HCC: A Concurrency Control Mechanism for
Replicated Objects

Francesc D. Mufioz-Escofi, Pablo Galddmez and José M. Bernabéu-Aubdn
DSIC-Univ. Politecnica de Valéncia

The HIDRA Concurrency Control (HCC) mechanism provides support for concurrency control
in environments where the coordinator-cohort replication model is being used. This replication
model allows the arrival of multiple invocations to different object replicas which serve locally
those invocations and later make the appropriate checkpoints on the rest of replicas. A distributed
concurrency control mechanism is needed in this environment. The HCC uses a service serializer
object and a set of serializer agents placed in each replica node. As a result, since the HCC
components are replicated, this mechanism is also fault tolerant. Each invocation received by an
object replica is processed by the service serializer which knows the invocations that are currently
being processed. So, this agent is able to block or allow the execution of arriving invocations
according to their conflicts with the currently active ones and the concurrency specification made
when the object interface was declared.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distribu-
ted Systems—network operating systems; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming—distributed programming; D.4.1 [Operating Systems]: Process Management—con-
currency,synchronization; D.4.7 [Operating Systems]: Organization and Design—distributed
systems

General Terms: Distributed systems, Concurrency control

Additional Key Words and Phrases: Distributed algorithms, object invocation, replication, high
availability, fault tolerance

1. INTRODUCTION

There are a lot of mechanisms to ensure synchronization in object-oriented dis-
tributed environments. Some of them are based on synchronization primitives, like
distributed locks with two phase locking [Gray 1979] or other mutual exclusion al-
gorithms which use their own protocols [Bernabéu-Aubédn and Ahamad 1989], and
some others use programming languages as the tool needed to synchronize the access
to shared data, providing data types whose operations are somehow synchronized
(e.g., monitors [Hoare 1974], Ada protected types [U. S. Dept. of Defense 1983],

.). However these mechanisms either require a big amount of messages to find
out which task may access the object or they do not have good expressive power
[Bloom 1979] to allow different kinds of synchronization. The situation is worst
if we consider a replicated shared resource whose access has to be synchronized.
In this case, the typical solution relies either on two phase locking, which is very
restrictive, on dynamic voting [Jajodia and Mutchler 1990], which implies a read-
write locking mechanism, or on optimistic approaches [Herlihy 1990; Krishnakumar

This work was partially supported by the CICYT (Comisién Interministerial de Ciencia y Tec-
nologia) under project TIC 96-0729.

and Bernstein 1994], which may lead to abortion of requests.

The HCC mechanism developed in the HIDRA [Galddmez et al. 1997] archi-
tecture synchronizes the accesses to replicated objects using an operation-based
granularity. It does not use distributed locking, and needs a lower amount of mes-
sages to guarantee multiple types of synchronization strategies. HCC is based on
extensions to CORBA [OMG 1998] IDL. So, it is independent from the program-
ming language, and the programmer has to deal with synchronization features only
when the interface is being defined. When the objects are being implemented no
care has to be taken about synchronization.

The rest of the paper is organized as follows. Section 2 describes the HCC mech-
anism. This starts with the extensions needed in an IDL interface declaration and a
description of the HCC components and several examples of the different synchro-
nization strategies that can be implemented using this mechanism. Later, section
3 describes how this mechanism is used to manage some kinds of replicated ob-
jects. Section 4 shows similar synchronization techniques used in other distributed
environments and finally, section 5 gives the conclusion.

2. THE HCC MECHANISM

The HIDRA Concurrency Control (HCC) mechanism is used in our HIDRA ar-
chitecture to control the concurrent execution of multiple requests on a replicated
object. This concurrency control mechanism has to check which object invocations
are being executed now and it has to decide which of the arriving requests may
proceed concurrently with the current active set. Thus, it provides control on the
execution of whole operations.

To decide which operations may proceed simultaneously, an extension of the IDL
language is used, providing information about which pairs of operations are mutu-
ally conflictive. Basing the concurrency on this property allows the implementation
of multiple synchronization strategies, such as mutual exclusion, readers-writer pol-
icy, FCFS policy, etc.

2.1 Objectives
The design of the HCC mechanism has the following objectives:

—The mechanism may be used in distributed environments.

—TReplicated objects have to be supported. Some replication models (e.g., the
coordinator-cohort model [Birman et al. 1985] which is allowed in HIDRA) may
receive concurrently different requests on different replicas of the object. These
requests have to be correctly synchronized by our mechanism.

—The mechanism has to use a pessimistic approach. The object invocation mech-
anism used in HIDRA assumes that an invocation will be never aborted; this
prevents the use of optimistic techniques to manage concurrency.

—The mechanism has to be fault-tolerant; i.e., the failure of part of the components
needed by our mechanism has to be tolerated.

—We have to reduce the possibility of misuse of the mechanism by the programmer.
So, the management of the concurrency control tasks has to be as transparent as
possible to the programmer.

—The amount of communication (messages) needed to decide which task may pro-
ceed must be kept at a minimum.

We have chosen to extend the ORB used as the basis of our HIDRA architecture
to include the components needed to provide the concurrency control mechanism.
Thus, each operation invocation is checked to ensure that when it is allowed to
proceed no other conflicting operation is being executed by any other task. As a
consequence, the granularity of the HCC mechanism is a whole operation. Although
distributed locks allow a more precise control, this solution is similar to the one
used in the greater part of concurrent programming languages.

Additionally, the specification of the conflicts between each pair of operations can
be made when the interface of a given object is being declared and all the support
needed to manage the concurrency control tasks can be automatized and included
in the ORB machinery.

2.2 Extensions to IDL

To develop the HCC mechanism, some extensions to the IDL grammar are needed.
These extensions enlarge the optional parts of an operation declaration to include
which other operations of each interface instance can be executed concurrently and
which operations in different objects can not proceed simultaneously.

<op-dcl> ::= [<op.attribute>] <op_type_spec> <identifier> <param dcls>
[<raises_expr>] [<context_expr>]

Fig. 1. Syntax of the original operation declaration.

The original syntax of an operation declaration in CORBA IDL is depicted in
Fig. 1. The HCC mechanism assumes initially that all operations of the same in-
terface are mutually exclusive when they are invoked on the same object. All other
operations can proceed concurrently because they affect different objects which
usually do not share any state. As a result, all non-extended interfaces are inter-
preted by the HCC as specifications of objects whose state is protected by exclusive
operations. These operations can not be executed concurrently.

<op-dcl> ::= [<op_attribute>] <op_type_spec> <identifier> <param dcls>
[<raises_expr>] [<context_expr>] [<conc_expr>]
[<conf_expr>]

<conc_expr> "concurrent" "(" <scoped_name> { "," <scoped_name> }* ")"

<conf_expr> "conflicts" "(" <scoped_name> { "," <scoped_name> }* ")"

Fig. 2. Syntax of the extended operation declaration.

However the extensions made on the IDL grammar try to overcome this limita-
tion. The new syntax for an operation declaration appears in Fig. 2.

The concurrent expression gives the list of operations (that by default are in
conflict with the operation being declared now) which can proceed simultaneously
with this operation. All these operations have to be already declared when the
concurrent expression appears, thus the interface compiler can check for the con-
sistency of that interface declaration. So, if two operations of the same interface
are concurrent, the declaration of this compatibility can be found in the prototype
of the second operation, but never in the first one. Thus, we save an additional
concurrent clause in the first operation prototype. However, both operations are
considered mutually compatible; i.e., if an invocation of any of them is being exe-
cuted, an invocation of the other one is always allowed to proceed, independently
of their arrival order.

In the concurrent list the programmer includes the operations of the same inter-
face which may proceed simultaneously, either because they access disjoint subsets
of the object’s state or because neither of them modifies the same part of that state.

IDL allows interface inheritance. The HCC considers that all operations of all
the interfaces of an object can not be executed concurrently. So, to build the list
of concurrent operations we need scoped names because we have to identify the
interface which provides the concurrent operation (it may be any ancestor interface
in the hierarchy of interfaces provided by the object).

The conflicts expression gives the list of operations (that by default are allowed
to proceed concurrently) which now are in conflict with this operation. In this case,
it is assumed that the operations in conflict are provided by two different objects,
but these objects share some state and these operations access this shared state.
Again, we need scoped names to identify correctly the operations in conflict.

These two clauses give the information needed to know which invocations may be
allowed to proceed concurrently, even when a replicated object is being considered.

2.3 HCC Components

The HCC mechanism relies on some components that maintain and manage the
information needed to allow or suspend invocations on the objects to be controlled.
These components are:

—Serializer object. This object is created when a service (a group of inter-related

objects) is registered in the system and it has to decide which invocations on the
replicas of the objects that compose that service may proceed. To this end, the
serializer receives the information about which operations are mutually conflictive
and which others may proceed concurrently. This information is maintained in a
concurrency control specification (CCS) object, that the serializer may query to
find out which operations are incompatible.
As the requests arrive to the object replicas, the ORB invokes the serializer pro-
viding information about which object instance is being invoked, which operation
and which invocation identifier is being used. The serializer checks if the incom-
ing invocation conflicts with any one of the active invocations and, if so, blocks
this one. As a result, each serializer has to maintain the identifiers of a collec-
tion of active (and still non-terminated) invocations and also, the identifiers and
execution threads of all blocked invocations. These constitute the dynamic state
of the serializer.

—ORB machinery on the server side. Before an invocation reaches the actual object
it is calling, the ORB components placed on the server side have to identify and
call the appropriate serializer object. The serializer blocks the invocation until no
other active conflicting invocation exists in any object replica. So, when the call
to the serializer returns, the ORB machinery can invoke the appropriate object
replica.

2.4 Serialization of Requests

The HCC mechanism is needed in HIDRA to serialize all requests that arrive to
replicas of an object that uses the coordinator/cohort replication model. In this
replication model, an invocation is initially served by only one replica, which pro-
cesses the request and makes at least one checkpoint to transfer the state updates
to the other object replicas. Each object invocation may be served by a different
replica. So, multiple invocations may be executed concurrently in all replicas of the
object and some distributed concurrency control mechanism is needed.

The HCC is managed by the HIDRA’s ORB components, becoming a transparent
service for the application programmer. Only a requirement is made to the pro-
grammer of replicated objects: he or she has to specify in the interface declaration
which operations are incompatible, as we have described in Sect. 2.2. The interface
compiler generates the CCS object that has to be provided when a replicated ser-
vice is registered in a running HIDRA system. As a result of this registration, the
service serializer is created and it receives the CCS object that it needs to make
the concurrency control decisions. Moreover, when a new replica for this service
is created in a new domain or node, the ORB components in that node get the
information needed to invoke the service serializer.

interface ServiceSerializer { // PIDL
struct InvoCtxt {

RoiID Identifier,
CORBA: : Typeld Interface,
ObjectId ObjId,
Long Operation
};
void Serialize(in RoilID InvolD,
in TObj TerminationObject,
in CORBA::Typeld InterlID,
in ObjectID 0bjID,
in Long OperationNumber,

out sequence<InvoCtxt> PrecedentSet);

};

Fig. 3. Interface of the service serializer object.

The serialization of a request is made when that invocation arrives to the domain
where the replica of the invoked object resides. The ORB components involved in
the object invocation already know that it is a replicated object and, before the
invocation arrives to the target object, a call is made to the Serialize() operation

of the service serializer. The declaration of this operation is given in Fig. 3. The
arguments needed by this service serializer operation are the following:

—InvolID. A reference to a RoiID object [Mufioz-Escoi et al. 1998] that identifies
the current invocation being serialized.

—TerminationObject. An object needed to detect when this invocation has ter-
minated in all object replicas. See [Muifioz-Escoi et al. 1998] for details on this
object.

—InterID. This value identifies the interface that is being invoked.

—0bjID. This value is internal to the ORB and identifies the specific instance that
is being invoked.

—OperationNumber. The operation number that is being invoked in the interface
InterID.

The serializer does not reply this invocation until it knows that the operation
that must be finally invoked by the calling thread does not conflict with any other
active invocation on the same replicated object. To this end, it maintains a list
of currently active invocations and another list of already blocked ones (these last
ones are still not active). Three of the arguments passed in a serialization request
are needed to identify the possible conflicts with other previous ROIs. They are the
InterID, the ObjID, and the operation number. These three arguments constitute
the invocation context (InvoCtxt, see Fig. 3 for details).

interface CCS { // PIDL
exception UnknownInterface {};
exception BadOperationNumber {};

boolean CanBeConcurrent(
in CORBA::Typeld FirstInterface,

in ObjectId FirstObject,
in Long FirstOperation,
in CORBA::Typeld SecondInterface,
in ObjectId SecondObject,
in Long SecondOperation

) raises (UnknownInterface, BadOperationNumber);

};

Fig. 4. Interface of the CCS objects.

Once the call to the Serialize() operation arrives to the service serializer, it
follows these steps:

(1) All invocation contexts in the active and blocked lists are inspected and a call
to the CanBeConcurrent () operation of the CCS object is made (See Fig. 4)
to test if the current invocation and the inspected one can proceed at the same
time.

(2) In case that the two tested operations could not be concurrent, the identifier
of the operation (its RoiID reference) in the active or blocked lists is inserted
in a set of precedent operations associated to the current one.

(3) When the two lists have been scanned, if the precedent operations set is empty,

this operation is inserted in the list of active operations and its Serialize()
invocation is replied. However, if the precedent operations set is not empty,
the operation is inserted in the list of blocked operations. It will remain there
until all the operations in its precedent set have been terminated. When this
happens, the invocation context is moved to the active list and the Serialize()
invocation is also replied.
The service serializer uses the TerminationObject associated to each invoca-
tion to find out when that invocation has been finished. That happens when
this object receives the unreferenced notification, as it is described in [Muiioz-
Escof et al. 1998]. In this case, its RoiID is removed from all precedent sets
where it can be found.

We can see that this synchronization support is used by internal components of
the HIDRA’s ORB. As a result, the HCC mechanism can not be easily used in
other environments; in fact, it is only intended for being used in HIDRA. The main
advantages of this mechanism are its efficiency and fault tolerance, as described in
the following sections.

2.5 Expressive Power

In [McHale 1994], the ezpressive power is defined as the ability of a synchroniza-
tion mechanism to implement a range of synchronization policies. So, the wider
the range of synchronization policies a mechanism can implement, the greater its
expressive power will be.

Bloom [Bloom 1979] gave some criteria to identify the expressive power of a
particular synchronization mechanism. He proposed that six different types of
information are necessary to give a good expressive power. This types are: the name
of the invoked operation, the relative arrival type of invocations, the invocation
parameters, the synchronization state of the resource being synchronized, the local
state of that resource and history information about invocations already terminated.

The HCC is able to manage four of these six available types of information. It
uses the names (in our case they are given by the Typeld of the interface and
the operation number) of the operations being invoked, the relative arrival type of
invocations (as they are received, the precedent set is built and thus, the relative
arrival time is maintained), the synchronization state (because the HCC maintains
which invocations are already active and which others are already serialized but
they still have not been started) and it is also able to maintain the history of past
invocations on each replicated object.

With all that information, the HCC can implement different synchronization
policies very easily. For instance, two of the most common synchronization poli-
cies are mutual exclusion and readers/writer. To implement mutual exclusion no
special action has to be taken in HCC, because it is the default policy. So, for
the interface given in Fig. 5, all operations are considered mutually exclusive and
their invocations are serialized in FCFS order. Other serialization orders are also
possible. For instance, a priority order could be implemented if each invocation
had an associated priority value and the precedent sets were built following that
criterion.

interface BoundedBuffer {
void InsertItem(in Item Theltem);
void ReplaceItem(in Item 0ldItem, in Item NewItem);
Item GetItem(void);

void PrintBuffer(void);
Item ListItem(in Long Position);
void PrintItems(in Long First, in Long Last);

};
Fig. 5. Example of interface declaration with mutual exclusion policy.

However, the first three operations modify the state of the buffer, while the other
three only read this state (to print the buffer contents, get a copy of a given item
or print a range of items, respectively). So, we can modify the previous declaration
to enforce a readers/writer policy. The resulting declaration is shown in Fig 6.
In this case, the operations InsertItem(), ReplaceItem() and GetItem() cannot
be executed concurrently with any other operation of the same interface because
they modify the state of the bounded buffer. On the other hand, PrintBuffer(),
ListItem() and PrintItem() only read the state of the object and all of them can
be executed concurrently.

interface BoundedBuffer {
void InsertItem(in Item Theltem);
void ReplaceItem(in Item 0ldItem, in Item NewItem);
Item GetItem(void);
void PrintBuffer(void);
Item ListItem(in Long Position)
concurrent(BoundedBuffer: :PrintBuffer);
void PrintItems(in Long First, in Long Last)
concurrent (BoundedBuffer::PrintBuffer,
BoundedBuffer::ListItem);
};

Fig. 6. Example of interface declaration with readers/writer policy.

3. HCC AND ROI MECHANISMS

In [Mufioz-Escof et al. 1998], the HIDRA’s reliable object invocation (ROI) mecha-
nism is described. This mechanism is needed to invoke objects that use either the
coordinator-cohort or the passive replication models. Besides giving the synchro-
nization support already described in the last section, the HCC is assumed to be
fault tolerant. To this end, the service serializer (SS) object is also replicated in a
way that allows its state recovery in case of failures. This is achieved using service
serializer agents(SSAs). These components are described in the following sections,
where the serialization procedure is revisited and a failure analysis is also given.

3.1 Service Serializer Agents

The SSAs are the representatives of the SS object in the kernel domains of the
nodes where at least one replica of that service exists. They maintain a reference
to the actual SS object and invoke it when a serialization request is made.

interface ServiceSerializerAgent { // PIDL

void Serialize(in RoilD InvoID,
in TObj TerminationObject,
in CORBA: :Typeld InterID,
in ObjectID ObjID,
in Long OperationNumber) ;
void Initiated(in RoilID InvolD,
in TObj TerminationObject);

void LocallyCompleted(
in RoilD InvolID);

void Terminated(in RoilD InvoID);

Fig. 7. Interface of the service serializer agents.

The SSAs have the interface shown in Fig. 7 and they are locally invoked when
a serialization is needed by any domain of their nodes. Each SSA has to maintain
a copy of the invocation context for all the ROIs that have been serialized using it
(this occurs when the coordinator replica of the invoked object is placed in the SSA’s
node) and also the precedent sets for these ROIs and the invocation contexts of all
the ROIs that are members of these precedent sets (this information is provided by
the SS). All SSAs maintain a copy of the CCS, although they do not use it unless
they are promoted to the SS class.

The Initiated () and LocallyCompleted() operations are needed by the SSAs
that are placed on the cohort domains of a ROI. The Initiated() operation is
invoked by the ORB when it receives the first checkpoint of a ROI. It registers the
TObj reference for this ROI. This reference is needed in case of a failure of the SS
to find out which ROIs were active. The new SS can use this reference to build a
new replica for the TObj object.

The LocallyCompleted () operation is used in the cohort domains to remove the
TObj reference received in the Initiated() operation, enabling thus the arrival of
unreferenced notifications to the TObj replicas. This operation is invoked when the
last checkpoint in the ROI has been processed by the cohort domain.

The Terminated () operation is used by the replica domains of a ROI to remove
the ROI from the precedent operations sets where it was present. It is invoked
when the TObj objects have received the unreferenced notification, meaning that
the ROI has been completed in all replica domains.

3.2 Serialization Revisited

If the service replicas have a local SSA, the serialization procedure is a bit different.
In this case, the Serialize () method of the SS returns immediately and it provides
in an output argument the list of invocations that form the set of precedent ROIs.
Each ROI in this list consists of a RoilD reference and its invocation context. As a
result, the SSA gets this list of precedent ROIs for the serialized request. Moreover,
each time a ROI is terminated (this fact is detected by the TObj when it receives an
unreferenced notification), all its cohort replicas invoke the Terminated () method
to notify to their local SSAs that this ROI has been terminated and it can be
removed from the precedent sets of the blocked ROIs.
So, as a result, the calls involved in a serialization request are the following;:

(1) The ORB code in the chosen coordinator replica invokes Serialize() on its
local SSA.

(2) The local SSA calls the SS’s Serialize() operation and receives the list of
precedent ROIs. As shown in Fig. 3, this operation provides this information
in the PrecedentSet argument (this argument is not present in the SSA’s
interface previously invoked by the server coordinator).

(3) If the local SSA receives an empty precedent set, it replies the Serialize()
request, enabling the execution of the controlled operation.
Otherwise, it blocks the reply until this precedent set becomes empty.

(4) When the ROI is allowed to proceed, its coordinator replica starts the operation
and it eventually makes the first checkpoint. The cohort replicas, when they
receive this checkpoint invoke the Initiated () operation in their local SSAs.
This operation enables the recovery of the SS state in case of failure.

(5) When the ROI is being terminated, the coordinator replica sends the last check-
point. The cohort replicas, once they have processed this checkpoint, invoke
the LocallyCompleted() operation on their local SSAs, removing the TObj
reference.

(6) Each time a ROI has made all its checkpoints and has returned a result to its
client, the invoked replicas receive an unreferenced notification in their TObj
and find out that the ROI has terminated.

When that happens, all replicas locally invoke the SSA’s Terminated() oper-
ation to notify that the ROI has been completed.

Additionally, the SS also maintains a TObj replica. The SS uses this replica to
find out when the ROI has terminated, updating its data structures accordingly
when this happens. This implies that the ROI is moved from the active to the
terminated list and it is removed from all the precedent sets.

(7) When the SSA receives the Terminated() call, searches the incoming RoiID
reference in all the precedent sets, removing it. If any precedent set becomes
empty, the reply for its associated serialization request is given and the ROI is
moved from the blocked to the active list.

3.3 Fault Tolerance

To ensure that the HCC mechanism is fault tolerant, we have to check that several
failure cases can be overcome by HCC, rebuilding the state of the SS. Two failure

cases are considered here: the failure of a given SSA and the failure of the SS and
several SSAs.

3.3.1 Failure of a SSA. When a SSA crashes, the whole node where it resides has
crashed, because our ORB support is assumed to be in the kernel domain. So, all
coordinator replicas for the ROIs being controlled by this SSA have also crashed.

We need to replace the faulty SSA because it controls the activation of the blocked
ROIs when its precedent operations set becomes empty. To this end, we have to
describe how a ROI is restarted when its coordinator replica has crashed.

If the ROI still remained blocked, no special action has to be taken. If the client
that initiated the ROI is still alive, it will reinitiate the invocation on another
replica. Since the RoiID is still maintained by the client, the new attempt is iden-
tified as a replay by the SS and an updated precedent operations set is returned to
the new chosen coordinator’s SSA.

If the ROI was already active, our ORB support will choose another coordinator
replica and no serialization request is initiated to do so. When the client reinitiates
the invocation on another coordinator replica to pick the results of the previous
attempt, its serialization request will be replied immediately by the SS as in the
case described in the previous paragraph.

3.3.2 Failure of the SS and some SSAs. As previously shown, when this fail-
ure happens no special action has to be taken to rebuild the state of the crashed
SSAs because the ROI mechanism chooses another coordinator replica for all ROIs
involved in the crash.

However, the dynamic state of the SS has to be rebuilt. This state consists of
two lists of ROIs:

—Active list. In this list we can find all the ROIs that are currently active. For
each of these ROIs, the SS maintains its RoilD, its associated TObj replica and
its InvoCtxt needed to find out conflicts with the arriving ROIs.

—Blocked list. In this list the SS maintains all ROIs that have been blocked due to
either a conflict with any active ROI or a conflict with other blocked ROIs which
arrived previously.

The SS adds for each of these ROIs the set of precedent operations, identified by
their RoiIDs.

Both lists have to be rebuilt using the information maintained by the surviving
SSAs. In these SSAs, we can find:

—AIl the information about the blocked ROIs whose coordinator replica is placed
on the same node. This includes the RoiID and InvoCtxts of all the precedent
operations in each precedent set and the RoiID, InvoCtxt and TObj of the blocked
ROL

—The RoiID and TObj references for the currently active ROIs that have made at
least one checkpoint and still have not made the last checkpoint.
Moreover, the SSAs can maintain information about the active ROIs that have
invoked the LocallyCompleted() operation but still have not invoked the Ter-
minated() one.

Thus when the SS has crashed, one of the remaining SSAs is promoted to the SS
class. To rebuild its active list, the following steps are taken in the reconfiguration
phase of the cluster:

(1) All surviving SSAs are queried and each of them returns a list with all RoiIDs

that have an associated TObj reference (due to a previous invocation of the
Initiated() operation).
For each one of these ROIs the SSAs return its RoiID, its TObj reference and
(if it can be locally found) its InvoCtxt. Note that a copy of the InvoCtxt is
stored in the SSA that made its serialization request and in all the SSAs that
maintain ROIs that have been serialized as its successors (i.e., that have this
ROI in its precedent set).

(2) All the RoiIDs returned in the previous step are inserted in the active list and
a TObj object replica is regenerated from its reference and it is associated to
its RoiID and InvoCtxt.

(3) If no InvoCtxt could be found for a given ROI (because its coordinator node
has crashed and no successor operation exists), the RoiID provides a GetInvo-
Ctxt () operation which could be invoked to get a copy of these data.

To rebuild the blocked list, this sequence of steps is needed:

(1) All surviving SSAs are queried and each of them returns all their blocked ROIs
and the precedent set for each of these ROIs.

(2) All these blocked lists are merged to build the blocked list of the new SS. Thus,

the precedent sets for a given ROI are compared and the resulting precedent
set only has the ROIs that could be found in all the merged precedent sets
(we assume that if in any precedent set a given ROI is missing, then this ROI
was detected as terminated by that SSA, which removed it from that precedent
set).
For all the SSAs that have a RoilID in their precedent sets that other SSAs
have detected as terminated, the SS does not need to invoke the Terminated ()
method. The associated TObj replicas of those machines still had not received
the unreferenced notification, but eventually they will receive it and will invoke
that operation.

(3) Finally, all precedent sets are checked to find out if they have some ROT that
does not appear in the active nor in the blocked list. If that happens, that
ROI is removed from the precedent sets because it corresponds to a ROI that
was active but still did not make any checkpoint and whose coordinator replica
crashed. A ROI of this class has to be reinitiated. As a consequence, it has to
be serialized again.

When some ROI of this kind is found, the new SS also has to invoke the
Terminated () method of all the SSAs using its associated RoiID as input
argument.

Once these two protocols have been executed, the new SS has a dynamic state
that allows the service of new serialization requests of the HCC.

4. RELATED WORK

HIDRA needs a pessimistic concurrency control mechanism to synchronize the ac-
cess to replicated objects that follow the coordinator-cohort replication model. An
object-oriented programming model is assumed, which may be used to build a syn-
chronization mechanism based on the control of the concurrency with an operation
granularity, as the HCC presented here.

Other concurrency control mechanisms for replicated objects exist, but the great-
er part of them are used in replicated databases and are based on quorum consensus
[Kumar and Segev 1993]. These replication models assign a vote to each replica
and divide the operations in only two categories (read and write). Each time a
read operation must be made, the operation has to access a read quorum number of
replicas. Also, when a write operation is attempted, it has to access a write quorum
number of replicas. The basic property that has to be accomplished by all these
algorithms is that the sum of these two quorums must exceed the total sum of all
possible votes and that the write quorum must be strictly greater than half the sum
of all votes. Each replica can only issue a vote each time it has to be accessed. The
operations are allowed to proceed if they have collected the required vote quorum.

To deal with failures, these mechanisms use a dynamic reassignment of quorums.
There are several variants of this technique, as the available copies [Bernstein and
Goodman 1984] and the dynamic voting [Jajodia and Mutchler 1990] methods.

More advanced techniques are discussed in [Herlihy 1990] where two approaches
are described: conflict-based and state-based validation. In the first case, oper-
ations are allowed to proceed concurrently if they commute; i.e., if they do not
conflict. This is an approach equivalent to ours. The state-based validation needs
to know which parts of the state are affected by each invocation. In this case,
the concurrency control mechanism needs to know the value of the arguments of
each invocation and the current state of each object being invoked. Although these
technique allows even greater concurrency than the conflict-based one, the amount
of information that needs to be managed and the access to the object state make
it infeasible in our environment. Moreover, both techniques are described in their
optimistic variants which can not be used in HIDRA, because we offer a model
where the invocations are never aborted.

Finally, the replication model also affects the concurrency control mechanism.
In a passive replication model, where only a primary replica exists, no distributed
concurrency control mechanism is needed because all invocations are received by
the same replica, which can use a simple local mechanism as some kind of locks or
semaphores. In the active replication model all replicas receive the same invocations
in the same order. As a result, a local concurrency control mechanism is again
sufficient. However, the coordinator-cohort replication model is not so easy. A
concurrency control mechanism for this replication model was already given in
[Birman et al. 1984]. It is based on controlling the data dependencies and precedence
dependencies between the operations being requested. Thus, a data dependency
exists between two operations when one of them requires the result of the other
before it can be started. On the other hand, precedence dependencies exist between
two operations if they conflict, i.e., they access the same part of the state and at least
one of them modifies that state. Although precedence dependencies are already

controlled by HCC, data dependencies need some control on the arguments of the
operations. This enlarges the amount of information that must be managed by the
concurrency control mechanism and does not improve so much the concurrency.

5. CONCLUSIONS

The HCC mechanism provides an easy-to-use concurrency control support for the
programmer of replicated objects. The programmer only has to worry about con-
currency when the interface of the replicated objects is being declared; all other
support is transparently provided by HCC.

The concurrency control is given at an operation granularity and it allows the
implementation of multiple concurrency control policies. Additionally, the objects
involved in the HCC support are fault-tolerant, giving as result an appropriate
concurrency control mechanism for the coordinator-cohort replication model of
HIDRA.

Although other concurrency control mechanisms may be found for replicated
object management, HCC is either more comfortable for the programmer or requires
less message interchange among the agents involved in that concurrency control or
provides support for a greater number of synchronization policies.

REFERENCES

BERNABEU-AUBAN, J. M. AND AHAMAD, M. 1989. Applying a path-compression technique
to obtain an efficient distributed mutual exclusion algorithm. In J. C. BERMOND AND
M. RAYNAL Eds., 3rd International Workshop on Distributed Algorithms, Nice, France,
LNCS (sep 1989), pp. 33—44. Springer-Verlag.

BERNSTEIN, P. A. AND GooDMAN, N. 1984. An algorithm for concurrency control and
recovery in replicated distributed databases. ACM Trans. on Database Sys. 9, 4 (Dec.),
596—615.

BirmAN, K. P., JosepH, T., AND RAEUCHLE, T. 1984. Concurrency control in resilient
objects. Technical report (July), TR 84-622, Dept. of Computer Science, Cornell Univ.,
Ithaca, NY.

BirMAN, K. P., JOSEPH, T., RAEUCHLE, T., AND EL ABBADI, A. 1985. Implementing fault-
tolerant distributed objects. IEEE Trans. on SW Eng. 11, 6 (June), 502-508.

Broom, T. 1979. Evaluating synchronisation mechanisms. In 7th International ACM Sym-
posium on Operating System Principles (1979), pp. 24-32.

GALDAMEZ, P., MuNoz-Escof, F. D., AND BERNABEU-AUBAN, J. M. 1997. High availability
support in CORBA environments. In F. PLASIL AND K. G. JEFFERY Eds., 24th Seminar on
Current Trends in Theory and Practice of Informatics, Milovy, Czech Republic, Volume
1338 of LNCS (Nov. 1997), pp. 407-414. Springer Verlag.

GRAY, J. 1979. Notes on database operating systems. In R. BAYER, R. GRAHAM, AND
G. SEEGMULLER Eds., Operating Systems: An Advanced Course. Springer-Verlag.

HErLIHY, M. 1990. Apologizing versus asking permission: Optimistic concurrency control
for abstract data types. ACM Trans. on Database Sys. 15, 1 (March), 96-124.

HoARE, C. A. R. 1974. Monitors: An operating systems structuring concept. Communica-
tions of the ACM 17, 10 (oct), 549-557.

JAJODIA, S. AND MUTCHLER, D. 1990. Dynamic voting algorithms for maintaining the con-
sistency of a replicated database. ACM Trans. on Database Sys. 15, 2 (June), 230-280.
KRISHNAKUMAR, N. AND BERNSTEIN, A. J. 1994. Bounded ignorance: A technique for in-
creasing concurrency in a replicated system. ACM Trans. on Database Sys. 19, 4 (Dec.),

586—625.

KUMAR, A. AND SEGEV, A. 1993. Cost and availability tradeoffs in replicated data concur-

rency control. ACM Trans. on Database Sys. 18, 1 (March), 102-131.

McHALE, C. 1994. Synchronisation in Concurrent, Object-oriented Languages: Ezpressive
Power, Genericity and Inheritance. Ph. D. thesis, Department of Computer Science, Trinity
College, Dublin, Ireland.

MuRNoz-Escoi, F. D., GALDAMEzZ, P., AND BERNABEU-AUBAN, J. M. 1998. Reliable object
invocation in HIDRA. Technical report (mar), DSIC-II/9/98, Univ. Politécnica de Valéncia,
Spain.

OMG. 1998. The Common Object Request Broker: Architecture and Specification. Object
Management Group. Revision 2.2.

U. S. DEPT. OF DEFENSE. 1983. Reference manual of the Ada programming language. Tech-
nical report, ANSI/MIL-STD-1815A, DoD, Washington, D.C.

