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I. INTRODUCTION

Optimistic 2PL (O2PL)[1] was one of the first concurrency
control algorithms specially designed for replicated databases
and not following the replication policy established in [2].
O2PL showed several advantages when compared with other
general concurrency control approaches (such as distributed
2PL, basic timestamp ordering, wound-wait, or distributed cer-
tification): (a) As many of them, it does not need to propagate
readsets in order to detect concurrency conflicts. Read locks
are only locally managed, using the support provided by the
underlying Database Management System (DBMS). (b) It only
needs constant interaction [3], delaying all remote write-lock
requests until commit time, being thus an optimistic variation
of the distributed 2PL approach [4]. This ensures a faster
transaction completion time than those protocols based on
linear interaction. (c) Its use of locks, although optimistic,
guarantees a lower abortion rate than that of the timestamp-
based approaches [1]. The principles of O2PL have been used
in many modern database replication protocols [5] based on
total order broadcast [6], removing thus the need of using the
Two Phase Commit (2PC) protocol in order to terminate the
transactions, and improving in this way the protocol outlined
in [1]. We propose two new replication protocols directly
based on the ideas discussed above, and implemented in a
middleware called MADIS [7].

A middleware-based implementation has to necessarily add
some collection and management tasks that reduce the perfor-
mance of the resulting system. On the other hand, the resulting
system will be easily portable to other DBMSs. In both
protocols we have eliminated the need of lock management
at the middleware layer. For this purpose, we rely on the local
concurrency control, adding some triggers that will be raised
each time a transaction is blocked due to a lock request. Each
time a client issues a transaction (local transaction), all its
operations (i.e. all reads and writes) are locally performed on a
single node called the transaction master site. The remainder
sites enter in the context of this transaction when the user
wants to commit. All write operations are grouped and sent
to the rest of available sites, at this moment is when the two
protocols differ, since the former uses the basic service and
the latter employs a total order. Updates are applied in the
rest of sites in the context of another local transaction (remote

transaction) on the given local database where the message is
delivered.

The first replication proposed is called BULLY. It is based
in a 2PC [4] atomic commitment protocol such as O2PL [1]; it
needs only a uniform reliable broadcast and a globally unique
priority value associated to each transaction. BULLY requires
two communication phases in order to commit a transaction,
since all its operations are firstly executed at a given site.
The first phase comprises: update propagation, priority check
among current active transactions at the rest of sites (to avoid
distributed deadlocks), and applying the updates on the local
DBMS. This algorithm is called BULLY due to the fact that
updates performed at remote nodes rollback all conflictive
(neither committed nor aborted) transactions whose priority
is lower than its own. Once this process is finished at each
remainder site, it sends a message saying it is ready to commit.
The second phase starts when all sites are ready to commit.
The master site multicasts a commit message to the rest of
sites (the same may be applied for an aborted transaction).
Therefore, it is also able to manage unilateral aborts. The
second replication protocol, called Total Order Replication
Protocol with Enhancements (TORPE), uses the total order
multicast primitive [6] to order conflicting transactions instead
of the BULLY priority function, in a similar way as in [5].
TORPE replaces the first communication phase of the previous
one with one total order broadcast [6]. If the site where the
transaction is executed notices this message as the first one
delivered, it directly multicasts a commit message, otherwise,
it multicasts an abort message. However, it is not able to
manage unilateral aborts.

II. EXPERIMENTAL RESULTS ON MADIS

We are currently ending the implementation of MADIS
while implementing our replication protocols on it [7]. The
results presented here are preliminary ones and merely point
out the comparison between these protocols in a middleware
architecture. These results have been performed in two differ-
ent environments, since the first one does not have enough
workstations to execute the second test. We firstly use a
cluster of 4 workstations with full duplex Gigabit Ethernet
(Mandrake 10.0, Pentium III 800MHz, 768MB main memory,
40GB SCSI disk) and secondly a cluster of 8 workstations with
full duplex Fast Ethernet (Fedora Core 1, Pentium IV 2.8GHz,



1GB main memory, 80GB IDE disk). In all our tests, we
use PostgreSQL 7.4 as the underlying DBMS. Spread 3.17.3
is in charge of the group communication system for both
protocols. The database is composed by 25 tables with 100
records each one. The experimental results consist of executing
non-conflicting transactions composed of a number of update
operations varying the number of clients.

In the first experiment, transactions averaging 4 updates are
executed by a range of clients supporting different workloads
using both replication protocols. Figure 1 shows the results
for the BULLY and the TORPE protocols respectively. Results
obtained in these figures determine the performance of both
protocols with the same load of transactions. As shown in
the figures, TORPE behaves better than BULLY, due to the
fact that BULLY has to wait for the application of updates at
all nodes and the reception of the respective ready messages.
TORPE has only to wait for the total order delivery of the
remote message and is not affected by the overhead introduced
by remote transactions.

The second experiment is directly related to the scalability
of the replication protocols [2]. We perform a proof varying
the number of sites 2, 4 and 8 respectively. The number of
clients are distributed throughout the nodes ranging from 1 to
16 and the load introduced into the system remains constant
to 8 TPS. We performed 500 transactions averaging 4 update
operations each per client. Results introduced in Figure 2 show
that TORPE behaves fine for a few number of clients and

Fig. 1. Performance Analysis: Response time with four operations per
transaction in a system with four sites.

nodes but its results are comparable to those obtained by
BULLY with a higher number of clients and sites. This is
due to the fact that the latency of total order delivery grows
with the number of nodes, as it takes more time to agree on
the delivery order. BULLY grows linearly with the number of
nodes and TORPE grows much faster.
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