2 25 9 746.2 0.19 616.0 0.12

2 25 11 912.0 0.19 719.2 0.11

2 25 13 1077.9 0.19 812.6 0.11

2 25 15 1243.8 0.19 897.1 0.10

2 25 17 1409.6 0.19 973.6 0.10

2 25 19 1575.5 0.19 1042.9 0.09

2 25 21 1741.3 0.19 1105.4 0.08

2 25 23 1907.2 0.18 1162.0 0.07

Table 4.2: Recovery times in seconds.

4.8 Related Work

For solving the recovery problem [9] database replication literature has largely
recommended the crash recovery failure model use as it is proposed in [12, 39,
13, 43, 2] while process replication has traditionally adopted the fail stop failure
model. The use of different approaches for these two areas is due to the fact
that usually the first one manages large data amounts, and it adopts the crash
recovery with partial amnesia failure model in order to minimize the recovery
information to transfer.

The crash-recovery with partial amnesia failure model adoption implies that the
associated recovery protocols have to solve the amnesia problem. This problem
has been considered in different papers as [62, 23, 22] and different recovery
protocols have presented ways for dealing with it. The CLOB recovery protocol
presented in [12] and the Checking Version Numbers proposed in [43] support
amnesia managing it in a log-based and version-based way, respectively.

In regard to the compactness technique, [16] uses it in order to optimize the
database recovery. In this case, this technique is used to minimize the infor-
mation size that must be maintained and subsequently transferred in order to

72CHAPTER 4. IMPROVING RECOVERY IN WEAK-VOTING DATA REPLICATION

(a) (b)

(c)

Figure 4.1: Item Compactness: (a) 5 nodes, (b) 9 nodes, (c) 25 nodes.

perform the recovery processes. Such paper also presents experimental results
about the benefits introduced by using this technique, reaching up to 32% time
cost reductions.

The background idea of our compacting technique is very similar to the one
used in the recovery protocol presented in [43] under the “Restricting the Set
of Objects to Check” title. This protocol maintained in a database table the
identifiers of the modified objects when there were failed nodes. Each one of
these object identifiers was inserted in a different row, storing at the same time
the identifier of the transaction which modified the object. Therefore, when an
object was modified the system checked if its identifier was already inserted in
this table. If it has not, the protocol created a new entry where inserted the
identifier object and the transaction identifier. If it already existed an entry with
this object identifier, the protocol simply updated in this entry the transaction
identifier. So, this recovery protocol also avoids redundant information, but
it uses a more refined metadata granularity –transaction identifier– than our
enhanced protocol –view identifier–.

4.9 Conclusions

In this Chapter we have reviewed the functionality of a recovery protocol for
weak-voting data replication. We have enhanced it providing an accurated am-
nesia support and incorporating a compacting method for improving its perfor-
mance.

The amnesia support has been improved using a log-based technique which

4.9. CONCLUSIONS 73

consists in persisting the messages as soon as they are delivered in each node,
in fact they must be persisted atomically in the delivery process.

Our compacting technique avoids that any data object identifier appears more
than once in the MISSED table. Then, this mechanism reduces the size of
recovery messages, both the ones that set up the DB-partitions and the ones
which transfer the missed values.

Obviously, we must say that the improvement provided by our approach de-
pends on the replicated system load activity, the update work rate, and the
changed items rate. For the first two ones, we can consider in a general way
that when higher they are better our compacting technique behaves. This is
because the probabilities of modifying the same item in different views increase.
This consideration drives us to the changed items rate, which is really the most
important parameter. It tells us if the performed updates are focused in few
items or not. Then for our technique it is interesting that changes are focused
in as few items as possible. In fact, the worst scenario for our technique will be
the one in which all the modifications are performed in different items.

With the tests made with the simulation model the advantages of the enhanced
recovery protocol have been verified when comparing the results of both pro-
tocols. The obtained results have pointed out how our proposed compacting
technique provides better results when the number of lost views by a crashed
node increases. Thus, our compacting technique has improved the recovery
protocol performance for recoveries of long-term failure periods.

As final conclusion, we can say that our enhanced recovery protocol works better
in some of the worst scenarios from a recovery point of view: when the crashed
node has lost a lot of updates and the changed items rate is not very high.

Chapter 5

Correctness

This chapter provides the correctness of the recovery algorithms detailed in
the previous chapters. We have to extend the correctness criteria for replication
protocols to recovery ones. Hence, for safety the ordering of transactions applies
also to the recovering processes. Regarding liveness, we require that processes
which (re)join the system could recover the missed changes and reach a state
where those transactions were accepted by the replication protocol as if the
process had never crashed.

5.1 Introduction

In order to prove the correctness of the algorithms used, we use the correctness
criteria proposed in [4]. So, both safety and liveness properties are required.
Informally, a safety property specifies that nothing “bad” will happen, ever,
during the execution of a system. Besides, a liveness property provides that
something “good” will eventually happen. In order to ensure the system con-
sistency, all transactions must commit in the same order at all available replica
sites. Beside this safety property, a data replication protocol must guarantee
other liveness properties such as the atomicity of a transaction:

• If a transaction commits at a site, it will eventually commit at all sites.

• If a transaction aborts at a site, it will eventually abort at all the sites
where such transaction had started or it will be discarded at all the sites
where the transaction had not yet started.

Our recovery protocols do not violate the correctness criteria of the replication
protocols and we argue the correctness of these recovery protocols assuming that
there is always a primary component and that at least one replica, maintaining

75

76 CHAPTER 5. CORRECTNESS

all the metadata needed for the recovery, transits from one view to the next
one.

As stated in subsection 3.4, due to the total order multicast and the behaviour of
the protocol, all the replicas identify with the same commit timestamp a system
transaction, this timestamp can be used for both, the replication and recovery
protocols as a medium to uniquely identify the writesets of a transaction. This
last is very valuable in the recovery protocol because it can be used to deal
with the amnesia phenomenon as established in chapter 3. Additionally, the
next considerations will be helpful for the correctness proof. We assume a
recovering replica called Ri, which joins to the primary partition in the current
view Vn indicating the last versioni of its last applied writeset, i.e., the commit
timestamp of the last transaction applied by it. Assume as well, a recoverer
replica selected by a deterministic procedure inside the recovery protocol, on
the sequel Rj .

5.2 Correctness of Certification-Based Database

Recovery

Correctness proof for the certification-based recovery protocol can be argued if it
can be proved that the replication protocol is deterministic and the consistency
with the rest of the replicas is achieved by the recovering replica. Furthermore,
the protocol achieves the same isolation level as the replication protocol. To
this end, through Lemma 1, we argue that no updates are lost while no view
changes are present. Within Lemma 2, we assert that no updates are lost even
when view changes occur during the execution. Finally, in the theorem 3 the
consistency of the recovered replica is justified.

Lemma 1 (Absence of Lost Updates in Executions without View Changes).
If no failures and view changes occur during the recovery procedure, and the
recovery procedure is executed until completion, a replica can resume transaction
processing in that partition without missing any update.

Proof. (Outline). Considering the original recovery protocol, i.e., without com-
pacting the writesets, let us consider a set of recovery transactions executed
only at Ri associated to each set of tuples in ws list structure to be applied.
Thus, the set of tuples to be delivered will be the writesets from versioni +1 to
the last known version of the writesets in Rj at the moment of the ask for help
message is delivered. On the other hand, we must consider the set of concurrent
transactions that commit during the recovery process. The writesets of com-
mitted transactions before the ask for help message delivery will be included
in the recovery transactions transferred from Rj to Ri. The writesets delivered
in total order after the ask for help message delivery will be enqueued in Ri

message buffer.

5.2. CORRECTNESS OF CERTIFICATION-BASED DATABASE RECOVERY77

Recovery transactions are sequentially executed at the recovering replica Ri

according to the order they were stored in ws list structure at recovering replica
Rj . Concurrent execution of transactions from the begining of the current view
until delivering of ask for help message were already certified by the replication
protocol in the rest of the replicas, therefore they are included in the frame
portion of ws list that should be transferred to Ri. Transactions after the
ask for help message delivery can be certified by Ri itself, after updating the
ws list structure and even before writing these values in the database.

All of these, ensures that Ri will receive all writesets from versioni + 1 until
last version established at Rj when the ask for help message is delivered. The
writesets delivered in total order after the ask for help message delivery will
be buffered at Ri. This way, it is proved that Ri will not miss any writeset.

Let us consider now the optimization proposed in the recovery protocol provid-
ing compactness when the recovery transactions are constructed at Rj . This is
done constructing the recovery transactions to be transferred to Ri, considering
only the last version of the objects included in the ws list structure, in the
specified interval. So, we are considering all the updated objects, can be seen
that this compacting operation does not affect this argument.

Lemma 2 (Absence of Lost Updates after a View Change). A recovering replica
Ri in view Vn that transits to view Vn+1 resumes the recovery process without
missing any update.

Proof. (Outline). We have to consider the cases when the recoverer replica Rj

fails. Otherwise, the recovery process remains unaffected. If Rj fails, it will force
the selection of another recoverer replica Rk, restarting the recovery of Ri from
scratch. However, the versioni being communicated to Rk might be grater than
that communicated to Rj . Note that Rj might have transferred some prefix of
the list of missed writesets to Ri. Hence, no updates will be missed since we
will be under the circumstances of Lemma 1. Assuming that the time length of
installed views is stable enough to eventually achieve the recovery of a replica
without continuously failing recoverers.

Theorem 3 (GSI Recovery). Upon successful completion of the recovery proce-
dure, a recovering replica reflects a state compatible with the GSI execution that
took place.

Proof. (Outline). According to [24] it is sufficient to show that if a given repli-
cation (or recovery) protocol using SI replicas provides global atomicity and
commits update transactions in the same order at all replicas it provides GSI.
To prove that this implementation is deterministic and obeys GSI rules, we need
to show two properties. The first property is that at the certification of a trans-
action, all replicas have the same ws list and version. From the replication
protocol point of view, as we are assuming a replication protocol that ensures

78 CHAPTER 5. CORRECTNESS

GSI, the concurrent committed transactions during the recovery process are ap-
plied in the same order at all alive replicas. On the other hand, by Lemmas
1 and 2, we have shown that the recovery does not produce lost updates and
missing updates in the recovering replica (nor at any other available node, since
the certification process remains the same at the rest of replicas) are applied in
the same order they are committed.

5.3 Correctness of Weak-Voting Based Database

recovery

Correctness proof for this recovery protocol can be argued if the consistency
with the rest of the replicas is achieved by the recovering replica, and at the
end of the recovering the serialization order is not opposed with the serialization
order of the replication protocol. To prove this, in the theorem 6 the resulting
serialization order is stated to be compatible trough Lemma 4 and Lemma 5,
where we argue that no updates are lost while no view changes are present
neither when view changes occur during the execution respectively.

Lemma 4 (Absence of Lost Updates in Executions without View Changes).
If no failures and view changes occur during the recovery procedure, and the
recovery procedure is executed until completion, a replica can resume transaction
processing that DB-partition without missing any update.

Proof. (Outline). Let νid denote the last installed view identifier at the recover-
ing node Ri before it crashed and allow {Pνid+1

, Pνid+2
,..., PVi.id−1} represent

the set of recovery DB-partitions. Let us denote {trνid+1
, trνid+2

,...,trVi.id−1} as
the set of recovery transactions associated to each previous DB-partition that
must be applied. In the same way, let us denote t1,..., tf as the set of generated
transactions during the recovery process, assume they are ordered by the time
they were firstly committed. Let us denote by trec, as the last committed trans-
action before the chosen recoverer switches from the alive to the recoverer state.
The set of concurrent transactions with the recovery process are: {trec+1,..., tf}.
Therefore, the sequence of transactions can be divided as follows:

• Subsequence {t1, ..., trec}. Transactional atomicity is guaranteed by the
underlying transactional system. Hence, upon restart, none of these trans-
actions may be lost and the effects of uncommitted transactions do not
appear in the system, by means of the procedure responsible for creating
DB-partitions. These transactions are the ones that have attempted to
update a DB-partition. No transaction has been issued by the recovering
node. These committed transactions are applied at all alive nodes in the
same order since they are total-order delivered.

• Subsequence {trec+1, ...tf}. All DB-partitions are set. Transactions com-
mitted in this interval comprised data belonging to data not contained in

5.3. CORRECTNESS OF WEAK-VOTING BASED DATABASE RECOVERY79

DB-partitions or yet recovered. As these transactions are totally ordered
by the GCS, the serialization is consistent at all nodes. Thereby, and
since no failures occur, the subsequence {trec+1, ...tf} is applied to the
underlying system in its entirety at all alive nodes.

• Subsequence {trνid+1
, trνid+2

,...,trVi.id−1}. Each one of these transactions
encloses a set of user transactions issued in each missed view. These
transactions will be committed as soon as they are received (freeing its as-
sociated DB-partition). Again, as there are no failures all missed updates
will be applied at node Ri and it will switch to the alive state.

• Subsequence {tf+1,...}. These transactions correspond to all alive nodes
in the alive state and will be governed by the replication protocol, which
guarantees the application of updates serially at all alive nodes.

Since no transaction can be lost in any subsequence, the lemma is proved.

Lemma 5 (Absence of Lost Updates after a View Change). A recovering replica
Ri not yet fully recovered, in view Vi that transits to view Vi+1 resumes the
recovery process without missing any update.

Proof. During the processing of the view change under consideration, if the
recoverer has crashed, a new one is elected. Otherwise, the recoverer from the
previous view continues as recoverer. In either case, the recoverer in view Vi+1

will start the recovery thread, which will multicast the missed updates from the
last installed view of the recovering node Ri, referred as νi.

• First case. In this case, none has received the recovery metadata message,
so a new node is elected as the recoverer and sends a message indicating
the start of recovery to the recovering node which, this last restarts the
recovery process.

• Second case. The failed node is Rj or Ri not yet fully recovered. The for-
mer recoverer Rj has sent the DB-partitions to be set, but it failed during
the data transfer of missed updates. At worst, for all DB-partitions to be
sent. This may imply that some missed views have been transferred by
Rj but its application has not finished at Ri and hence they are multi-
cast twice. However, this second message will be discarded. Hence, the
recovery process will continue by the new recoverer, as soon as its DB-
partitions are set, with the data transfer of left missed updates. As it
has been seen, recovery is resumed without missing any update thereby
proving the Lemma.

80 CHAPTER 5. CORRECTNESS

It is important to note that due to the non-total-ordering nature of the recovery
transaction generation and the application of missed updates, Ri will not read
1CS values, during the recovery process. This is the price to pay to maintain
a higher degree of concurrency and availability. However, once all updates are
applied our recovery protocol guarantees that it is 1CS.

Theorem 6 (1-Copy-Serializable Recovery). Upon successful completion of the
recovery procedure, a recovering node reflects a state compatible with the actual
1CS execution that took place.

Proof. According to Lemmas 4 and 5, a recovering node that resumes normal
processing at transaction tf+1, reflects the state of all committed transactions.
The recovering node applies transactions in the delivery order. The recoverer
sends committed transactions (they were totally ordered by the 1CS replication
protocol) grouped by views. Moreover, this order is the same as they were
originally applied at the recoverer in the given view. Moreover, metadata is
total order consistent by the total order delivery of installed views. Hence,
the serialization order at the recovering node cannot contradict the serialization
order at the recoverer node. Since we are assuming the recoverer node is correct,
the state resulting after the recovery procedure is completed at the recovering
node is necessarily 1CS.

5.4 Conclusion

In this Chapter, we have discussed the correctness for the recovery protocols
proposed in chapters 3 and 4. We have established safety and liveness correct-
ness criteria.

Database replication techniques based on group communication normally rely
on total order broadcast primitive. Total order broadcast ensures that messages
are delivered in the same order on all replicas in a reliable way. In both cases,
certification and weak-voting based replication and recovery protocols, takes the
advantages of this approach. So, while normal processing, writesets are fully
applied in the same order at all replicas. After a replica fails, information about
failed nodes and object identifiers are updated. Then, for a rejoining replica
this information can be used for recovery purposes having for sure that this
rejoining replica had applied the writesets of the transactions delivered until
the last view they were present, providing its last view identification or last
committed transaction identification.

Chapter 6

Conclusion

Databases are designed primarily for human service, at enterprises or home
environments. These databases try to solve a greater number of needs that
arise in modern societies. Among these needs, highlights the mobility of users
and the wide geographical location that they may have. More over, increased
reliance on computer systems.

Globalization is one of the greatest influences. The processes that characterize
better these trends are:

• Increased mobility, associated with people, and information of several kind
with more or less relevance, but always required by users.

• Concurrency, everyone has to be available anywhere and at any time.
Information and products of large corporations have to be available in all
countries for users.

• Web-based systems and other Internet-based applications such as banking,
flying reserves, financial investment, etc., are of unprecedented interest and
importance.

It is in this context that this thesis should be located. Specifically and by way
of summary, the next section presents our work.

6.1 Summary

In this Thesis we have reviewed the most relevant publications about the subject
of this work: Database replication and recovery. We have related, when it was
possible by constraints imposed by the replication methodology, recovery proto-
cols with the adequate replication protocols. This work lead us with references
and some related issues about recovery problems and some possible solutions.

81

82 CHAPTER 6. CONCLUSION

As a result and because none was found a survey was elaborated presenting a
useful comparison table, various alternative options and strategies employed by
replication and recovery protocols developed in recent years was summarized.
This was very helpful to fully understand the currently proposed replication and
recovery protocols and to make new proposals.

Two enhancements for the recovery protocols were made:

• In the first one, we have taken advantage of the historic list of write-
sets that is used for certifying the transactions that arrive to the commit
phase using it for the recovery purposes. More over,we optimize the re-
covery process with compacting techniques minimizing the total amount
of information to transfer and to process for recovery protocol. We mini-
mize the recovery information managed, reducing with this the workload
in the recoverer and recovering replicas and reducing the communication
network overload.

A performance study was done, analysing the recovery time when the
system load varies. Up to our knowledge this is the first performance study
for such kind of recovery techniques in the field of database replication.

• In the second one, additionally to the compacting techniques we have
enhanced it providing an accurate amnesia support. For this last, we have
used a log-based technique which persists the messages as soon as they
are delivered in each node.

The tests was made with a simulation model on the Omnet++ tool. The
advantages of the enhanced recovery protocol have been verified when
comparing the results of both protocols. The obtained results have pointed
out how our proposed compacting technique provides better results when
the number of lost views by a crashed node increases. Thus, our com-
pacting technique has improved the recovery protocol performance for
recoveries of long-term failure periods.

In both cases, our compacting technique reduces the size of recovery messages,
we must say that this improvement provided by our approach depends on the
replicated system load activity, the update work rate, and the changed items
rate. For the first two ones, we can consider in a general way that when higher
they are better our compacting technique behaves. The worst scenario for our
technique will be the one in which all the modifications are performed in different
items.

As final conclusion, we can say that our enhanced recovery protocols work better
in some of the worst scenarios from a recovery point of view: when the crashed
node has lost a lot of updates and the changed items rate is not very high.

6.2. FUTURE RESEARCH DIRECTION 83

6.2 Future Research Direction

A major limitation in current recovery protocols is the lack of parallelism. Some
works [39, 43] attempt the recovery using multiple sources for the recovery in-
formation without suspend the system service. Recovery can be a slow and
blocking process, [39] intended to alleviate these problems by providing mul-
tiple recoverers based on partitioning the database by type of conflicts. It is
convenient to perform an analysis of the convenience of implementing parallel
recovery by dividing the data in a deterministic way and considering the data
structure for recovery algorithms used in previous chapters.

Bibliography

[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic
broadcast in replicated databases. LNCS, 1300:496–503, 1997.

[2] J. E. Armendáriz, F. D. Muñoz, H. Decker, J. R. Juárez, and J. R. González
de Mend́ıvil. A protocol for reconciling recovery and high-availability in
replicated databases. 21st International Symposium on Computer Infor-
mation Sciences, Springer, 4263:634–644, November 2006.

[3] José Enrique Armendáriz. Design and Implementation of Database Repli-
cation Protocols in the MADIS Architecture. PhD thesis, Univ. Pública de
Navarra, Pamplona, Spain, February 2006.

[4] José Enrique Armendáriz-Iñigo, José Ramón González de Mend́ıvil,
José Ramón Garitagoitia, and Francesc D. Muñoz-Escóı. Correctness proof
of a database replication protocol under the perspective of the I/O automa-
ton model. Acta Inf., 46(4):297–330, 2009.

[5] Özalp Babao, Keith Marzullo, and Keith Marzullo. Consistent global states
of distributed systems: Fundamental concepts and mechanisms. In Dis-
tributed Systems, pages 55–96. Addison-wesley, 1993.

[6] Özalp Babaoglu, Alberto Bartoli, and Gianluca Dini. Enriched view syn-
chrony: A programming paradigm for partitionable asynchronous dis-
tributed systems. IEEE Trans. Computers, 46(6):642–658, 1997.

[7] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil. A critique of ANSI SQL isolation levels. In
SIGMOD, pages 1–10, 1995.

[8] Philip A. Bernstein. Middleware: A model for distributed system services.
Commun. ACM, 39(2):86–98, 1996.

[9] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison Wesley, 1987.

[10] Kenneth P. Birman. Reliable Distributed Systems Technologies, Web Ser-
vices, and Applications. Springer, 2005.

85

86 BIBLIOGRAPHY

[11] Michael J. Carey and Miron Livny. Conflict detection tradeoffs for repli-
cated data. ACM Trans. Db. Syst., 16(4):703–746, 1991.

[12] F. Castro, J. Esparza, M. I. Ruiz, L. Irún, H. Decker, and F. D. Muñoz.
CLOB: Communication support for efficient replicated database recovery.
In PDP, pages 314–321, 2005.

[13] F. Castro, L. Irún, F. Garćıa, and F. D. Muñoz. Fobr: A version-based
recovery protocol for replicated databases. In PDP, pages 306–313, 2005.

[14] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determin-
ing global states of distributed systems. ACM Transactions on Computer
Systems, 3(1):63–75, 1985.

[15] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifi-
cations: A comprehensive study. In ACM Comp. Surv. 33(4), pages 1–43,
2001.

[16] Jerónimo Pla Civera, Maria Idoia Ruiz-Fuertes, Luis H. Garćıa-Muñoz, and
Francesc D. Muñoz-Escóı. Optimizing certification-based database recov-
ery. Technical report, ITI-ITE-07/04, Instituto Tecnológico de Informática,
2007.

[17] Flaviu Cristian. Understanding fault-tolerant distributed systems. Com-
munications of the ACM, 34(2):56–78, 1991.

[18] Flaviu Cristian and Farnam Jahanian. A timestamp-based checkpointing
protocol for long-lived distributed computations. In SRDS, pages 12–20,
1991.

[19] Om P. Damani and Vijay K. Garg. How to recover efficiently and asyn-
chronously when optimism fails. In ICDCS, pages 108–115, 1996.

[20] Rubén de Juan Maŕın. Crash Recovery with Partial Amnesia Failure Model
Issues. PhD thesis, Universidad Politécnica de Valencia, Valencia, Spain,
September 2008.

[21] Rubén de Juan-Maŕın, Luis H. Garćıa-Muñoz, José Enrique Armendáriz-
Iñigo, and Francesc D. Muñoz-Escóı. Reviewing amnesia support in
database recovery protocols. In Robert Meersman and Zahir Tari, edi-
tors, OTM Conferences (1), volume 4803 of Lecture Notes in Computer
Science, pages 717–734. Springer, 2007.

[22] Rubén de Juan-Maŕın, Luis Irún-Briz, and Francesc D. Muñoz-Escóı. Re-
covery strategies for linear replication. In ISPA, pages 710–723, 2006.

[23] Rubén de Juan-Maŕın, Luis Irún-Briz, and Francesc D. Muñoz-Escóı. Sup-
porting amnesia in log-based recovery protocols. In ACM Euro-American
Conference on Telematics and Information Systems, Faro, Portugal, May
2007. ACM Press.

BIBLIOGRAPHY 87

[24] J.R. González de Mend́ıvil, J.E. Armendáriz-Iñigo, F.D. Muñoz-Escóı,
L. Irún-Briz, J.R. Garitagoitia, and J.R. Juárez. Non-blocking rowa pro-
tocols implement gsi using si replicas. Technical report, ITI-ITE-07/10 ,
Instituto Tecnológico de Informática, 2007.

[25] Sameh Elnikety, Fernando Pedone, and Willy Zwaenopoel. Database repli-
cation using generalized snapshot isolation. In SRDS, 2005.

[26] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM
Comput. Surv., 34(3):375–408, 2002.

[27] J. Esparza, A. Calero, J. Bataller, F. Muñoz, H. Decker, and J. Bernabéu.
COPLA: A middleware for distributed databases. In 3rd Asian Workshop
on Programming Languages and Systems (APLAS ’02), pages 102–113,
2002.

[28] Luis H. Garćıa-Muñoz, J. Enrique Armendáriz-Iñigo, and Francisco D.
Muñoz-Escóı. Associating replication and recovery protocols for replicated
databases. In Work in Progress Session of the Euromicro PDP, Naples,
Italy, Feb. 2007.

[29] Luis H. Garćıa-Muñoz, J. Enrique Armendáriz-Iñigo, and Francisco D.
Muñoz-Escóı. Recovery protocols for replicated databases - a minimal sur-
vey. In Work in Progress Session of the Euromicro PDP, Naples, Italy,
Feb. 2007.

[30] Luis H. Garćıa-Muñoz, Rubén de Juan-Maŕın, José Enrique Armendáriz-
Iñigo, and Francesc D. Muñoz-Escóı. Improving recovery in weak-voting
data replication. In Ming Xu, Yinwei Zhan, Jiannong Cao, and Yijun Liu,
editors, APPT, volume 4847 of Lecture Notes in Computer Science, pages
131–140. Springer, 2007.

[31] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers
of replication and a solution. In SIGMOD Conference, pages 173–182, 1996.

[32] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related prob-
lems. In S. Mullender, editor, Distributed Systems, chapter 5, pages 97–145.
ACM Press, 2nd edition, 1993.

[33] JoAnne Holliday. Replicated database recovery using multicast communi-
cation. In NCA, 2001.

[34] JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi. The perfor-
mance of database replication with group multicast. In FTCS, pages 158–
165, 1999.

[35] http://www.omnetpp.org/. Omnet++ a discrete event simulation environ-
ment.

88 BIBLIOGRAPHY

[36] http://www.tpc.org/. The transaction processing performance council.

[37] L. Irún, H. Decker, R. de Juan, F. Castro, J. E. Armendáriz, and F. D.
Muñoz. MADIS: a slim middleware for database replication. In 11th Intnl.
Euro-Par Conf., pages 349–359, Monte de Caparica (Lisbon), Portugal,
September 2005.

[38] Luis Irún, F. Castro, F. Garćıa, A. Calero, and Francisco Muñoz. Lazy
recovery in a hybrid database replication protocol. In XII Jornadas de
Concurrencia y Sistemas Distribuidos, 2004.

[39] Ricardo Jiménez, Marta Patiño, and Gustavo Alonso. An algorithm for
non-intrusive, parallel recovery of replicated data and its correctness. In
SRDS, pages 150–159, 2002.

[40] David B. Johnson and Willy Zwaenepoel. Recovery in distributed sys-
tems using optimistic message logging and checkpointing. J. Algorithms,
11(3):462–491, 1990.

[41] Bettina Kemme. Database Replication for Clusters of Workstations. PhD
thesis, Swiss Federal Inst. of Technology, Zurich, Switzerland, 2000.

[42] Bettina Kemme and Gustavo Alonso. A suite of database replication pro-
tocols based on group communication primitives. pages 156–163, 1998.

[43] Bettina Kemme, Alberto Bartoli, and Özalp Babaoglu. Online reconfig-
uration in replicated databases based on group communication. In DSN,
pages 117–130, 2001.

[44] Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for
distributed systems. In FJCC, pages 1150–1158, 1986.

[45] Yi Lin, Bettina Kemme, Marta Patiño-Mart́ınez, and Ricardo Jiménez-
Peris. Middleware based data replication providing snapshot isolation. In
SIGMOD Conf., 2005.

[46] Francesc D. Muñoz-Escóı, Jerónimo Pla-Civera, Maŕıa Idoia Ruiz-Fuertes,
Luis Irún-Briz, Hendrik Decker, José Enrique Armendáriz-Iñigo, and
José Ramón González de Mend́ıvil. Managing transaction conflicts in
middleware-based database replication architectures. In SRDS, pages 401–
410. IEEE-CS Press, October 2006.

[47] Victor P. Nelson. Fault-tolerant computing: Fundamental concepts. Com-
puter, 23(7):19–25, 1990.

[48] Fernando Pedone, Rachid Guerraoui, and André Schiper. The database
state machine approach. Distributed and Parallel Databases, 14(1):71–98,
2003.

[49] PostgreSQL. Web site. Accessible in URL: http://www.postgresql.org,
2007.

BIBLIOGRAPHY 89

[50] Brian Randell. System structure for software fault tolerance. IEEE Trans-
actions on Software Engineering, 1:220–232, 1975.

[51] A. Ricciardi, A. Schiper, and K. Birman. Understanding partitions and
the ’no partition’ assumption. In 4th FTDCS Workshop, pages 354–360,
September 1993.

[52] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong
replication in the GlobData middleware. In Workshop on Dependable
Middleware-Based Systems (in DSN 2002), pages G96–G104, Washington
D.C., USA, 2002.

[53] David L. Russell. State restoration in systems of communicating processes.
IEEE Trans. Software Eng., 6(2):183–194, 1980.

[54] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[55] Spread. The Spread communication toolkit. Accessible in URL:
http://www.spread.org, 2007.

[56] Michael Stonebraker. Concurrency control and consistency of multiple
copies of data in distributed ingres. IEEE Transactions on software Engi-
neering, SE(5):188–194, 1979.

[57] Robert E. Strom and Shaula Yemini. Optimistic recovery in distributed
systems. ACM Trans. Comput. Syst., 3(3):204–226, 1985.

[58] Andrew S. Tanembaum and Maarten Van Steen. Distributed Systems, prin-
ciples and paradigms. Prentice Hall, 2002.

[59] R. H. Thomas. A mayority consensusapproach to concurrency control
for multiple copy databases. ACM Transactions on Database Systems,
4(2):180–209, June 1979.

[60] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database
replication techniques: a three parameter classification. In SRDS, pages
206–215, 2000.

[61] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Un-
derstanding replication in databases and distributed systems. In ICDCS,
pages 464–474, 2000.

[62] M. Wiesmann and A. Schiper. Beyond 1-Safety and 2-Safety for replicated
databases: Group-Safety. In Proceedings of the 9th International Confer-
ence on Extending Database Technology (EDBT2004), 2004.

[63] Matthias Wiesmann and André Schiper. Comparison of database replica-
tion techniques based on total order broadcast. IEEE Trans. Knowl. Data
Eng., 17(4):551–566, 2005.

