
Implementable Models for Replicated and

Fault-Tolerant Geographically Distributed

DataBases

Consistency Management for GlobData

Memory of the Ph.D degree

written by

Luis Irún Briz

Supervisors:

Prof. José M. Bernabéu Aubán

Dr. Francesc D. Muñoz i Escoı́

Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Valencia, Spain

July 15, 2003

ii

Abstract

(English Version)

Lazy update protocols have proven to have a poor behavior due to the high abortion rate
they produce in scenarios with a high degree of conflicts in the access to the information.
This work studies lazy update protocols from a conservative point of view with respect to
its applicability in the field of Distributed Databases.

To this end, a result of incompatibility between “laziness” and “serializability” is included,
proving the necessity for the transactional guarantees provided by the consistency protocols
to be relaxed, when this consistency management is not performed in an “eager” style.

On the other hand, this work also includes a study of the problem of the abortion rate from an
statistical point of view, and being used as the basis for a new “not-so-lazy” approach, based
on statistical properties of the abortion rate. In this sense, an exhaustive description of this
new protocol is also included, in addition to an empirical evaluation of its implementation.
These experiments are also used to experimentally validate the argumentation proposed.

The proposed protocol will be shown to produce lower abortion rates than the lazy update
protocols, increasing -even at the time for some scenarios- the productivity of the system.
An expression for these improvements will be also argued.

Finally, the same principles are used to provide a mechanism for providing a self-recovery
ability to the fault tolerance aspect of the protocol. In addition, this recovering process
avoids the use of log’s during the failures, and its behavior is also “not-eager”, avoiding the
necessity of blocking transactions started in any node in the system (even in the recovering
one).

iii

iv

(Versión Castellano)

Los protocolos de actualización perezosa han demostrado tener comportamientos inadecua-
dos a causa de sus altas tasas de abortos en escenarios con un alto grado de conflictos en
los accesos a la información. El presente trabajo aborda los protocolos de actualización
perezosa desde un punto de vista crı́tico con respecto a su aplicabilidad en bases de datos
distribuı́das.

Para ello, se incluye un resultado de incompatibilidad entre “pereza” y ”serializabilidad”,
que demuestra la necesidad de relajar las garantı́as transaccionales proporcionadas por pro-
tocolos de difusión no-ávida.

Por otro lado, también se incluye en este trabajo un estudio del problema de la tasa de abor-
tos desde un punto de vista estadı́stico, que sirve como base para una nueva aproximación
”no tan perezosa”, basada en el comportamiento estadı́stico de la tasa de abortos.

En este sentido, una descripción exhaustiva de dicho protocolo es también incluı́da, junto
con resultados experimentales de su implementación, que son también usados para validar
experimentalmente los razonamientos usados.

El protocolo propuesto produce menores tasas de abortos que los protocolos de actual-
ización perezosa, incrementando al mismo tiempo -en determinados escenarios- la produc-
tividad del sistema. Una expresión para esta mejora es también justificada conveniente-
mente.

Por último, los mismos principios son usados para proporcionar un mecanismo de recu-
peración “no-ávida” de errores, que evita el bloqueo de cualquier nodo existente en el sis-
tema (incluso el reincorporado), ası́ como la gestión de “log’s” en los nodos supervivientes.

v

vi

(Versió Valencià)

Els protocols d’actualització peresosa han demostrat que tenen comportaments inadequats
per causa de les altes taxes d’abortaments que presenten en entorns amb un alt grau de con-
flictes en els accessos a l’informació. Aquest treball aborda els protocols d’actualització
peresosa des d’un punt de vista crı́tic respecte de la seua aplicació en bases de dades dis-
tribuides.

Per tal cosa, s’inclou un resultat d’incompatibilitat entre “peresa” i “serialitzabilitat”, que
demostra la necessitat de relaxar les garanties transaccionals proporcionades per protocols
de difusió no àvida.

D’altra banda, també s’inclou en aquest treball un estudi del problema de la taxa d’abortament
des d’un punt de vista estadı́stic, que serveix com a base per a una nova aproximació “no
del tot peresosa”, basada en el comportament estadı́stic de la taxa d’abortaments.

En aquest sentit, una descripció exhaustiva de tal protocol es també inclosa, junt amb re-
sultats experimentals de la seua implementació, que seràn també utilitzats per a validar
experimentalment els raonaments plantejats.

El protocol proposat produeix menors taxes d’abortaments que els protocols d’actualització
peresosa, incrementant al mateix temps -en determinats escenaris- la productivitat del sis-
tema. Una expressió per aquesta millora es també raonada convenientment.

Per a concloure, els mateixos principis són utilitzats per a proporcionar un mecanisme de re-
cuperació “no àvida” de errades, que evita el blocatge de qualsevol node existent al sistema
(inclós el reincorporat), com ara la gestió de “log’s” als nodes supervivents.

vii

viii

Agradecimientos

A mı́ se me da muy mal decir cosas brillantes. Sin esa pretensión, me gustarı́a agradecer el

apoyo recibido y la ayuda prestada por muchas personas.

Para empezar, gracias a Alicia, mi esposa, mi amiga, y mi sufridora. Gracias a mis padres,

que con muchos esfuerzos y sufrimientos me han dado todo lo que soy, y las herramientas

para vivir honrada y justamente. Gracias también a Jesús, que me enseñó que la vida es

mucho más que trabajo y responsabilidades.

También quiero agradecer especialmente a Paco su apoyo y consejos, sin los cuales este tra-

bajo no hubiera salido adelante tan rápidamente, y a Pepe, cuya gran experiencia y claridad

de pensamientos han sido principales para este trabajo.

Por último, me gustarı́a que estas lı́neas expresaran también la fuente última de mis esfuer-

zos, que encontré hace algún tiempo, y con la que he podido cultivar fortaleza de espı́ritu,

capacidad de comprensión y de perdón. Hablo ası́ del Aikido, una filosofı́a Japonesa, que el

maestro Morihei Ueshiba recopiló y depuró hace ya un siglo, con el objetivo de transformar

un arte marcial en un arte de paz, de armonı́a y amor.

ix

x

List of Figures

2.1 COPLA architecture. 28

2.2 Typical COPLA system. 29

2.3 Consistency Manager architecture. 30

3.1 Evolution of the performance for read-only transactions with different load

rates . 46

3.2 Evolution of the performance write transactions with different load rates . . 47

3.3 Evolution of the abortion rate for different load rates 48

4.1 Isolation Example. 57

4.2 Isolation Example 2. 58

4.3 Isolation Example 3. 58

4.4 Comparison of the Probability of Commit, in a Lazy environment, when

including one-copy serializability . 83

5.1 Evolution of the inaccuracy of the prediction for different thresholds 90

5.2 Evolution of the inaccuracy for different P[update] 91

5.3 Evolution of the improvement for different ∆ 94

6.1 Evolution of the abortion rate for different thresholds 104

6.2 Evolution of the service time for different thresholds 105

6.3 Evolution of the number of transactions committed per t.u. (c.t.p.s.) for

different thresholds . 105

6.4 Evolution of c.t.p.s. in the optimum for different KLUR 107

6.5 Evolution of the abortion rate in the optimum for different KLUR 108

6.6 Evolution of the service time in the optimum for different KLUR 108

6.7 Comparison for different KLUR of the optimum (c.t.p.s.) with adaptative

threshold . 111

6.8 Abortion rate with adaptative threshold . 112

xi

xii

List of Tables

1.1 Replication Models in Distributed Databases 18

xiii

xiv

List of Acronyms

API Application Program Interface

COLU Cautious Optimistic Lazy Update

COLUP Cautious Optimistic Lazy Update Protocol

COPLA Concurrent Object Platform

CORBA Common Object Request Broker Architecture

DBMS Database Manager System

FIFO First In First Out

FOB Full Object Broadcast

GODL GlobData Object Definition Languaje

GOQL GlobData Object Query Languaje

LOM Lazy Object Multicast

LOMP Lazy Object Multicast Protocol

ODL Object Definition Languaje

ODMG Object Data Management Group

OQL Object Query Languaje

UDS Uniform Data Store

xv

xvi

Contents

Abstract iii

Agradecimientos ix

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1

1.1 Introduction . 1

1.2 Distributed Databases . 3

1.2.1 Principles of Distributed Databases 4

1.2.2 Features Provided by a Replicated Database 8

1.2.3 The Target System . 11

1.3 Techniques Used in Distributed Databases 12

1.3.1 Concurrency Control . 13

1.3.2 Replication Management . 18

1.4 Update Propagation in Update-Everywhere Systems 19

1.4.1 Eager Propagation . 19

1.4.2 Lazy Propagation . 20

1.5 Contributions of the Thesis . 21

1.6 Thesis Layout . 22

2 The GlobData Project 25

2.1 Description of the Architecture . 27

2.1.1 Consistency Modes . 30

2.2 The Programmer Library . 32

2.3 Uniform Data Store: UDS . 32

2.4 COPLA Manager . 33

2.5 Consistency Manager . 34

2.6 Consistency Protocols . 35

xvii

3 Implementing Eager and Lazy Update Protocols 37

3.1 Implementation of an Eager Update Protocol: FOB 37

3.1.1 Node Roles . 38

3.1.2 Protocol . 39

3.2 LOMP: Basic Implementation of a Lazy Update Protocol 40

3.2.1 Provided Consistency Modes . 41

3.2.2 Node Roles . 41

3.2.3 Protocol . 42

3.3 Comparing the Protocols: (FOB vs. LOMP) 45

3.4 Fault Tolerance . 47

3.5 Provided Guarantees . 49

3.6 Related Work . 51

4 About the Incompatibility Between Laziness and One-Copy Serializability 55

4.1 Used Formalisms . 55

4.2 Basic Semantics of Lazy Update Transactional Environments 59

4.2.1 General concepts . 59

4.2.2 Commutability of Transactions . 61

4.2.3 Causal Dependency . 64

4.2.4 Isolation . 65

4.2.5 Laziness . 69

4.2.6 Formalization of Laziness . 70

4.3 Extending the Basic Semantic with Queries 77

4.3.1 Formalization of Queries . 77

4.3.2 Extending Operations with Attributes 78

4.4 Impracticability Result . 78

4.4.1 Intuitive Discussion . 79

4.5 Formalization of the Result . 80

4.6 Conclusions . 83

5 Analysis of the Abortion Rate on Lazy Update Protocols 85

5.1 The Modeled System . 86

5.2 Probability of Abortion . 86

5.3 Experimental Validation of the Model . 88

5.3.1 Assumptions . 88

5.3.2 Accuracy of the Prediction . 89

5.4 Theoretical Boundary of an Improvement 90

5.4.1 Preliminaries . 91

5.4.2 Average Outdate Time . 92

5.4.3 Abortion Rate . 93

5.5 Conclusions . 95

xviii

6 COLUP: The Cautious Optimistic Lazy Update Protocol 97

6.1 Protocol Description . 98

6.1.1 Modification of the LOM Protocol 98

6.2 Inclusion of the Expression for the Abortion Rate 100

6.3 From Eager to Lazy Update . 102

6.4 Measured Results . 103

6.4.1 Abortion Rate . 104

6.4.2 Performance . 105

6.4.3 Optimum Threshold . 106

6.5 Heuristic Run-Time Search of the Optimum Threshold 109

6.5.1 Modification of the Protocol . 110

6.5.2 Validation . 110

6.6 Conclusions . 111

7 Providing Lazy Self-Recovery Ability to COLUP 115

7.1 Notion of Lazy Recovery . 115

7.2 Modification of the COLU Protocol . 117

7.3 The Extended Modification . 121

7.4 Conclusions . 123

8 Conclusions 125

8.1 Contributions of the Thesis . 125

8.1.1 Impracticability of One-Copy Serializability on Lazy Protocols . . 125

8.1.2 Analysis of the Stale-Abortion Rate 126

8.1.3 Improved Update Propagation Protocol: COLUP 127

8.1.4 Lazy Fault-Recovery . 130

8.2 Implications and Future Work . 131

8.2.1 Future Work . 132

Bibliography 133

xix

xx

Chapter 1

Introduction

1.1 Introduction

Fault tolerance and performance enhancement are two of the most important advantages de-

rived from the use of techniques developed in distributed systems. To achieve these goals,

replication of the information has proven to be a powerful and versatile approach, providing

a wide range of algorithms fitting the needs of a number of problems and applications. In

the area of distributed databases, consistency requirements introduce a new parameter in the

problem, because the system must also manage the replicated information within a partic-

ular semantics. The proposed solutions in this field used to be centered in the consistency

management as the main problem to solve.

In addition, consistency[Ell77, Sto79] of replicated data is the essence for query answering

in distributed databases with multiple copies of data objects. Also a high availability of

answers to queries is essential for many networked applications.

For tightly interconnected databases, consistency maintenance of replicated data is a fairly

well-understood problem [BHG87a, WJ92]. Traditional approaches for replicating databases

usually deploy fast local area networks (LANs) [KA98, KB94, JM90, Her90, Her87], us-

ing network-intensive protocols. However, for less tightly connected (e.g., internet-based

and, more generally, wide-area-networked) applications, where the geographical spread of

the data distribution involves larger distances, the network tends to be a limited resource.

This means that, for wide-area networks (WANs), the issues of maintaining consistency and

availability need to be addressed differently from solutions for LANs [LLSG92, FMZ94b,

FMZ94a].

Nowadays, many distributed (i.e., networked) applications have to manage large amounts of

data. Despite the increasing ubiquitousness of information, the access patterns to distributed

data often feature a noticeable degree of geographical locality. Moreover, many applications

require a high degree of availability, in order to satisfy the need of offering services at

1

any time, to clients that are either internal or external to the networked application. A

predominance of locality of access patterns usually suggests a partitioning of the database

[Rah93, GHOS96]. In many scenarios, it may be convenient or even necessary to replicate

the information in a set of servers, each one attending its local clients. The different replicas

must then be interconnected, a WAN being usually the best-fit architectural option.

The typical kind of applications we have in mind are, for instance, widely distributed

databases in wide area intranets of medium and large enterprises, for data warehousing

or resource management, as well as extranet service provisioning of such enterprises. Ex-

amples where such intranets of databases are deployed advantageously are enterprises with

several branch offices (e.g., banks, chains of retailers, super- and hypermarkets), telecom-

munication providers, travel businesses, logistics, etc. Examples of extranet services which

benefit from replication protocols as discussed in this paper are customer relationship man-

agement, e-banking, virtually all kinds of e-business as well as most e-government appli-

cations. Common to all of these applications is that potentially huge amounts of data are

maintained and replicated on distributed sites, while access patterns (or at least significant

contingents thereof) are highly local. Efficiency and high availability of such services is key

to their acceptance and success.

The GlobData project [IUF01, RMA+02] strives to provide a solution for the kinds of appli-

cations just outlined. It does so by defining a specific architecture for replicated databases,

together with an API and a choice of consistency modes for data access.

In distributed databases, different solutions have been proposed in the literature to con-

ciliate performance, fault-tolerance and consistency management. In particular, a set of

algorithms for replication control [WSP+00] (known as update everywhere protocols) tries

to maximize the use of every node in a replicated system, by means of the load balancing

of the execution of each transaction in the system. This makes possible for every node in

the system to execute a different transaction at the same time, but it becomes necessary,

once the transaction is locally committed, to propagate its changes to the rest of the system.

These techniques provide an improvement of the performance, but make it necessary to in-

troduce some kind of consistency control in the system, and some kind of technique for the

propagation of the updates performed in the executing node to the rest of the system.

In the GlobData project, a number of consistency protocols are proposed, that are capable

of meeting the consistency requirements of the applications just outlined. Although the

presented protocols differ in the priorities of their particular goals, each of them share a

common characteristic: They are (more or less) optimistic (or, at least, cannot be classified

as pessimistic), since transactions are allowed to proceed locally and are checked for con-

sistency violation only at commit time. When a consistency violation is encountered, the

transaction is aborted.

During the development of the project, we encountered that the protocols necessities of

2

our target scenario (i.e. geographical distributed applications with a high degree of locality)

could be well-fitted with a family of replication protocols classified as lazy update protocols.

However, we encountered that this kind of protocols introduces a high number of abortions

in the system, because they propagate the updates beyond the commit phase (in contrast

to eager update protocols, where the whole system is updated inside the commit phase),

making it possible for a transaction to read out of date data, and thus, there are consistency

violations. But, an additional inconvenience was found for the lazy update protocols: the

use of such techniques makes it impossible to guarantee one-copy serializability, unless

the protocol is redesigned, in which case it becomes unusable due to the huge number of

aborted transactions it introduces.

In this chapter, a number of basic concepts are presented, in order to establish a starting point

for the discussion, and properly center the problem. To this end, section 1.2 presents the

concept of Distributed Databases, and the model of applications that we are considering.

In section 1.3 a number of techniques used in distributed databases, and described in the

literature are summarized from two different points of view. Then, section 1.4 centers the

update propagation problem. Finally, section 1.5 presents the contributions of the thesis,

and section 1.6 concludes with the layout of the following chapters.

1.2 Distributed Databases

A Distributed Database is a distributed system where an information repository is man-

aged among the nodes of the system. The way in which the nodes hold each local portion of

repository, and the interoperability established between such nodes to manage aspects such

as consistency of the maintained information, can differ from one approach to another.

Typically, a Distributed Database is a set of databases stored on multiple computers that

appears to applications as a single database. Consequently, an application can simultane-

ously access and modify the data in several databases in a network. Each database in the

system is controlled by its local server but cooperates to maintain the consistency of the

global distributed database.

Distributed Databases comprise a particular field of Distributed Systems, where perfor-

mance, and availability are not the only features studied by the researchers. In contrast, the

goals of Distributed Databases are also centered in the maintenance of some critical prop-

erties of the algorithms as consistency of the managed information, or serializability of the

executed operations.

3

1.2.1 Principles of Distributed Databases

Distributed Processing

Distributed Processing occurs when an application system distributes its tasks among differ-

ent computers in a network. For example, a ”client-server” application typically distributes

front-end presentation tasks to client nodes and allows a back-end database server to manage

shared access to a database.

Distributed Databases make use of Distributed Processing to enhance features as perfor-

mance, or to implement the cooperation between the different nodes in the system to achieve

properties as consistency.

Database Replication

In order to provide availability to the database system, it is common to use Database

Replication. The main difference between a pure Distributed Database and a Replicated

Database is that, in a pure Distributed Database, the system manages a single copy of all

managed database objects. Thus, Distributed Database Applications typically implement

distributed transactions in order to gain access to both local and remote data and modify the

global Database. In contrast, Replicated Database Applications manage multiple copies of

the data, and the initiated transactions require additional effort in order to synchronize the

value of all the replicated instances for each accessed object.

Replicated Databases

Thus, Replication is the process of copying and maintaining database objects in multiple

databases that conform a Distributed Database system. To implement replication, there

have been discussed several distributed database technologies, and this makes possible for

database replication to offer a number of benefits to applications that were not possible

with the use of a pure Distributed Database system. In particular, replication is commonly

useful to improve the performance of the system, and it also enhances the availability of

the database system. These enhancements can be provided because replication enables the

access to multiple instances for the same data, and it benefits the Distributed processing

in the system. For example, when replication is used, applications might normally access

to local replicas of the database rather than a remote server. This minimizes the network

traffic and improves the performance when there is a reduced number of write accesses in

the system. Furthermore, a client application can continue its execution even when some

server in the system experiences a failure, if any other server -with replicated data- remains

accessible.

4

Homogeneity of a Distributed Database

In an Homogeneous Distributed Database, all the nodes are running the same DBMS to

manage the local database. In addition all the nodes use the same communications software.

For instance, a system where all of the nodes use PostgresSQL over TCP/IP. In contrast, in

a Heterogeneous Distributed Databases, there are differences among the nodes with respect

to the running DBMS , or the communications software.

Access Patterns

User applications perform their accesses to the information managed by a Distributed Data-

base following certain Access Patterns. The relevance of these access patterns lies in the

fact that the underlying Distributed Database can take advantage of the knowledge of such

information to improve some features as, for example, performance or availability.

For instance, an application managing productivity of a number of work positions in a fac-

tory, makes intensive use of a reduced subset of database objects: the different “work posi-

tions”. The rest of objects contained in the database, although necessary for the application,

may be accessed with a lower frequency. The distributed database should provide service to

any involving department, that gain read access to any work position, but only updates the

information of the work positions included in the particular department. For applications

with this kind of access patterns, a feasible approach should consider an architecture where

accesses to this reduced subset of objects (i.e. the work positions) are benefitted in terms

of performance with independence of the location of the initiating node. In addition, the

updates initiated from a particular department should be also benefitted, with the minimal

interference to the rest of the system.

As seen, the access pattern may help the designer of particular Distributed Database Solu-

tions to employ a particular approach in order to benefit the user applications the system

will offer its services to.

Access Locality is a particular parameter of Access Pattern determined by the trend of a

system to classify the set of managed objects within a number of subsets, each one corre-

sponding to the different nodes that initiate requests in the system.

Failures, Faults, and Errors

A failure appears[Nel90] in the system when the particular functions for which the system

was designed cannot be accomplished, due to the presence of some error in its own, or in

its environment, and these errors have been caused by different faults.

5

Thus, we can define fault as an anomalous condition, and the error will be a consequent

disfunction of a fault in the system.

A system trying to minimize the number of errors should be designed to tolerate faults.

Thus, the system behavior should be described for a wide range of situations, even including

faults in the system. In addition, any component in the system should be able to detect not

predicted faults, and mask them to the rest of the system, thus avoiding the propagation

of an error. This behavior, however, is not always possible, because some faults cannot

be processed or predicted in a proper way, or the system cannot reach a consensus on the

presence of such faults[CHT92, HR99, LFA00].

Availability and Fault Tolerance

A system is considered Fault Tolerant[Cri91a, Cri91b] when its behavior is well defined in

presence of faults, or when the system masks the faults of its components to the user appli-

cations. In other words: Fault Tolerance is the ability for a system to continue providing

to its client applications the agreed (i.e. expected by the client with the correct behavior)

services even in presence of faults of its components.

As seen above, Fault Tolerance has a strict definition, because it requires the supervision and

control of any fault produced in any component of the system. In addition, user applications

can also introduce faults in the system (due to programming errors, or any other reason),

and the system should also manage this kind of faults.

Moreover, due to the difficulty for a system to provide fault tolerance, and the impossibility

to predict any fault the system may suffer (even produced by user applications), some faults

will be observed in some cases by other components in the system, or by user applications.

Stabilization

When a fault occurs, causing an error of some component in the system, there is often ini-

tiated an algorithm to recover the global normality of the system. This process, known

as Failure Stabilization[Dij74, AH93], performs a number of tasks designed to rebuild

the distributed structures needed by the underlying algorithms executed in the distributed

system. In many cases, this reconstruction requires the cooperation of each node in the

system[BG95], causing an interference in the services provided to user applications. In

some situations, it may make unable the system to attend requests during the recovery.

The lower the stabilization time is, the more available the system becomes for user applica-

tions, and the best quality of service the system offers.

6

Failure Recovery

When a faulty component is re-included in the system, a particular Stabilization process

must be performed. This process will be considered with special interest. In such situa-

tions, known as Failure Recovery, despite no fault can be considered here, the system must

be reconciled with the recovered component, reconstructing the distributed structures in a

similar way that the Failure Stabilization required. In the case of Failure Recovery, the time

required by the stabilization process can be longer, because it may require a higher number

of transmissions, needed for the reconciliation.

This makes Failure Recovery a critical issue in terms of availability, that a distributed system

must take into account, in order to provide a good quality of service.

System Partitions

Within a distributed system, with a number of interoperating nodes, the interconnection net-

work may also suffer faults. These kind of failures, mentioned in the previous sections as

“faults in the environment”, can produce the isolation of a single node, that can be consid-

ered as a fault in the isolated node. In other cases, network faults may produce the isolation

of a set of nodes. In the latter situations, it is considered that the system has been partitioned.

Partitioning is a particular problem to solve in distributed systems, because the nodes in-

cluded in both partitions may be correct, and it is possible for them to consider the set of

nodes to which its is unable to gain access as “faulty nodes”. Thus, both subgroups of nodes

would be able to proceed without synchronization of one set with the other. As a result, both

subgroups (or partition) will proceed with further updates locally initiated, dealing with in-

consistent state of the whole system. This situation will become an important inconvenience

when both subgroups are joined again, and a reconciliation must take place.

If the system allows any partition to proceed, the reconciliation process must take it into

account, making it harder to accomplish and, in some cases, it is impossible to solve without

human intervention.

To avoid this, a commonly used solution consists of allowing only one of the partitions to

proceed, forcing the other partition to “freeze” its activity. One of the most frequently used

criteria to determine if the partition is trusted to continue is based on the number of included

nodes in the partition: a node can only proceed if it can gain access to -at least- a half of the

nodes included in the original group.

This approach presents two main disadvantages:

• It becomes necessary to predefine the original number of nodes included in the sys-

7

tem.

• It is possible for the entire system to be suspended. For example, this can occur in a

system with N nodes, and a failure of two nodes occur. Then, if the system suffers a

partition including in each subgroup N
2 − 1 nodes (the number of total correct nodes

is N − 2), both partitions will be considered as “minority partitions”, and no node

will attend requests, causing the entire system to be stopped.

1.2.2 Features Provided by a Replicated Database

In a Database system a number of benefits can be obtained with the use of an adequate

Replicated Database. Nevertheless, in order to properly exploit these benefits, it is also

important to keep in mind a number of dangers that a distributed database (and in particular,

a replicated database) introduces in the architecture.

The main benefits that a Replicated database provides can be summarized as:

• Service Improvement, with respect to the quality of the service (QoS). The use of a

Replicated Database, as seen above, enhances the performance, availability, and other

parameters relating to the QoS.

• Reduced Computing Cost, due to particular characteristics of the client applications,

an adequate configuration of a Replicated Database may minimize the interference

between the different nodes in the system, taking advantage of the locality of access

of the client applications.

• Improved Resource Use, as, for example, network consumption. This can be achi-

eved by the use of replication, avoiding unnecessary transmissions when the local

database server has a suitable replica of the required information. In addition, some

particular techniques can be also used to reduce even more the amount of trans-

ferred data. These techniques are commonly based on the locality of accesses of

the client applications, and make use of the concept of laziness for the propagation of

the changes performed by a local transaction. The concept of laziness will be treated

in detail later.

If the Database is not Replicated, the items maintained in the Distributed Database

will be held in different nodes. In these systems, if a transaction is executed in a

node where the required information is not contained in, there becomes necessary to

perform some kind of communication in order to complete the transaction execution.

On the other hand, when the information is replicated along the nodes in the system,

the necessity of communication can be reduced.

• Control of Resources, due the distributed system can implement a better load ba-

lance[CA82], the resources in the system can be controlled in a more accurate way.

8

This also increases the chance for the system to manage efficiently the resources, and

the performance can also be improved.

• Scalable Architecture, in contrast to centralized solutions, where the system perfor-

mance cannot be improved indefinitely, an adequate design of a Distributed Database

can benefit the system with a scalable behavior. The increase of nodes participating

in the Distributed Database Server might provide a proportional improvement (under

certain limits) in critical characteristics as performance and availability of the system.

• Decreased Response Time, as one of the consequences of increasing the perfor-

mance. Depending the used replication technique, and the consistency control im-

plemented in the system, there can be benefited certain access patterns of user appli-

cations. For instance, to improve the response time of user applications that make

intensive reads, it can be benefited read operations in the database, by intensively

replicating the information along the nodes in the system.

• Increase flexibility, with respect to Fault Tolerance, and availability of the service.

A Replicated Database improves these features of a system, and makes it easier to

manage changes both external and internal, with stability of the provided services.

• Promise of reduce hardware cost, because a Distributed Database can be imple-

mented over the concept of ”many cheap nodes”, based on the feasible scalability of

Distributed Databases, and their capability of heterogeneity, the nodes containing the

Distributed Database can be added, removed, and replaced with a lower cost than a

centralized solution.

• Rapid Application Development. The development of proprietary solutions to in-

clude in a database application the advantages provided by a distributed database (as

performance, or availability), constitute an additional effort during the life-cycle of

the application. In contrast, the use of Distributed Databases enables a database ap-

plication to transparently access to the information, with independence of the imple-

mentation of the underlying information repository. This separation between database

access and database implementation is performed through the use of interfaces, that

may conform some standard, to enable the application to gain access in a transparent

way to the maximum power of the used Distributed Database.

For instance, a database application using an Application Server to gain access to sev-

eral databases, may implement availability by the use of some services provided by

the Application Server. This implementation of Replication, however, will introduce

additional costs in the implementation of the application. In contrast, if a Replicated

Database is used to implement availability, the application can be implemented with

independence to the underlying infrastructure provided by the database system.

• Reduce development cycles. In addition, the use of an existing solution for the

Distributed Database makes it more efficient the development cycles of a database

9

application. Comparing it with a “client-server” application, where a number of addi-

tional components must be designed, implemented, integrated and tested, the use of

a Distributed Database centers all the efforts in the development of the client applica-

tion. This simplifies the problem, and increases the productivity of the development

cycle.

On the other hand, the use of Distributed Databases may introduce a number of inconve-

niences in the system. These inconveniences must be considered as real risks during the

design, utilization and implementation of a particular Distributed Database. In addition, the

satisfaction of some of them compromises the accomplishment of others.

• Architectures, for the implementation of the Distributed Database, and the mecha-

nisms for the client applications to interoperate with the Database. Some architectures

make it simplest the interoperability between the information repository (i.e. the Dis-

tributed Database) and the client applications, worsening, in contrast, the achievable

performance of the system, or the flexibility of the system as a Query Answering

Engine.

• User Requirements won’t stay. When database applications are studied, their re-

quirements play a principal role for the election of the particular solution for the

information repository. These requirements may vary along time, even after the ap-

plication is completely developed, and deployed in the final environment. The utiliza-

tion of an inadequate Replicated Databases (or, in general, a Distributed Database) as

the information repository of a database application can make it harder for the appli-

cation to be adapted to changes in the requirements. This is because the election of a

particular Distributed Database technique has a high dependence on these requests.

To avoid this, an adequate Replicated Database must take into account the parameter-

izability of its behavior, and the flexibility of the kind of offered services.

• Data and Application Security of the managed information. Some database applica-

tions consider security as one of the most important aspects to manage. The security

must be managed from two points of view: on the one hand, developed applications

must encourage the security by means of some kind of validation mechanism, and

privacy protection of the application operations; on the other hand, the underlying

information repository (in our case, the Distributed Database) must also provide for

such applications an adequate support for the applications to provide these guaran-

tees. In addition, the database system must enable the necessary mechanisms to trust

the client connections, also preserving the privacy of the information managed by the

client applications.

Unfortunately, security used to be a characteristic conflicting with performance, be-

cause additional processes must be performed for preserving privacy to tasks as at-

tending application requests, as well as achieving the necessary actions included as

10

part of the Distributed Database Protocols (such as communications between the dif-

ferent nodes in the database).

1.2.3 The Target System

As seen above, distributed applications may use replicated databases for taking advantage

of a heightened availability enabled by a multitude of replicas of each data object. Some of

such distributed applications are used by companies with multiple branches or offices that

are distributed in a wide-spread area (national or international). Most of these companies

distribute their information per branch, ensuring that the data are mainly updated locally, by

the branch where they were created. Examples of such companies could be hypermarkets

and banks (although very many of them still use a centralized solution).

Such applications mainly deal with data objects related to the local branch, but sometimes

they require additional access to data objects created in other branches. If these accesses

need to be done on a remote database, they could be inefficient. So, it seems advisable to

replicate all data objects, with independence to the company branch (and, in a sense, also to

the local node embodied by the branch’s database) where they have been created. Moreover,

the majority of accesses made on non-local-branch data objects will be read-only accesses.

If data are replicated, “remote” accesses can be accomplished locally, improving access

times as well as availability, in case of node failures in the network. However, each time

a data object is modified, updates have to be propagated to a given number of database

replicas (not necessarily to all, depending on the replication technique being used), and

this also needs some extra time. Hence, considering the system performance, database

replication is only convenient if the larger share of accesses do not modify the data objects.

But this limitation can be overcome if we also consider the availability benefits of having

multiple replicas for each object. After all, in a WAN, node failures or network partitioning

are not uncommon.

In summary, we consider applications with a high degree of locality in their access pattern.

In addition, the requirements of such applications include availability of the information,

due to the high frequency of the failures in the system. Moreover, it is desirable for the

system to enable some kind of access to the information in a minority partition to enhance

even more the availability.

With respect to the interconnecting network, applications as the depicted above often use

wide area intranets to communicate the involved nodes. This makes the network a very

restricted resource, and its utilization must be optimized.

Finally, availability of the managed data is important for the applications we have in mind.

The nodes in our target system can suffer faults, producing their disconnection from the

11

system. Moreover, once the node is disconnected, its activity can sometimes be restarted

after a time, producing the re-inclusion of the node in the system. This re-inclusion, as

seen above, must be treated by the system with a particular reconciliation process in order

to achieve a consistency of the information distributed along the system. In addition, the

target applications will often require a high degree of availability of the services provided

by the system, and this makes it necessary for the stabilization processes (both the executed

after the node failure, and during the failure recovery), to allow any incoming client request

to be attended during their execution.

1.3 Techniques Used in Distributed Databases

It is important, for any Database Manager System to provide a number of guarantees to their

requesting clients. These guarantees are mainly related to the traditional ACID properties

of a transaction:

• Atomicity, making indivisible the effects of a transaction. The phrase ”all or nothing”

precisely describes this property.

• Consistency, ensuring that any item update in a database is consistent with updates to

other items in the same database.

• Isolation, [GR93] needed when there are concurrent transactions in the system; i.e.

transactions that occur at the same time, working with shared objects. Guaranteeing

isolation consists of preventing conflicts between concurrent transactions accesses.

• Durability, enforcing the maintenance of the updates of committed transactions. That

is, avoiding any lost of these updates. To provide durability, a system must be able to

recover updates performed by any committed transaction if either the system or the

storage media fails.

Moreover, for a Distributed Database Manager System, some of these properties are usu-

ally harder to guarantee, because the management is performed in each one of the nodes

conforming the system, and state of the database is not fully known, but it is only known

a partial view of the global state. Particular principles and techniques have appeared in the

literature to solve these issues, and many formalisms have been also proposed to validate

the accomplishment of the problem.

By the other hand, availability can be one of the requirements satisfied by a Distributed

Database. To achieve this problem, that does not exist in the same manner in a centralized

Database System, additional considerations and techniques must be taking into account.

12

1.3.1 Concurrency Control

In particular, concurrency control is one of the principal tasks to be specially observed in

a Distributed Database. Concurrency control algorithms are the responsible to warrant the

properties of Isolation, and Consistency to the Database.

Many techniques for the the Concurrency management have been proposed in the literature

[BSJ80, Sch81], and a number of formalisms have been also used to validate the accom-

plishment of the transactional properties of a system applying certain Concurrency Control

Protocol[BSW79].

Moreover, the following is a brief classification of such techniques, attending to the atti-

tude of the Consistency Management with respect to the executed transactions. These tech-

niques are not exclusively used for Distributed Databases, but they appeared for Centralized

Databases, and have suffered evolutions in order to be applied as Distributed Solutions.

Locking Techniques

The earlier appeared approaches designed to control the concurrency in Centralized Databa-

ses were based on the principle of traditional locks.

These techniques, also known as “optimistic techniques” were based on the idea that each

database element (considering “element” as a granularity abstraction) is a resource, that

must be managed with a conservative approach: when a transaction is about to access to an

element in the database, a lock corresponding to this element must be obtained first.

If the lock is owned by a previous transaction, the latest one must be suspended, until the

lock is released by the owning transaction. Locks must be released after the completion of

the commit phase, or when the owning transaction aborts.

The lock acquirement must be performed with a specific protocol, in order to guarantee

atomicity of the locking operations. As the locking protocols used in resource access con-

trol, database locks can be acquired for a particular purpose (i.e. for read or write access).

As a result, the Concurrency Control can make use of some common properties of these ac-

cess modes, in order to relax the conditions that make a lock request to cause the suspension

of the requesting transaction. For instance, many transactions can obtain the lock for read-

ing the same object, if no other transaction own the lock for writing the object. Moreover,

two transactions cannot share the ownership of a lock for writing the same object.

In Distributed Databases, the lock acquirement must be performed with a specific adaptation

of the locking algorithms. A number of approaches have been proposed, and its behavior

used to be based on two different approaches:

13

• Voting Techniques. The requesting transaction sends a number of messages to the

rest of nodes in the system asking about the grants for the resource (i.e. the lock).

Then, the rest of the nodes reply to this request, including a grant or a denial, depend-

ing on the local information. When the requesting node receives enough responses,

the request is completed with an additional round of messages, containing the final

state of the request (acquired/denied) to the set of nodes to which the original request

was sent.

The number of nodes included in the consensus[SSW79, Tho79, Gif79] round can

differ when different approaches are used. For instance, one of the commonly used

approaches always sends the request to N
2 + 1 nodes. This enables the request to be

consensuated with the entire system.

Other approaches differentiate between the requests sent for the acquisition of a

“read-lock” or for a “write-lock”. This first lock implies only the request to one

node of the system (i.e. the requesting node has all the needed information), and the

later lock implies the request to be sent to all the nodes in the system. As it can be

seen, read operations are benefitted from this approach, because they do not need to

perform any communication with the rest of the system.

• Non-Voting Techniques. Usually based on the concept of owner[Her90], in these

techniques the requesting transaction sends any lock request to a single node. This

single node depends on the lock requested, and is known as the manager of the lock.

The manager centralizes all the requests, and reduces the costs in communication of

the algorithm, but can worsen the scalability and availability of the system, because

all the requests are centralized to a particular node.

Other approaches to implement the locking algorithm without voting techniques are

based on the utilization of communication primitives, with particular guarantees that

must be implemented at additional computational cost.

The main disadvantages of the use of locking techniques are centered on:

• Increase of the response time of the transactions, due to the necessity of blocking

when conflicts arise.

In addition, the locking mechanism, as explained above, is based on particular proto-

cols that often make use -in their distributed versions- of expensive communication

primitives that increase the computational consumption of an executing transaction.

• Appearing of deadlocks in the system. Deadlocks are an ancient problem in locking

techniques. A simple deadlock arises when two transactions T1 and T2 are suspended

waiting for resources (i.e. locks) that are owned to the other transaction.

For example, suppose two transactions T1 and T2 that request two locks la and lb to

the database. Suppose that T1 has obtained grants for the lock la, and is waiting for

14

the lock lb, that is at this moment granted to T2. Now, T2 can request the lock la to

the database, being locked by the Concurrency Manager. As a result, both T1 and T2

are locked, and the “key” to unlock them is owned one by the other transaction. This

makes it impossible for them to be unlocked without external intervention.

More complicated deadlocks may also occur, but the essence of them can be found

in wait-cycles. The absence of wait-cycles in the executing transactions ensures that

there exists no deadlock in the system.

A number of techniques to avoid deadlocks have been proposed, performing addi-

tional checks whenever a transaction must be blocked by the system. If the blocking

transaction is suspected to be involved in a deadlock, the blocking process is replaced

by the abortion of such transaction, thus avoiding the deadlock. Other techniques to

avoid deadlocks consist on the establishment of certain rules for the transactions to re-

quest the resources (i.e. locks) of the system, that provides -under certain restrictions-

guarantees about the existence of deadlocks.

In addition, it has also proposed deadlock detection as an alternative solution, that

makes use of the execution of external processes, and aborting the transactions in-

volved in any deadlock.

As an example, one of the most popular protocols in distributed databases is the “Two Phase

Locking” (2PL) algorithm, based on the principle of progress. The transaction execution is

divided into two phases: during the first phase, the transaction can only perform locking re-

quests; the second phase is dedicated to release the locks acquired during the first phase. In

other words: the second phase the transactions cannot request any locking request anymore.

For applications, the implications of 2PL are that long-running transactions will hold locks

for a long time. When designing applications, lock contention should be considered. In

order to reduce the probability of deadlock and achieve the best level of concurrency, to

follow certain guidelines can be helpful. For example, the lock requests must be done in

a certain order (i.e. the objects in the database must be ordered with certain criteria, and

the transactions must request first the locks corresponding to the objects appeared before in

such order).

To reduce the number of locks in the database, the concept of versions has been also used.

These techniques allow transactions to read objects whose locks are owned for writing by

other transactions. The first transaction can proceed without waiting for the release of the

lock, but the value read by the transaction corresponds to a previous version for the object.

15

Reconciliation Techniques

As seen above, one of the disadvantages of the use of locking techniques is the increase

of the response time of the transactions. This increase is mainly produced by the time the

transactions are suspended, waiting for the release of locks owned by other transactions.

To eliminate this overhead, alternative techniques appeared[Sch81] in the literature as “Op-

timistic Techniques” or Reconciliation Techniques, which allow any transaction to proceed

with no concurrency control until the transaction requests the commit to the Database Man-

ager. Then, the Concurrency Control is performed, exploring the history of the transaction,

and determining whether the transaction commit will produce a violation of some of the

ACID properties, or the transaction can safely succeed its commit preserving these proper-

ties.

The mentioned process of checking the history of the committing transactions can determine

that the transaction history offends the system. In this case, some measures have to be taken

with the conflicting transaction. These measures are commonly known as reconciliation

process, and the literature describes two alternatives:

• Abort the conflicting transaction, in order to avoid its changes to be permanent in the

system.

• Merge the changes made by the transaction with the state of the system. These tech-

niques, based on the principle of reversible functions, consider the history of the

transaction as a chain of functions applied over the database. All these functions

have a reverse function that annuls the effects of the application of such function.

Thus, when a conflict is detected at commit time, then the history of the transaction

is reversed. To this end, the history of the transaction is increased with the sequen-

tial reversion of each operation included in the history of the transaction, in reverse

order. Thus, the effects of the transaction are annulled, and the original history is

applied again, over a correct state of the database. Finally, the resulting history can

be committed.

These merging techniques are uncommon, and its interest remains nowadays in the

field of theoretical research.

The way the checks are performed to determine the feasibility of the completion of a trans-

action commit must be also treated here. There are some different approaches to perform

this check, but all of them consist of determining the serializability of the transaction (un-

derstanding the transaction as a history of operations applied in the system).

Moreover, the serializability of a transaction is always based on any mechanism used to

associate each operation in the history with a certain order in the entire system history.

16

In other words, the serializability checks are based on the causality of the operations per-

formed by a transaction. The differences between the different approaches reside in the

technique used to determine the causal dependencies between these operations. Some of

these alternatives are:

• Timestamps. In distributed systems[Gra78, MT85, Mul90, Lis91], these techniques

have additional implications, due to the impossibility of consensuate a global time in

an asynchronous networked system[RSB90, Lis91].

• Clock Vectors. Derivated of the idea of Vectors of Lamport[Lam78, Mul88], the

causality is established with the association of these vectors to each object in the

database.

The solution, however, in practice is not useful, because it requires huge amounts of

information to be stored[BJ87].

• Version numbers of the different objects in the database, plus a number of consensus

rounds[SSW79, MT85] along the life of the transactions to consensuate[JM87] the

latest versions in the global system for each objects.

Optimistic techniques have proven to provide better performance, comparing both Opti-

mistic and Pessimistic approaches, in systems where lower level of conflicts exists. This is

caused by the actions the reconciliation process must take in presence of such conflicts.

The reconciliation process, as described in previous paragraphs, typically causes the abor-

tion of conflicting transactions. This is exactly the source of the main disadvantages of the

use of optimistic techniques.

When a high degree of conflicts occur in a database, optimistic techniques introduce a high

number of aborted transactions. This causes two dramatical effects:

• Degradation of the quality of the offered service, because the user applications

perceive these abortions as a disruption of the system functionality, and are forced to

retry the execution of the transaction.

• Degradation of the system performance, due to the computational time the aborted

transaction have consumed, ending without benefits. This computational consump-

tion must be considered [CL88] as part of the overhead introduced by the Concur-

rency Control.

Nevertheless, environments with a lower level of conflicts will be better suited to optimistic

approaches, because there will appear a low number of aborted transactions, and the com-

putational time will be lower than the needed by locking techniques used in pessimistic

approaches.

17

Other Techniques

As occurs in other research fields, hybrid techniques also appeared trying to solve the Con-

currency Control. A variety of proposals have been presented, with the aim of providing

Concurrency Protocols getting together the advantages of Pessimistic and Optimistic tech-

niques.

As an example, Speculative Concurrency Control[BB95], designed to be included in Real-

Time Database Systems, relies on the use of redundant processes, named in the literature as

“shadows”, which perform different computations “speculating” on alternative schedules.

For each alternative, Consistency Control is used to detect possible conflicts in the specula-

tion, and only one of the alternatives can be finally used. Speculative Concurrency Control

algorithms make use of additional system resources to ensure that serializable executions

are discovered and elected as soon as possible, thus the computational cost of the commit

process can be reduced.

1.3.2 Replication Management

In a Distributed Database, an auxiliary -although critical- part of the Concurrency Control

is the Replication Management. A Distributed Database Manager must ensure that the

information accessed from any node of the system follows the property of Consistency.

To this end, the Replication Management includes additional algorithms to guarantee the

consistency of the accessed information. So, the Replication Management is responsible to

provide these guarantees.

Update Propagation

U
.L

oc
at

io
n Eager Lazy

Primary Copy Primary Copy
Eager Lazy

Update-Everywhere Update-Everywhere

Table 1.1: Replication Models in Distributed Databases

A categorization for database replication protocols[GHOS96] has been commonly adopted

using two parameters:

• When update propagation takes place (eager vs. lazy):

In eager replication schemes, updates are entirely propagated within the boundaries

of the transaction execution. This means that the commit completion can only arise

when sufficient copies in the system have been updated.

18

In contrast, Lazy schemes, update a local copy, commit and only some time after the

commit, the propagation of the changes takes place.

Eager approaches provide consistency in a straightforward way but it is expensive in

terms of network consumption and performance. Lazy replication allows a wide va-

riety of optimizations, but, since copies are allowed to diverge, inconsistencies might

occur, and additional abortions can be caused by accesses to inconsistent information.

• Who can perform updates (primary vs. update-everywhere):

The primary copy approach requires all updates to be centralized first at one copy

(the primary or master copy) and then they can be performed at the other copies. This

simplifies replica control, but presents the disadvantage of the introduction of a single

point of failure, and a potential bottleneck.

The update-everywhere approach allows any copy to be updated, thereby speeding up

access but at the price of making coordination more complex.

Comparing the Primary-copy and Update-everywhere approaches, in [WSP+00], it is shown

that update-everywhere protocols provide better behavior with respect to performance, and

scalability of the resulting system. This is due to the potential bottleneck that a single node

becomes in when primary copy approaches are used.

When comparing Eager versus Lazy propagation, the different approaches depend on the

existent conditions in the system in a similar way that occurred with the optimistic and

pessimistic approaches for Concurrency Control.

In particular, systems with lower conflict rates will be benefited when lazy protocols are

used, because they make a lower use of network communications. In contrast, systems with

a higher level of conflicts, a higher number of transactions will be aborted, and the quality

of the service offered by the Database System will be degraded, in terms of performance

and guarantees about the completion of the transactions.

1.4 Update Propagation in Update-Everywhere Systems

1.4.1 Eager Propagation

From a functional point of view, we will consider two types of protocols depending on

whether they use distributed locking or atomic broadcast to order conflicting operations of

the executing transactions:

• Distributed Locking to acquire the needed grants in the whole system before per-

forming the access to the replica being modified. In these protocols, a 2 Phase Com-

19

mit protocol[BHG87b] is needed during an agreement coordination phase in order to

ensure that all nodes commit the transaction.

The 2PC process, does not need an Atomic Broadcast to be achieved as needed for

the locking used in distributed systems. In contrast, the 2PC mechanism used in our

ambit corresponds to the use of a Virtual Synchrony Cast mechanism in the distributed

systems protocol.

• Atomic Broadcast techniques, use the total order guaranteed by ABCAST to provide

a hint to the transaction manager on how to order conflicting operations. Thus, when

any client submits a request to the system, although the request is initially received by

a particular node, this node broadcasts the request to the rest of nodes included in the

database system. Moreover, as any request is propagated with an atomic broadcast,

there is established a consensuated total sorting of the requests at each node in the

Distributed Database. Thus, instead of 2PL, the server coordination is done based on

the total order guaranteed by ABCAST and using some techniques[KA98] to obtain

the locks in a consistent manner at all sites. Then the operation can be executed and

a response will be replied to the client.

The similarities between active replication and eager update everywhere using ABCAST

are obvious. The main difference is the interaction between the client and the system: in

distributed systems, the client broadcasts the request directly to all servers. In contrast,

eager update everywhere techniques based on ABCAST attend a single request from the

client applications, and is the system who broadcasts the request to all the replicating nodes.

1.4.2 Lazy Propagation

Lazy update propagation is designed to take advantage from repeated updates initiated in a

node, and modifying the same set of objects. If such situation occurs, an eager approach

must propagate several changes over the same set of objects. In contrast, lazy approaches

can avoid the propagation of some of these changes, reducing the network consumption,

and improving the overall performance of the system.

The basic principle utilized by lazy update propagation protocols consists of the possibility

for the committing transaction to complete its commit phase before the update propagation

is performed to all the rest of nodes in the system. Thus, some time after the transaction

commits, the updates can be propagated to the other nodes. However, as in the case of

eager update everywhere, there is needed a much more complicated coordination than with

a primary copy approach. Since the other nodes might have run conflicting transactions

during the time propagation is in progress. Moreover, the different sites might hold not only

be stale, but it even be inconsistent.

20

So, the Consistency Control must decide which updates are the elected to be persistent, and

which transactions must be aborted. The commit phase, however, must include same kind

of atomic protocol to make it easier for the reconciliation process to determine the existence

of conflicts in the execution of a transaction.

Note that laziness, while existing in distributed systems approaches[LLSG92], is not widely

used. This is caused because those solutions are mainly developed for fault-tolerant pur-

poses, making an eager approach more attractive. In contrast, lazy approaches are a straight-

forward solution when performance is the main issue. Response times have to be short when

the protocol lack of communication requirements during the execution of transactions.

1.5 Contributions of the Thesis

In this thesis, the GlobData project is presented, and the architecture designed as a middle-

ware for Data access is described. This architecture, named COPLA, provides a solution for

database applications to gain access to a High Available Distributed Database, where differ-

ent Consistency Protocols (including both Concurrency Control, and Replication Manage-

ment), can be plugged in the system, in order to provide particular benefits to the different

requirements of client applications.

In particular, this thesis centers its attention in the particularities of the type of applica-

tions described in this introduction. For which lazy update propagation techniques using an

update-everywhere approach seem to be more adequate, due to the locality of the accesses,

and the costs of the network communications.

Moreover, Lazy Update Propagation techniques are widely discussed here, providing as

a starting point an incompatibility result that proves that the use of lazy update protocols

defined up to now avoid a distributed database to guarantee serializability of the executed

transactions if an optimistic consistency control is applied. In addition, the proof includes

the theoretical extensions required for those algorithms to guarantee serializability of the

transactions. Moreover, with the inclusion of those extensions, we proof the impracticability

of the extended algorithm, due to the dramatical increase of the abortion rate.

The second contribution of this thesis consists of a statistical analysis of the abortion rate

introduced by lazy update protocols. This abortion rate is, as seen along this introduction,

the main disadvantage derived from the use of lazy update protocols. To understand the

behavior of the abortion rate, we present an expression for the probability that an accessed

object has to be stale, and thus cause the abortion of a transaction.

Following the discussion, the third contribution of the thesis consists of the application of

the expression for the stale-abortion rate in order to propose a new approach of update pro-

21

tocol that provides the advantages of both eager and lazy update protocols, while avoids

their disadvantages. The proposed protocol (called Cautious Optimistic Lazy Update Pro-

tocol) follows an optimistic approach for the concurrency control. The basic idea followed

by the protocol consists of the interception of accesses performed by the transactions, then,

the protocol predicts accesses to stale objects. If such prediction arises, then an update of

the suspicious object is forced before the access is completed. Thus, the probability for a

transaction to abort due to stale accesses is dramatically decreased, providing abortion rates

similar to the ones obtained with eager update protocols. In addition, the protocol can be

configured in order to vary its behavior from a pure eager approach, to a pure lazy update

protocol.

In addition, the performance provided by the proposed replication protocol is very similar

to the achieved with lazy update protocols, where communication and synchronization be-

tween the different nodes of the system is avoided, and the response time is consequently

reduced with respect to eager update protocols and primary copy approaches. The protocol

is completed with an auto-adaptative technique for tuning the behavior of the protocol to

make it flexible to changes in the system characteristics.

The last contribution of the thesis consists of a new extension of the Cautious Optimistic

Lazy Update Protocol, to enable lazy fault-recovery in the basic algorithm. The proposed

modification makes it possible for the consistency protocol to re-incorporate recovered

nodes in the system while maximizing the availability of the system. This implies that the

client applications are allowed to continue performing requests to the system at any time,

even during the stabilization times (i.e. during the failure stabilization, and the reconcilia-

tion process during the recovery). Thus, the quality of the service offered by the Database

system will not be degraded when failures are detected, or during the node recovery.

1.6 Thesis Layout

The rest of this manuscript is structured as follows. Chapter 2 describes the GlobData

project, and the COPLA architecture, implemented in the project to provide a middleware

for client applications to access to a Distributed Database. The chapter starts with an out-

lined description of the architecture, and the goals of the project. Then, the different com-

ponents of COPLA are defined, paying special attention to the Consistency Management.

In chapter 3 two basic protocols implemented in GlobData are described. These proto-

cols, both applying optimistic concurrency control, make use of different approaches for

the update propagation. On the one hand, a basic eager propagation protocol called FOB

is discussed, and its implementation is detailed. On the other hand, the homologous lazy

protocol (known as LOMP) is also described, and both protocols are then compared. The

chapter also includes the implemented fault-tolerance protocol included for these two con-

22

sistency protocols. Finally, the chapter concludes with a comparison of the different guaran-

tees with respect to consistency and serializability that both protocols provide. The chapter

also includes a summarization of the existing related work on similar researches.

The next chapter is dedicated to proof the impossibility, for lazy update protocols with op-

timistic consistency control, to provide strict serializability guarantees. The chapter starts

with a number of formalisms that are used to express the traditional model, and the impos-

sibility is then shown. An extension to the traditional model is provided, in order to enable

a lazy update protocol to provide serializability guarantees, and the chapter concludes with

a formal analysis of the theoretical behavior of any lazy algorithm providing these guaran-

tees. As a result, there is shown that those implementation will be impracticable, due to the

dramatical increase of the abortion rate it would introduce in the system.

In chapter 5, the abortion rate produced by lazy update protocols is studied from a statistical

point of view. Thus, the chapter provides a statistical expression for the probability for an

accessed object to be out of date (thus causing the abortion of the transaction). The expres-

sion is experimentally validated in the chapter, showing the accuracy of the prediction, other

interesting properties. Finally, there is shown an application of the expression to update the

predicted outdated objects, and theoretical boundaries of the improvement are detailed.

Chapter 6 details the application of the obtained expression, describing the implementation

of the Cautious Optimistic Lazy Update Protocol, as a modification of the basic lazy update

protocol described in chapter 3. Then, it is described the parameterization of the protocol,

in order to make it to be an eager update protocol, or to have the behavior of a pure lazy

update protocol. Further sections include a detailed presentation of the performance, and

the abortion rate achievable with the protocol. Finally, the chapter describes a technique for

the automatic tuning of the algorithm, enabling it to be configured with an auto-adaptative

approach, in order to include flexibility with respect to changes in the system environment.

In chapter 7, there is presented the modification of the Cautious protocol to include self-

recovery ability. This modification implements in a lazy manner the failure recovery of the

algorithm, and is presented as sequential modification from the basic Cautious protocol.

Finally, chapter 8 includes the final conclusions of the thesis. To do this, the principal

outlines are reviewed, paying special attention to the results obtained from the contributions.

Then the chapter concludes with the future research lines derived from this thesis.

23

24

Chapter 2

The GlobData Project

When an organization starts an Internet project, a variety of objectives must be met. Many

of the current Internet applications (i.e., e-bank applications) manage huge amounts of in-

formation. This information is mainly accessed with a strong geographical locality. In

addition, these types of application usually strive for a high degree of availability, as often

enough, these applications offer services not only to external, but also to internal clients,

which must be capable of accessing the information at any time. The locality of the ac-

cesses suggests that in many cases the database can be partitioned [Rah93, GHOS96]. In

many scenarios, it may be necessary to replicate the information in a set of servers, each

one attending its local clients. The different replicas of the database must be then intercon-

nected, a WAN being usually the best fit alternative.

Other examples of this scenario can be found in telephony applications, managing a large

amount of information, where access patterns are highly local.

When the databases containing the information must be replicated, it becomes necessary to

introduce protocols and algorithms to provide a minimal set of guarantees about the con-

sistency of the data [BHG87a, WJ92]. The traditional approaches for replicating databases

are centered in the use of fast LAN’s [KA98, KB94, JM90, Her90, Her87], where network-

intensive protocols are used. In Internet applications, the network is a limited resource, and

the problems introduced by the WAN must be appropriately dealt with [LLSG92, FMZ94b,

FMZ94a].

Our researching group has experience with fault-tolerant systems and operating systems,

including failure detectors[MGGB01], middlewares providing high availability to object-

oriented architectures[GMB97a, MGB98, GMB97b, GMB99], and specific solutions for

highly-available networking systems[IBBAME02, IBBAME01], as well as some operating

systems developments [MB97, IB01].

The GlobData Project[IUF01, DMI+03],marked into the V Framework Program of the In-

formation Society Technologies, strives to provide a solution for these kinds of applications

25

in which efficiency, availability and high volume data handling must be achieved. It does

so by defining a specific architecture for a set of replicated databases, together with a pro-

gramming API and a set of consistency modes for data access.

The aim of GlobData is to provide an architecture to enable distributed access to a database,

granting fault-tolerance to the different nodes participating in the Database, with a reason-

able overhead in term of performance.

In this sense, every client of the system architecture should be able to gain access to a

distributed repository of information, in a similar way that it would be done in a centralized

solution.

In addition, the system should provide consistency and isolation guarantees to the concur-

rent client applications executed in the system, benefitting in terms of performance -in the

most of the possible- from particular characteristics of the client applications as locality in

the accesses.

Finally, the global behavior of the system should become able to continue in presence of

partial failures.

These functionalities can be provided by a number of alternatives. The simplest approach

consists of the implementation (or use) of a specific distributed database, executed in each

node in the system, and accessed directly by each client application. The main disadvantage

of this approach is the poor portability of the solution, and the high cost of the mentioned

implementation. In addition, the solution presents a poor scalability, providing a degraded

behavior for systems with a high number of nodes.

Another option may be the implementation of a ”service replicator”, making use of a com-

mon database in each node in the system, and gaining access to the distinct instances of

databases through a replicated service. The distributed database should access to that ser-

vice to interact with the information repository. This alternative, although it can be useful

for simple services, would not be useable for a database, because it makes no management

of particularities as transaction conflicts, etc.

The adopted solution consists of the implementation of a middleware layer to complete

the access to the logic Geographically Distributed Database over a Wide Area Network,

implementing the information repository as a common database, executed in each node in

the system.

The basic function of this middleware consists of providing to the different client applica-

tions (typically written in Java) isolation of the physical location of the different components

of the distributed database, in addition to the way the replication has been actually imple-

mented, the used concurrency control, or the followed failure recovery protocol.

26

The COPLA architecture [JAJ+02, IUF01, MIG+02b] provides a framework to integrate a

wide variety of protocols capable of meeting the consistency requirements posed by Glob-

Data’s goals. Currently, a number of protocols [IMDBA03, RMA+02, MEIBG+01] , with

slightly different goals have been implemented, but all of them share a characteristic: They

cannot be classified as pessimistic, since transactions are allowed to proceed locally (except

for “read” operations, as it will be discussed later), being checked for consistency violations

at commit time. When a consistency violation is found, the transaction is rolled back.

Our implementation of the COPLA architecture has proven to be a flexible tool in order

to experiment with different approaches for providing fault-tolerance, distributed access to

databases, fault-recovery, etc.

We have implemented either eager, and lazy update protocols, and a number of different

recovery algorithms. The results obtained by COPLA have helped us in the study of the

implementability of those kind of protocols, and exhaustive studies have been performed

about its behavior with respect to performance, load balancing, abortion rate, and other

properties.

The different options implemented in COPLA have been designed to provide a particular

solution to some kind of application. Thus, applications with a high degree of access lo-

cality, and performing intensive write operations have been proven to be best suited with

optimistic, lazy update algorithms. In contrast, applications with a lower locality prefer

eager update algorithms to obtain better performance.

The rest of the chapter is organized as follows: Section 2.1 describes the architecture of

COPLA, and a number of common concepts used in COPLA; In section 2.2, 2.3, and 2.4

the different layers of the COPLA architecture are described in detail; Section 2.5 explains

the functional component that manages the consistency in the system, and finally, section

2.6 concludes with a brief outline about some principles in consistency protocols.

2.1 Description of the Architecture

The COPLA architecture consists of three layers as depicted in figure 2.1. Further sections

will explain with detail these different layers. From bottom to top, the following is a short

description of them:

• Uniform Data Store (UDS). This component manages the persistent data of a Glob-

Data system. It interacts directly with a relational DBMS, storing there the persistent

objects of the given application and the metadata of the consistency protocol.

It isolates the upper layers from the actual storage system used. In practice, support

for different RDBMSs will be provided in the final release of the UDS (currently, it

27

Uniform Data Store

COPLA
Manager Consistency Manager

CORBA
interfaces

COPLA Programmer Library

Local

Figure 2.1: COPLA architecture.

only manages PostgresSQL repositories).

The definition of the application databases is made using GODL, a simplified version

of the ODMG ODL language [CBB+00].

• COPLA Manager. The COPLA manager is the core component of the COPLA archi-

tecture. It manages database sessions (which may include multiple sequential trans-

actions, working in different consistency modes) and controls the set of database

replicas that compose the GlobData system. This manager also provides some caches

to improve the efficiency of the database accesses.

A local consistency manager is included in this layer. Multiple consistency protocol

objects may be used in this component, but only one is allowed at a time. All con-

sistency protocols share some characteristics. For instance, all of them receive event

notification from the COPLA Manager when the user application accesses an object,

and when a commit or rollback is requested. In addition, the instance of Consistency

Manager in a node also receives events from other instances of Consistency Manager

residing in other nodes, in order to locally apply changes made in other nodes, or

requesting the local version of an object, or notifying the local Manager a remote

session to start a commit (and hence, the Manager has a chance to opposite to this

commit). The way all these events are managed depends on the consistency protocol

being used. All of the communication among GlobData databases is managed by this

component.

• COPLA Programmer Library. This library is the layer used in GlobData applications

to access system services. It also provides some cache support and multi-threading

optimizations that improve the overall system performance.

The applications need not be installed in the same node where the COPLA manager

or the UDS are placed. They only require this library layer on their nodes.

28

Between each pair of consecutive layers, there is a CORBA interface. So, each layer could

be placed in a different node. To enable communication across layers, an object request

broker (ORB) is needed. The current system release is implemented in Java, and the Java

ORB of the Sun J2SDK is used.

Figure 2.2: Typical COPLA system.

The communication between the COPLA nodes of the system is completely performed

through the COPLA Manager of each node. In fact, is a particular component of the

COPLA Manager, the Consistency Manager of each node, the responsible of such com-

munications.

To simplify the communication tasks, COPLA also provides for the development of Con-

sistency Managers a ”communication toolkit”, supplying a number of basic primitives that

provide particular guarantees.

For example: it is possible for a particular Consistency Management to require atomic

broadcast messaging[HT94]. To achieve this, COPLA provides the primitive

”total broadcast(message, set of nodes)”.

Of course, it is not obligatory for a Consistency Manager to use these primitives, but they

are provided to simplify some parts of such implementations.

Another important element supplied by COPLA is the Membership Monitor. Its main goal

consists of the notification to every registered user component of any change in the compo-

sition of the COPLA system (i.e. any change in the list of actively participant nodes in the

system).

29

Membership Monitors may not be needed by a particular Consistency Protocol, but some

of them (as the protocols described in further chapters) can be simplified with the presence

of a Membership Monitor. The description of the Membership Monitor implemented for

COPLA can be found in [MGGB01].

Figure 2.3 depicts the internal architecture of the Consistency Manager of a COPLA node.

Figure 2.3: Consistency Manager architecture.

As shown in the figure, the main component of the Consistency Manager consists of a

protocol managing the consistency control of the node. This protocol may make use of the

membership protocol provided by COPLA (or any other monitor), and it can also use the

builtin toolkit for the group communication.

As explained above, the consistency protocol may also include a recovery protocol, provid-

ing the system fault-tolerance and node recovering.

All the communication between the nodes in a COPLA system is exclusively performed

through the consistency protocol. This means that two COPLA Managers (residing in two

different nodes) are constrained to use an API within their local Consistency Manager in

order to operate with local transactions, start the commit phase, recover their state after a

failure, or any other operation.

2.1.1 Consistency Modes

As seen above, we consider as COPLA node a number of components, providing each one

a different functionality to the system. In fact, the view provided to a user application is that

a COPLA node is a gate to the Database, with independence of the concurrency control,

replication protocols, or recovery mechanisms used by the system.

As other middleware to gain access to a transactional information repository (e.g. JDBC),

30

COPLA provides particularities with respect to the transactional characteristics offered to

the user applications. These characteristics, known in the COPLA architecture as consis-

tency modes, provide a variety of guarantees for the sessions (i.e. transactional contexts)

manipulated by the user applications.

These consistency modes are managed by COPLA allowing the user applications to manip-

ulate some session attributes.

A session can be considered as a sequence of “transactions” made in the same database

connection. Each of these “transactions” can be made in one of the following consistency

modes:

• Plain consistency. This mode does not allow any write access on objects. It guaran-

tees that all read accesses made in this mode follow a causal order; i.e., it is prevented

that a read access obtains an object that causally succeeds the results of a later read

access on the same or a related object.

On the other hand, this mode imposes no restriction on the currentness of the objects

being read. Thus, they may be outdated.

• Checkout consistency. This mode is similar to the traditional sequential consistency,

although it does not guarantee isolation. Thus, if several sessions have read a given

object, one of these sessions is allowed to promote its access mode to “writing”.

However, if two of these sessions have promoted their access modes from reading to

writing, one of them will be aborted.

• Transaction consistency. In this mode, the usual transaction guarantees: atomicity,

sequential consistency, isolation and durability, are enforced.

A session always starts in plain mode. If the guarantees provided in this mode are not

sufficient for the application, it can promote its consistency mode to checkout or transaction.

In these two modes, all accesses are temporarily stored until an explicit call to the commit()

or rollback() operations is made (with the usual meaning of such operations). Once one of

these operations have been made, the session returns automatically to plain mode.

Thus, the programmer is able to choose the consistency mode of each session that composes

her or his application, and this consistency mode can be varied as needed while a session is

running.

As a result of a consistency mode change, the user application can receive an exception from

the COPLA Manager. This exception is used to notify the user application the impossibility

for this session to promote to the required consistency mode.

For example, this fact can appear when a partition in the system has been detected. In

31

such situation, an isolated node cannot proceed with any modification in the database. In

contrast, only sessions that are running in Plain mode can proceed during in an isolated

node during a system partition.

2.2 The Programmer Library

This library provides to the user applications access to the resources supplied by COPLA .

The Library is composed by the following components:

• A set of library Java classes, common to any user application using COPLA as a

database middleware. This can be considered as the kernel of the user interface of

COPLA .

• A set of object classes, automatically generated by a specific compiler, that provide

isolation to a specific application about the way they should access the COPLA in-

frastructure to obtain the values of the different objects needed by the application.

The implementation of one of these classes consists of a proxy of an object managed

by the COPLA Manager.

The definition of these objects is done using an specific language GODL (GlobData

Object Definition Language). This language is a subset of the ODMG standard for

object definition (ODL).

In addition, user applications also define interrogative operations (that is, queries)

over the defined objects. These queries are also defined in a specific language known

as GOQL. This is a subset of OQL, a standard language defined by ODMG.

The Programmer Library is executed as a part of each user application. Thus, it resides in

the execution domain of the client.

2.3 Uniform Data Store: UDS

In the lower limits of the architecture of a COPLA node, the Uniform Data Store manages

the information repository accesses. This component has a double responsibility:

First, it must manage the information of the persistent object that each user application de-

fined with GODL. In this way, the UDS component makes use of a set of automatically gen-

erated classes for these persistent objects, in order to interact with the underlying database

with the semantics defined by a particular application. In addition, it implements the interro-

gation functions, defined using OQL, and including this functionality in an additional set of

32

classes. These interrogation functions conform the mechanism for an application to recover

objects, in the same way an application using a relational paradigm uses SQL queries.

The second function of UDS consists of the management of the metadata required by the

consistency manager to complete its tasks. These metadata are defined by each particular

consistency protocol, and contain a number of information summarized for objects, ses-

sions, or even nodes. Typically, these metadata should contain the version of each stored

object, information about the executed transactions, etc.

The simplest implemented protocols only need a version number for each object, because

they perform the concurrency control with an optimistic approach, based on versioning.

Even more simple protocols can be based on pessimistic (locking) approaches, lacking of

the necessity of manage metadata.

Although the user application performs the description of its persistent objects with an

object-oriented paradigm, COPLA allows (with the help of the UDS component) to es-

tablish a correspondence between those definitions and any relational database. This cor-

respondence is established in a transparent way for the user application, because the user

applications just have to use the classes generated by the ODL compiler to this end (the

object classes).

The UDS layer is only accessed by the COPLA Manager, and this access is performed

through a CORBA interface. This allows to put in different machines the COPLA Manager

and the UDS.

2.4 COPLA Manager

The interaction between the Programmer Library and the Uniform Data Store is located in

the kernel of a COPLA node: the COPLA Manager. The main task of this module is to serve

the information requested by the user applications acting as COPLA clients. This activity

produces a number of responsibilities:

• Consistency Control of the data stored in the local node (by UDS).

• Spontaneous Update of the local information whenever it is needed or convenient.

• Local Transactional Control, managing the commit process to provide the adequate

guarantees.

• Propagation of the updates performed in the local database to the rest of nodes in the

system.

33

The COPLA Manager uses the UDS as the local information repository, both for the data

owned by the user applications, and for the metadata, generated and maintained by the

installed consistency protocols.

There are two ways for the COPLA Manager to be accessed. The user applications have

a CORBA interface to gain access to the COPLA Manager, employing an API to reach the

persistent objects in a particular transactional context. This API is not directly used by the

user application, but this is the way the proxies (generated by the GODL and GOQL com-

pilers) perform the invocations to the COPLA Manager services.

In addition, other COPLA Managers can also communicate with the COPLA Manager of

a node from another COPLA domain. This communication is done with events initiated

by the Consistency Manager that notify the receiver instance of COPLA Manager about

different situations, or actions to be done; e.g. object updates, session abortions, obtention

of locally stored objects, etc.

The different accesses required by a COPLA Manager to the local information are redi-

rected, using a CORBA interface, to the UDS instance of the COPLA node.

2.5 Consistency Manager

The different COPLA Managers are installed one in each COPLA domain (i.e. node). As

seen above, they get coordination between the rest through event notifications. But the

generation of those events is managed by the Consistency Manager.

The Consistency Manager is the responsible of the following tasks:

• Replication Management, of the information updated in the local node, propagating

those changes to the rest of nodes in the COPLA system.

• Concurrency Control of the different transactions initiated in the system, avoiding

conflicting transactions to be committed. This control is the responsible for the main-

tenance of the guarantees expected by the consistency modes used by the user appli-

cations.

• Fault-Recovery Management, in order to deal with the failures of nodes participating

in the system, and the further reconciliation of the whole system if a failed node

recovers its state and recovers its participation in the system after a failure.

The Consistency Manager is a software piece that, although it does not have a CORBA in-

terface, has been designed to provide to the COPLA Manager a certain API , as generic

34

as needed to allow the COPLA Manager to plug a particular Consistency Manager. In this

way, it is possible to implement a variety of Consistency Managers, in order to satisfy the

particular necessities of a wide range of user applications.

2.6 Consistency Protocols

As seen in section 2.5, the Consistency Manager is the responsible in each node to provide

guarantees about the consistency of the information manipulated by the user applications.

To perform this work, it needs to make use of a particular consistency protocol. This con-

sistency protocol will be notified of every access performed by the user applications to the

information managed by COPLA. In addition, the consistency manager notify to the in-

stalled consistency protocol about any commit or abort operations requested by the user. In

order -for the user applications- to gain access to the database commit operation, the consis-

tency manager must receive positive response from the notifications sent to the consistency

protocol.

In COPLA , there can be plugged a variety of consistency protocols, each one satisfying

particular requirements corresponding to specific user application necessities.

A number of classifications of consistency protocols have been presented in distributed

systems research. These classifications use to be based in a number of parameters. In

[WSP+00], a three parameter classification is presented:

• server architecture, refers to the way the different request are addressed to the sys-

tem. This parameter classifies a protocol into: primary copy, where every request

is received and processed by each node in the system, and the update everywhere

approach, based on the execution in a single node of the request, and a further propa-

gation of the result to the rest of the system. In this last case, a new parameter (update

propagation) classifies the protocol into eager update propagation (where the prop-

agation of the results obtained in the executing node are completely propagated to

the rest of the system during the commit phase), and lazy update propagation (that

allows the propagation process to be completed beyond the commit termination).

Update everywhere protocols provide a good scalability due to the load balancing

they allow. The use of lazy of eager update protocols produces different behaviors

determined by the characteristics of the executed transactions, and other considera-

tions as the locality of the accesses.

• server interaction, classifies protocols taking into account the way the different nodes

in the system interact between them. In protocols with constant interaction, the

interaction is done just once, either at the beginning or end of the transaction. In

35

contrast, linear interaction consists of the communication, during the life of a trans-

action, of each operation it does.

Constant interaction protocols have a better performance due to the lower commu-

nication requirements, because they complete all their communication in a unique

phase.

• transaction termination, classifies a protocol with respect to the way the transactions

end. Voting termination protocols perform, before a transaction is committed, a

number of rounds for the nodes in the system to reach a consensus about the conve-

nience for the current transaction to be committed, or aborted. Non-Voting termina-

tion protocols are able to provide guarantees to the user applications without the use

of any voting phase.

Although “non-voting termination” approaches require less message rounds, they ei-

ther need atomic reliable broadcasts (with total order delivery) if the updates are made

at commit time, or all nodes need to execute completely all transactions, even those

that finally will be aborted (if the broadcasts are made when the transactions start).

So, at first sight, a “voting termination” approach seems better.

In addition, the consistency protocol, with independence of the distribution of the informa-

tion, manages an important property in transactional environments: the isolation property.

A transactional system must guarantee the isolation of every transaction initiated in the sys-

tem. This makes it necessary for the consistency protocol to avoid concurrent incompatible

accesses to the same set of objects.

The traditional classification of the consistency protocols with respect to this parameter of

isolation management refers to the position the system takes in it: A pessimistic isolation

management is based on some kind of locking structure, suspending a transaction when it

tries to gain access to a ”protected” object. In the other hand, optimistic isolation manage-

ment uses to allow any transaction to proceed until they reaches the commit phase. Then, the

isolation property is evaluated, introducing the possibility for the transaction to be aborted.

Optimistic approaches take advantage of read-intensive systems, and environments with a

low conflict rate, because the number of aborted transactions will be kept low. In contrast,

pessimistic approaches are based on timestamps of the access instants. These protocols

have a well behavior in systems where the number of abortions would be high with an

optimistic approach. In such scenarios, pessimistic approaches introduces long delays in

the transaction service time, because the time the locks are suspending transactions is high.

36

Chapter 3

Implementing Eager and Lazy

Update Protocols

The COPLA architecture has been used, as described above, to be an experimental platform

to test and compare a number of consistency protocols serving a number of typical database

applications.

In this sense, there have been implemented a number of basic protocols from the first ver-

sions of COPLA. These basic protocols, based on the optimistic approach, make use of ver-

sion numbers of the objects stored in the database to guarantee isolation and consistency.

Others protocols are described in [MEIBG+01, MIG+02a, MIG+02b, IMDBA03].

The existing difference between them lies in the mechanism used to propagate the updates

made by the transactions. This chapter is addressed to detail two of these protocols, using

different approaches for the update propagation, from an eager approach, to a lazy propaga-

tion.

The rest of this chapter is organized as follows: Section 3.1 describes the implementation

in COPLA of an eager update protocol. In section 3.2, the lazy version of this protocol

is described, detailing the main differences and similarities between them, and section 3.3

compares the performance of both implementations. Section 3.4 is addressed to the common

implemented mechanism to provide fault tolerance to these protocols. Finally, section 3.5

details the main differences of the guarantees provided by the protocols, and section 3.6

summarizes the existing work related to replication protocols.

3.1 Implementation of an Eager Update Protocol: FOB

The FOB consistency protocol uses “Full Object Broadcast” of the session updates, once

the session is allowed to commit. This is a basic eager approach for the update propagation,

37

because all the communication performed to achieve this consistency propagation is per-

formed inside the commit phase. In addition, as an optimistic approach, it needs to perform

additional management to guarantee isolation and consistency, aborting transactions where

needed.

To present the protocol, subsection 3.1.1 details the roles assigned by the protocol to the dif-

ferent nodes in the system, and subsection 3.1.2 details the steps followed by the FOB pro-

tocol.

3.1.1 Node Roles

Considering a given session that tries to commit, the nodes involved in its execution may

have two different roles:

• Active node. The node where the COPLA Manager that has directly served the ses-

sion’s execution is placed.

• Synchronous nodes. All other nodes that have a COPLA Manager. In these nodes, the

session updates will be eventually received, if such updates exist. Note that read-only

sessions do not generate any database updates. Hence, these sessions do not have any

synchronous node.

Moreover, in a given session, multiple objects may have been accessed. Before committing

a session, some checks have to be made to ensure that the accessed objects’ states were

up-to-date. One of the nodes receives a distinguished role in these checks, and the others

will accept its decisions.

Consequently, for each object, there exists its owner node. That is the node where the object

was created; it is the manager for the access confirmation requests sent by the active nodes

at commit time. The management of these access confirmation requests is similar to lock

management, but at commit time. To this end, the owner node compares two object versions,

the one sent in the request (which is the object version accessed by the requesting session),

and the latest object version that exists in the database. If they are not equal, the request is

denied and the session will be aborted because it has accessed an outdated object version.

On the other hand, if they are equal and there is no other granted request in a conflicting

mode (a conflict exists if one of the requests comes from a session that has modified the

object), a positive reply is sent to that active node. An active node can commit a session if

all access confirmation requests that it has sent have been replied positively.

38

3.1.2 Protocol

As described above, the FOB consistency protocol broadcasts object updates to all syn-

chronous nodes when a session is allowed to commit. Consistency conflicts among sessions

are resolved using object versioning. To this end, the protocol uses some metadata tables in

the database where the current object versions can be stored. In this metadata, object ver-

sions are stored in order to compare, at commit time, the versions of the objects accessed

by the transactions, and the current version for these objects in the local database at commit

time. An additional locking is needed at commit time in order to ensure the atomicity of

these operations.

The protocol processes the following steps:

1. In active nodes, sessions are created and executed without any additional check. They

are allowed to proceed until they request their commit operation.

2. When an application tries to commit one of its sessions, such operation arrives at its

COPLA manager, and before applying the commit to the associated UDS, the local

consistency manager is informed thereof. To this end, the COPLA manager builds

two sets containing the identifiers of all objects read and written in such a session.

These are the session read-set and session write-set.

3. Once these sets have been received by the local consistency manager, the latter sends

an access confirmation request to the owner of each of the objects in the sets. Such

messages include the object identifiers, their accessed versions, the access modes

(read or write) and the consistency mode used by the session (checkout or transaction,

since plain mode does not need a commit operation).

4. The owner node of each object checks if this access confirmation request would con-

flict in any way with previous access confirmation requests granted to other sessions

but not yet released. A conflict arises if the requesting session has written the object

and there is another session that has previously obtained a write grant on the same

object version.

Additional conflicts depend on the consistency mode of the sessions involved in the

check. If all sessions have used checkout mode, then a conflict only arises if the

requesting session has modified the object and other read-access grants have been

obtained previously by other sessions. But in checkout mode, a session does not run

into conflicts by having read outdated object versions.

On the other hand, if at least one of the currently committing sessions has used trans-

action mode, then conflicts arise when either the requesting session has used an out-

dated object version, or when there are multiple sessions accessing the object and at

least one of the sessions has written it.

39

If the owner finds that a conflict arises, then it answers the access confirmation request

with a deny reply. Otherwise, it sends a grant reply and the session identifier is

recorded as “granted” until it explicitly releases this grant in step 5 or 8.

5. When the active local consistency manager receives the replies, and if at least one

reply denies the access confirmation requests, then the session is aborted. However,

if all of them grant the request, then the session will commit.

If the session has been aborted, then a release message is sent to the object owners

that had replied using a “grant” message.

6. If the session has been allowed to commit in the previous step, then the consistency

manager of the active node broadcasts the session updates to all GlobData system

nodes; i.e., to all nodes that have a consistency manager. This is a FIFO reliable

broadcast[BJ89].

7. Once the update message is received, the active node for that session commits it. The

synchronous nodes will also commit the session updates. But before doing so, they

have to check that no local session has accessed any of the objects received in that

update message. If such local sessions exist, they are aborted.

8. Once the update has been completed, the consistency managers placed in the syn-

chronous nodes check if they are the owners of some of the objects updated. If that is

the case, the grants set in step 4 are released immediately. Since no explicit message

is needed to do so, this accomplishes the protocol.

3.2 LOMP: Basic Implementation of a Lazy Update Protocol

The basic optimistic Lazy Protocol implemented in GlobData is named ”Lazy Object Mul-

ticast Protocol” (LOMP), and was presented in [MIG+02b].

The protocol could be summarized as follows: during the execution of a transaction, there

are no special actions to be done until the transaction requests its commit phase. Then,

the system performs a voting round (similar to the one described for the FOB protocol),

resulting in the abortion or granting of the transaction. If the transaction can success, its

updates are not fully propagated, but it is done only to a subset of the system.

To detail the LOMP protocol, subsection 3.2.1 presents the different consistency modes

provided by LOMP, and its main differences with respect to the guarantees provided by the

eager approach. Subsection 3.2.2 details the roles assigned by the protocol to the different

nodes in the system, and subsection 3.2.3 details the steps followed by the LOMP protocol.

40

3.2.1 Provided Consistency Modes

In the COPLA architecture, a session can be considered as a sequence of “transactions”

made in the same database connection. Each of these “transactions” can be made in one of

the following consistency modes:

• Transaction∗ consistency. This mode is a slight variation with respect to the guaran-

tees provided by the Transaction consistency. In the transaction∗ consistency, atom-

icity, sequential consistency, isolation and durability are enforced in the maximum

level a lazy update protocol can guarantee. In section 3.5 these differences are dis-

cussed, and chapter 4 provides a justification of this assertion.

• Checkout∗ consistency. This mode is similar to the traditional sequential consis-

tency, although it does not guarantee isolation. Its behavior is similar to the Checkout

consistency, in the maximum level a lazy update protocol can guarantee.

In contrast, Plain consistency cannot be always guaranteed, due to the temporal incon-

sistency of some parts of the local database. In fact, this consistency mode can only be

guaranteed if the node where the session is initiated is considered a synchronous replica for

every object accessed by the session.

3.2.2 Node Roles

In contrast to the nodes depicted for the FOB protocol, LOMP makes use of the concept of

node roles with respect to each object in the system.

Despite this, LOMP considers -as FOB does- the active node as the node where the COPLA

Manager that has served the session’s execution is placed.

Considering a given object manipulated during the activity of a session, the nodes involved

in the system may have three different roles:

• Owner node. For a particular object, the node where this object was created. During

the consensus process performed at commit time of a session, the owner of an object

will be asked to allow this session to complete the commit. Thus, it is the manager

for the access confirmation requests sent by the active nodes at commit time. The

management of these access confirmation requests is similar to lock management,

but at commit time. These requests are detailed in section 3.2.3.

We will denote that a node Nk owns an object oi with the expression Nk = own(oi).

41

• Synchronous nodes. If one of our goals is fault tolerance, it becomes necessary a set of

nodes that provides guarantees about the last version written for a certain object. So,

for each session that is committing, the owner of each written object must multicast

this update to a set of synchronous nodes, within the commit phase.

We will denote that a node Nk is a synchronous replica of an object oi with the

expression Nk ∈ S(oi).

• Asynchronous nodes. For an object, all the other nodes that have a COPLA Man-

ager replicating the database. In these nodes, the session updates will be eventually

received.

We will denote that a node Nk is an asynchronous replica of an object oi with the

expression Nk ∈ A(oi).

Note that: own(oi) ∈ S(oi), and A(oi) ∩ S(oi) = ∅.

3.2.3 Protocol

As described above, the GlobData-LOMP consistency protocol multicasts object updates to

all synchronous nodes when a session is allowed to commit. Consistency conflicts among

sessions are resolved with an optimistic approach, using object versions. To this end, the

protocol uses some meta-data tables in the database where the current object versions can

be stored. The protocol processes the following steps:

1. In active nodes, sessions are created and executed without any additional check. They

are allowed to proceed until they request their commit operation.

2. When an application tries to commit one of its sessions, such operation arrives at its

COPLA manager, and before applying the commit to the underlying database, the

local consistency manager is informed thereof. To this end, the COPLA manager

builds two sets containing the identifiers of all objects read and written in such a

session. These are the session read-set and session write-set.

3. Once these sets have been received by the local consistency manager, the latter sends

an access confirmation request to the owner of each of the objects in the sets. Such

messages include the object identifiers, their accessed versions, the access modes

(read or write) and the consistency mode used by the session (checkout or transac-

tion). In practice, the number of messages sent can be reduced, by grouping the

requests by owner. Thus, each owner will in fact grant the access to a set of objects.

4. The owner node of each object checks if this access confirmation request would con-

flict in any way with previous access confirmation requests granted to other sessions

but not yet released.

42

A conflict arises if the requesting session has written the object and there is another

session that has previously obtained a write grant on the same object version.

Additional conflicts depend on the consistency mode of the sessions involved in the

check. If all sessions have used checkout mode, then a conflict only arises if the

requesting session has modified the object and other read-access grants have been

obtained previously by other sessions. But in checkout mode, a session does not run

into conflicts by having read outdated object versions.

On the other hand, if at least one of the currently committing sessions has used trans-

action mode, then conflicts arise either when the requesting session has used an out-

dated object version, or when there are multiple sessions accessing the object and at

least one of the sessions has written it. We will name the conflicts described above as

“with deferrable denial”. The reason of this name will be detailed later.

Other conflicts do not depend on the state of the lock granting, but depend on the

state of the database, and are produced by the access to outdated objects within the

session. This new kind of conflicts arise if the owner receives a request, asking a

grant (for read or write access) for an object whose accessed version is lower than the

current version of such object. This can occur if the requesting session is running in

an asynchronous node of the accessed object, and this object has been accessed in an

outdated version. We name these conflicts as “outdated conflicts”.

If the owner finds that any kind of conflict arises, then it answers the access confir-

mation request with a deny reply. Otherwise, it sends a grant reply and the session

identifier is recorded as “granted” until it explicitly releases this grant in step 5 or 8.

5. When the active local consistency manager receives the replies, and if at least one

reply denies the access confirmation requests, then the session is aborted. However,

if all of the asked nodes grant the request, then the session will commit. If the session

has been aborted, then a release message is sent to the object owners that had replied

using a “grant” message.

Step 4 can be revised now. If the owner replies immediately about a conflict “with

deferrable denial”, double abortions can occur, because its is possible that the con-

flict does not effectively exists (i.e. the session granted for the conflicting object

can be aborted by other conflicts). For example, it is possible that the conflict arise

because session S2 requested a grant for the object o1 to its owner node, and this

owner has previously granted a write access for o1 to a session S1. If S1 accessed

to other objects, then a set of requests was sent by S1 to the respective owners of its

accessed objects. Some of these other nodes can deny the request, and S1 will finally

be aborted. In order to avoid double abortions, the denial reply of S2 can be delayed

until the grant of the conflicting objects is released. Then, if the conflict persists, the

denial is sent; otherwise, a grant can be replied to the requesting session S2.

A negative reply to an access confirmation request consists not only of a denial of the

43

request, but if the denial is consequence of an outdated conflict, the denial can also

contain an update of outdated objects. This occurs when the request has been sent

from an asynchronous node of an object. In this case, the owner node can also take

advantage of the denial reply to update the requesting node.

6. If the session has been allowed to commit in step 5, then the consistency manager of

the active node multicasts the session updates to all the synchronous replicas of each

updated object. This is a reliable multicast. Note that the protocol does not need to

use atomic broadcast here, because it uses a voting algorithm to acquire the “locks”.

7. Once the update message is received, the active node for that session commits it. The

synchronous nodes will also commit the session updates. But before doing so, they

have to check that no local session has accessed any of the objects received in that

update message. If such local sessions exist, they are aborted.

8. Once the update has been completed, the consistency managers placed in the syn-

chronous nodes check if they are the owners of some of the objects updated. If that is

the case, the grants set in step 4 are released immediately. Since no explicit message

is needed to do so, this accomplishes the protocol. For the rest of owner nodes, placed

in asynchronous replicas, an explicit message is sent to release the granted “locks”.

9. An asynchronous process must be run in every owner node, in order to ensure that

every asynchronous node of each object eventually receives an update of the object.

This process can be executed in background, as a low-priority process, in order to

minimize the interference in the system.

In 3.6 it will be detailed the classification presented in [WSP+00] for the consistency proto-

cols. Following this classification, based on three parameters, the protocol presented in this

section can be classified as follows:

Update everywhere with lazy propagation, because each session is actually executed in a

single node (the active node for this session), and the updates are propagated -in a lazy

manner- to every replica in the system.

Optimistic constant interaction between the nodes, because all the communication is con-

centrated at the end of each session execution.

Voting termination, because the commit process needs the consensus of every node owning

any object accessed by the session.

44

3.3 Comparing the Protocols: (FOB vs. LOMP)

The algorithms described above for both eager and lazy update propagation approaches

implemented in GlobData present in their implementation a number of peculiarities that

make it hard to make a comparison without benefit one of them or the other one.

These peculiarities mainly consist on the different accesses primitives offered by the under-

lying Uniform Data Store (UDS) component. There can be used two mechanisms to change

the value of a set of objects:

• UpdateObjects(PackedObject objs[]). The method is used when the up-

date is performed using the full state of each object. A PackedObject is a structure

used by UDS to store or transmit the state of an object existing in the database.

• ApplyUpdate(TransactionReport rpt). In contrast, when the UDS is re-

quested for apply the same changes that another transaction did, then the adequate

method is ApplyUpdate. The method uses a parameter of the type Transac-

tionReport to represent these actions to be taken by the UDS component.

In the implementation of COPLA , these two routines are quite different, its application has

different implications for the database, and the use of one of them or the another produce

different performance behavior for the final applications.

The routine ApplyUpdate will produce a faster update of the whole actions taken by a

transaction, and thus, is the more adequate for an eager update propagation protocol. The

cost of the routine has a weak dependency to the amount of object changes performed in the

transaction.

In contrast, UpdateObjects perform the update of particular objects in a separate fla-

vor, fitting with the philosophy proposed by lazy update propagation protocols. However,

the performance of the routine depends on the amount of updated objects, and its cost is

increased when the updated objects have either aggregated objects or relations with other

objects.

The heterogeneity of the operations is the reason for the implementations of our FOB and

LOM protocols to be difficult to compare without benefiting any approach.

The comparison shown here includes the implementation of FOB using the ApplyUpdate

routine, while the implementation of LOM uses for the propagation the UpdateObjects

routine. Our experiments shown that ,when a set of six objects is modified, the cost of the

application of the update using the later operation is up to three times the time spent by the

update performed using the ApplyUpdate routine.

45

0.039

0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

se
rv

ic
e

tim
e

(s
ec

on
ds

)

arrival time (seconds between arrivals)

Performance {N=10000,K=4}

read Eager
read Lazy

Figure 3.1: Evolution of the performance for read-only transactions with different load rates

Thus, the presented results will benefit the FOB approach, due the low cost of the update

propagation.

To perform the experiments, we have executed in a system composed by four nodes a test

application that initiates transactions. There are two different kinds of transactions that the

test application can start:

• read-only transactions, that accesses in read mode to tree different objects in the

database.

• read-write transactions, that accesses in read mode to six different objects in the

database, and then changes the value of three of these objects.

Each node in the system executes the test application, parameterizing the desired load rate.

This load rate consists of the establishment of the elapsed time between two initiations of

transactions. Thus, it can be said that the system will be saturated when the service time

exceed this inter-arrivals time.

Finally, the access pattern of our test application is mainly local (i.e. the 75% of the accessed

objects are own by the node where the transaction is initiated).

For read-transactions (see figure 3.1), there are observed similarities in the service time

offered by the system when any of the compared protocols is used.

In contrast, figure 3.2 shows the better service time offered for write-transactions by the

lazy protocol in scenarios where a few number of conflicts appear. This is caused because

the lazy approach, even when a faster update technique is used (i.e. ApplyUpdate),

46

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

se
rv

ic
e

tim
e

(s
ec

on
ds

)

arrival time (seconds between arrivals)

Performance {N=10000,K=4}

write Eager
write Lazy

Figure 3.2: Evolution of the performance write transactions with different load rates

will not perform these updates before an abortion occurs (or the asynchronous process is

activated). Thus, the service time of write-transactions will not include the time spent in the

propagation of the updates to the rest of the system for each executed transaction.

However, the cost of the performance obtained by lazy update protocols is the abortion rate.

Figure 3.3 evidences the important abortion rate introduced by the use of LOMP, in contrast

to the low amount of transactions aborted in the system when the FOB protocol is used.

3.4 Fault Tolerance

The fault model supported by the FOB and LOMP protocols is ”pause crash” [FHHR85,

SS83, Cri91b]. In this kind of failures, when a node is considered to be failed, all correct

nodes are eventually informed of such failure, and if the node is recovered, it has access to

any information stored before the failure.

Since data objects are replicated in several RDBMSs, the protocol (both FOB or LOMP)

is able to tolerate failures of part of the system nodes. To this end, the following protocol

details must be considered.

• Session completion. If the active node of a session fails before it completes the reli-

able broadcast of the session updates, the occurrence of such a session is unknown on

the rest of nodes. Hence, the session has to be aborted when the active node recovers.

However, if the update reliable broadcast has been completed, the session has been

committed on all system nodes. In this case, the only node that probably has not

47

0

5

10

15

20

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

%

arrival time (seconds between arrivals)

Abort rate {N=10000,K=4}

FOB (eager)
LOM (lazy)

Figure 3.3: Evolution of the abortion rate for different load rates

committed that session is the active one. But this does not matter, since the session

updates will be transferred to that node when it recovers, if needed.

Another undesirable effect of this kind of failure is related to the access grants that the

session may have obtained. Since the session has not been committed, these grants

would remain assigned to the faulty node, preventing other sessions from obtaining

access to such objects. The solution to this problem is easy. When the access con-

firmation requests have been received by an owner node, the identifier of the node

that has made such requests is memorized and associated to the requests in some data

structure of the owner. When the membership service notifies that a node has failed,

this data structure is scanned and all grants assigned to it are automatically released.

• Ownership role migration. When a node fails, all objects that were created in there

have lost their owner. To replace it, the node with the next identifier in increasing

order is chosen as a temporary owner for such objects. This temporary owner retains

its role until it also fails and is replaced by another one, or until the original owner

recovers.

Moreover, some steps are needed to obtain the lists of access grants that the faulty

owner had when it failed. COPLA uses a membership service that notifies all live

nodes about any membership change (either join or failure). When such a notification

is received, each consistency manager scans its list of received access grants and

builds a message containing all the information of all grants given by the faulty owner.

This message is then sent to the temporary owner that will replace the faulty one. If a

node does not hold any grant of this kind, it must send an empty message.

The temporary owner collects all such messages and builds a list of its granted con-

firmation requests. New access confirmation requests are not replied until such a list

48

has been rebuilt.

• Node recovery. The recovery steps needed when a node rejoins the GlobData sys-

tem are thoroughly described in [IF02]. An outline of these steps is provided subse-

quently.

1. Once a given node has failed, all remaining live nodes memorize the OIDs of all

objects updated in all sessions committed since then, and associate these notes

to the faulty node identifier, i.e., they add the OIDs to a hash table or some

data structure which is indexed by node identifiers. Hence, all live nodes have

registered the same state.

2. Once a faulty node recovers and tries to join again the GlobData system, all

live nodes freeze their respective databases. To this end, if some session has

started the commit protocol or has modified at least one of the objects owned

by its local node, it is allowed to terminate. Other sessions are blocked until the

joining node is integrated in the system.

3. Once the allowed sessions have terminated, the live nodes send a message to

the joining one, communicating that their local databases are prepared for the

joining procedure. The joining node waits for all such messages. When it has

received all of them, it broadcasts a message to these nodes, indicating that it

expects the database updates.

4. The aforementioned nodes of the GlobData system reply to this message by

another one, including the contents of all objects whose OIDs can be found in

the hash table described in the first step and that are owned by the replying node.

Hence, the database updates are collected from different nodes.

Note that this recovery protocol can be used in both consistency protocols out-

lined here. Although the distributed collection of database updates as described

in the previous paragraph does not provide any advantage or inconvenience for

the FOB consistency protocol, it permits a fast collection when the updates are

propagated lazily (LOMP). Instead of using another approach for the FOB case,

we prefer to use the same recovery steps as in the lazy consistency protocol.

5. Later, the joining node applies all such updates using a newly created transac-

tion, which will be committed when the whole set of replies has been received.

6. Finally, the joining node broadcasts another message, indicating that the joining

process has concluded and allowing the blocked sessions to go on.

3.5 Provided Guarantees

During the description of the consistency modes provided by LOMP, it was announced a

subtle difference between the guarantees supplied by LOMP and the ones supplied by an

49

eager protocol.

The inability for LOMP to provide stronger guarantees is caused by the lazy essence of

the protocol. As any lazy protocol, in commit time, LOMP does not completely update, to

every node in the system, the modifications locally performed by a transaction. In contrast,

some of these updates are performed before the commit phase is completed.

As explained above, this asynchronism of the update propagation makes it possible for a

session to access outdated objects. The consistency manager must detect such situations,

and abort these untrusty transactions.

The mechanism to detect outdates can be completed by the use of versioning (or timestamp-

ing) techniques by comparing, for each accessed object, the version read by the transactions

with the latest version held in a synchronous replica for such object.

These techniques, as it can be easily seen, are based on the assumption that a transaction

can only recover the value of an object through straightforward, atomic ”read” operations

in base of object identifiers.

But the mentioned difference dwells in the capability for a real transaction to recover objects

through queries, based on the values of attributes. This makes it possible for a transaction to

alter the recovered set of object identifiers, resulted from the execution of a query in other

transaction, without interfere with the basic conception of the ”readset” of the querying

transaction.

Let’s see an example:

• Suppose an application where transaction T1 obtains a list with the employers of an

organization having a salary higher than a certain threshold (s0). The transaction

– first executes a query, obtaining the adequate object identifiers,

– and then recovers each object contained in the obtained collection.

Consider the obtained collection of oid’s as {o1, o2, o3}. Let’s also suppose that, in a

certain moment, the transaction T1 is executing the recovery of each object.

• During this recovery, and before T1 tries to commit, another transaction T2 is started,

and increases the salary of a certain employer o4 above the threshold salary (for in-

stance s0 + 100). Then, T2 starts its commit, and succeeds. Note that this can occur

because the isolation and consistency management are performed using the object as

the minimal database item.

• Now, the first transaction continues recovering objects, and concludes its execution

with a commit.

50

• The ”readset” of T1, as described above, only contains the object identifiers recovered

(i.e. {o1, o2, o3}), but the second transaction, completed before the termination of T1,

should introduce a new object in the set of identifiers recovered by T1, and thus, T1

should be aborted.

This should be the same effect that a similar scenario:

• Suppose the same application, where the same transaction T1 obtains the list of em-

ployers having a salary above s0. The transaction

– first executes a query, obtaining the adequate object identifiers,

– and then recovers each object contained in the obtained collection.

As above, consider the obtained collection of oid’s as {o1, o2, o3}. Let’s also suppose

that, in a certain moment, the transaction T1 is executing the recovery of each object.

• During this recovery, and before T1 tries to commit, another transaction T3 is started,

and decreases the salary of a certain employer o2 below the threshold salary (for

instance s0 − 100). Then, T3 starts its commit, and succeeds.

• Now, the first transaction continues recovering objects, and concludes its execution

with a commit.

• The ”readset” of T1, contains the object identifiers recovered (i.e. {o1, o2, o3}), and

the writeset of T3 is now {o2}. Thus, this transaction, completed before the termina-

tion of T1, now conflicts with the set of identifiers recovered by T1, and thus, T1 is

aborted.

These examples illustrate the nuance between a strict transaction isolation and the relaxed

transaction modes provided by LOMP, or any other Lazy Update Protocol.

In chapter 4, it will be justified the incompatibility of pure lazy update protocols and isola-

tion guarantees.

3.6 Related Work

Many work is currently performed around consistency management, replication and fault-

tolerant systems.

The use of a middleware to allow user application to gain access to a replicated database has

been already presented in [JPPMKA01] for clustering systems. The approach, uses eager

51

replication to provide a Fault-Tolerant, distributed database cluster providing good results

with respect to scalability and performance.

To achieve these three characteristics, it has been proposed the use of communication prim-

itives with particular properties, in order to take advantage of the guarantees these prim-

itives provide, and perform straightforward implementations of the adequate distributed

algorithms.

In particular, some contributions[AAES97] proposed the use of broadcast primitives for

the implementation of replication and consistency management for distributed systems. In

[KA98], several replication protocols are implemented, mainly using atomic broadcast as

the basic communication primitive. The idea has been also improved using different levels

of isolation to improve performance[KA00].

The use of group communication primitives, however, has been also shown as a solution for

the reconfiguration problem[KBB01]. Such proposals discuss reconfiguration issues arising

in replicated databases built using group communication primitives, and in particular those

that implement Virtual Synchrony.

Moreover, other proposals to achieve concurrency control and recovery have been also

shown, using less expensive communication primitives. In [SAS99, JPPMA00], reliable

FIFO and totally ordered multicast are used to implement replication and recovery. This

kind of multicast allows all the replicas to have the same “view” of the external events, and

they are observed in the same order at every system node.

These kinds of techniques often have the particularity of needing specific scheduling to

execute the requests in the system nodes. The requirement of such schedulers often consist

on determinism guarantees or constraints.

Another technique used to develop replicated data services is to use Consensus[Sch90,

Lam96] to complete some of the tasks included in such algorithms.

Distributed consensus protocols are used when a set of processes need to agree upon the

outcome of an operation. Notion of majority, quorums, etc, are commonly used by these

consensus protocols, and in order to establish these notions, many of them need to know

some information about which processes are involved in the execution of the protocol.

Optimistic consistency protocols have been also widely discussed[Alo98, JP03]. They have

proven to be a good approach with respect to performance, but at the high cost of increasing

the abortion rate of the system, dealing with a degradation of the achieved performance

improvement (and even the saturation of the system) for environments where conflicts can

often arise for the executing transactions. Some alternatives have been pointed to relax

the inconveniences of such protocols, often based on reordering the incoming requests of

any system. Other proposals consist on the use of the concept of “pre-commits” for the

52

transactions locally committed, but for which the update propagation has not been already

completed.

In summary, the election of the replication model[JPAK01] is a problem by itself, that has

been also treated widely in the literature.

53

54

Chapter 4

About the Incompatibility Between

Laziness and One-Copy

Serializability

In section 3.5, an intuitive scenario was presented to justify the impossibility of LOMP to

provide strict transaction guarantees.

The current chapter includes a wide justification about the relaxation in the consistency

modes provided by an optimistic protocol, when it wants to propagate the local updates in

a lazy style.

To do this, the chapter is organized as follows: section 4.1 presents the basic formalisms

used in further argumentations; in section 4.2, the basic semantics traditionally used for the

specification of an optimistic lazy protocol is described, and examples are also included;

then, section 4.3 presents the impossibility for such models to provide strict serializability

when queries are not included in the, and an extension of this semantics is provided in

order to include the conflicting scenarios. There are also provided a number of clarifying

examples; finally, section 4.4 provides a reasoned result about the derived consequences of

using lazy update protocols for the extended semantics, and section 4.6 summarizes with

some conclusions.

4.1 Used Formalisms

To model a transactional environment, it is needed to formalize a number of concepts:

• Database Item

In our model, the minimal unit of information stored in the database is an object. This

means that each object in the database can be referenced with a one-to-one identifier.

55

• Transaction: we will consider a transaction as a number of operations, that have to

be executed inside a transactional context; i.e.: following a number of restrictions,

described by the ACID properties:

– Atomicity, making indivisible the effects of a transaction. The phrase ”all or

nothing” precisely describes this property.

– Consistency, ensuring that any item update in a database is consistent with up-

dates to other items in the same database.

– Isolation, [GR93] needed when there are concurrent transactions in the system;

i.e. transactions that occur at the same time, working with shared objects. Guar-

anteeing isolation consists of preventing conflicts between concurrent transac-

tions accesses.

– Durability, enforcing the maintenance of the updates of committed transactions.

That is, avoiding any lost of these updates. To provide durability, a system must

be able to recover updates performed by any committed transaction if either the

system or the storage media fails.

In this section, we will center the attention on the Isolation property, because this

is the property that depends in a strongest way on the synchronism of the update

propagation algorithm.

• Operation

To illustrate the concept of isolation, we need to resort to the concept of operation. A

transaction can be defined as a sorted sequence of operations over a set of information

items (e.g. the database).

So, we need to provide a comprehensive list of the operations that can be included in

a transaction. The following is a simplified list of such operations:

– read(object-id)→value

– write(object-id,newvalue)

So, it can be seen that the read operation obtains the value of an object stored in the

database, and the write operation updates the value of an object in the local database.

• Isolation In order to categorize the provided guarantees of a system, let’s suppose

two transactions (T1 and T2) being executed concurrently. It is possible to distinguish

four isolation levels:

– degree 0. transaction T1 does not overwrite data updated by T2 (”dirty data”).

– degree 1. Provides the guarantees of degree 0, plus T1 does not commit any

write operation until it completes all its write operations (until the end of T1

arises).

56

– degree 2. Provides the guarantees of degree 1, plus T1 does not read dirty data

from T2.

– degree 3. Provides the guarantees of degree 2, plus T2 do not dirty (i.e. write)

data read by T1 before the T1 commits.

These ”isolation levels” were originally described in [GR93] as ”degrees of consis-

tency”.

The isolation concept can be enunciated as the following property:

”Two transactions T1 and T2 being executed concurrently (and working with shared

objects) can complete their commit phases if and only if there can be found a serial-

ized order for the execution of both transactions.”

Let’s see an example of the maintenance of the isolation property. Suppose three

transactions T1, T2 and T3 being executed concurrently. Let’s consider these transac-

tions as the following sequences of operations:

– T1 = read(o1), read(o2), read(o3)

– T2 = read(o2), write(o2)

– T3 = read(o3), write(o3)

Now, consider a particular timing for the execution of these transactions:

r(o2)

r(o1) r(o2) r(o3)

w(o2)

r(o3) w(o3)

time

T2

T1

T3

r(o2) w(o2)

T2
r(o1) r(o2) r(o3)

T1
r(o3) w(o3)

T3

r(o2) w(o2)

T2
r(o1) r(o2) r(o3)

T1
r(o3) w(o3)

T3

Figure 4.1: Isolation Example.

Figure 4.1 shows how the particular occurrence of the execution of T1, T2 and T3 can

be serialized in two different ways with the same results for every transaction. Note

that transactions T2 and T3 accesses different objects. So, both transactions, although

they are executed at the same time, can be serialized in any order between them.

In contrast, figure 4.2 shows an example where there is a unique serialization follow-

ing the isolation property. In this figure, three transactions are started:

57

r(o2)

r(o1) r(o2) r(o3)

w(o2)

r(o3) w(o3)

time

T5

T4

T6

r(o2) w(o2)

T5
r(o1) r(o2) r(o3)

T4
r(o3) w(o3)

T6

r(o3)

r(o3)

Figure 4.2: Isolation Example 2.

– T4 = read(o1), read(o2), read(o3)

– T5 = read(o2), read(o3), write(o2)

– T6 = read(o3), write(o3)

Finally, figure 4.3 shows an example where there cannot be found a serialization of

the transactions following the isolation property. The transactions involved in the

figure are:

– T7 = read(o2), read(o3), write(o2)

– T8 = read(o2), read(o3), write(o3)

r(o2) w(o2)

time

T7

T8

r(o2) w(o3)

T8
r(o2) r(o3) w(o2)

T7

r(o3)

r(o3)

r(o2) w(o3)r(o3)

r(o2) w(o2)

T7
r(o2) r(o3) w(o3)

T8
r(o3)

Figure 4.3: Isolation Example 3.

In these examples, we have shown that, when concurrent transactions are executed, it

is possible for the system to be unable to guarantee the isolation property. In those sit-

uations, the system may abort a number of transactions to preserve the serializability

of the committed transactions, and thus, the isolation property in the system.

58

To calculate the serializability of two transactions, two common approaches have

been adopted: pessimistic approaches are based on the use of blocking mechanism

(usually locks) to avoid the co-existence of transactions that conflicts with respect to

their accessed objects; on the other hand, optimistic approaches allow transactions

to proceed without blocking, and needs a process of “reconciliation” usually during

the commit phase that only allow to succeed the commit to a transaction that did not

access to any conflicting object. To do this check, optimistic approaches use to be

based on version numbers (or timestamps) associated to each accessed object, and

increasing this version each time the object changes.

Pessimistic approaches avoid a transaction to proceed when it is trying to access to an

object accessed in a conflicting way by another transaction. This solves the problem

of isolation by blocking temporally the execution of the transaction, but it introduces

the possibility of ”deadlocks” i.e. two transactions blocked one on an object locked

by another transaction. Deadlocks can also involve more than two transactions. When

a deadlock is encountered, the system must abort one or more of the involved trans-

actions.

In contrast, the optimistic approach allows any transaction to proceed, until the trans-

action enters the commit phase. Then, the timestamps of every object accessed by

the transaction are compared to the latest timestamps stored in the database. If

the database holds a newer version of any accessed object, the transaction must be

aborted. The advantage of the optimistic approach consists of the reduction of the

transaction time (they are never blocked). The disadvantage is that it is more possible

for a transaction to be aborted at commit time.

The rest of the chapter will be centered in the optimistic approach, making use of any kind

of version numbers (or timestamps).

4.2 Basic Semantics of Lazy Update Transactional Environments

This section includes a basic formalization of a database, and its involved elements. These

will be used to formalize the property of isolation (serializability) from the classic point of

view.

4.2.1 General concepts

Let’s see a number of formalizations for the basic concepts in database semantics.

59

Database

A database B can be defined as:

B = {O(B), VB, wB} where:

O(B) = {oi}, oi objects contained in the database B

VB : O(B)→ N,function providing ”Current object version in B”

wB : O(B)→ V,function providing ”Current object value in B”

We are considering V as the set of all the possible values that can get any object in the

database.

Transaction

A database transaction T can be defined as:

T = {R(T),W (T), VT , wT } where:

R(T) = {ri}, ri readset of (set of objects read by) the transaction T

W (T) = {wi}, wi writeset of (set of objects written by) the transaction T

VT : R(T)→ N, function providing ”Object version read by T”

wT : W (T)→ V, function providing ”Object value written by T”

Every transaction satisfies that: W (T) ⊆ R(T)

Note that this formalization assumes that the amount of existing objects in the database

is unchanged. This does not mean that the model excludes deletions or insertions of new

objects. In contrast, the model aims to consider a database object as unrepeatable. Thus, a

deleted object can be considered as ”present, but not usable” for further transactions. The

insertion can be considered as the first use of a ”previously existing object”. This will be

discussed in section 4.2.4.

Initial Database

A database B0 is considered initial when:

B0 = {O(B0), VB0 , wB0} satisfying:

∀o ∈ O(B) : VB(o) = 0,

60

Inconsistent Database

The notation for the Inconsistent Database will be Θ. Further subsections will describe the

situations that transforms a correct database into Θ.

Applying a Transaction over a Database

When a transaction T is applied in a database B, the result can be considered as a new

instance of database (B′):

T [B] = B′ = {O(B′), VB′ , wB′} being:

O(B′) = O(B)

∧
∀o ∈ O(B) :

o ∈W (T)→ VB′(o) = VB(o) + 1 = VT (o) + 1 ∧ wB′(o) = wT (o)

∧
o /∈W (T)→ VB′(o) = VB(o) ∧ wB′(o) = wB(o)

in other words:

O(B′) = O(B)

∧
∀o ∈ O(B) :

VB′(o) =

{
VB(o) , o /∈W (T)

VB(o) + 1 = VT (o) + 1 , o ∈W (T)
∧
wB′(o) =

{
wB(o) , o /∈W (T)

wT (o) , o ∈W (T)

Applicability of a Transaction to a Database

When a transaction T is applicable to a database B, the result (i.e. B ′ = T (B)) must be a

correct database (B′ 6= Θ). This principle is formalized as the basis for the correct progress

of a database:

T (B) =

{
T [B] , B 6= Θ ∧ ∀o ∈ R(T) : o ∈ O(B) ∧ VT (o) = VB(o)

Θ , in other case

4.2.2 Commutability of Transactions

To formalize the isolation property, we introduce now the concept of commutability.

61

Two transactions T1 and T2 are commutable when it is satisfied:

T1(T2(B)) = T2(T1(B))

Intuitively it can be seen that:

T1(T2(B)) = T2(T1(B))←→ (R(T2) ∩W (T1) = ∅) ∧ (R(T1) ∩W (T2) = ∅)

Proof T2(T1(B)) = {O(B′′), VB′′ , wB′′} where:

O(B) = O(B′) = O(B′′)

∧
∀o ∈ O(B) (1.1)

VB′′(o) = VB(o) +

{
0 , o /∈W (T1)

1 , o ∈W (T1)
+

{
0 , o /∈W (T2)

1 , o ∈W (T2)
(1.1.1)

∧

wB′′(o) =

wB(o) , o /∈W (T2) ∧ o /∈W (T1)

wT1(o) , o /∈W (T2) ∧ o ∈W (T1)

wT2(o) , o ∈W (T2))

(1.1.2)

∧
∀o ∈ R(T1) (1.2)

o ∈ O(B)

∧
VT1(o) = VB(o)

∧
(from the definition of T(B). . .) ∀o ∈ R(T2) (1.3)

o ∈ O(B)

∧
VT2(o) = VB′(o) =

{
VB(o) , o /∈W (T1)

VT1(o) , o ∈W (T1)

in the same way,

T1(T2(B)) = {O(C ′′), VC′′ , wC′′} where:

O(B) = O(C ′) = O(C ′′)

∧
∀o ∈ O(B) (2.1)

VC′′(o) = VB(o) +

{
0 , o /∈W (T2)

1 , o ∈W (T2)
+

{
0 , o /∈W (T1)

1 , o ∈W (T1)
(2.1.1)

∧

wC′′(o) =

wB(o) , o /∈W (T1) ∧ o /∈W (T2)

wT2(o) , o /∈W (T1) ∧ o ∈W (T2)

wT1(o) , o ∈W (T1))

(2.1.2)

∧

62

∀o ∈ R(T1) (2.2)

o ∈ O(B)

∧
VT1(o) = VC′(o) =

{
VB(o) , o /∈W (T2)

VT2(o) , o ∈W (T2)

∧
∀o ∈ R(T2) (2.3)

o ∈ O(B)

∧
VT2(o) = VB(o)

We can now express the commutability as:

T1(T2(B)) = T2(T1(B))←→ ((1.1) = (2.1)) ∧ ((1.2) = (2.2)) ∧ ((1.3) = (2.3))

The first subexpression,

(1.1) = (2.1)←→ ∀o ∈ O(B) : VC′′(o) = VB′′(o) ∧ wC′′(o) = wB′′(o)

satisfying ∀o ∈ O(B) (3.1)

VB′′(o) = VB(o) +

{
0 , o /∈W (T1)

1 , o ∈W (T1)
+

{
0 , o /∈W (T2)

1 , o ∈W (T2)
(from 1.1.1)

=

VC′′(o) = VB(o) +

{
0 , o /∈W (T2)

1 , o ∈W (T2)
+

{
0 , o /∈W (T1)

1 , o ∈W (T1)
(from 2.1.1)

from (1.1.2) and (2.1.2), we can see that: ∀o ∈ O(B) (3.2)

wB′′(o) =

wB(o) , o /∈W (T2) ∧ o /∈W (T1)

wT1(o) , o /∈W (T2) ∧ o ∈W (T1)

wT2(o) , o ∈W (T2))

(from 1.1.2)

=

wC′′(o) =

wB(o) , o /∈W (T1) ∧ o /∈W (T2)

wT2(o) , o /∈W (T1) ∧ o ∈W (T2)

wT1(o) , o ∈W (T1))

(from 2.1.2)

←→
∀o ∈ O(B) : ¬(o ∈W (T1) ∧ o ∈W (T2))

For the second expression: (1.2) = (2.2)←→

∀o ∈ R(T1) (3.3)

o ∈ O(B)

∧
VT1(o) = VB(o)

=

o ∈ O(B)

∧

VT1(o) =

{
VB(o) , o /∈W (T2)

VT2(o) , o ∈W (T2)

←→

63

∀o ∈ R(T1) : o /∈W (T2)

And the third expression: (1.3) = (2.3)←→

∀o ∈ R(T2) (3.4)

o ∈ O(B)

∧
VT2(o) = VB(o)

=

o ∈ O(B)

∧

VT2(o) =

{
VB(o) , o /∈W (T1)

VT1(o) , o ∈W (T1)

←→

∀o ∈ R(T2) : o /∈W (T1)

Thus, from (3.1), (3.2) and (3.3) it follows that:

T1(T2(B)) = T2(T1(B))←→

∀o ∈ O(B) : ¬(o ∈W (T1) ∧ o ∈W (T2))

∧
∀o ∈ R(T1) : o /∈W (T2)

∧
∀o ∈ R(T2) : o /∈W (T1)

and thus,

T1(T2(B)) = T2(T1(B))←→

∀o ∈ R(T1) : o /∈W (T2)

∧
∀o ∈ R(T2) : o /∈W (T1)

being it equivalent to the expression: (4.1)

T1(T2(B)) = T2(T1(B))←→

R(T1) ∩W (T2) = ∅
∧
R(T2) ∩W (T1) = ∅

@

We have proven that the condition for a couple of transactions to be commutable over a

database can be summarized as a comparison between its readsets and writesets. The fol-

lowing subsections will introduce the concept of consistency.

4.2.3 Causal Dependency

Once commutability is defined, we can formalize concepts as causal dependency in terms

of readsets and writesets.

64

First Order Causal Dependency

We express the causal dependency of two transactions T1 and T2 using its manipulated

objects:

”Considering two transactions T1 and T2, acting over a database B, the transaction T2

causally depends at first order on T1 (and we express this as T1
1→B T2) when the writeset

of T1 is included in the readset of T2”.

(T1
1→B T2)←→W (T1) ⊆ R(T2)

An Interesting Property of Causal Dependency

From (4.1) it can be seen that:

Considering a correct database (B 6= Θ), and two transactions T1 and T2 applicable to

B, these two transactions are not commutable over B if and only of there exists a causal

dependency between them.

T1(T2(B)) = T2(T1(B))←→ ((T1

1
6→B T2) ∧ (T2

1
6→B T1))

That is:

T1(T2(B)) 6= T2(T1(B))←→ ((T1
1→B T2) ∨ (T2

1→B T1))

General Causal Dependency

Consider a given database B, and two transactions Ti and Tj . In general, we will say that

Tj causally depends on Ti (and we will express it as Ti
∗→B Tj) if there exists a sequence

of causal dependencies (at first order) between Ti and Tj .

(Ti
∗→B Tj)←→ ∃{T1, . . . , Tk} : Ti

1→B T1
1→B1 . . .

1→Bk Tk
1→Bk Tj

4.2.4 Isolation

This subsection provides a formalism for the isolation property, using the causal dependency

to build a number of expressions.

65

Causal Possibility

A set of transactions S = {Ti} is causally possible in a database B (and we express this as

{Ti}(B) 6= Θ) if and only if there cannot be found in S two transactions with two (mutual)

causal dependencies, and if for any transaction contained in S, it is possible to find in S a

sequence of transactions applicable over B (resulting B ′), and being it possible to apply T

to the resulting database B′.

{Ti}(B) 6= Θ←→

6 ∃Tj , Tk ∈ S : Tj
∗→Bj Tk ∧ Tk

∗→Bk Tj

∧
∀T ∈ S : ∃T1, . . . Tr ∈ S : T (T1(. . . (Tr(B)) . . .) 6= Θ

Subset of Causally Dependent Transactions

Consider a set of transactions S = {Ti}, and another transaction T 6∈ S. We will name

as subset (of S) of transactions for which T is causally dependent (and this will denote

as ∗→ (S, T)), to the subset of S containing all the transactions Tj for which T causally

depends on.

∗→ (S = {Ti}, T) = S′ = {Tj} : S′ ⊆ S ∧ (∀Ti ∈ S′ : Ti ∗→ T)

Last Transaction for an Object ”o”

Consider a set of transactions S = {Ti}. We will name as Last Transaction for a certain

object ”o” to the last transaction in S that modified such object.

T>o (S = {Ti}) = T ∈ S : o ∈W (T)∧ 6∃Tj ∈ S, Tj 6= T : o ∈W (Tj) ∧ T ∗→B Tj

Sub-Database of Interest

Consider a database B, and S a set of transactions S = {Ti} applicable in B. We will

name as Sub-Database (of B) of Interest for S to the subset of B formed only with objects

contained in the readset of some transaction in S.

I(B,S = {Ti}) = B′ = {O, V,w} :

O =
⋃
Ti∈S R(Ti)

V (o),o∈O = VB(o)

w(o),o∈O = wB(o)

66

Isolated Application

Consider a database B, and S a set of transactions S = {Ti} causally applicable over B.

We will name Isolated application of S over B to a new database A(B,S) resulting from

the application of S over B with causal correction.

A(B,S = {Ti}) = B′ = {O, V,w} :

O = O(B)

V (o),o∈O =

{
VB(o) 6 ∃Ti : Ti = T>o (S)

VTi(o) ∃Ti : Ti = T>o (S)

w(o),o∈O =

{
wB(o) 6 ∃Ti : Ti = T>o (S)

wTi(o) ∃Ti : Ti = T>o (S)

Isolation

Consider the database B0, and S = {Ti} a set of transactions applicable in an isolated way

over B0 (and resulting B). Consider a new transaction T applicable over B.

The application of S∪{T} overB0 is equivalent (with respect to the sub-database of interest

for ∗→ (S, T) ∪ {T}) to the application of ∗→ (S, T) ∪ {T} over B0.

In other words: if it is applied, over a database B0, a set of transactions S, and it is applied

to the result a new transaction T , it is obtained as a result a new database that, with respect

to the causability of T , is equivalent to the application of the subset of S ∪ {T} causally

interdependent.

I(A(B0, S ∪ {T}), ∗→ (S, T) ∪ {T}) = I(A(B0,
∗→ (S, T) ∪ {T}), ∗→ (S, T) ∪ {T})

Proof

Consider B a database, and I1 the subset of the database accessed by S ∪ {T}.

I1 = {O1, V1, w1} :

O1 =
⋃
Ti∈S∪{T}R(Ti)

V1(o) =

{
VB0 , 6 ∃Ti : Ti = T>o (S ∪ {T})
VTi ,∃Ti : Ti = T>o (S ∪ {T})

,∀o ∈ O1

w1(o) =

{
wB0 , 6 ∃Ti : Ti = T>o (S ∪ {T})
wTi ,∃Ti : Ti = T>o (S ∪ {T})

,∀o ∈ O1

67

In the same way, consider I2 the subset of the database accessed by ∗→ (S, T) ∪ {T}.

I2 = {O2, V2, w2} :

O2 =
⋃
Ti∈ ∗→(S,T)∪{T}R(Ti)

V2(o) =

{
VB0 , 6 ∃Ti : Ti = T>o (

∗→ (S, T) ∪ {T})
VTi ,∃Ti : Ti = T>o (

∗→ (S, T) ∪ {T})
,∀o ∈ O2

w2(o) =

{
wB0 , 6 ∃Ti : Ti = T>o (

∗→ (S, T) ∪ {T})
wTi ,∃Ti : Ti = T>o (

∗→ (S, T) ∪ {T})
,∀o ∈ O2

Obtaining the expression:

I1 = I2 ←→ ∀o ∈ R(Ti), Ti ∈ ∗→ (S, T) ∪ {T} : T>o (S ∪ {T}) = T>o (
∗→ (S, T) ∪ {T})

Let’s see in which conditions the expression is satisfied ∀o ∈ R(Ti), Ti ∈ ∗→ (S, T) ∪ {T}:

T>o (S ∪ {T}) = Tq ∈ S ∪ {T} : o ∈W (Tq) ∧ (a.1)

6 ∃Ts 6= Tq, Ts ∈ S ∪ {T} : o ∈W (Ts) ∧ Tq ∗→B Ts

T>o (
∗→ (S, T) ∪ {T}) = Tk ∈ ∗→ (S, T) ∪ {T} : o ∈W (Tk) ∧ (a.2)

6 ∃Ts 6= Tk, Ts ∈ ∗→ (S, T) ∪ {T} : o ∈W (Ts) ∧ Tk ∗→B Ts

In addition:

(
∗→ (S, T) ∪ {T}) ⊆ (S ∪ {T})

From (a.1) and (a.2) we can obtain:

Tq = T>o (S ∪ {T}) −→ o ∈W (Tq) −→ o ∈ R(Tq)

Tk = T>o (
∗→ (S, T) ∪ {T}) −→ o ∈W (Tk)

}
−→

{Tk → Tq} −→

Tq ∈ ∗→ (S, T)

∨
Tq = T

−→ Tq ∈ ∗→ (S, T) ∪ {T}

Let’s suppose that Tk 6= Tq: then, it will be satisfied (considering that Tk is the last appli-

cable transaction of ∗→ (S, T) ∪ {T}, and Tq is the last applicable transaction of S ∪ {T})
that:

Tq /∈ ∗→ (S, T) ∪ {T}

and thus:

Tq = Tk

that conflicts with the hypothesis. Finally,

I(A(B0, S ∪ {T}), ∗→ (S, T) ∪ {T}) = I(A(B0,
∗→ (S, T) ∪ {T}), ∗→ (S, T) ∪ {T})

@

68

This proves the condition for a database to progress from a consistent instance into another

consistent instance.

Completing the Model with Insertions and Deletions

Up to this point, we have worked with transactions, but there are not specified the operations

contained in a transaction.

We will now consider all the operations that are possible in this model, and their effects

over the transaction:

• Read operation, increases the readset of a transaction.

• Write operation, increases the writeset of a transaction. It must be preceded of a

read operation on the same written objects.

• Deletion operation, is a particular case of write operation. This is the last operation

over the involved object.

• Insertion operation, is the second particularity of write operation. This is the first

operation over the involved object. This assumes that a initial database contains every

object accessed in the existence of the system.

The included definition for Insertion and Deletion is a simplification of the complete model,

but does not introduce differences from a model containing specific behaviors for these

operations.

We can consider the insertion not only as the increase of the readset and writeset of the

transaction, but also as the increase of the object set of the database. The results exposed in

this section keep their correctness, because no previous transaction was able to access the

new object.

In the same way, a deletion can be considered to decrease the object set of the database (in

addition to the increase of the readset and writeset of the transaction). The results exposed

in this section also keep their correctness, because no further transaction will access to the

deleted object.

4.2.5 Laziness

As it can be seen, the classic model includes the ”read” operation as the unique way to

access to the value of an object. In this sense, we can now express the concept of laziness

in the next way:

69

When a transaction terminates all its operations, it initiates the commit phase. During this

phase, the system must determine if the transaction can succeed the commit, or if it must be

aborted to preserve the isolation property.

If the system determines that the transaction can succeed the commit, for each modified

object oi, a lazy protocol propagates the update of such object in the following way:

• during the commit phase, the change made by the transaction over oi is propagated to

the synchronous set of nodes for such object. In a strictly lazy protocol, this set only

includes the active node.

• beyond the commit phase, the changes are eventually propagated to the rest of nodes

(i.e. the asynchronous set of replicas for oi).

In order to determine the necessity for a committing transaction to be aborted, this mecha-

nism makes it necessary for the protocol to check, for each object accessed by the transac-

tion, the version of such objects contained in the readset. Thus, the causality must be kept,

and the properties of consistency and isolation can be also guaranteed. In such situations, a

common lazy protocol should update the conflicting objects in the local database, in order

to reduce the number of further abortions.

In addition, the checks performed by the protocol only consider, for each object oi contained

in the readset, one of the synchronous set of nodes of oi, due to the guarantees provided by

the ”synchronism” of the update phase.

Note that the checks performed by the protocol make use of the results presented above

for the definition of isolation and consistency, and must be done at commit time for each

transaction.

4.2.6 Formalization of Laziness

Due to the possibility for each node to hold different versions for the same object in a certain

moment, we need to extend the basic definition of Database, in order to characterize this.

Database Extension

So, keeping the properties shown above, a database can be reformulated as:

B = {O{1..K}, V, w}

70

where O{i} contains the object instances maintained in the node Nk. With this approach,

the object oi in an eager model is separated now in o1
i . . . o

K
i , being K the number of nodes

in the system.

Meta-Transaction

Now, we must extend the concept of transaction to fit our proposal:

Γ[B] = B′ = {O{1..K}, V ′, w′}

being Γ a meta-transaction. As defined in terms of transaction, Γ will keep the properties

defined above for the basic transactions.

The possible meta-transactions in our model are described in further subsection.

Node Projection

To formalize the meta-transactions, we will use the concept of Node Projection:

R(T)|k = {o{k}i : oi ∈ R(T)}
W (T)|k = {o{k}i : oi ∈W (T)}
V (T)|k = V (o

{k}
i)

w(T)|k = w(o
{k}
i)

In summary, the projection of an element (a readset, writeset, version application, or value

application) consists of a mapping from objects (without node characterizations) into in-

stances of those objects, characterized in a particular node.

Γ as “Transaction Execution”

A meta-transaction Γ can symbolize the execution of a transaction T , initiated in the node

Nk (consider T = {R(T),W (T), V (T), w(T)}).

In this case, the semantics of the meta-transaction is described as:

Γ = T {k} = {R(T)|k,W (T)|k, V (T)|k, w(T)|k}

and

T {k}[B] = B′ = {O{1..K}, V ′, w′}

71

where, applying the definition of transaction:

∀o{k}i ∈W (T)|k ⇒

V ′(o{k}i) = VT (oi) + 1

w′(o{k}i) = wT (oi)

∀oj 6∈W (T)|k ⇒
{
V ′(oj) = V (oj)

w′(oj) = w(oj)

Γ as “Update Propagation”

A meta-transaction Γ can also symbolize the propagation of one of the updates performed

by a transaction T {k} (initiated in the node Nk), to another node Nq . We consider that,

for each object o in the writeset of the transaction T {k}, it will be performed a propagation

to each node in the rest of the system (Nj 6=k). We denote the propagation to a node Nq

of the object oi updated by transaction T {k} (initiated in node Nk), with the expression

P {q}(T {k}, oi).

So, the semantics of the meta-transaction is described as:

Γ = P {q}(T {k}, o) = {{o{k}}, {o{q}}, VT {k} , wT {k}}

and

P {q}(T {k}, o)[B] = B′ = {O{1..K}, V ′, w′}

where, applying the definition of transaction:

oj = o{q} ⇒
{
V ′(oj) = VT {k}(oj) + 1

w′(oj) = wT {k}(oj)

∀oj 6= o{q} ⇒
{
V ′(oj) = V (oj)

w′(oj) = w(oj)

Note that the readset of P {q}(T {k}, oi) is established as {o{k}} in order to express the causal

dependency T {k} ∗→ P {q}(T {k}, oi). This will be used in further sections.

Example

To illustrate the behavior of an eager system, using this model, suppose a system with K

nodes, where a transaction T is initiated in Nk, and updates two objects (o1 and o2).

Now -as the propagation is performed in an eager way, and transaction completion is atomic-

no other transaction can be initiated in the system during the propagation.

The following is a stack representation of the different operations applied one over the

72

previous:

T {k}[B]

P {1}(T {k}, o2)

P {1}(T {k}, o1)

P {2}(T {k}, o2)

P {2}(T {k}, o1)

. . .

P {k−1}(T {k}, o2)

P {k−1}(T {k}, o1)

T
{q}
B

initiation in Nk of T over a Database B

propagation to N1 of o2

propagation to N1 of o1

propagation to N2 of o2

propagation to N2 of o1

. . .

propagation to Nk−1 of o2

propagation to Nk−1 of o1

initiation in Nq of another transaction TB

Age of a Database (Time of an Operation)

To formalize laziness, we will use the concept of age of a database (or time of an operation).

This concept can be expressed as the number of operations, applied subsequently (one over

the result of another) from an original database B0, to the current database B.

Formalized with a recursion:

t(B) =

{
0 , B = B0

1 + t(B′) , B = Γ[B′]

Propagation Time

Suppose a transaction T {q}, initiated in Nq , and containing in its writeset oi.

With the principle of time of an operation, we formalize the propagation time to the node

Nk of the object oi that was updated by T {q} at Nq as the time of the operation Γ that

symbolizes the propagation P {k}(T {q}, oi):

pt{k}(Γ[B], T {q}, oi) =

t(T {q}) if q = k

t(B) + 1 if Γ = P{k}(T{q}, oi)

pt{k}(B, T {q}, oi) other case

pt{k}(B0) =∞

Intuitively, when a transaction is initiated in Nk, the propagation time of the transaction for

this node is 0. For the rest of the nodes, if there exists a propagation operation P to the

node Nq, the propagation time to the node Nq of the transaction corresponds to the time of

this operation P . Finally, if there not exists a propagation for the transaction to a node, the

propagation time for this node is∞.

73

This expression can be extended for every object contained in the writeset of a transaction.

Thus, we obtain an expression to determine the time for a transaction T {q} to be entirely

propagated to the node Nk:

pt{k}(B, T {q}) = MAXoi∈W (T {q})

(
pt{k}(B, T {q}, oi)

)

We extend again this expression, providing a formalization for the time of the complete

propagation for a transaction T {q} to every node in the system:

pt(B, T {q}) = MAXn∈{1..K}
(
pt{n}(B, T {q})

)

Laziness

In these terms, we can now formalize the concept of laziness of a system as the elapsed time

between the application of a transaction T {q} in its initiating node (Nq), and the complete

propagation of such transaction:

Ψ(B, T) = pt(B, T)− t(B, T)

A system must be considered as lazily updated when this difference exceeds the minimum

value ΨE(T):

ΨE(T) = (K − 1)× |W (T)|

Note that ΨE is the minimum elapsed time in an eager system, because in such systems,

when a transaction TA is applied, it cannot be applied any transaction TB before all the

propagations are completed for each object in the writeset of TA (i.e. |W (T)| objects), and

for each node different to the initiating one (i.e. K − 1 nodes).

Example of Laziness

To illustrate the behavior of a lazy system, using this model, suppose a system with K = 3

nodes, where a transaction T is initiated in Nk, and updates two objects (o1 and o2).

Before the updates made by T are completely propagated, transaction TB can be applied

(with some conditions). This can be represented as a stack diagram:

t(T)

t(T) + 1

pt{1}(T) = t(T) + 2

t(T) + 3

t(T) + 4

pt(T) = pt{2}(T) = t(T) + 5

T {3}[B]

P {1}(T {k}, o2)

P {1}(T {k}, o1)

P {2}(T {k}, o2)

T
{2}
B

P {2}(T {k}, o1)

initiation in N3 of T over B

propagation to N1 of o2

propagation to N1 of o1

propagation to N2 of o2

initiation in N2 of TB

propagation to N2 of o1

74

In the example, it can be seen that pt(T) > t(T) + 4 (note that 4 = (K − 1) × |W (T)|).
This is caused by the intrusion of the transaction TB during the propagation process. This

situation models a lazy update propagation system.

Checking Serializability in Lazy Systems

In section 4.2.4, a condition to progress from a consistent database into another was proved.

Now, we can apply these result to our lazy model.

Thus, consider a system with two nodes (i.e. K = 2), and two transactions TA and TB with

TA
1→B TB (for example, consider that R(TB) = W (TA) = {o0, o1}).

Now, suppose that the propagation of TA has not completed when TB is applied. The

sequence of operations can be represented with a stack diagram:

T
{0}
A [B]

P {1}(T {0}A , o2)

T
{1}
B

P {1}(T {0}A , o1)

initiation in N0 of TA over a Database B

propagation to N1 of o1

initiation in N1 of another transaction TB

propagation to N1 of o0

Now, reconsider the previous stack, expressing the readsets and writesets of each operation.

This will help us to depict the causal dependencies for the operations:

T
{0}
A [B]

↙
P {1}(T {0}A , o2)

↙
T
{1}
B

↖↖
P {1}(T {0}A , o1)

R = {o{0}0 , o
{1}
1 }

R = {o{0}0 },W = {o{1}0 }

R = {o{1}0 , o
{1}
1 }

R = {o{0}1 },W = {o{1}1 }

Where we find a causal dependency T {1}B
1→ P {1}(T {0}A , o1), that makes the resulting se-

quence inconsistent, as seen in 4.2.4.

Despite the conflicting operation is P {1}(T {0}A , o1), this operation must be applied in the

system, because it is a propagation of a previously applied transaction (TA). So, the system

should avoid this kind of situations to exists. To do this, the transaction TB should be

aborted, in order to avoid it to be considered in the sequence before every object accessed

by TB is updated in N1.

Thus, the system should check, for each transaction TB , if its application will make it im-

possible to apply some update propagation (in our example P {1}(T {0}A , o1)), due to a causal

75

dependency.

In other words: it is not possible to apply a transaction TB over the system if there exists

any object from its readset that is not updated in the node where TB is initiated:

∀oi ∈W (T
{q}
B) : ∀TL : oi ∈W (TL)→ pt(TL) < t(TB)

Proof

Let T {q}B be a transaction for what the system is questioning its abortion.

T
{q}
B = (R(TB)|q,W (TB)|q, V (TB)|q, w(TB)|q)

If there exists a transaction T kL (initiated in node Nk) that modified one of the objects ac-

cessed by TB (let oi be this object), and it has not already propagated the update to the node

where TA was initiated (i.e. Nq), then it will satisfied that:

oi ∈ R(T
{q}
b) ∧ oi ∈W (T

{k}
L) ∧ pt{q}(B, T {k}L , oi) ≥ t(T {q}B)

thus, from the definition of pt(B, T, o), this implies that:

k 6= q

∧
6∃Γi : P {q}(B, T {k}L , oi) = Γ ∧ t(Γ) < t(T

{q}
B) with T

{q}
B

∗→ Γ

The justification of the first subexpression is that if k = q, then both transactions have

been initiated in the same node, and the definition of pt says that it will be satisfied that

pt{q}(B, T {q}L , oi) = t(T
{k}
L < t(T

{q}
B .

The second subexpression indicates is justified with the readset and writeset of T {q}B and Γ

respectively: the object oi is contained in both sets R(T
{q}
B) and W (Γ), and so it is easy to

see that R(T
{q}
B) ∩W (Γ) 6= ∅, thus, this satisfies the causal dependency T {q}B

∗→ Γ.

From these results we can obtain the conclusion that eventually, there will be applied a

transaction Γ corresponding with the propagation of oi updated by the transaction T {k}A to

the node Nq. This transaction, will conflict with the questioned transaction T {q}B , and this

will not preserve isolation and consistency. This makes it not applicable the hypothesis of

the proof, and demonstrates that:

T
{q}
B can be applied if

∀oi ∈W (T
{q}
B) : ∀TL : oi ∈W (TL)→ pt(TL) < t(TB)

@

76

4.3 Extending the Basic Semantic with Queries

Up to this point, we have presented the classic model describing concurrent transactions

over a database, providing a formalization of consistency and isolation, and the application

of such results to lazy update consistency protocols.

Nevertheless, the set of operations included in this classic model is not a realistic enumera-

tion. We can illustrate this with a simple assertion:

”Any real database application recovers its accessed objects not only through direct oper-

ations, but also using queries.”

This is the main imperfection of the classic model when it is applied to databases. Queries

cannot be modeled in the classic model as an increase in the readset of the transaction, if the

readset is understood as a set of objects contained in the database. Section 3.5 presented an

intuitive example of the expressive lack remarked here.

In order to include queries in the model, we must consider now the behavior of such opera-

tions, and the interaction with the database, and the rest of included operations.

4.3.1 Formalization of Queries

The execution of a query over a database consists of the recovery of a number of objects

stored in the database, that satisfy a certain condition included in the query.

Such condition can be expressed as evaluations of expressions involving attributes of the

considered objects (that belong to a certain class), including in the recovered list of the

objects that satisfy the condition.

Thus, a query operation can be considered as a ”read” operation over a number of attributes

of the involved classes, retrieving a number of object identifiers.

Once the query is completed, further ”object-read” operations may be executed to recover

the value of every object contained in the report of the query.

This approach includes in the model the ”attributes” of the classes maintained in a database

as part of the readset of the transactions. Thus, these attributes can be considered as ”meta-

objects”, and be treated as common objects. To maintain this meaning, the ”object-read”

and ”object-write” operations must be also reformulated.

77

4.3.2 Extending Operations with Attributes

Considering attributes as ”meta-objects” of the database, the concept of transaction keeps

its meaning and the properties justified along this chapter.

The question consists of reformulating the possible operations to include the attributes in its

definitions.

• Let aoid be the attribute ”object identifier”, common to every object in the database.

• A query, evaluating a number of attributes {ai, . . . , aj} to build the reported list of

object identifiers can be defined as an increase of the readset of the transaction:

R′(T) = R(T) ∪ {ai, . . . , ak} ∪ {aoid}.

• An object-read, recovers an object value (oi) using its object identifier. Thus, the

operation can be considered as an increase of the readset of the transaction:

R′(T) = R(T) ∪ {oi}.

• An object-write, changes the value of an object oi. Considering the object as the

minimal data unit, the write-object operation modifies every attribute of the object.

Thus, the operation can be considered as an increase of the writeset of the transaction:

W ′(T) = W (T) ∪ {oi} ∪ {ak},∀ak ∈ { attributes of oi}.

Note that we consider that every object-write is preceded by an object-read operation.

This reformulation keeps the validity of the results obtained in the chapter, because it main-

tains the readset/writeset paradigm.

4.4 Impracticability Result

In previous sections, we proved that the traditional basic model[BS80], without the inclu-

sion of queries in the causality analysis, are unable to guarantee one-copy serializability. To

solve this, an extension of the basic model was proposed, in order to include the queries in

the model, and make it possible for a lazy update protocol to provide serializability guaran-

tees.

In this section, an intuitive justification is presented for the discussion for the validity of

lazy update protocols including queries in the consistency checks. Further sections will

formalize the discussion.

78

4.4.1 Intuitive Discussion

We can now reconsider the definition of laziness expressed in section 4.2.5, taking into

account the inclusion of attributes in the readsets and writesets of the transactions:

When a transaction terminates all its operations, it initiates the commit phase. During this

phase, the system must determine -in the same way that the classic depicted mechanism-

if the transaction can succeed the commit, or if it must be aborted to preserve the isolation

property.

If the system determines that the transaction can succeed the commit, for each modified

object oi, a lazy protocol propagates the update of such object in the following way:

• during the commit phase, the change made by the transaction over oi is propagated

to the synchronous set of nodes for such object. For the ”meta-objects”, such syn-

chronous set will be specified later.

• beyond the commit phase, the changes are eventually propagated to the rest of nodes

(i.e. the asynchronous set of replicas for oi).

The convenience for a committing transaction to be aborted is determined in the same way

that the basic approach, checking for each object accessed by the transaction the version of

such objects contained in the readset; i.e. the system checks for the committing transaction

T , if ∃Tj : Tj
∗→B T .

As depicted in section 3.5, queries makes it necessary to extend the expressions presented

in section 4.3 for the readset and writeset of a transaction, in order to include the causality

of the accesses performed by the queries to attributes of classes in the database. Thus, in

order to keep the causality, and guarantee the properties of consistency and isolation, the

protocol must include the ”meta-objects” in the checks to determine the convenience for the

transaction to be aborted. To this end, the system must determine if

∃Tj . . . Tk : W (Tj) ⊆ R(Tj+1) ∧ . . . ∧W (Tk−1) ⊆ R(Tk) ∧W (Tk) ⊆ R(T)

and Tj . . . Tk have not been yet applied in the local database.

Finally, for the aborted transactions, the extended common lazy protocol should update the

conflicting objects and meta-objects in the local database, in order to reduce the number of

further abortions.

It is easy to see -observing the formalizations of queries and updates- that the local update

of the meta-objects (as attributes) can only be completed by the application in the local

database of every update performed in the system involving the attributes accessed by any

79

query executed by the aborted transaction.

In addition, the checks performed by the protocol must now consider every node in the

system, due to the capability of each node to perform updates, and thus, changes in these

meta-objects. This is a worst condition compared to the basic voting algorithm presented

in 4.2.5, because there are more involved nodes, and the number of needed updates will be

higher.

In summary, during the commit phase it becomes now necessary to update every ”meta-

object” involved in the committing transaction. Considering that the queries executed in a

common database application use a wide range of attributes, the conclusion is that every

update made in a node will be propagated to the rest of the system as soon as there will be

executed any query in such nodes.

This situation will cause that the number of aborted transactions will be seriously increased,

making the system unusable. To avoid this, the alternative solution consists of the propaga-

tion, as soon as possible, of every update made by the committing transaction to every node

in the system.

To make the system as usable as possible, this update must be done during the commit

phase, in order to minimize the elapsed time of the outdate. This alternative, as it can be

seen, is the exact approach used by any eager update protocol.

4.5 Formalization of the Result

As seen in this chapter, a Database is considered in our modeled system as the result of a

number of operations applied sequentially, from an original Database.

Laziness Degree

To formalize the previous discussion, we need to introduce the concept of Laziness Degree

of a database (we denote this as D(B)).

The Laziness Degree of a Database B is defined considering the transactions applied in B

completely (i.e. considering every Ti satisfying that pt(Ti) 6=∞).

For each completed transaction T contained in the Database B, we define the Laziness

Degree as the ratio:

D(B, T) =
Ψ(B, T)

ΨE(B, T)

If we consider every completed transaction, we extend the previous expression to the com-

80

plete Database:

D(B) =

∑
Ti:pt(Ti)6=∞D(B, Ti)

|{Ti : pt(Ti) 6=∞}|

Formalization

Let’s see howD(B) is reduced in the model when the attributes are included as meta-objects

in the database to support queries properly.

Suppose a system containing C different classes of objects (let C1 . . . CC be these classes).

In a particular execution B, we have executed queries in the transactions applied in B.

It can be seen that in the extended model, where queries are considered in order to guar-

antee one-copy serializability, the probability for a transaction to succeed its commit phase

satisfies:

PC(T) =
∏

qi∈T
PCq(qi)×

∏

oj∈R(T)

PCo(oj)

Where 1 − PCq(qi) is the probability for the query contained in Ti to cause the abortion

of Ti. In addition, 1 − PCo(oj) is the probability for oj (i.e. an object accessed by Ti), to

cause the abortion of Ti. Note that the basic model should only consider the second factor

for PC(T).

The expression indicates that two conditions have to be satisfied to succeed the commit of

a committing transaction Ti:

• The query contained in Ti must not introduce conflicts (i.e. the classes accessed by

the query are up-to-date).

• The objects accessed by Ti must be also up-to-date.

Now, we can observe PCq(qi), in order to determine an upper bound:

PCq(qi) =
∏

ci∈{1..cpq}
PCc(ci) = PCc[ci]

cpq

being cpq the number, in mean of classes accessed by a query. Now, we can reformulate

PCc[ci] (i.e. the probability for a class ci to be up-to-date in a particular node), as:

PCc[ci] = (PCT,ci)
K×wtps×δ(ci) (4.1)

where wtps is the number of write transactions per second committed in each node, and

δ(ci) is the elapsed time from the last update of the class ci in the node. Note thatK×wtps
is the total number of write-transactions per second committed in the system.

81

The expression for PCT,ci symbolizes the probability, for a concurrent write transaction T ,

to commit without update objects of the class ci. This expression satisfies that:

PCT,ci =

(
1− 1

C

)cwt

where cwt is the number, in mean, of classes modified per write-transaction. The expression

for PCT,ci , as seen, increases when the number of classes in the database is high. Replacing

this in the expression 4.1:

PCc[ci] =

(
1− 1

C

)K×wtps×δ(ci)×cwt

Now, we can see that δ(ci) ≥ C
wtps , because -in the node where the query is executed-, there

are also applied transactions updating objects of a certain class. Thus, it will be satisfied

that:

PCq[qi] ≤
(

1− 1

C

)K×cwt×cpq×C

Finally, as cpq ≥ 1, we can simplify the expression as:

PCq[qi] ≤
(

1− 1

C

)K×cwt×C
(4.2)

This can be used as an upper bound for the probability for a query included in a transaction

not to cause the abortion of such transaction.

As PCq[qi] ≤ 1, it will decrease the probability for a transaction to succeed its commit

phase in absence of queries in the model (i.e. the simple model), this model allows objects

to be recovered directly, and there is no necessity for the use of queries. In contrast, the

extended model, where queries are also considered, introduces PCq[qi] as a factor in the

probability for a transaction to succeed the commit phase.

In addition, the expression for PCq[qi] decreases exponentially with higher values for K.

This implies that the model will not be scalable with respect of the number of nodes in the

system.

In chapter 5 we will present the expression for the abortion rate in lazy systems where strict

one-copy serializability is not required (i.e. queries are not included in the abortion checks).

Figure 4.4 shows a comparison, for a particular system configuration, of the successful

commit probability in both systems.

The figure shows the effects of the inclusion of queries in the check for different system

configurations, varying the number of objects per node (N in the figure).

In the figure, the notation PCs is used for the probability of a transaction to succeed its

commit phase when queries are considered in a lazy system. We use PCr to denote the

82

0

0.2

0.4

0.6

0.8

1

1 2 3 4

P
ro

ba
bi

lit
y

of
 C

om
m

it

K (number of nodes)

C=10 nr=10 nw=5 cwt=1

PCs N=1000*K
N=500*K
N=100*K

PCr N=1000*K
N=500*K
N=100*K

Figure 4.4: Comparison of the Probability of Commit, in a Lazy environment, when includ-
ing one-copy serializability

probability of a transaction to succeed its commit phase when queries are not considered

in the same lazy system. Note that PCs is an upper bound, while PCr is calculated with

the statistical expression. In addition, the depicted system constitutes a good case for a lazy

update protocol, due to the low conflict rate (in terms of objects accessed).

It can be seen that in a system with 4 nodes, the check will cause the abortion of almost the

100% of the initiated transactions when queries are considered. In contrast, if they are not

included in the check, the consistency control of the same system should only abort the 5%

of the initiated transactions.

4.6 Conclusions

In this chapter, we have presented the problem of serializability from the traditional point of

view, formalizing a database as the history formed with the application of transactions, un-

derstood as a number of operations over the managed objects. In these definitions, some for-

malizations have been also included about the serializability of a transaction over a database.

The model has been discussed with examples illustrating the semantic gap produced by the

use of queries in real databases, and the necessity for the model to include queries in order

to provide a complete condition for a transaction to be serializable, and thus, applicable over

a database. Following this discussion, the model has been extended to include queries, and

the mentioned condition has been provided as a comparison between readsets and writesets

of the involved transactions, including as a part of such sets the attributes read by the queries

of the transactions.

83

Once the model has been extended, a discussion has been presented about the practicability

of the concurrency control needed to provide serializability guarantees when the complete

model is considered. The discussion, making use of statistical considerations, showed that

the strict consistency control, based on the extended model, will produce a dramatical in-

crease in the abortion rate of the initiated transactions, due to the high number of conflicts

produced by the analysis of the queries.

As an alternative to the high abortion rate, the prevention of such aborts can be only per-

formed by the propagation, as soon as possible, of the changes made by any transaction

in the system. This propagation “as soon as possible” can be related to other families of

propagation protocols such as eager update propagation protocols.

As a conclusion, we have determined that the inclusion of queries in the consistency control

of lazy update systems, although it is needed in order to guarantee one-copy serializability,

makes the system unusable, due to the high degree of abortions the strict consistency control

will cause.

84

Chapter 5

Analysis of the Abortion Rate on

Lazy Update Protocols

In chapter 3, we presented two implementations of consistency protocols, using different

approaches for the update propagation. Then, section 3.5 enunciated with an example the

inability of the LOMP protocol (as any lazy protocol) to preserve one-copy serializability.

This was proven in 4, providing an incompatibility result of laziness and strict isolation.

Nevertheless, the consistency and isolation provided by lazy update protocols can still be

useful to a wide range of applications. This affirmation gives sense to the research in the

area of laziness and its applications, its inconveniences, problems, and solutions.

With respect to the latest, lazy update protocols have proven to have a critical inconvenience

in contrast to eager approaches: the dramatical increase of the abortion rate in scenarios with

a high degree of access conflicts. This inconvenience makes unusable the traditional lazy

update protocols in certain scenarios, because an unacceptable number of started transac-

tions will terminate with an undesirable abort.

To understand the problem, this chapter presents a set of expressions describing the abor-

tion rate. In the presentation, we model a complete system including nodes, the sessions

executed, and the objects accessed by the sessions.

Section 5.1 includes the description of such modeled system, in order to formalize an anal-

ysis of the abortion rate in section 5.2. In section 5.3, an empirical validation of the model

is presented, and section 5.4 will provide a theoretical analysis of an improvement of the

lazy approach. Finally, section 5.5 includes some conclusions about the applicability of the

expressions.

85

5.1 The Modeled System

The targeted system of our analysis follows a number of considerations, designed to con-

figure a scenario as close as possible to a general environment that, although simplified, is

able to fit the requirements of the kind of environment we are centered in. This environment

was described in the introduction, and has considerations about client applications, system

load, pattern of accesses, interconnection network, etc.

In summary, these adopted assumptions are the following:

• There are K COPLA managers running in the system. Each one can be considered

as a “node” Nk=1..K .

• Each node in the system manages a complete replica of the database. This database

contains N objects.

• A session S can be written as a tuple S = [R(S),W (S),m(S)] where:

– m(S) is the consistency mode in which the session has been initiated (check-

out/transaction). For this study, we consider that every session in the system

only uses the transaction consistency mode.

– R(S) is the set of objects read by the session S. It is also named “readset of S”.

R = {ri}i=1..|R|
– W (S) is the set of objects written by the session S (or “writeset of S”). W =

{wi}i=1..|W |

• We assume that W (S) ⊆ R(S). And the objects contained in R(S) and W (S) can

be expressed as tuples: oi = [id(oi), ver(oi), val(oi), t(oi), ut(oi)] where:

– id(oi) is a unique identifier for the object. The identifier includes the owner

node (the node where the object was originated), a sequential number estab-

lished within the context of each node, and other information used to calculate

conflicts.

– ver(oi) is the version number of the accessed object.

– val(oi) is the value read (or written) by the session for the object.

– t(oi) is the local time the object was accessed at.

– ut(oi) is the local time the object was more recently updated at.

5.2 Probability of Abortion

We can define the probability for a session S to be aborted as: PA(S) = 1− (PCconc(S) ·
PCoutd(S)) where:

86

• PCconc(S) is the probability that the session concludes without concurrency con-

flicts.

• PCoutd(S) is the probability that the session concludes without accessing to outdated

objects.

The goal of this section is to determine the value of PCoutd(S), in order to predict the

influence our LOMP has into the abortion rate in the system. To this end, we can calculate

this probability in terms of the probability of a session to conclude with conflicts produced

by the access to outdated objects (PAoutd(S)):

PCoutd(S) = PCoutd(ri)
nr

taking nr as the number (in mean) of objects read by a session,

PCoutd(S) = PCoutd(ri)

∑
k
nrk
K (5.1)

moreover, PCoutd(ri) is the probability for an object ri to have an updated version in the

instant the session accesses it. This probability can be expressed in terms of the probability

for an object to be accessed in an outdated version (PAoutd(ri)) as:

PCoutd(ri) = 1− PAoutd(ri)

now, let’s see the causes of these conflicts: we took ri as an asynchronous object in the

active node that has not been updated since ut(ri); the outdated time for ri satisfies δ(ri) =

t(ri)− ut(ri); it can be seen that PAoutd(ri) depends on the number of sessions that write

ri having the chance to commit during δ(ri). Let PCT,ri be the probability for another

concurrent session T (that has success in its commit) to finalize with ri 6∈W (T). Then,

PAoutd(ri) = 1− (PCT,ri)
C

where C depends on the number of write-sessions that can be committed in the system

during δ(ri) . . .

PAoutd(ri) = 1− (PCT,ri)
∑

k
wtpsk×δ(ri) (5.2)

now, we can reformulate PCT,ri as PCT,ri = P [ri 6∈ W (T)] and, considering W (T) =

{w1, w2, . . . wnw(T)}, then in mean, it will be satisfied that:

PCT,ri =
(
P [ri 6= wj∈{1..nw}]

)nw

taking nw as the mean of |W (T)| for every write-session in the system.

PCT,ri =
(
P [ri 6= wj∈{1..nw}]

)
∑

k
nwk
K (5.3)

87

The next step consists of the calculation of P [ri 6= wj∈{1..nw}]. To do this, we must observe

the number of objects in the database (N). The probability that an accessed object is a given

one is 1
N , thus: P [ri 6= wj∈{1..nw}] = 1− 1

N

Finally, the complete expression can be rewritten as follows:

PAoutd(ri) = 1−
(
1− 1

N

)
∑

k
nwk

K
×
∑

k
wtpsk×δ(ri)

(5.4)

This expression provides a basic calculation of the probability for an object access to cause

the abortion of the session by an out-of-date access.

The expression can be calculated with a few parameters. Only nwk and wtpsk must be

collected in the nodes of the system in order to obtain the expression. Thus, it becomes

possible for a node to estimate the convenience for an object to be locally updated before

being accessed by a session. This estimation will be performed with a certain degree of

accuracy, depending on the “freshness” of the values of nwk and wtpsk the node has. The

way the expression can be used, and an adequate mechanism for the propagation of these

parameters will be presented in chapter 6.

5.3 Experimental Validation of the Model

We have validated the algorithm presented above by implementing a simulation of the sys-

tem. In this simulation, we have implemented nodes that concurrently serve sessions, ac-

cessing to different objects of a distributed database. We have also modeled the concurrency

control, and the lazy update propagation used by LOMP.

5.3.1 Assumptions

The assumptions for the implementation of the simulation [CM79, BCM87, Bag90] are

compatible with the ones taken for the model calculation, and the values have been es-

tablished to increase the number of conflicts produced by the transactions executed in the

system (i.e., this configuration shows a “worst-case” scenario for our protocol):

• There are 4 nodes in the system, each holding a full replica of the database, that

contains 20 objects. Each node executes transactions, accessing the database.

• For every object, a local replica holds the value of the object, and the version corre-

sponding to the last modification of the object. That is, the only synchronous replica

for each object is its owner node.

• There are three kinds of transactions, with a probability to appear of 0.2, 0.4, and 0.4

88

respectively:

• ”Type 0”, or read-only transactions: reads three objects.

• ”Type 1”, or read-write transactions: reads three objects, then writes these three

objects.

• ”Type 2”, or read&read-write transactions: reads six objects, then writes three

of the objects read.

• The model supports the locality of the access by means of the probability for an

accessed object to be owned by that node (i.e. the node where the transaction is

started).

• For read-only transactions, this is 1/4, (as the system contains 4 nodes, this

models no locality for read-only transactions).

• For read-write transactions, and read&read-write transactions, the probability is

3/4 (i.e. the number of local accessed objects should be 3 times higher than the

number of accessed objects owned by other nodes).

• The cost of each operation are shown in time units (t.u.):

• Read operation in a local database: LR = 0.01 t.u.

• Write operation in a local database: LW = 0.02 t.u.

• Cost of a local-update request: LUR = KLUR × LR,KLUR = 5

• Cost of a confirmation request: CR = 0.6× LUR
• In order to provide a complete study of the algorithm, subsection 6.4.3 will include

different executions of the simulation, with values for the constantKLUR in the range

[1..10].

• The simulation time has been set at 1,422 t.u., discarding the first 2 t.u. as stabilization

time for the simulation. This allows to start up to 60,000 transactions.

Due to the characteristics of the expression shown in section 5 the algorithm becomes very

sensible for low values of the established threshold. To relax this, we have applied an esca-

lation to the basic expression of PAoutd(oi). The goal of this escalation is to distribute the

values provided byPAoutd(oi) in a more homogeneous way. The scaled functionPAtra(oi)

just expands the main range of values taken by PAoutd(oi) into a wider scale, and compacts

the residual range.

The rest of the chapter studies each parameter of the protocol using the normalized expres-

sion (PAtra).

5.3.2 Accuracy of the Prediction

When the expression exceeds the established threshold for an object, and an update request

is sent, it is possible for the response of this request to contain the same version for the

89

requested object (e.g. when the object was, in fact, up to date). We name this situation

“Inaccurate prediction”.

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

Threshold

Inaccuracy of the prediction

Measured inaccurate predictions

Figure 5.1: Evolution of the inaccuracy of the prediction for different thresholds

The more accurate the predictions are, the less overhead the algorithm introduces in the

system. This accuracy of the predictions will be given by the set threshold: higher values

for the threshold should provide more accurate predictions.

The figure 5.1 shows the evolution of the inaccuracy of the prediction, for different values

of the threshold. For lower values of the threshold, the number of update requests is very

high, and many of them are unnecessary. In contrast, a higher threshold produces a lower

number of update requests, and only the most likely stale objects will be asked for update.

In general, it can be observed that higher values for the threshold increase the accuracy of

the prediction.

The evolution of the inaccuracy with respect to the amount of LocalUpdate messages is

shown in the figure 5.2. The optimum line is also shown, and corresponds with the diagonal.

The more accurate the prediction is, the closest the curves are. The studied implementation

differs from the ideal line with a lower bound pattern, and it is shown that is quite proximal

to the ideal.

5.4 Theoretical Boundary of an Improvement

The first sections of this chapter have been dedicated to the study of an statistical expression

determining the probability for a particular object access, to obtain an out to date value, thus

causing the abortion of the requesting transaction.

90

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

%
 o

ut
da

te
d

PA_outd

Completeness of the prediction

Predicted abortions
Actual abortions

Figure 5.2: Evolution of the inaccuracy for different P[update]

We can make use of such expression, in order to determine the achievable improvement

for a transaction, in terms of abortion rate, when the average outdate time of the objects is

decreased.

Unfortunately, this decrement in the outdate time will cause a degradation in the service

time of the executed transactions, and this must also be taken into account.

In this section, we present a theoretical boundary for the reduction of the abortion rate that

an adequate exploit of the expression can provide.

5.4.1 Preliminaries

The used expression for the probability of an access to be a stale-access was presented in

(5.4) as:

PAoutd(ri) = 1−
(
1− 1

N

)
∑

k
nwk

K
×
∑

k
wtpsk×δ(ri)

(5.5)

In the expression, the elapsed time between two consecutive updates of the object ri is

expressed as δ(ri).

We can perform a serial analysis in order to determine the mean value for PAoutd(ri).

The analysis can be easily performed applying differentiate calculus to the expression. The

obtained expression is showed to be:

PAoutd = 1−
(
1− 1

N

)
∑

k
nwk

K
×
∑

k
wtpsk×δ

(5.6)

91

where δ is the mean value for the δ(ri) in a system execution, and PAoutd is the mean value

for the PAoutd(ri) in the same system execution.

Now, we can obtain PCoutd = 1− PAoutd, being:

PCoutd = PC =
(
1− 1

N

)nwwt×wtps×δ
(5.7)

where nwwt is the number, in mean, of objects written by write-transaction in the system,

and wtps is the total number of transaction executed in the system per second.

5.4.2 Average Outdate Time

To simplify, let’s suppose that transactions are distributed homogeneously along the system

history.

Imagine the system execution history as a line, where a number of transactions are sequen-

tially executed. For a certain object oi, the probability for an executed transaction to read

oi will be nr
N , where nr is the number, in mean, of objects read by any executed transaction

(either read or write transactions are included here), and N is the number of objects in the

database.

The probability of the object oi to be updated by a lazy replication protocol depends on the

probability for a transaction that read oi to be aborted by a stale-access (i.e. PAT = PAnr).

Thus the probability for an object to be updated by a generic transaction will be:

PAnr × nr

N

Now, let tps be the number of transactions executed in the system per second. Thus, there

will be up(oi) = tps× PAnr × nr
N updates of oi per second. Finally, we can express δ(oi)

as 1
up(oi)

, and, in mean:

δ =
1

tps× PAnr × nr
N

(5.8)

If the accessed objects are updated along the transaction, the value for δ will be decreased

proportionally to the amount of updates performed during the transaction execution.

To model this, a simple approach can be expressed with the following expression:

δ′ = PC × d′T + (1− PC)× δ (5.9)

where d′T is the duration of a transaction when the updates are performed along its execu-

tion. For the aborted transactions, (i.e. (1− PC)), the mean outdate time is unchanged (δ).

In contrast, for committed transactions, the new outdate time is decreased to d′T (i.e. the

duration of the transaction).

92

Now, the duration of a transaction when the updates are performed will depend on the

number of requested accesses that are actually updated along the transaction execution (nr×
PUPD), and the cost of each of these updates (KUPD). Note that PUPD is the probability

for a requested object to be updated. Thus, if PUPD = 1
2 , there will be forced to be updated

the half of the objects requested by a transaction.

In summary, the expression for d′T can be composed by:

d′T = dT + nr × PUPD ×KUPD (5.10)

Replacing 5.10 in 5.9, the new outdate time will follow the expression:

δ′ = δ × (1− PC) + PC × (dT + nr × PUPD ×KUPD) (5.11)

This result will be useful in section 5.4.3, where the achievable abortion rate is specified in

terms of δ′.

5.4.3 Abortion Rate

In mean, we can say that the achievable commit rate will be, observing equation (5.7):

PC ′ =
(
1− 1

N

)nwwt×wtps×δ′
(5.12)

Replacing δ′ in the expression, we obtain:

PC ′ =

(
1− 1

N

)nwwt×wtps×δ×(1−PC)

×
(
1− 1

N

)nwwt×wtps×PC×(dT+nr×PUPD×KUPD)

(5.13)

That can be rewritten as:

PC ′ =

PC(1−PC)

×
PCPC×

dT+nr×PUPD×KUPD
δ

(5.14)

and simplified as:

PC ′ = PC
1+PC

(
dT+nr×PUPD×KUPD

δ
−1

)
(5.15)

Now, we can replace δ with the expression obtained in 5.8, the resulting expression is:

PC ′

PC
= PCPC((dT+nr×PUPD×KUPD)×(tps×(1−PC)nr×nr

N
)−1) (5.16)

93

From the equation 5.16 we obtain that the improvement of the probability for an object to

be accessed in an adequate way (i.e. not a stale access), is determined by PC′
PC , and it will be

benefitted from the decrease of the established value or any of the following expressions:

• dT , the duration of the transactions.

• nr × PUPD ×KUPD, the number of updated objects, and the computational cost of

each of these updates.

• tps, the amount of committed transactions per second (including both read-only and

read-write transactions).

• nr
N , the relation between the amount of objects accessed per transaction (read-only or

read-write transactions) and the total number of objects contained in the database.

To simplify the expression 5.15, we can denote as ∆ to the existing relation between d′T and

δ (i.e. ∆ = dT+nr×PUPD×KUPD
δ). The resulting expression is:

PC ′ = PC1+PC×(∆−1) =⇒ PC ′

PC
= PCPC×(∆−1) (5.17)

Let’s see an example for the improvement achievable in a extremely simple system, where

nr = 1. In such system, we can establish as a parameter the probability for a requested

object to be previously updated (i.e. PUPD), and then study the achieved improvement for

different values of ∆ (and, consequently, different computational overheads).

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

of
 C

om
m

it

PC (probability for an object to be up-to-date)

Comparison PC’ vs. PC

PC
PC’ for Delta=0.5
PC’ for Delta=0.1

PC’ for Delta=0.01

Figure 5.3: Evolution of the improvement for different ∆

Figure 5.3 shows how the commit probability can be improved, when the update-time is

decreased to the half, up to the 120% of the original commit time. When the update-time

94

is decreased ten times, the improvement reaches the 140%. Lower values of ∆ provides

marginal improvements, at a higher computational costs. When transactions accessing to

more than one objects are considered, the results show a higher differentiation for the im-

proved abortion rate.

These results points to the convenience, in the scenarios fitting the parameters described

above, to apply the techniques postulated by the presented discussion.

5.5 Conclusions

A statistical analysis has been performed in this chapter, in order to provide an expression

for the probability for a requested access to obtain a stale value of the required object.

The application of the expression has been also discussed, in order to determine the conve-

nience, using a general algorithm, to update along the execution of a transaction, the objects

predicted to be stale. This discussion has provided a set of conditions, in base to a num-

ber of parameters, where these generic algorithms can improve the abortion rate of a lazy

update protocol.

Consequently, the improvement has been also studied, in base to the established decrement

of the update-time of the accessed objects, giving as conclusion that such reductions may

considerably improve the probability for an object to be updated.

Thus, the next suitable step should consist on the concrete specification of the mentioned

algorithm, and the further validation of the conclusions.

95

96

Chapter 6

COLUP: The Cautious Optimistic

Lazy Update Protocol

As seen in chapter 3, the main disadvantage of LOMP , as a lazy protocol, consists of its

high abortion rate. This is caused by the increase of the number of transactions aborted due

to outdated objects.

When a session enters in the commit phase, a lazy protocol needs to ensure that for every

accessed object it has been obtained an updated version. If it cannot be guaranteed, then

the consistency manager must abort the transaction. This basic mechanism, formalized in

chapter 4, makes it necessary for the consistency protocol to abort a number of transactions

due to accesses to outdated objects.

This situation becomes very frequent in scenarios where the number of concurrent access

increases. Moreover, such behavior can make unusable the system.

The behavior of COLUP is very similar to the basic Lazy protocol (LOMP) mentioned

above, but it makes use of the results obtained in chapter 5 to predict -with a certain

accuracy- the probability of an accessing object to be outdated in the local database. This

prediction is then used to locally update the object, and reduce the probability of abortion

of such transaction.

The rest of the chapter is organized as follows: section 6.1 describes the COLU protocol in

terms of a modification introduced in the basic lazy protocol (LOMP) depicted in 3.2. Sec-

tion 6.2 details the particularities of the implementation of these modifications, and section

6.3 presents the flexibility of the protocol. Section 6.4 includes an experimental measure-

ments of the COLU protocol. In section 6.5, an auto-adaptative algorithm to minimize the

abortion rate with an acceptable performance is also provided. Finally, section 6.6 includes

some conclusions.

97

6.1 Protocol Description

The aim of COLUP is centered to this undesirable behavior, trying to avoid this abortion

increase. The main principle used by COLUP [IBMEBA03b, IBMEBA03a] consists in the

calculation of a prediction for an accessed object to be outdated.

To reduce the number of abortions avoiding the use of locks, it becomes necessary to update

the local version of an object before it is accessed by a local transaction. To do this, the first

approach should use the following principles:

• Any consistency protocol should always guarantee that, for each object, a particular

subset of the nodes in the system will always hold an updated value. This set of

”synchronous” nodes for each object can vary, depending on the particular protocol,

from one single node (pure lazy protocols) to the complete system (eager protocols).

• To reduce the probability for a transaction to read an outdated value of an object, the

simplest way consists, for each object accessed by a transaction, of preceding such

access with a request, asking about the more recent value of such object to one of the

”synchronous” nodes for this object.

• In commit time, the behavior should be maintained unchanged, because this approach

cannot guarantee that the objects accessed by the transaction have not been modified

since the access. In contrast, it is only reduced the probability for an accessed object

to be considered outdated at commit time.

But this technique is not adequate, because the time spent in performing a request every

time the transaction makes an access will be very inefficient. This inefficiency is produced

because in most of the cases the objects accessed by a transaction will be updated, being it

unnecessary the ”update request” performed by the protocol.

Moreover, this inefficiency can be reduced using the results obtained in chapter 5, to perform

the ”update request” only when the probability for an accessed object to be outdated exceed

a pre-established threshold.

The rest of this chapter explains how these concepts can be introduced in the LOM protocol,

and the properties of the resulting protocol.

6.1.1 Modification of the LOM Protocol

The way the COPLA manager decides to send or not an update request for an object that is

about to be accessed is quite simple:

98

1. During the life of a session, an access to an object oi is requested by the application.

This access is intercepted by the COPLA manager of the active node, and then the

probability of being outdated is calculated for the object oi. If the active node is a

synchronous (or owner) node for oi, this probability is 0. This is because the protocol

ensures that incoming updates of the object will abort every transaction conflicting

with the updated object.

If the active node is an asynchronous node for oi, then the COPLA manager will use

the expression of PA(oi). To perform this calculation, it is needed δ(oi): the time

elapsed from the last local update of oi.

2. If this probability exceeds a certain threshold Tc, then the COPLA manager sends the

update request to the owner of oi. If the threshold is not reached, the protocol contin-

ues as described in section 3.2. Section 6.4.2 will present an empirical approximation

to determine an optimum value for the threshold Tc.

3. In other case, after the COPLA manager allows the session to continue, it waits for the

update response. This response indicates whether the local version of oi is updated,

or outdated (then, the response contains the newest version for the object). If the

local version must be updated, then the update is applied in the local database, and

the update time is also written down.

4. Once the COPLA manager has ensured that oi is updated, the required access to the

object can continue.

By forcing to update an object before the session accesses it, the COPLA manager decreases

the value of δi, to the length of the session. Thus, the chance for a session to success the

commit phase is higher.

This technique implies that every update performed in the asynchronous nodes of an object

must include a timestamp of the instant the update is performed at. Note that it is not

necessary to use global time, but it is only necessary the local time for each node.

An expression for the probability for an object to cause the abortion of a session has been

presented in section 5. This expression can be used to predict the convenience for a session

to ensure that an object that is asynchronously updated has a recent version in the local

database.

In order to apply these results, it becomes necessary to establish a threshold of PA(oi) to

consider the object “convenient to be updated”. In section 5.3 a study of the accuracy of

this expression is presented.

An adequate value for this threshold should minimize the number of abortions caused by

accesses to outdated objects, and keeping low the number of updates for the system.

99

The minimization of the number of updates, will increase the number of sessions executed

in the system per second, because it will decrease the resources used by the update propaga-

tion. On the other hand, this minimization will cause an increase in the number of aborted

sessions, because the number of outdated objects will also be increased.

The higher the threshold is, the less number of abortions will occur in the system, but the

higher updates will be done, and a higher overhead will be introduced in the system.

The implementation of this principle introduces a new request in the LOM protocol. Now,

the active node for a session will send “Update requests” to the owners of the accesses

objects, in order to get the updated versions for such objects. This update request message

can be sent along the session execution, in order to maintain updated (in a certain degree)

the objects being about to be accessed by the session.

This technique will reduce the probability of abortion caused by the accesses to outdated

objects within the sessions. This improvement is based on the outdated time, shown as δ(oi)

in the expression of PAoutd(oi)

Section 5.3 describes the behavior of the protocol for different thresholds, and section 6.5

provides an adaptative algorithm to converge to a threshold near to the optimum.

6.2 Inclusion of the Expression for the Abortion Rate

In the previous section, it has been presented a description of the COLUP modification in

front to the basic lazy protocol (LOMP).

This modification mainly consists of an evaluation of the probability for an object to be

outdated when it is about to be accessed by a transaction.

This evaluation makes use of the basic expression presented in 5:

PAoutd(ri) = 1−
(
1− 1

N

)nwwt×wtps×δ(ri)
(6.1)

This expression makes use of a number of parameters, that should be measured by each

node in the system, in order to be propagated to each other node.

With the latest received parameters from each node, a single node can summarize this infor-

mation, obtaining an approximation for each parameter needed to evaluate the expression.

Thus, it can be calculated the number of write-transactions committed per second in the

system (wtps) with the expression:

100

wtps =
∑

wtpsk,∀Nk in the system

And the number of objects written in mean for each write-transaction (nwwt) as:

nwwt =
1

K

∑
nwwtk,∀Nk in the system

being K the number of nodes in the system (i.e. k ∈ [1..K]).

Once a node has summarized all the needed information, the expression can be evaluated

for each required object, just obtaining its outdate time (represented in the expression as

δ(oi)). This outdate time can be calculated with the current local time of the node, and the

annotated time, for the object oi, the last time it was written.

Note that it is only necessary to use the local time of the node, and there is no need to

maintain a global time in the system. This is because the δ(oi) is a gradient of time, and

this is calculated as a difference between the last annotated time tNio and the current time

tNinow. For a particular node Ni, the difference between its local time and a supposed global

time (di = tNi − tglobal) should be unchanged along the execution of the system, because

the progress of every local clock can be homogeneous. Then, it is simple to see that the

difference di will not affect to the evaluation of the δ(oi):

δ(oi) = tglobalnow − tglobalo = (tNinow − di)− (tNio − di) = tNinow − tNio

The last consideration to evaluate the probability for an accessing object to be outdated is

the role, with respect to the accessing object, of the active node of the transaction (the node

where the transaction is executed, and hence the accessing node).

If the active node of the transaction is a synchronous replica of the accessing object, then

the probability for the object to be outdated will be always 0. This is exactly the guaranty

provided by the ”synchronism”.

In the other hand, asynchronous replicas of an accessed object can hold an outdated version

of such object, and the probability for it to occur must be evaluated with the expression of

PAoutd.

Thus, the complete expression to be used can be summarized as:

101

P (o) =

{
0 , N 6∈ A(o)

PAoutd(o) , N ∈ A(o)

with

PAoutd(o) = 1− (1− nwwt
N

)δ(o)× wtps

δ(o) = tNinow − tNio
ps =

∑
wtpsk,∀Nk in the system

nwwt = 1
K

∑
nwwtk,∀Nk in the system

(6.2)

Where A(o) represents the set of nodes preconfigured as ”synchronous” replicas for the

accessed object o.

6.3 From Eager to Lazy Update

Another particularity of the COLUP approach is that the protocol can be parameterized to

have the behavior of both eager and lazy update protocols.

Thus, it is possible to use COLUP to implement an eager consistency protocol, and it is also

possible for COLUP to have the behavior of a pure lazy protocol.

In the description of the protocol, there was mentioned that, for each object, the system

maintains a set of synchronous replicas, all of them maintaining a synchronized copy of the

object (note that one of these synchronous replicas is the owner node of the object).

To provide synchronization guarantees, the COLUP protocol propagates within the com-

mit phase the updates performed over an object to all its synchronous replicas. Thus, this

propagation is performed as an eager update propagation protocol, because the transaction

termination only arises when all of the synchronous replicas are updated.

In addition, the COLUP protocol, as defined above, doesn’t perform any analysis about the

probability of an object to be stale, when the requesting transaction is in a synchronous

replica for such object. This means that synchronous replicas will not need to perform any

spontaneous updates for their synchronous objects.

Now, extending the set of synchronous replicas, for each object, to the entire system, we

will obtain an update propagation protocol which ensures that, for each node in the system,

all the updates are propagated within the commit phase, and no other updates are needed

anymore. This is precisely the definition of an eager update propagation protocol.

On the other hand, the description of COLUP includes the specification of a threshold to

102

be compared with the probability for an accessing object to be outdated. If this probability

exceeds the established threshold, the update is forced, requesting to the object owner the

latest version of the object. In other case, the access is performed without performing the

update at access time.

Thus, if no update is forced along the life of a transaction (i.e. it has been established

threshold to 1.0), and the synchronous set for each object is restricted to the owner node,

no update will be performed in the commit phase. In addition, these updates will only be

performed when a transaction is aborted due to any access to outdated objects. This is the

definition of a pure lazy update propagation protocol.

In summary, to make COLUP to have the behavior of an eager update protocol, the config-

uration must be:

• Synchronous set for each object: the entire system

On the other hand, to implement a pure lazy behavior with COLUP , the configuration must

be:

• Synchronous set for each object: only the owner node

• Threshold = 1.0

Thus, we have shown that the COLUP protocol is versatile enough to cover a wide range of

solutions.

6.4 Measured Results

In order to evaluate the improvement of the approach postulated by COLUP , we have

implemented a simulation of a basic COPLA system. In this simulation, a number of nodes

initiate a number of transactions of several types.

The assumptions and the simulation are identical to the ones described in 5.3.

The concurrency control is performed with the COLU protocol, using as a threshold a pre-

configured value.

In this section, we present an empirical evaluation of the behavior of our approach, when

different thresholds are used.

The adequate value of this threshold should reduce the number of abortions in the system,

103

maintaining below reasonable values the time spent in communication of the updated val-

ues.

6.4.1 Abortion Rate

The main goal of the COLUP algorithm consists of the reduction of the abortion rate. This

reduction is achieved by the adjustment of the value of a threshold. When the probability

for an object to be outdated (PA(oi)) is greater than this threshold, an update request is

sent to the owner of the object. This reduces the probability of abortion of the transaction,

because it is reduced the time the objects are out of date in each node.

Figure 6.1 shows the evolution of the abortion rate when different thresholds are used. In

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

Threshold

Abortion rate (N=20,K=4, Arr.rate=10.0 tps)

abortion COLUP
abortion Eager
abortion Lazy

Figure 6.1: Evolution of the abortion rate for different thresholds

one extreme, if the threshold is set to 0, the protocol tries to update every accessed object,

introducing the lower abortion rate.

In this case, the behavior of the protocol is similar to an eager protocol. In such algorithms,

every object update is always propagated to each node in the system. The disadvantage of

the eager approach appears when the same object is updated several times before another

node performs an access to it. In contrast, in the case of COLUP with Threshold = 0, the

disadvantage consists of the unnecessity of performing update requests when the accessed

object is already up-to-date.

On the other hand, when a Threshold = 1 is set, the protocol behavior is the same than a

pure lazy protocol: no update is performed, unless a transaction is aborted.

Increasing the value of the threshold, the abortion rate will also be increased.

104

6.4.2 Performance

On the middle point, it can be found a balance between accuracy and abortion rate. In this

point, the time spent in aborted transactions will be low, and the overhead introduced by

the updates will be always useful. Then, the number of transactions committed per second

should be maximized, keeping low the abortion rate. The service time of the server transac-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

se
co

nd
s

Threshold

Performance (service time) of the system (N=20,K=4, Arr.rate=10.0 tps)

read COLUP
read Eager
read Lazy

(a) Read-only transactions

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

se
co

nd
s

Threshold

Performance (service time) of the system (N=20,K=4, Arr.rate=10.0 tps)

write COLUP
write read Eager

write read Lazy

(b) Read-write transactions

Figure 6.2: Evolution of the service time for different thresholds

tions (see figure 6.2) is improved when the established threshold is increased. This is caused

by the lower number of update requests introduced by a higher threshold during the trans-

action execution. For lower thresholds, the amount of update requests is greater, and thus,

the overhead introduced by the protocol is also increased, providing worst performances to

the user application.

31

32

33

34

35

36

37

38

39

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c.
t.p

.s
.

Threshold

Productivity of the system (N=20,K=4, Arr.rate=10.0 tps)

tps COLUP
tps Eager
tps Lazy

Figure 6.3: Evolution of the number of transactions committed per t.u. (c.t.p.s.) for different
thresholds

105

To summarize abortion rate and service time, in figure 6.3, the productivity of the system is

analyzed through the number of transactions served per time unit.

It is shown how the number of transactions committed when the COLUP gives a pure lazy

behavior (i.e. Threshold = 1.0) is higher than the productivity obtained for a “paranoid

COLUP” (i.e. Threshold = 0.0). On the middle point, it can be found a threshold maxi-

mizing the number of commits per time unit.

We have seen that the lower the threshold is, the lower the abortion rate becomes. These

experiments show that the evolution of the system for different thresholds has an optimum

value that maximizes the performance and productivity of the system. In addition, the

abortion rate when this threshold is used, can be kept below a reasonable limit, very near to

the optimum provided by an eager approach.

6.4.3 Optimum Threshold

We have seen that COLUP has a behavior similar to the eager protocol with respect to the

abortion rate. In addition, we encountered that in scenarios with non-saturated systems

(i.e. the client requests arrive with a frequency lower than the service time offered by the

database system), our protocol offers a performance similar to the one achieved with a

lazy approach. In a saturated system, however, we encountered that the features offered

by COLUP also depend on other parameters of the system. So, we consider an important

study to determine, in the worst case for our COLU protocol, the empirical limits of the

performance and abortion rate achievable when the protocol is used.

This “worst case” has been considered as follows: In each participating node, a test client

application is executed. A number of transactions are initiated by each client application

during their execution. The elapsed time, for each client application, between two consecu-

tive initiations will be the minimum. To do this, the client application will initiate the next

transaction immediately (i.e. without waiting) after the reception of the system response for

the previous transaction. The main difference with the load pattern used in previous sections

is that in this test, the notion of “arrival frequency” has been disappeared as a parameter of

the experiments.

In this “worst case” in terms of system load, we pretend evaluate the behavior of the algo-

rithm for different environment parameters. To do this, we have considered that the most

relevant parameter is the cost introduced by the localUpdates. If this cost is high, it will

not be convenient to perform any local update of ”potentially outdated objects”, because the

cost of this local update will be higher than the time spent in the transaction if the commit

phase cannot be completed (and thus, the transaction is aborted).

To analyze this, we have performed several simulations, giving different values to this cost

106

60

62

64

66

68

70

72

74

76

78

80

1 2 3 4 5 6 7 8 9 10

c.
t.p

.s
.

UPDATE time

Productivity through UPDATE time

COLUP (optimized for abortion)
COLUP (optimized for performance)

Eager
Lazy

Figure 6.4: Evolution of c.t.p.s. in the optimum for different KLUR

(i.e. making KLUR take values from [1..10]). For each KLUR, the simulation includes an

environment with a high degree of conflicts (4 nodes, replicating a database with a total

number of 20 objects). The rest of the parameters have been unchanged from the detailed

simulation in section 6.4.3. For eachKLUR, we have taken the optimum value of the thresh-

olds, in terms of productivity (committed transactions per second), and also the optimum

threshold has been taken, looking for the lower values for the abortion rate. Finally, for each

configuration, the experiment has been repeated, two more times: first, there has been used

an eager algorithm (FOB), and then, a pure lazy update protocol (LOMP).

These simulations will be useful to determine the ranges of performance and abortion rate

the COLU protocol will be able to provide, when an optimum threshold is established. On

one hand, when the threshold is established to minimize the abortion rate, the performance

and productivity of the system will be consequently degraded, because the time spent by the

protocol in keeping up-to-date the accesses objects will be excessive. On the other hand,

when the threshold is optimized to provide a high performance to the system, there will be

consequently increased the abortion rate of the initiated transactions, because there will be

reduced the number of LocalUpdate requests to improve the performance, and a higher

number of stale objects will be accessed by the initiated transactions, and thus, they will be

aborted.

Figures 6.4 and 6.5 show the evolution of the algorithm for different values of KLUR, either

for a threshold optimized for improving the performance, and for a minimized abortion

rate. We can observe in figure 6.4 how the reduction of the cost of an update request (lower

values of KLUR) leads the system to provide a better productivity with independence of

the chosen algorithm, or the applied optimization policy. In addition, it is shown how the

COLUP approach is capable to provide productivities higher to those provided by the lazy

107

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

%

UPDATE time

Abortion rate through UPDATE time

COLUP (optimized for abortion)
COLUP (optimized for performance)

Eager
Lazy

Figure 6.5: Evolution of the abortion rate in the optimum for different KLUR

approach, when the abortion rate is benefitted. Moreover, when the performance is benefited

to establish the threshold, the productivity achievable with the COLU protocol is very near

to the one provided with the eager approach.

A similar discussion can be taken for the abortion rate. In figure 6.5, it is shown how the

abortion rate benefits from increased costs of an update request. In this case, the abortion

rate achievable with the COLUP approach is always lower to the abortion rate produced

by a lazy approach, and is is very close to the one provided by the eager algorithm if the

threshold is optimized to this end. Finally, the service time offered by the COLUP approach

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

UPDATE time

Read-only Service time through UPDATE time

read COLUP (optimized for abortion)
read COLUP (optimized for performance)

read Eager
read Lazy

(a) Read-only transactions

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

UPDATE time

Read-write Service time through UPDATE time

write COLUP (optimized for abortion)
write COLUP (optimized for performance)

write Eager
write Lazy

(b) Read-write transactions

Figure 6.6: Evolution of the service time in the optimum for different KLUR

is shown in figure 6.6, where it can be observed the ranges of service time achievable with

the COLU protocol. For read-write accesses (see figure 6.6(b)), the service time of COLUP

is always lower than the one obtained with the eager approach (that is higher to the service

time provided by a lazy approach), reaching the minimum value -near to the minimal estab-

108

lished by the lazy approach- when the threshold is optimized for performance. On the other

hand, with respect to the read-only transactions, both eager and lazy approaches provide the

same service time. In contrast, the service time provided by the COLU protocol is always

higher to them. Moreover, the service time of COLUP is very close to the one provided by

the lazy protocol when the threshold is established to improve the performance, and it is

increased with a logarithmic pattern in the worst case when the threshold is optimized for

the minimization of the abortion rate.

Note the figures 6.6(a) and 6.6(b) have different scales, and the service time of a read-only

transaction is always lower than the one obtained for a read-write transaction.

As a conclusion, the abortion rate obtained with COLUP will be always lower than the one

achievable with the lazy approach. In addition, it will be very close to the minimum abortion

rate established by the eager approach.

On the other hand, the performance and productivity achievable with the COLUP approach

will vary from the ones provided by the lazy approach to the eager one, depending on the

established threshold for the COLU protocol.

The establishment of this threshold will depend on the necessities and pattern access of the

user application of the system.

6.5 Heuristic Run-Time Search of the Optimum Threshold

In section 5.3 we have shown how the protocol behavior can vary from a pure lazy protocol

to a behavior similar to the one obtained with an eager approach. This tuning can be per-

formed by the adequate adjustment of the used threshold to be compared with the value of

PAoutd.

We have also shown how, for a concrete scenario, it can be found the value for this threshold

making the protocol enhance the performance of the system, while it is kept low the abortion

rate.

But this tuning, as dependent of the system, should not be static. In order to provide flex-

ibility to the protocol, a modification should be introduced, to make it able to find itself

a value for the threshold that approximates the behavior of the protocol to the optimum

performance.

109

6.5.1 Modification of the Protocol

In section 5.3 a relationship has been found between the accuracy of the update requests

and the performance of the system. Moreover, we have also proven that the performance

is also affected by the abortion rate. Our adaptative algorithm exploits this, trying to adjust

the threshold in order to minimize the inaccuracy, but keeping low the abortion rate.

• When the system starts, the initial threshold is set to a mean value (T0 = 0.5).

• When an update request is performed (the value of PA for an object exceeds the

current threshold Ti), the protocol obtains as a response the updated object, and the

latest version. If this updated version corresponds to the version already held in the

local database, the update request must be considered as “vain”. This imprecision is

annotated in the transaction context, and summarized at commit time.

• At commit time, the protocol performs the voting phase to achieve the consensus

about the transaction. As a result, the transaction can be aborted due to a number of

conflicting objects. This fact is also annotated in the context of the transaction.

• When the commit phase is completed (either with an abortion or with the confirmation

of the transaction), the collected annotations are summarized, and the threshold is

modified:

Ti+1 =
Khist +Q(Nvain, Nfail)

(Khist + 1)
× Ti

being

Q(Nvain, Nfail) =

Kinc , if Nvain > Nfail

1.00 , if Nvain = Nfail

(1−Kinc) , if Nvain < Nfail

, with Kinc > 1

The expression Q(Nvain, Nfail) gives values below, equal, or behind 1, in order to

decrease, keep, or increase the value of Ti+1.

The constant Khist depends on the variability of the system (mainly KLUR). To

provide faster adaptability, Khist should take lower values.

The constant Kinc depends on the variability of the transactions, taking lower values

for systems with homogeneous transactions.

6.5.2 Validation

We have included the adaptative algorithm in our simulation, and the experiments performed

for section 6.4.3 have been repeated.

110

60

62

64

66

68

70

72

74

76

78

80

1 2 3 4 5 6 7 8 9 10

c.
t.p

.s
.

UPDATE time

Productivity through UPDATE time

COLUP (optimized for abortion)
COLUP (optimized for performance)

COLUP (autoadaptative)

Figure 6.7: Comparison for differentKLUR of the optimum (c.t.p.s.) with adaptative thresh-
old

The results of these experiments (figure 6.7 and 6.8) show the proximity of the behavior

obtained with the adaptative approach, versus the behavior obtained with an optimum value

set with experimental techniques. As it will be shown, it can be obtained a near to the

optimal value for the productivity, while the abortion rate is kept below reasonable limits.

For the performance, as shown in figure 6.7, the distance between the two alternatives is

always lower than 5%, and it is less than 1% in the 96% of the cases. Thus, the adaptative

search of the optimum threshold provides an acceptable productivity, and offers a simple

way to establish automatically an adequate threshold.

With respect to the abortion rate, figure 6.8 shows how the auto-adaptative method also pro-

vides acceptable results with respect to the reduced abortion rate provided by the election

of an optimum threshold. In our experiments the minimal abortion rate was established

around the 3.7% in the worst case, and the abortion rate achieved with the auto-adaptative

algorithm was, for the same environment, below the 4.7%. This ratio is the same for dif-

ferent environments, providing an acceptable value for the abortion rate, while the obtained

productivity of the system keeps near to the maximum achievable.

6.6 Conclusions

In this chapter, the COLU protocol has been presented as an implementable alternative to

the existing lazy approaches. This protocol, based on the prediction of the probability for an

accessed object to be outdated, produces abortion rates near to the ones provided by eager

protocols, maintaining the performance of the system near to the achieved by lazy update

111

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

%

UPDATE time

Abortion rate through UPDATE time

COLUP (optimized for abortion)
COLUP (optimized for performance)

COLUP (autoadaptative)

Figure 6.8: Abortion rate with adaptative threshold

protocols.

The presented basic approach can be configured, depending on the adequate establishment

of a static threshold, both to improve the performance of the system, and to reduce the

abortion rate produced in the system. Intermediate values will produce in the system values

for the abortion rate lower than the ones provided by a lazy update protocol, at the cost

of a degradation in the performance provided by the system. Thus, the configuration of

such threshold should be determined by some parameters defined in the system, such as the

network capacity, and should fit the necessities of the client applications of the distributed

database system.

To make it more flexible, the basic algorithm has been improved with an auto-adaptative

technique that makes it possible for the protocol to find itself an adequate, near to the op-

timum, value of the threshold. This algorithm is again parameterized with a number of

constants, determining the necessities of the user applications with respect to abortion rate.

As a result, the final algorithm provides independence of fluctuations of the system load,

and environment characteristics, providing a well-fitted solution with the necessities of the

client applications, with independence to environmental changes.

As an example, a general configuration of the auto-adaptative algorithm has been also in-

cluded. The behavior of the COLU protocol when this auto-adaptative technique is used is

shown to provide the 98% of the optimum performance. In addition, for the same configu-

ration of the algorithm, the abortion rate is maintained below reasonable limits, producing

an improvement of such abortion rate of about the 92% of the maximum possible improve-

ment.

As a conclusion, the proposed COLU protocol, with the inclusion of the auto-adaptative

112

technique to flexibly establish an adequate value for the threshold, has proven to be an

implementable protocol to solve the update propagation in a replicated database, with a

behavior near to the optimum, either in systems with a low load degree, and systems near

to saturation. The characteristics offered by the protocol joins the goodnesses of eager and

lazy update protocols minimizing their inconveniences.

113

114

Chapter 7

Providing Lazy Self-Recovery Ability

to COLUP

In chapter 6 we presented a lazy update protocol, with a good behavior with respect to the

abortion rate and an empirical mechanism to obtain the optimum value for the threshold

of P (oi) has been also shown. However, the calculus of PA(oi) can be used for other

techniques than the evaluation of the convenience for an update. This is the case of the Fault

Tolerance. In this section, we will show a modification of the COLU Protocol, in order to

provide fault tolerance to the protocol. This modification is based on two principles: role

migration, and the calculation of PA(oi).

To this end, section 7.1 describes the concept of lazy recovery, and section 7.2 presents

the basic proposed recovery protocol. This proposal is revised in section 7.3 to include a

number of particularities. Finally, section 7.4 includes conclusions about the capabilities,

behavior and guarantees provided by the protocol.

7.1 Notion of Lazy Recovery

Fault-Recovery was presented in the introduction as the processes needed by the system

to stabilize the normal system behavior when some node has been suffered any fault in its

functionality, or when a faulty node recovers from its abnormal state, and is considered to

be re-inclosed in the system.

Earlier jobs about fault-tolerant systems[Avi76] presented fault-tolerant systems as systems

where redundancy is needed in order to allow partial failures in some components. The

basic techniques described in these jobs, although they were initially presented for hardware

systems, have not lost validity along the time.

The principles presented were based on the replication of such components of the system

115

that may be reliable in order to ensure the functionality of the entire system even when some

of those components suffer a failure.

When these principles are ported to software systems, we encounter that redundancy can

again help us in the task of providing guarantees about system availability.

Many techniques have been discussed from the earlier approaches in order to provide these

guarantees[EASC85]. In the particular field of replicated databases, as a system where the

information is replicated, and accessed within transactional contexts[KB85, BJ86, Jos85,

Bir86], additional considerations must be taken.

In summary, they can be classified in two main groups:

• Self-stabilization Systems[Dij74], where the fault-tolerance is achieved with a mini-

mal amount of additional effort, and the entire system can proceed even when failures

or recoveries arise.

• Recovering Systems[SS83, Nel90, Cri91b, HT94], where the recovery is performed

with specific (and often weighted) algorithms designed to reestablish the normal func-

tionality of the system when a failure is detected, or when a faulty node recover its

normality, and is re-inclosed in the system.

The second kind of recovery, makes it easier to design distributed algorithms, because they

don’t include in its normal functionality the failure detection, and the adaptation of the sys-

tem to such changes is also excluded from the algorithms. In addition, these considerations

used to be an overhead in the self-stabilization algorithms with respect to the Recovering

Systems, because the latter have no need to perform any additional action during their nor-

mal execution (i.e. in absence of failures).

On the other hand, Recovering Systems include important overheads when the system suf-

fers failures, or re-inclusions of recovered nodes. This is because specific algorithms must

be run in the system when such situations occur, in order to reestablish the normal function-

ality of the system. This inconvenience is not present in Self-stabilization Systems, because

these systems lack of such specific processes.

Moreover, the specific algorithms mentioned above must be run at least [BK88] when a

system reconfiguration arises. This is due to two facts: first, a fault-tolerant system uses

to be based on replication, and the different replicas must be adjusted to have an adequate

behavior; second, a distributed system maintains a distributed state, that must also be treated

in presence of system reconfigurations.

In a database system the most weighted management used to be the maintenance of the

replicated information in the databases before a system reconfiguration. Moreover, a node

116

recovery conforms a worst case for such reconfigurations, because the information managed

by the recovered node may be incomplete, outdated and even inconsistent with the infor-

mation maintained in the rest of replicas in the database. Thus, the information managed

by the recovering node must be synchronized using the data held by the rest of nodes in the

database system.

To do this, it can be seen that a huge amount of information may be necessary to be trans-

mitted, and the consistency of the system can be compromised if the process is not achieved

carefully. To provide guarantees about the consistency, the recovering node must be avoided

to initiate any transaction until the information held in its database is updated. In addition,

the rest of the system nodes should take into account that the recovering node is not com-

pletely updated, and perform any additional action to guarantee the consistency of the ini-

tiated transactions in such nodes. Some approaches even avoid the entire system to initiate

transactions during the recovery of a node.

On the other hand, the recovery of a node can be accomplished in a more “graceful” way.

Making use of laziness, a recovering node may consider that the information held in its

database is asynchronously maintained, and the entire system can continue its normal func-

tionality without the necessity of executing any additional actions. This allow the entire

system to proceed without introducing overheads in the used resources.

In addition, the recovering node can reestablish asynchronously the original state of the

adequate set of objects when a locally initiated transaction performs a request about such

objects.

This approach can be named Lazy Recovery, because the re-inclosed node performs such

recovery in a lazy manner, updating its state from the rest of the system with a sequence of

asynchronous operations.

The approach will reduce the overhead of the recovery process, and allow any node in the

system to proceed with normality, even before the recovering node has completely updated

its state.

7.2 Modification of the COLU Protocol

Each node in the system runs a copy of a membership monitor. This monitor is a piece of

software that observes a preconfigured set of nodes, and notifies its local node about any

change in this set (either additions or eliminations). Each node is labeled with a number,

identifying it, and providing an order between every node in the system. The membership

monitor used for the LOM Protocol is described in [MGGB01], and can be also used to

provide the membership service to our COLU Protocol. The rest of this section shows the

117

differences between the LOM and the COLU protocols.

1. When the membership monitor notices a node failure (let Nf be the failed node),

a notification is provided to every surviving node in the system. This notification

causes for each receiving node to update a list of alive nodes. The effect of these

notifications will be a logical migration of the ownerships of the failed node. Further

steps will explain the term logical.

2. During the execution of a session, a number of messages can be sent to the different

owners of the objects accessed by this session. If a message must be sent to a failed

owner Nf , then it will be redirected to the new owner for the involved object. This

new owner can be assigned in a deterministic way from the set of synchronous repli-

cas of the object (e.g. electing as new owner the node with an identifier immediately

higher to the failed one). Let Nn be the new owner for the accessed object.

The determinism of the election is important to guarantee that every surviving node

redirects its messages to the same node (Nn).

Note that the messages sent to a node can involve more than one object. This will

generate a unique message to the new owner, because every object in the original

message had the same owner, and so, will have the same substitute.

3. When the synchronous replica Nn receives a message considering the node as an

owner, then the message is processed as if Nn was the original owner. To this end, if

the received message was an access confirmation request, then the lock management

must be performed by Nn, replying the request as shown in section 3.2. Moreover, if

the received message was an update request, then the new owner should reply to the

message sending the local version of the object. The update message will be detailed

in further steps.

This behavior maintains the consistency because the new owner of an object will be

always elected from the set of synchronous replicas of the object. This guarantees

that the value for the object maintained in the new owner is exactly the same value

the failed owner had.

4. Whenever the original owner node Nf is recovered from the failure, every alive node

will be notified by its local membership monitor. Then, further messages sent from

the nodes to the owner Nf must not be redirected to Nn, because the node Nf has

been recovered now. In addition, the recovering node sends a specific message (”I

am back”) to the node that managed its owned objects (i.e. the temporally ownedNn.

This message will serve to synchronize the activity of both nodes.

All the alive nodes recognize the recently recovered node by sending a greeting mes-

sage. A greeting message sent from a node Na to the recently recovered node Nf

contains a list of locks granted to the node Na by the temporally owner Nn. Using

118

the contents of these lists, the node Nf can generate the structures needed to manage

the locks again. Thus, there becomes unnecessary for the Nn to continue managing

these locks.

Step 8 includes a more detailed description of the contents of the greeting messages.

5. Nevertheless, a recently recovered node Nf will receive request messages concern-

ing owned objects that may have been updated during the failure period. In order

to manage this situation, a recovered node must consider every object held in its lo-

cal database as an “asynchronous replica”. This consideration will be done for an

object oi until either an update reply or access confirmation reply is received from

a synchronous replica of the object. These replies will be received in the situations

described in steps 6 and 7.

6. If an access confirmation request is received by a recently recovered node Nf , and

the involved object has not been already synchronized in the node (i.e. the concerning

object has not been already updated from a synchronous replica), then Nf must force

the synchronization. This synchronization is performed with an update message sent

to a synchronous replica of the object. The reply to this update message will ensure

the local database to hold an updated version of the requested object.

Once the object is updated in the local database, the access confirmation request can

be processed as described for a standard owner node.

7. The recovered node can also process sessions during the synchronization period.

These sessions will access to a set of objects. As we see in step 5, every accessed

object must be temporally considered as an asynchronously maintained node until

the object is synchronized. Note that an object maintained asynchronously in the

node does not need to be synchronized.

The treatment for the objects accessed by a local session will depend on the next

classification:

• Objects with a synchronous maintenance (i.e. either objects owned by the active

node, or objects for which the active node is a synchronous replica).

• Objects for which the active node is an asynchronous replica.

The treatment for the objects with a synchronous maintenance in the active node will

be similar to the recovery of the synchrony described in step 6. When the session

asks its local COPLA manager about an object originally owned by the node, then an

update request is sent to a synchronous replica of the object. The reply to this update

message will ensure the database of the active node to hold an updated version of the

requested object, and the response to the session can be completed.

For the objects maintained asynchronously, the standard treatment can be used, taking

into account that the period of outdatedness should include the time the active node

was down.

119

8. Another way for a node Nf to recover the ownership of an object can be found in

the greeting messages received by Nf from each alive node. These messages were

introduced in step 4. When a node Na sends a greeting message to Nf , the message

not only contains a list of locks obtained byNa, but it also contains the last value (and

version) for each locked object oi. This information is enough for Nf to consider

synchronized each object oi.

In addition, the temporally owner Nn can receive additional locks during the greeting

phase (i.e. before Nn receives the ”I am back” message). In this situation, Nn must

process every incoming request until the ”I am back” message is received, abstaining

from sending the greeting message to Nf before it occurs. Then, Nn composes its

greeting message, including the new set of locks, and sends it to the recovered node.

The recovered node Nf cannot answer requests from any node, until every greeting

message is received, and the complete list of locked objects can be rebuilt.

9. In order to ensure that a recently-recovered node Nf achieves a correct state for its

originally synchronized objects (i.e. the node receives an update message for each

object oj that satisfies Nf ∈ S(oi)), an asynchronous process becomes necessary to

be run.

This process, will be executed as a low-priority process, and will send an update

request for each object not already synchronized in Nf .

Note that the interference of such process in the performance of Nf should be low,

because it will only be scheduled during idle periods.

10. The asynchronous process should also include the update, in the local database of the

recovered nodeNf , of any new object created during the time the node was failed. To

perform this update, a simple algorithm may be followed by Nf just at the beginning

of its recovery:

• When Nf recovers from a failure, a query is performed to the local database in

order to retrieve the identifier for the more recently inserted object owned by

every node in the system. This can be done due to the construction of the object

identifiers. As a consequence of these requests, Nf knows, for each node, the

last inserted object.

• Until Nf has received the information from its local database, it will be locked

any update in its local database. This ensures that the response of the requests

does not include any update performed after the recovery of Nf .

• In addition, and concurrently with these requests, every node in the system sends

the greeting message to the recovered node. In this message, explained in 8,

additional information can be included. Moreover, a greeting message sent from

a node Ni to Nf will include the identifier of the more recently object created

by the node Ni.

120

• The comparison of the information contained in the greeting messages, with the

values collected from the local database, makes Nf know, for each node Ni,

the lost insertions for each node (i.e. the range of objects inserted during the

failure).

• In addition to these object identifiers, the asynchronous process performs fur-

ther requests to its local database in order to retrieve a complete list of object

identifiers owned by each node in the system, and managed in a synchronous

way in Nf .

• Objects contained in this list of synchronous identifiers will be considered as

asynchronously maintained objects, until an update message will be sent to its

owner node and, as a response of this request, an up-to-date value is obtained,

and it is possible to guarantee in the local database of Nf the ”synchronism” of

such objects. Then, the identifier can be removed from the list of synchronous

identifier.

In order to update every object in the local database, the asynchronous process will

use the collected information about lost insertions to perform update requests to each

owner node about these objects.

The behavior described in this section can be summarized by the rewriting of the expres-

sion for PA presented in equation (6.2), and considering d(Nf) as the set of objects with

synchronous management in Nf , but not already synchronized (note that it is satisfied that

∀oi ∈ d(Nf) : Nf ∈ S(oi)):

P (oi) =

1 , oi ∈ d(Nf)

0 , oi 6∈ d(Nf) ∧Nf ∈ S(oi)

PAoutd(oi) , Nf ∈ A(oi)

(7.1)

The expression includes either the access to already synchronized objects, and the access to

synchronous objects that have not already been synchronized.

It can also be used by any surviving nodes Ns, because they are synchronized replicas for

all its synchronous objects (i.e. d(Ns) = ∅).

7.3 The Extended Modification

In the previous section, a basic technique to provide fault tolerance has been described in

terms of a modification to the COLU protocol. In this approach, when a node fails, the

remaining nodes don’t need to perform any specific action.

121

The implementation of a replication degree of T is accomplished with the synchronous

replication of the information of each object at least along T nodes.

Let’s suppose a system where it has been established a replication degree of two. This

means that the system will only guarantee the full functionality of the system in presence

of less than two failures over the original configuration; i.e. it can occur that subsequent

failure of two nodes deal with a system stop.

This undesirable effect can be avoided (or at least attenuated) if the number of synchronous

replicas of each object is always maintained over the established replication degree. To

achieve this, it becomes necessary, whenever this level is decreased (i.e. when a failure

of a synchronous replica is detected), to promote the role of a node previously considered

asynchronous, making it synchronous for the objects maintained by the failed node in a

synchronous way.

The modification of the recovery flavor of COLUP performs the following steps:

• When the system detects a failure of the node Nf , the Membership Monitor of each

remaining node in the system notifies the corresponding local Consistency Manager

of such failure.

• For the rest of the nodes, one of the nodes Np acting as an asynchronous replica for

the set of objects owned by the node Nf , will be promoted, for this set of objects, to

synchronous replica. To this end, a number of actions have to be done in this node:

• The election of the promoting node Np must be done with a deterministic algorithm.

This algorithm is quite simple: It must be always guaranteed the following property.

”For each object oi, consideringNw(oi) as the owner node for oi, and the replication

degree as T , then the set of synchronous replicas for the object is always S(oi) =

{Nk|k = w,w + 1, . . . w + T − 1}, where the operation + only considers the alive

nodes”.

• To satisfy this property, when a node Nf fails, every node Ni proceeds to recalculate

the set S(oi) for each object owned by the failed node. Three situations can occur at

this point:

– If Ni was synchronous, and it is not the new owner of the objects, then the

normal behavior described in section 7.2 is applied.

– If Ni was synchronous, and becomes the new owner of the object, then addi-

tional actions will take place.

– If Ni was asynchronous, and now it is synchronous, but not the owner, then it

should be considered synchronous, but not synchronized for oi. Thus, the node

122

Ni will follow the same actions as if it was recovering from a failure for the

objects oi.

The depicted technique will promote in a lazy way an asynchronous node Np to syn-

chronous replica for the set of objects owned by the failed node. Moreover, this new

synchronous replica, at the beginning of its promotion, will not be synchronized for

each object in this set. Hence, it is possible that a sequence of failures of the new

owner nodes Nf2 , . . . , NfT deal with a situation of lack of synchronous, synchro-

nized replicas of a particular object.

As a consequence, it becomes necessary for the owner node of oi to maintain the

count of synchronous replicas that are currently synchronized with itself. If a node is

the unique synchronized replica of an object, and the node fails, no other node will

be able to recover the adequate version for this object. Therefore, no other node will

be able to promote to owner of this object, and there will only exist a set of nodes

synchronous, but desynchronized for this object.

When a unique synchronized node for the object is recovered, then it must be again

considered, as described above, synchronous for this object. But, in contrast to the

common case, it can be considered synchronized, because no other node can have

been considered owner of this object during the failure, and hence, it has been impos-

sible for any transaction to change the value of the object.

7.4 Conclusions

In this chapter we have presented Lazy Recovery as a good approach to achieve fault-

recovery in distributed database systems, where there exists an important necessity of per-

forming an update of the replicated information maintained by a re-inclosing node after a

failure and further recovery.

In addition, we have presented a lazy recovering protocol that makes use of the principles

applied by the COLUP algorithms to recover the full state of a re-inclosed node without the

necessity of suspending the activity of the node during such process. Moreover, there is no

node in the system suspending its activity during the system-recovery, because this recovery

is performed exclusively by the re-inclosed node, and following a lazy paradigm.

The abortion rate, however, is also managed with the statistical conservative techniques on

which the COLU protocol is based. This decreases the abortion rate of the transactions

initiated in the recovering node, and the recovery algorithm takes profit of the infrastructure

used by the replication protocol to propagate the changes.

As a result, the proposed recovery algorithm will not interfere in the functionality of the

system, even allowing the recovering node to proceed immediately after its re-inclusion.

123

Moreover, the performance of the rest of the system will be also unchanged, because the

only node making additional work will be the recovering one. On the other hand, this

recovering node will suffer this overhead with a lazy policy, making it possible for the local

scheduler of the recovering node to proceed with the update of the local replica with a

conservative policy, using the idle time of the node to advance part of such updates.

124

Chapter 8

Conclusions

The current chapter will present contents of this thesis, summarizing the provided contribu-

tions, and the possible implications of these contents in future works.

8.1 Contributions of the Thesis

In this thesis we have formally shown the impossibility to conjugate both laziness and se-

rializability in a useable update propagation protocol, and we have formalized a relaxed

consistency mode, that makes lazy update protocols usable -although with certain lacks-

with an acceptable loss of serializability, keeping the consistency of a distributed database.

Then a statistical study of the abortion rate introduced by the use of lazy update protocols

has been performed, in order to understand the behavior of the disadvantage that this abor-

tion rate conforms. With this study, a statistical derivation of a lazy update protocol has

been proposed, providing a consistency protocol that achieves the performance of a lazy

update protocol, and keeps the abortion rate near to the one offered by an eager update pro-

tocol. Finally, the algorithm has been completed to provide fault tolerance to the system, by

applying a lazy self-recovery technique in the protocol.

The following sections describe in more detail the mentioned contributions.

8.1.1 Impracticability of One-Copy Serializability on Lazy Protocols

We have started with a presentation of the problem of serializability from the traditional

point of view. To this end, a formalization has been established for concepts such as trans-

action, defined as a sequence of operations over objects contained in the database, and

database, defined as the history formed with the application of transactions.

Making use of these definitions, some principal formalizations have been also included.

The concept of causal dependency has been expressed in algebraic terms, making use of

125

sets of objects accessed in different ways by a transaction (readsets and writesets). Then, the

serializability of a transaction over a database was defined in base to a condition relating the

causal dependencies existent between a transaction and the previously applied transactions.

The model has been discussed with examples illustrating the semantic gap produced by

the use of queries in real databases. Thus, we evidenced the necessity for the model to

be extended with queries in order to provide a complete condition for a transaction to be

serializable, and thus, applicable over a database.

Following this discussion, the model was extended to include queries, and the mentioned

condition was provided as a comparison between readsets and writesets of the involved

transactions. The contribution of such comparison is located in the inclusion, as a part of

such sets, of the attributes read by the queries included in the transactions. Thus, to extend

the basic model, we reformulated the semantics of the increased range of operations that a

transaction can include.

Once the model was extended, a discussion was also included about the practicability of

the concurrency control needed to provide serializability guarantees when the complete

model is considered. This discussion made use of statistical considerations, and showed

that the strict consistency control required to provide one-copy serializability, and based on

the extended model, will produce a dramatical increase in the abortion rate of the initiated

transactions in the system. Moreover, we showed that this increase is caused by the high

number of conflicts produced by the inclusion of the queries in the analysis of serializability.

As an alternative to this high abortion rate, the prevention of such aborts was proposed, and

it was also shown that this prevention could be only performed by the propagation, as soon

as possible, of the changes made by any transaction in the system.

Finally, we encountered that this “as soon as possible” propagation can be related to other

families of propagation protocols such as eager update propagation protocols.

As a conclusion, we determined that the inclusion of queries in the consistency control of

lazy update systems, are essential in order to guarantee one-copy serializability, but it makes

the system unusable, due to the high degree of abortions the strict consistency control will

cause.

8.1.2 Analysis of the Stale-Abortion Rate

Despite the obtained impracticability result for a strict one-copy serializability control for

lazy update protocols, we formalized the relaxed consistency control, obtained when the

queries are not included in the model. The relaxed mode appears when the executed queries

are excluded from the checks performed by the consistency control manager.

126

Moreover, we encountered that this relaxation of serializability may be also useful for a

wide range of applications, for which the derived loss of serializability is not dramatical, or

can be controlled by the client application itself.

However, existing studies of lazy update protocols showed that they are not recommended

for environments with a high degree of consistency conflicts, due to the high level of abor-

tions it introduces. These abortions are mainly produced by the access to stale (i.e. out of

date) objects by the transactions. The reasons of such stale accesses point to the asynchrony

of the update propagation, that is completed beyond the commit phase in any lazy update

protocol.

Thus, a statistical analysis of the abortion rate introduced by lazy update protocols has been

performed. To understand the behavior of the abortion rate, we presented an expression

for the probability that an accessed object had to be stale, and thus cause the abortion of a

transaction.

This expression was adequately validated, with simulated models, and the results showed

that the predictions established with the use of the proposed expression had a high degree

of accuracy when compared to the real amount of stale accesses.

A mechanism was presented to make use of the expression to reduce the abortion rate. In

this model, an executed transaction may perform updates of some of its accessed objects in

order to reduce the probability for such accesses to be stale. This update is determined in

base of a prediction performed with the discussed expression.

The model included parameters such as cost of network communications, and the system

load, in order to bound the improvement achievable with the proposed technique.

The obtained results show a range of values for the environmental parameters where the

proposed technique can be considered a practical solution. Thus, for such scenarios, we

encountered the technique suitable to be implemented as an alternative to the traditional

lazy update protocols, with an improvement in the produced abortion rate.

8.1.3 Improved Update Propagation Protocol: COLUP

Following the discussion, a particular implementation of such technique was presented,

using the application of the expression for the stale-abortion rate in order to propose a new

approach of update protocol. This new approach, should be able to provide the advantages

of both eager and lazy update protocols, while avoiding their disadvantages.

A complete description of the proposed protocol (called Cautious Optimistic Lazy Update

Protocol) was presented, and its policies were also discussed. In particular, we showed that

127

the algorithm follows an optimistic approach for the concurrency control.

The basic idea followed by the protocol consists of the interception of each access per-

formed by the transactions. Then, the protocol takes the control, and predicts the probability

for such accesses to end as a stale-access. When such prediction indicates that a stale-access

is about to occur, then the protocol performs an update request of the suspicious objects be-

fore the access is completed. For each object, this request is addressed to a particular system

node, acting as the “owner” of such object.

Thus, the probability for a transaction to be aborted due to stale accesses can be dramatically

decreased, making it possible for the system to provide abortion rates similar to the ones

obtained with eager update protocols.

Moreover, the performance of the system can be kept near to the one provided by a lazy

approach, also improving the quality of service of the system.

In addition, we show that the protocol can be configured in order to vary its behavior from

a pure eager approach, to a pure lazy update protocol. This versatile feature makes the

protocol an adequate alternative to any replication technique, because the use of COLUP

will allow a system to apply either eager replication control, and lazy replication control, in

addition to the improved COLUP approach.

From Eager to Lazy

As described above, one of the main advantages offered by the COLUP approach can be

found in its versatility. This versatility allows a system using the protocol to implement a

wide range of replication controls.

On one hand, COLUP can be configured to provide an eager update propagation, distinctive

of the synchronous replication techniques. On the other hand, our proposal can be config-

ured to provide the behavior of a pure lazy update protocol, making use of an optimistic,

asynchronous replication management.

This is achieved by the protocol with the tuning of two parameters:

• Size of the set of synchronous replicas (S) for each object in the database. When the

size is established to 1, for a certain object oi, the only node that provides guarantees

about the adequate value of oi is its owner node. In contrast, when the size is estab-

lished to K (i.e. the number of nodes existing in the system), every node will provide

these guarantees.

• Established Threshold (T) compared to the evaluated expression for the probability

of stale-accesses. Then the evaluation of the expression exceeds the threshold for a

128

certain object, an update request is performed, and the latest version for the object is

requested to be applied in the local node. Thus, higher threshold produces a lower

number of update requests.

In order to use COLUP as a pure lazy update propagation protocol, S = 1 must be estab-

lished, and the value established for threshold lacks of relevance.

In contrast, when the COLUP algorithm is used as an eager protocol, it must be configured

with S = K, and T = 1. Thus, there will be no system node (apart from the owner

node) updated during the commit phase, and the threshold will be never exceeded, and

consequently, there will be no update performed during the life of the transactions (there

will occur only after an abort).

In the middle point, the COLU protocol can be configured to provide a certain degree of

availability (adjusting the S parameter), while it can be also tuned the degree of cautiousness

with the T parameter.

Abortion Rate from Eager, Performance from Lazy

We also presented an empirical validation of the improvement achievable by our proposal.

To do this, a number of simulated environments were tested, and a number of characteristics

of the system were measured.

In particular, a study was shown including two main characteristics: performance and abor-

tion rate. The election of these two characteristics was motivated by the fact that they have

proven to be opposed. Thus, it was foreseeable for the system to enforce the one at the cost

of worsening the other.

The experiments were repeated for different system loads, only varying the established

threshold, and establishing the S parameter to the minimum (i.e. S = 1). Our results

show that the performance achievable by the COLU protocol with an adequate configuration

is very similar to the one obtained with a pure lazy approach. This result validates the

prediction done during the description of the versatility of the algorithm.

In addition, we also encountered that the adjustment of an adequate value for T enables the

COLU protocol to provide abortion rates near to the ones obtained with eager approaches.

This result did suggest us that an adequate configuration of the threshold may produce a low

abortion rate while high values for the performance are provided.

129

Auto-adaptative Tuning

The protocol was then completed with an auto-adaptative technique for tuning the behavior

of the protocol to make it flexible to changes in the system characteristics. This technique

is based on the automatic adjustment of the threshold, during the execution of the system,

in order to maximize the performance, while the abortion rate is kept under reasonable

boundaries.

The performance provided by the proposed technique was shown to be very similar to the

performance achieved with lazy update protocols, where communication and synchroniza-

tion between the different nodes of the system is avoided, and the response time is conse-

quently reduced with respect to eager update protocols and primary copy approaches.

In addition, the abortion rate was reduced in a 92% respecting to that produced by the use of

a pure lazy update protocol. Thus, our Cautious approach makes it possible to dramatically

increase the performance of the system, at the cost of a marginal increase of the abortion

rate with respect to eager approaches.

8.1.4 Lazy Fault-Recovery

Performance, Productivity, and Abortion Rate are not the only objectives of our proposal.

In addition, another important issue discussed along this thesis has been the necessity of

availability and fault-tolerance of the considered client applications.

Thus, fault-tolerance conforms an additional point to be treated here. This has been included

as a new extension of the Cautious Optimistic Lazy Update Protocol, to enable lazy fault-

recovery in the basic algorithm.

We understand as lazy fault-recovery a stabilization process, initiated when a recovered node

is re-included in the system, that is completed along the time, by updating the information

required by the re-included node with a lazy philosophy.

The technique, in contrast to the self-stabilization techniques, makes it easier to implement a

fault-recovery mechanism, because the process is not included as part of the normal behav-

ior. In addition, self-stabilization techniques often introduce overheads during the normal

execution of the system.

Moreover, lazy fault-recovery allows any system node to proceed without blocking any

transaction during the recovery process. This is satisfied even in the re-included node,

because the state of such node is updated with lazy policies. This uninterrupted progress of

the system provides a clear advantage in contrast to the common specific processes designed

to be executed when a re-inclusion arises. Such techniques often need parts of the system

130

to be frozen during the re-inclusion process.

The proposed modification makes it possible for the consistency protocol to re-incorporate

recovered nodes in the system while maximizing the availability of the system. This implies

that the client applications are allowed to continue performing requests to the system at

any time, even during the stabilization times (i.e. during the failure stabilization, and the

reconciliation process during the recovery). Thus, the quality of the service offered by

the Database system will not be degraded when failures are detected, or during the node

recovery.

Finally, as the technique is included as part of the COLU protocol, the abortion rate of the

transactions initiated on the re-included node will be also maintained under the suitable

boundaries.

8.2 Implications and Future Work

To conclude this thesis, we will present a number of implications of the presented work,

and the planned future work related to the studied field will be also mentioned.

One of the main contributions of the thesis has been the justification of the impossibility

for a lazy update protocol to provide one-copy serializability guarantees in systems where

queries must be executed in a transactional context.

The repercussion of such result in the field of distributed databases should not determine the

closure of the researching line, in the field of databases, of lazy update protocols. Neverthe-

less, lazy protocols defined from now should take into account the impossibility shown in

this work for lazy update protocols to be applied to environments where a strict consistency

control is not mandatory.

For the COLUP approach, it can be considered as the starting point of a new line in the

research of replication control, and even as a consistency control technique. The statistical

approach has been exploited in many other fields[All78], and consistency control can also

be benefitted from the experience of such contributions. So, COLUP should be considered

as one application of these techniques in the field of distributed consistency control, and

further uses of such techniques should be also studied.

Finally, lazy fault-recovery has been also proposed as an alternative to the fault-tolerance

maintenance, in contrast to self-stabilization algorithms and conventional (i.e. synchronous)

fault-recovery algorithms.

Asynchrony in fault-recovery is not a new technique for distributed systems in general, but

the use of such techniques in transactional systems, or distributed databases has not been

131

exploited.

8.2.1 Future Work

The thesis, as exposed above, can be considered as a starting point in the developing of

statistical techniques for replication control. In this line, another approaches can be taken

in order to improve the advantages provided by our approach, minimizing network traffic,

and improving the abortion rate.

Other, more accurate expressions for the abortion rate can been also studied, in order to

increment the capabilities of the system.

On the other hand, the abortions studied in this work only refer to stale-abortions. However,

other kinds of abortions can also occur and they are also suitable to be studied in order to

propose alternative consistency control techniques, walking on the middle point between

optimistic and pessimistic approaches.

132

Bibliography

[AAES97] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic

broadcast in replicated databases. Lecture Notes in Computer Science,

1300:496–503, 1997.

[AH93] Efthymios Anagnostou and Vassos Hadzilacos. Tolerating transient and

permanent failures. In Proceedings of the 7th International Workshop on

Distributed Algorithms (WDAG93), pages 174–188, 1993.

[All78] A. O. Allen. Probability, Statistics and Queueing Theory. Computer Sci-

ence and Applied Mathematics Series. Academic Press, New York, 1978.

[Alo98] L. Alonso. Optimistic data object replication for mobile computing. In

9th IFIP/IEEE Workshop on Distributed Systems: Operations and Man-

agement, October 1998.

[Avi76] Algirdas Avižienis. Fault-tolerant systems. IEEE Transactions on Comput-

ers, 25(12):1304–1312, December 1976.

[Bag90] Rajive L. Bagrodia. An integrated approach to the design and performance

evaluation of distributed systems. In Proceedings of the First International

Conference on Systems Integration. IEEE Computer Society, April 1990.

[BB95] Azer Bestavros and Spyridon Braoudakis. Value-cognizant speculative

concurrency control. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro

Nishio, editors, VLDB’95, Proceedings of 21th International Conference

on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland,

pages 122–133. Morgan Kaufmann, 1995.

[BCM87] Rajive L. Bagrodia, K. Many Chandy, and Jayadev Misra. A message-based

approach to discrete-event simulation. IEEE Transactions on Software En-

gineering, SE-13(6), June 1987.

[BG95] Kenneth P. Birman and Bradford B. Glade. Reliability through consistency.

IEEE Software, pages 29–41, May 1995.

133

[BHG87a] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and

recovery in database systems. Addison-Wesley, 1987.

[BHG87b] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-

rency Control and Recovery in Database Systems. Addison Wesley, Read-

ing, MA, EE.UU., 1987.

[Bir86] K. Birman. ISIS: A system for fault-tolerance in distributed systems. Tech-

nical Report TR 86-744, Department of Computer Science, Cornell Uni-

versity, Ithaca, NY, April 1986.

[BJ86] Ken Birman and Thomas Joseph. Low cost management of replicated data

in fault-tolerant distributed systems. ACM Transactions on Computer Sys-

tems, 4(1):54–70, February 1986.

[BJ87] Ken Birman and Thomas Joseph. Exploiting virtual synchrony in dis-

tributed systems. In 11th ACM Symp. on Operating System Principles,

pages 123–138. ACM SIGOPS, 1987.

[BJ89] Ken Birman and Thomas Joseph. Reliable broadcast protocols. In Arctic

’88. Addison-Wesley, 1989.

[BK88] Ken Birman and Ken Kane. Causally consistent recovery of partially repli-

cated logs. Technical Report TR 88-949, Department of Computer Science,

Indiana University, November 1988.

[BS80] P. A. Bernstein and D. W. Shipman. The correctness of concurrency con-

trol mechanisms in a systems for distributed databases — (SDD-1). ACM

Transactions on Database Systems, 5(2), March 1980.

[BSJ80] Philip A. Bernstein, David W. Shipman, and James B. Rothnie Jr. Concur-

rency control in a system for distributed databases (sdd-1). TODS, 5(1):18–

51, 1980.

[BSW79] P.A. Bernstein, D.W. Shipman, and W.S. Wong. Formal aspects in serial-

izability in database concurrency control. IEEE Transactions on Software

Engineering, 5(5):203–216, May 1979.

[CA82] T. C. K. Chou and J. A. Abraham. Load Balancing in Distributed Systems.

IEEE Transactions on Software Engineering, SE-8(4), July 1982.

[CBB+00] R.G.G. Cattell, D.K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,

O. Schadow, T. Stanienda, and F. Velez, editors. The Object Data Standard:

ODMG 3.0. Morgan Kaufmann Publishers, January 2000. 300 pgs., ISBN

1-55860647-5.

134

[CHT92] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest

failure detector for solving consensus. In Maurice Herlihy, editor, Pro-

ceedings of the 11th Annual ACM Symposium on Principles of Distributed

Computing (PODC’92), pages 147–158, Vancouver, BC, Canada, 1992.

ACM Press.

[CL88] M. J. Carey and M. Livny. Distributed concurrency control performance:

A study of algorithms, distribution and replication. Technical report, 758,

Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI, USA, March 1988.

[CM79] K. M. Chandy and J. Misra. Distributed simulation: A case study in design

and verification of distributed programs. IEEE Transactions on Software

Engineering, SE-5(5):440–452, September 1979.

[Cri91a] Flaviu Cristian. Reaching agreement on processor-group membership in

synchronous distri buted systems. Distributed Computing, 6(4):175–187,

1991.

[Cri91b] Flaviu Cristian. Understanding fault-tolerant distributed systems. Commu-

nications of the ACM, 34(2):56–78, February 1991.

[Dij74] Edsger W. Dijkstra. Self stabilizing systems in spite of distributed control.

Communications of the ACM, 17(11):643–644, 1974.

[DMI+03] Hendrik Decker, Francesc Muñoz, Luis Irún, Antonio Calero, Fran-

cisco Castro, Javier Esparza, Jordi Bataller, Pablo Galdámez, and Josep

Bernabéu. Enhancing the availability of networked database. In 14th Inter-

national Conference on Database and Expert Systems Applications - DEXA

2003, Lecture Notes in Computer Science, Prague, Czech Republic, 1-5

September 2003. Springer-Verlag.

[EASC85] A. El-Abbadi, D. Skeen, and F. Cristian. An efficient, fault-tolerant proto-

col for replicated data management. In Proceedings 4th SIGACT-SIGMOD

Symposium on Principles of Database Systems, pages 215–228, Portland,

1985. ACM.

[Ell77] C. A. Ellis. Consistency and correctness of duplicate database systems.

Operating Systems Review, 11, 1977.

[FHHR85] F.Cristian, H.Aghili, H.Strong, and R.Dolly. Atomic broadcast: From sim-

ple diffusion to byzantine agreement. In IEEE, editor, 15th International

Annual Symposium on Fault-Tolerant Computing Systems., pages 200–206,

1985.

[FMZ94a] F. Ferrandina, T. Meyer, and R. Zicari. Correctness of lazy database updates

for object database systems. In POS, pages 284–301, 1994.

135

[FMZ94b] F. Ferrandina, T. Meyer, and R. Zicari. Implementing Lazy Database Up-

dates for an Object Database System. In Proceedings of the Twentieth In-

ternational Conference on Very Large Databases, Santiago, Chile, 1994.

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication

and a solution. In Proc. of the 1996 ACM SIGMOD International Confer-

ence on Management of Data, pages 173–182, Canada, 1996.

[Gif79] D. K. Gifford. Weighted voting for replicated data. In Proceedings 7th

Symposium on Operating System Principles, pages 150–161, Pacific Grove,

1979. ACM.

[GMB97a] Pablo Galdámez, Francesc D. Muñoz Escoı́, and José M. Bernabéu Aubán.

HIDRA: Architecture and high availability support. Technical report,

DSIC-II/14/97, Depto. de Sistemas Informáticos y Computación, Un iv.

Politécnica de Valencia, May 1997.

[GMB97b] Pablo Galdámez, Francesc D. Muñoz Escoı́, and José M. Bernabéu Aubán.

High availability support in CORBA environments. In F. Plášil and K. G.

Jeffery, editors, 24th Seminar on Current Trends in Theory and Practice

of Inform atics, Milovy, República Checa, volume 1338 of LNCS, pages

407–414. Springer Verlag, November 1997.

[GMB99] Pablo Galdámez, Francesc D. Muñoz Escoı́, and José M. Bernabéu Aubán.

Garbage collection for mobile and replicated objects. In J. Pavelka, G. Tel,

and M. Bartosek, editors, 26th Seminar on Current Trends in Theory and

Practice of Inform atics, Milovy, República Checa, volume 1725 of LNCS,

pages 379–386. Springer Verlag, November 1999.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, 1993.

[Gra78] J. N. Gray. Notes on database operating systems. In Operating Systems: An

advanced course, volume 60 of Lecture Notes in Comp. Sci., pages 393–

481. Springer-Verlag, 1978.

[Her87] M. Herlihy. Dynamic quorum adjustment for partitioned data. ACM Trans-

actions on Database Systems, 12(2):170–194, June 1987.

[Her90] Maurice Herlihy. Apologizing versus asking permission: Optimistic con-

currency control for abstract data types. ACM Trans. on Database Sys.,

15(1):96–124, March 1990.

[HR99] Michel Hurfin and Michel Raynal. A simple and fast asynchronous con-

sensus protocol based on a weak failure detector. Distributed Computing,

12(4):209–223, 1999.

136

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant

broadcasts and related problems. Technical Report TR94-1425, Cornell

University, Computer Science Department, May 1994.

[IB01] Luis Irún-Briz. MIC: An interdomain call mechanism for linux. In Actas

de las IX Jornadas de Concurrencia, Sitges, Españo, June 2001.

[IBBAME01] L. Irún-Briz, J.M. Bernabéu-Aubán, and F.D. Muñoz-Escoı́. HARL: A high

available router for linux. In Proc. of the IEEE-YUFORIC’2001, Valencia,

Spain, November 2001.

[IBBAME02] Luis Irún-Briz, José M. Bernabéu-Aubán, and Francesc D. Muñoz-Escoı́.

Design and implementation of high availability routing for linux: HARL.

In Anexo de las actas de las X Jornadas de Concurrencia, Jaca, Españo,

June 2002.

[IBMEBA03a] Luis Irún-Briz, Francesc D. Muñoz-Escoı́, and Josep M. Bernabéu-Aubán.

COLUP: The cautious optimistic lazy update protocol. In Actas de las

XI Jornadas de Concurrencia, pages 149–162, Benicassim, Españo, June

2003.

[IBMEBA03b] Luis Irún-Briz, Francesc D. Muñoz-Escoı́, and Josep M. Bernabéu-Aubán.

An improved optimistic and fault-tolerant replication protocol. In Proceed-

ings of 3rd. Workshop on Databases in Networked Information Systems

(DNIS), Lecture Notes in Comp. Sci. Springer-Verlag, 2003.

[IF02] ITI and FCUL. Implementation of the scattered data manager. Technical

report, D07, GlobData Working Group, IST Programme, project number:

IST-1999-20997, May 2002.

[IMDBA03] Luis Irún, Francesc Muñoz, Hendrik Decker, and Josep M. Bernabéu-

Aubán. Copla: A platform for eager and lazy replication in networked

databases. In 5th Int. Conf. Enterprise Information Systems (ICEIS’03),

volume 1, pages 273–278, April 2003.

[IUF01] ITI, UPNA, and FFCUL. COPLA programming interface, deliverable 04

(workpackage 01). Technical report, Globdata, IST Programme, project

number: IST-1999-20997, June 2001.

[JAJ+02] J.Esparza, A.Calero, J.Bataller, F.Muñoz, H.Decker, and J.Bernabéu. Copla

- a middleware for distributed databases. In 3rd Asian Workshop on Pro-

gramming Languages and Systems (APLAS ’02), pages 102–113, 2002.

[JM87] S. Jajodia and D. Mutchler. Enhancements to the voting algorithm. In

Proceedings 13th VLDB Conference, pages 399–405, 1987.

137

[JM90] S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining

the consistency of a replicated database. ACM Trans. on Database Sys.,

15(2):230–280, June 1990.

[Jos85] Thomas Joseph. Low Cost Management of Replicated Data. PhD thesis,

Department of Computer Science, Cornell Unviersity, Ithaca, NY, 1985.

[JP03] R. Jimenez-Peris and M. Patino-Martinez. Towards Robust Optimistic Ap-

proaches. In Future Directions in Distributed Computing, volume LNCS-

2584 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[JPAK01] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and B. Kemme. How

to Select a Replication Protocol According to Scalability, Availability, and

Communication Overhead. In IEEE Int. Conf. on Reliable Distributed Sys-

tems (SRDS’01), New Orleans, Louisiana, October 2001. IEEE CS Press.

[JPPMA00] Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, and Sergio Arévalo. Con-

current transactional replicated servers. In Proceedings of the 2000 ACM

symposium on Applied computing, pages 655–660. ACM Press, 2000.

[JPPMKA01] R. Jimenez-Peris, M. Patino-Martinez, B. Kemme, and G. Alonso. Im-

proving the scalability of fault-tolerant database. In Proc. of Int. Conf. on

Dependable Systems and Networks, DSN’01 (Fast Abstract), 2001.

[KA98] B. Kemme and G. Alonso. A suite of database replication protocols based

on group communication primitives. In International Conference on Dis-

tributed Computing Systems, pages 156–163, 1998.

[KA00] Bettina Kemme and Gustavo Alonso. A new approach to developing and

implementing eager database replication protocols. ACM Transactions on

Database Systems, 25(3):333–379, 2000.

[KB85] et.al. Ken Birman. Implementing fault-tolerant distributed objects. IEEE

Transactions on Software Engineering, SE-11(6):502–508, June 1985.

[KB94] N. Krishnakumar and A. J. Bernstein. Bounded ignorance: A technique for

increasing concurrency in a replicated system. ACM Trans. on Database

Sys., 19(4):586–625, December 1994.

[KBB01] B. Kemme, A. Bartoli, and Ö. Babaoğlu. Online reconfiguration in

replicated databases based on group communication. In Proceedings

of the Internationnal Conference on Dependable Systems and Networks

(DSN2001), Göteborg, Sweden, June 2001.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed sys-

tem. Communications of the ACM, pages 558–565, July 1978.

138

[Lam96] B. W. Lampson. How to build a highly available system using consen-

sus. In Babaoglu and Marzullo, editors, 10th International Workshop on

Distributed Algorithms (WDAG 96), volume 1151, pages 1–17. Springer-

Verlag, Berlin Germany, 1996.

[LFA00] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Optimal implemen-

tation of the weakest failure detector for solving consensus. In Proceedings

of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS2000),

Nürnberg, Germany, 2000. IEEE Computer Society Press.

[Lis91] Barbara Liskov. Practical uses of synchronized clocks in distributed sys-

tems. In Luigi Logrippo, editor, Proceedings of the 9th Annual ACM Sym-

posium on Principles of Distributed Computing (PODC’90), pages 1–10,

Montéal, Québec, Canada, August 1991. ACM Press.

[LLSG92] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high avail-

ability using lazy replication. ACM Trans. on Comp. Sys., 10(4):360–391,

November 1992.

[MB97] Francesc D. Muñoz Escoı́ and José M. Bernabéu Aubán . The NanOS mi-

crokernel: A basis for a multicomputer cluster opera ting system. In H. R.

Arabnia, editor, Proc. of the 3rd International Conference on Parallel and

Distri buted Processing Techniques and Applications, Las Vegas, Nevada,

EE.UU., pages 127–135. CSREA, July 1997.

[MEIBG+01] F.D. Muñoz-Escoı́, L. Irún-Briz, P. Galdámez, J.M. Bernabéu-Aubán,

J. Bataller, and M.C. Bañuls. GlobData: Consistency protocols for repli-

cated databases. In Proc. of the IEEE-YUFORIC’2001, pages 97–104, Va-

lencia, Spain, November 2001.

[MGB98] Francesc D. Muñoz Escoı́, Pablo Galdámez, and José M. Bernabéu Aubán.

ROI: An invocation mechanism for replicated objects. In Proc. of the 17th

IEEE Symposium on Reliable Distributed System s, Purdue Univ., West

Lafayette, IN, EE.UU., pages 29–35, October 1998.

[MGGB01] Francesc D. Muñoz Escoı́, Óscar Gomis Hilario, Pablo Galdámez, and

José M. Bernabéu-Aubán. Hmm: A cluster membership service. In Ri-

zos Sakellariou, John Keane, John R. Gurd, and Len Freeman, editors,

Euro-Par 2001: Parallel Processing, 7th International Euro-Par Confer-

ence Manchester, UK August 28-31, 2001, Proceedings, volume 2150 of

Lecture Notes in Computer Science, pages 773–782. Springer, 2001.

[MIG+02a] Francesc Muñoz, Luis Irún, Pablo Galdámez, José Bernabéu, Jordi Bataller,

and Mari-Carmen Bañuls. Flexible management of consistency and avail-

139

ability of networked data replications. Flexible Query Answering Systems

(FQAS ’02), 2522:289–300, October 2002.

[MIG+02b] Francesc Muñoz, Luis Irún, Pablo Galdámez, Josep Bernabéu, Jordi

Bataller, and Mari-Carmen Bañul. Globdata: A platform for support-

ing multiple consistency modes. Information Systems and Databases

(ISDB’02), pages 244–249, 2002.

[MT85] Sape J. Mullender and Andrew S. Tanenbaum. A Distributed File Service

Based on Optimistic Concurrency Control. In Proceedings of the Tenth

Symposium on Operating Systems Principles, Shark Is., WA, 1985.

[Mul88] Sape J. Mullender. Distributed Operating Systems: State-of-the-Art and

Future Directions. In R. Speth, editor, Proceedings of the EUTECO 88 Con-

ference, pages 57–66, North-Holland, Vienna, Austria, November 1988.

[Mul90] Sape J. Mullender. Distributed Systems. ACM Press, 1990.

[Nel90] Victor P. Nelson. Fault-tolerant computing: Fundamental concepts. IEEE

Computer, 23(7):19–25, July 1990.

[Rah93] E. Rahm. Empirical performance evaluation of concurrency and coherency

control protocols for database sharing systems. ACM Trans. on Database

Sys., 18(2):333–377, June 1993.

[RMA+02] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicent. The glob-

data fault-tolerant replicated distributed object database. In Proceedings of

the First Eurasian Conference on Advances in Information and Communi-

cation Technology, Teheran, Iran, October 2002.

[RSB90] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler.

Fault-tolerant clock synchronization in distributed systems. Computer,

23(10):33–42, October 1990.

[SAS99] Heiko Schuldt, Gustavo Alonso, and Hans-Jörg Schek. Concurrency con-

trol and recovery in transactional process management. In Proceedings of

the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania,

pages 316–326. ACM Press, 1999.

[Sch81] Gunter Schlageter. Optimistic methods for concurrency control in dis-

tributed database systems. In Very Large Data Bases, 7th International

Conference, September 9-11, 1981, Cannes, France, Proceedings, pages

125–130. IEEE Computer Society, 1981.

140

[Sch90] F. Schneider. Implementing fault-tolerant services using the state machine

appr oach: a tutorial. ACM Computing Surveys, 22(4):299–319, December

1990.

[SS83] R.D. Schlichting and F.B. Schneider. Fail-stop processors: an approach

to designing fault-tolerant computing systems. In ACM Transactions on

Computer Systems, pages 222–238, 1983.

[SSW79] J. Seguin, G. Sergeant, and P. Wilms. A majority consensus algorithm for

the consistency of duplicated and distributed information. In Proceedings

1st International Conference Distributed Computing Systems, pages 617–

624. IEEE, 1979.

[Sto79] M. Stonebraker. Concurrency control and consistency of multiple copies of

data in distributed INGRES. IEEE Transactions on Software Engineering,

SE-5:188–194, May 1979.

[Tho79] R. H. Thomas. A majority consensus approach to concurrency control.

ACM Transactions on Database Systems, 4:180–209, 1979.

[WJ92] O. Wolfson and S. Jajodia. Distributed algorithms for dynamic replication

of data. In ACM PODS’92, Symposium on Principles of Database Systems,

pages 149–163, 1992.

[WSP+00] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. Alonso. Database

replication techniques: A three parameter classification. In Proc. of the

19th IEEE Symposium on Reliable Distributed Systems (SRDS’00), pages

206–217, October 2000.

141

