
Implementing O2PL Protocols in a Middleware
Architecture for Database Replication

J.R. Juárez∗, J.E. Armendáriz∗, J.R. González de Mendı́vil∗, J.R. Garitagoitia∗, F.D. Muñoz-Escoı́†
∗Dpto. Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain

Email: {jr.juarez, enrique.armendariz, mendivil, joserra}@unavarra.es
†Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, 46022 Valencia, Spain

Email: fmunyoz@iti.upv.es

I. INTRODUCTION

Database replication consists of maintaining multiple copies
of data on separate computers in order to improve the overall
availability and performance of a system. 02PL [1] is one
of the first concurrency algorithms designed to ensure the
consistency of the replicated data following the ROWAA
policy [2]. Although O2PL showed several advantages when
compared with other general concurrency control approaches
[1], it is known that unfortunately this protocol is prone
to suffer distributed deadlocks, as it does not rely on any
communication order guarantees.

In order to avoid this, we have implemented an O2PL based
replication protocol called BRP in a middleware architecture
[3]. Using a middleware architecture results in an greater
portability to other DBMSs, despite having to add some
collection and management tasks that reduce the performance
of the resulting system. Additionally, this architecture stores
locally useful metadata related to the database transactions
making for a dynamic deadlock prevention scheme based
on transaction priorities. These priorities may be based on
different parameters, such as timestamps, number of restarts
or writeset size.

Since no message ordering guarantees are considered, BRP
needs to use 2PC [4] atomic commitment protocol. In this
protocol to achieve a global commit of a transaction, all the
participants must vote to commit it. This vote is normally
sent after executing the transaction in each remote node, as
BRP does. Nevertheless, a total order for the execution of the
transactions is established by these priorities, so that it is not
necessary to wait for the transaction completion prior to send
the vote message from the remote site. For this reason, the
vote can be sent after priority checking, avoiding the time
spent executing the transaction in the database.

Taking account of this idea, we have implemented another
replication protocol called ERP. The aim of this paper is to
prove that the performance optimizations of the ERP protocol
are significant. For this purpose, section III shows several tests
that prove the overall performance of the ERP variant to be
better than that achievable with the BRP one and, additionally,
it is also able to reduce the abortion rate of the BRP.

Details of these protocols and their recovery algorithms as
well as their correctness proofs can be found in [5], [6].

II. SYSTEM CONFIGURATION

For all the experiments, we used a cluster of 8 workstations
(Fedora Core 1, Pentium IV 2.8GHz, 1GB main memory,
80GB IDE disk) connected by a full duplex Fast Ethernet
network. PostgreSQL 7.4 was used as the underlying DBMS
to keep a database composed of 30 tables each containing
1000 tuples. Finally, Spread 3.17.3 was in charge of the
group communication, providing our protocols with reliable
broadcast communication primitives. The results consist of
executing transactions varying some parameters to check out
the system behavior. Table I summarizes the parameters used
in the different experiments.

TABLE I
PARAMETERS OF EXPERIMENTS

Experiments WL1 WL2 WL3 Conflicts

Database Size 30 tables of 1000 tuples each

Tuple Size appr. 100 bytes

Number of Servers 5 2-8 5 5

Number of Updates Operations 5 10 5-25 5

Number of Clients 1-20 2-8 5 5

Submission Rate in TPS 10-35 10 10 20

Hot Spot Size 0% 0% 0% varying

III. EXPERIMENTAL RESULTS

A. Workload Analysis I: Protocol Evaluation

In this first experiment, transactions consist of 5 update
operations. Workload was increased steadily from 10 to 35
tps and, for each workload, several tests were executed varying
the number of clients from 1 to 20 in the whole system. Since
BRP has to wait for the update execution before sending the
vote in a commitment process and ERP has not, ERP behaves
generally better than BRP (see Figure 1). Only once the CPU
resources were saturated, both their behaviors seem to match.

B. Workload Analysis II: Varying Number of Servers

This second experiment tries to test the scalability of both
protocols. As some experiences show [2], replication protocols
do not cope very well with increasing system sizes. We have
evaluated their performance varying the number of servers



Fig. 1. Workload Analysis I: Protocol Evaluation

Fig. 2. Workload Analysis II: Varying Number of Servers

from 2 to 8 and performing the same test suites in each
configuration. A single client is allocated in each server and
the load introduced into the system remains constant to 10 TPS
in all the performed tests. As shown in Figure 2 response time
increases as system size grows. Both protocols differ basically
in the time spent before sending a vote when committing a
remote transaction, which is mainly the update execution time.
Since this time remains quite constant, both of them follow
a similar behavior, at different levels, in terms of growing
tendency.

C. Workload Analysis III: Varying Transaction Size

In order to have a better understanding of the difference
between both protocols, in this test we tried to analyze this
difference varying the number of operations included in a
transaction, in other words, increasing transaction execution
time. As update transaction time increases, the difference
between both protocols becomes larger (see Figure 3), due
to the fact that BRP has to wait for the worst transaction
execution time of the remote machines and ERP only needs
checking whether a conflict exists before sending a vote,
without waiting for the transaction execution in the database.

D. Conflicts Analysis

In the previous experiments, conflict rates were rather small
because we modeled a uniform data access distribution, so that
the probability of conflict between two transactions was low.
Therefore, considering that databases contain usually hot-spot
areas that are accessed by most transactions, a hot-spot area
of 1000 tuples was defined in the database and then we ran

Fig. 3. Workload Analysis III: Varying Transaction Size

Fig. 4. Conflicts Analysis

a sequence of tests varying the access distribution pattern to
that area.

The access distribution is determined by the probability of
operations accessing the hot-spot area (from 50% to 90%)
and the percentage of tuples that will be accessed from the
defined hot-spot area (from 50% to 5%). As it was expected,
as probability of accessing the hot-spot area grew and its size
decreased, conflict rates, and hence abort rates, became higher
(see Figure 4).

ACKNOWLEDGMENT

This work has been supported by the Spanish Government
under research grant TIC2003-09420-C02.

REFERENCES

[1] Michael J. Carey and Miron Livny, “Conflict detection tradeoffs for
replicated data.,” ACM Trans. Database Syst., vol. 16, no. 4, pp. 703–
746, 1991.

[2] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha, “The
dangers of replication and a solution.,” in SIGMOD Conference, H. V.
Jagadish and Inderpal Singh Mumick, Eds. 1996, pp. 173–182, ACM
Press.

[3] L. Irún-Briz, H. Decker, R. de Juan-Marı́n, F. Castro-Company, J.E.
Armendáriz, and F.D. Muñoz-Escoı́, “Madis: A slim middleware for
database replication.,” in Euro-Par. 2005, Lecture Notes in Computer
Science, Springer.

[4] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman, Concur-
rency Control and Recovery in Database Systems, Addison Wesley, 1987.

[5] J. E. Armendáriz, F. D. Muñoz-Escoı́, J. R. Garitagoitia, and
J. R. González de Mendı́vil, “Design of a MidO2PL Database Replication
Protocol in a Middleware Architecture,” Tech. Rep. ITI-ITE-05/09,
Instituto Tecnológico de Informática, 2005.

[6] J. E. Armendáriz, J. R. Garitagoitia, J. R. González de Mendı́vil, and
F. D. Muñoz-Escoı́, “A Basic Replication and Recovery Protocol for the
MADIS Middleware Architecture,” Tech. Rep. ITI-ITE-05/01, Instituto
Tecnológico de Informática, 2005.


