
Lazy Recovery in a Hybrid Database Replication
Protocol ?

Luis Irún-Briz, Francisco Castro-Company, Félix Garcı́a-Neiva, Antonio
Calero-Monteagudo, and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

46022 Valencia, SPAIN
Email: {lirun,fcastro,fgarcia,acalero,fmunyoz}@iti.upv.es

Abstract. COLUP is a hybrid database replication protocol that may be config-
ured to behave either as an eager or a lazy update protocol. When a faulty replica
joins again the system, a recovery subprotocol is needed to update its database
state. Independently of the chosen update strategy, these recovery tasks are lazy
and introduce a minimal overhead in the non-recovering replicas.
This recovery protocol is based on the roles carried out by each database replica
when an object is considered. There are several roles: owner, synchronous, and
asynchronous. The owner is unique and is the object creator. It manages the ac-
cess control requests on its owned objects. Synchronous replicas are those that
receive updates before transactions are committed. Finally, asynchronous repli-
cas only receive lazy updates and may have a stale state. Thus, the recovering
replica requests an up-to-date version of its owned objects once a local or re-
mote transaction has made an access control request on them, but will rely on the
common update propagation approach for all its non-owned objects.

1 Introduction

Fault-Recovery has been presented in the literature as the process needed by the system
to stabilize the normal behavior when some node has suffered any fault in its function-
ality, or when a faulty node recovers from its abnormal state, and is re-included in the
system.

In a fault-tolerant system the recovery is usually performed with specific (and often
costly) algorithms designed to reestablish the normal functionality of the system when
a fault is detected, or when a faulty node recovers and is re-included in the system.

Moreover, the specific algorithms mentioned above must be run at least when a
system reconfiguration[12] arises. This is due to two facts: first, a fault-tolerant system
is based on replication, and the different replicas must be adjusted to have an adequate
behavior; second, a distributed system maintains a distributed state, that must also be
treated in presence of system reconfigurations.

In a replicated database system the most costly management is related to ensuring
consistency[9]. A node recovery is a worst case in the system reconfigurations, because

? This work has been partially supported by the Spanish MCYT grant TIC2003-09420-C02-01.

the information managed by the recovering node may be incomplete, outdated and even
inconsistent with the information stored in the rest of replicas. Thus, the information
managed by the recovering node must be synchronized using the data held in the rest
of database nodes. Some recovery algorithms need that, once a node has failed, the
surviving nodes keep track of some kind of activity log. This log maintenance makes
the solution unscalable, due to the unpredictable log lengths.

Regardless the origin of the information needed to update the recovered node, a
huge amount of information may be transmitted, and the consistency may be compro-
mised if the process is not carefully achieved. Thus, in some algorithms the recovering
node is not able to initiate any transaction until the information held in its database is
updated. In addition, the rest of the system nodes should take into account that the re-
covering node is not completely updated, and perform additional actions to guarantee
the consistency of their locally initiated transactions.

On the other hand, the recovery of a node can be accomplished in a more “graceful”
way. Making use of laziness, a recovering node may consider that the information held
in its database is asynchronously maintained, and the entire system can continue its nor-
mal functionality without the need of any additional actions. In addition, the recovering
node can reestablish asynchronously the original state of the accessed objects when a
locally initiated transaction requests such objects.

This approach can be named Lazy Recovery, because the re-included node performs
such recovery in a lazy manner, updating its state from the rest of the system with
a sequence of asynchronous operations. Lazy Recovery reduces the overhead of the
recovery process, and allows any node in the system to proceed normally, even before
the recovering node has completely updated its state.

In the GlobData project[4,13], a software platform is used to support database repli-
cation. This platform, is called COPLA, and provides an object-oriented view of a net-
work of relational DBMSs. We use the COPLA architecture as a platform to experiment
with different consistency algorithms working on top of a replicated database.

We have designed a hybrid approach to manage the consistency in such systems.
Our proposal consists of a new algorithm that is flexible enough to be configured either
as a pure eager protocol, and as a pure lazy protocol. In addition, the algorithm can be
configured to bring a hybrid, improved behavior, providing a configured degree of asyn-
chrony to the underlying transactional environment, with a certain level of replication
along the system. On top of this algorithm, a fault-tolerance mechanism has been devel-
oped, providing self-recovery techniques that make use of a lazy approach to complete
the node re-inclusion.

In this paper we describe our recovery algorithm, as a modification of the hybrid
consistency protocol already described in [6,5]. In addition, measurements of a real
implementation are also included, showing the low overhead our approach introduces
in a recovering system.

The rest of the paper is structured as follows. Section 2 outlines the basic hybrid
COLU protocol. Section 3 includes the modification introduced in the basic algorithm
to provide self-recovery ability to the consistency control. An exhaustive study of our
proposal is shown in section 4, where an implemented system is detailed, and the ob-

tained results are described. Finally, section 5 outlines the related work and section 6
gives some conclusions.

2 The Hybrid Optimistic Protocol

The replication protocol outlined in this section has been implemented as a consistency
protocol in the GlobData Project. This hybrid optimistic protocol implemented in Glob-
Data is named ”Cautious Optimistic Lazy Update Protocol” (COLUP), and makes use
of the algorithm widely detailed in [6].

The algorithm uses the concept of node role, giving special relevance to the node
where a particular object is created (i.e. the owner node of such object).

During the consensus process performed at commit time of a transaction, the owner
of an object will be asked to allow this transaction to complete the commit. Thus, it
is the manager for the object accesses, and it is also the responsible to coordinate the
propagation of the last versions of the object.

Additionally, the identifier of the node where an object was created; i.e., its owner
node ID, is included in the object ID. Thus, it will be easy to find which node inherits
the ownership in case of failure.

For an object, a set of nodes will participate in the algorithm maintaining a replica
of such particular object in a synchronous way. These synchronous nodes receive any
update performed on the object before the updating transaction terminates in the cor-
responding active node (i.e. the node where a transaction is initiated). The minimal
synchronous set is composed by the owner node of an object.

Finally, all other nodes replicating the object constitute the asynchronous set of
nodes of such object. In these nodes, the transaction updates regarding this object will
be eventually received.

2.1 Algorithm Outline

The COLUP consistency protocol multicasts object updates to the asynchronous nodes
beyond the transaction completes its commit phase. Consistency conflicts among trans-
actions are resolved with an optimistic approach, using object versions and checking
them during the commit phase. Thus, object accesses are allowed along the transaction
execution without any locking treatment.

The main inconvenience of this Lazy Update Propagation is the increase of the abor-
tion rate the use of Laziness introduces in the system. An expression for the probability
for an object to cause the abortion of a transaction (i.e. to be a stale-access) was detailed
in [6]. The COLU protocol makes use of this expression to predict the convenience for
a transaction to ensure that an object asynchronously updated has a recent version in
the local database.

In order to apply these results, it becomes necessary to establish a threshold of
PA(oi) (i.e., the abort probability of an access to oi due to a stale access) to consider
the object “convenient to be updated”. An adequate value for this threshold should
minimize the number of abortions caused by accesses to outdated objects, and keeping
low the number of updates for the system. Thus, when a transaction requests an object

access, PA(oi) is calculated, and compared with the stablished threshold. As a result,
the algorithm obtains an updated version for objects predicted to be stale (i.e. out of
date).

The implementation of this principle introduces a new request in the protocol. Now,
the active node for a transaction will send “Update requests” to the owners of the stale
accessed objects, in order to get their updated versions. This update request message is
sent along the transaction execution, in order to maintain updated (in a certain degree)
the objects accessed by the transaction.

The minimization of the number of updates (obtained with higher thresholds), will
increase the number of transactions executed in the system per second, because it will
decrease the resources used by the update propagation. On the other hand, this min-
imization will cause an increase in the number of aborted transactions, because the
number of outdated objects will also be increased. The increase of the abortion rate can
also degrade the productivity of the system, because the time spent in transactions that
are finally aborted is futile. An adaptative algorithm to adjust in run-time the threshold
in order to obtain an optimum behavior has been presented in [6].

2.2 A Hybrid Approach

One of the most interesting characteristics of the COLUP approach is that the protocol
can be parameterized to have the behavior of either an eager or lazy update protocol.

Extending the set of synchronous replicas, for each object, to the entire system, we
will obtain an update propagation protocol which ensures that, for each node in the
system, all the updates are propagated within the commit phase, and no other updates
are needed anymore. This is precisely the definition of an eager update propagation
protocol.

On the other hand, if no update is forced along the life of a transaction (i.e. it has
been established threshold to 1.0), and the synchronous set for each object is restricted
to the owner node, no update will be performed in the commit phase. In addition, these
updates will only be performed when a transaction is aborted due to any access to
outdated objects. This is the definition of a pure lazy update propagation protocol.

Intermediate configurations can be established to provide hybrid behavior to the
transactional system. Thus, availability of the information can be improved by increas-
ing the size of the synchronous set, and the common advantages of replication, such as
scalability and fault-tolerance, will be consequently obtained. In contrast, to relax the
synchrony guarantees provided by the system, the threshold should be decreased. The
lower the threshold is, the more asynchronously the replicas will be managed.

Desired Behavior |S| T
Pure Eager N (the entire system) -
Pure Lazy 1 (only the owner) 1.0

Improved Asynchronous 1 + dR × (N − 1) (the owner, plus a set) dS

Table 1. Configurations of the Hybrid Algorithm

The different data expressed in the table correspond with the following:

– |S|, the size of the Synchronous set for each object in the system.
– T , the Threshold of the algorithm.
– N , the number of nodes in the system.
– dR, the degree of replication (dR ∈ [0 . . . 1]) to be set in the system.
– dS , level of synchrony (dS ∈ [0 . . . 1]) to be set in the system.

The table summarizes the capability of the presented algorithm to provide the ver-
satility enough to cover a wide range of solutions, from a pure Eager approach (with
synchronous management of the replication), to a pure Lazy approach (managing asyn-
chronously the replicated data), including a hybrid approach, that allows certain degree
of synchrony. Finally, the algorithm also provides an improved asynchronous model,
that relaxes the inconveniences of the use of asynchronous techniques.

3 Providing Lazy Self-Recovery Ability to COLUP

In this section, the recovery ability is included in the basic algorithm as a modification
in some steps of the COLU protocol, outlined in the previous section.

This modification makes a number of considerations about the underlying network
connectivity, and other issues, that must be clarified before further explanations are
introduced.

– As occurred in the basic protocol, each node in the system is labeled with a number,
identifying it, and providing an order between every node in the system.

– Each node runs a copy of a membership monitor. This monitor is a piece of software
that observes a preconfigured set of nodes, and notifies its local node about any
change in this set (either additions or eliminations). The membership monitor used
for the self-recoverable COLU Protocol is described in [10], but has been extended
to support a primary partition model; i.e., in case of a network partition, only the
subgroup with a majority of the preconfigured members can continue, if any.

– The communication protocols guarantee a uniform delivery of the network broad-
casts.

The rest of this section shows the differences between the COLU and the ”self-
recoverable” COLU protocols.

1. When the membership monitor notices a node failure (let Nf be the failed node),
a notification is provided to every surviving node in the system. This notification
causes for each receiving node to update a list of alive nodes. The effect of these no-
tifications will be a logical migration of the ownerships of the failed node. Further
steps will explain the term logical.

2. During the execution of a transaction, a number of messages can be sent to the
different owners of the objects accessed by this transaction. If a message must be
sent to a failed owner Nf , then it will be redirected to the new owner for the in-
volved object. This new owner can be assigned in a deterministic way from the set

of synchronous replicas of the object (e.g. electing as new owner the surviving syn-
chronous replica with an identifier immediately higher to the failed one). Let Nn

be the new owner for the accessed object.
The determinism of the election is important to guarantee that every surviving node
redirects its messages to the same node (Nn).
Note that the messages sent to a node can involve more than one object. This will
generate a unique message to the new owner, because every object in the original
message had the same owner, and so, will have the same substitute.

3. A “previous grants” message is sent by each node to the Nn one, giving the set of
access confirmation requests (ACRs) granted to that sender node (even when such
a set is empty). The new owner won’t process any new ACR until it receives all
these “previous grants” messages. Thus, the new owner knows which objects are
in the readsets or writesets of sessions approved by the previous owner, and it will
reject new requests that have conflicts with those previously granted ACRs.

4. Later on, if the synchronous replica Nn receives a message considering the node
as an owner, the message can be processed as if Nn was the original owner. To
this end, if the received message was an ACR, then the access conflict management
must be performed by Nn, replying the request as usual in COLUP. Moreover, if
the received message was an update request, then the new owner should reply to
the message sending the local version of the object. The update message will be
detailed in further steps.
This behavior maintains the consistency because the new owner of an object will be
always elected from the set of synchronous replicas of the object. This guarantees
that the value for the object maintained in the new owner is exactly the same value
the failed owner had.

5. Whenever the original owner node Nf is recovered from the failure, every alive
node will be notified by its local membership monitor. Then, further messages sent
from the nodes to the owner Nf must not be redirected to Nn, because the node Nf

has been recovered now. In addition, the recovering node sends a specific message
(”I am back”) to the node that managed its owned objects (i.e. the temporary owner
Nn). This message synchronizes the activity of both nodes.

6. Nevertheless, a recently recovered node Nf will receive request messages concern-
ing owned objects that may have been updated during the failure period. In order
to manage this situation, a recovered node must consider every object held in its
local database as an “asynchronous replica”. This consideration will be done for an
object oi until either an update reply or access confirmation reply is received from
a synchronous replica of the object. These replies will be received in the situations
described in step 7.

7. If an ACR is received by a recently recovered node Nf , and the involved object
has not been already synchronized in the node (i.e. the concerning object has not
been already updated from a synchronous replica), then Nf must force the synchro-
nization. This synchronization is performed with an update message sent to node
Nn. The reply to this update message will ensure the Nf ’s local database holds the
latest version of the requested object.
Once the object is updated in the local database, the ACR can be processed as
described for a standard owner node.

8. In order to ensure that a recently-recovered node Nf achieves a correct state for its
originally synchronized objects (i.e. the node receives an update message for each
object oj that satisfies Nf ∈ S(oi)), an asynchronous process has to be run.
This process, will be executed as a low-priority process, and will send an update
request for each object not already synchronized in Nf .
Note that the interference of such process in the performance of Nf should be low,
because it will only be scheduled during idle periods.

9. The asynchronous process should also include the update, in the local database of
the recovered node Nf , of any new object created during the time the node was
failed. To perform this update, a simple algorithm may be followed by Nf just at
the beginning of its recovery:

– When Nf recovers from a failure, a query is performed to the local database in
order to retrieve the identifier for the more recently inserted object owned by
every node in the system. This can be done due to the construction of the object
identifiers. As a consequence of these requests, Nf knows, for each node, the
last inserted object.

– Until Nf receives such information from its local database, it will lock any
update to its local database. This ensures that the response of the requests does
not include any update performed after the recovery of Nf .

– In addition, and concurrently with these requests, every node in the system
sends a greeting message to the recovered node. This message includes the
identifier of the most recently created object in node Ni.

– The comparison of the information contained in the greeting messages, with the
values collected from the local database, makes Nf know the lost insertions in
each node (i.e. the range of objects inserted during the failure).

– In addition to these object identifiers, the asynchronous process performs fur-
ther requests to its local database in order to retrieve a complete list of object
identifiers owned by each node in the system, and managed in a synchronous
way in Nf .

– Objects contained in this list of synchronous identifiers will be considered as
asynchronously maintained objects, until an update message will be sent to its
owner node and, as a response of this request, an up-to-date value is obtained,
and it is possible to guarantee in the local database of Nf the ”synchronism” of
such objects. Then, the identifier can be removed from the list of synchronous
identifiers.

In order to update every object in the local database, the asynchronous process will
use the collected information about lost insertions to perform update requests to
each owner node about these objects.

3.1 The Extended Modification

In the previous section, a basic technique to provide fault tolerance has been described
in terms of a modification to the COLU protocol. In this approach, when a node fails,
the remaining nodes don’t need to perform any specific action.

The implementation of a replication degree of T is accomplished with the syn-
chronous replication of the information of each object at least along T nodes.

Let’s suppose a system where it has been established a replication degree of two.
This means that the system will only guarantee the full functionality of the system in
presence of less than two failures over the original configuration; i.e. it can occur that
subsequent failures of two nodes deal with a system stop.

This undesirable effect can be avoided (or at least attenuated) if the number of syn-
chronous replicas of each object is always maintained over the established replication
degree. To achieve this, it becomes necessary, whenever this level is decreased (i.e.
when a failure of a synchronous replica is detected), to promote the role of a node pre-
viously considered asynchronous, making it synchronous for the objects maintained by
the failed node in a synchronous way.

The modification of the recovery flavor of COLUP performs the following steps:

– When the system detects a failure of the node Nf , the Membership Monitor of each
remaining node in the system notifies the corresponding local Consistency Manager
of such failure.

– For the rest of nodes, one of the nodes Np acting as an asynchronous replica for the
set of objects owned by the node Nf , will be promoted, for this set of objects, to
synchronous replica.

– The election of the promoting node Np must be done with a deterministic algo-
rithm. This algorithm is quite simple: It must be always guaranteed the following
property.
”For each object oi, considering Nw(oi) as the owner node for oi, and the repli-
cation degree as T , then the set of synchronous replicas for the object is always
S(oi) = {Nk|k = w, w +1, . . . w +T − 1}, where the operation + only considers
the alive nodes”.

– To satisfy this property, when a node Nf fails, every node Ni proceeds to recal-
culate the set S(oi) for each object owned by the failed node. Three situations can
occur at this point:
• If Ni was synchronous, and it is not the new owner of the objects, then the

normal behavior described in section 3 is applied.
• If Ni was synchronous, and becomes the new owner of the object, then addi-

tional actions will take place.
• If Ni was asynchronous, and now it is synchronous, but not the owner, then it

should be considered synchronous, but not synchronized for oi. Thus, the node
Ni will follow the same actions as if it was recovering from a failure for the
objects oi.

The depicted technique will promote in a lazy way an asynchronous node Np to
synchronous replica for the set of objects owned by the failed node. Moreover, this new
synchronous replica, at the beginning of its promotion, will not be synchronized for
each object in this set. Hence, it is possible that a sequence of failures of the new owner
nodes Nf2

, . . . , NfT
deal with a situation of lack of synchronous, synchronized replicas

of a particular object.
As a consequence, it becomes necessary for the owner node of oi to maintain the

count of synchronous replicas that are currently synchronized with itself. If a node is the
unique synchronized replica of an object, and the node fails, no other node will be able

to recover the adequate version for this object. Therefore, no other node will be able to
promote to owner of this object, and there will only exist a set of nodes synchronous,
but desynchronized for this object.

When a unique synchronized node for the object is recovered, then it must be again
considered, as described above, synchronous for this object. But, in contrast to the com-
mon case, it can be considered synchronized, because no other node may have been
considered owner of this object during the failure, and hence, it has been impossible for
any transaction to change the value of the object.

4 Obtained Results

We have implemented the COLU Protocol as a Consistency Manager for COPLA, and
we have experimented with real applications, as well as with particular, specific-purpose
test applications. The obtained results for the COLU Protocol showed that the use of
prediction of stale-accesses can dramatically decrease the abortion rate of the initiated
transactions. In addition, the prediction has a reasonable cost in terms of transaction
service time. It was also proven that the adaptative adjustment of the optimum threshold
provides an adequate behavior, close enough to the theoretical optimum to consider the
algorithm validated.

We have also measured the fault-recovery modification of the COLU Protocol. In
these measurements, we have encountered that lazy recovery can be implemented with
a minimal impact in the service time of the recovered node, as well as of the surviving
nodes.

In the experiments, four nodes running COPLA have been used, each one initiat-
ing 1000 consecutive (i.e. establishing a thinking time of zero) transactions against the
replicated database. Each node is preconfigured to own the same quantity of objects
stored in the database. As the total number of objects in the database was established in
600, each node owned a number of 150 objects.

For each transaction, the locality is established in base of a probability (i.e. P[local]).
For such transactions elected to be local, any object accessed by the transaction is cho-
sen from the owned set of objects of the node initiating the transaction. This means that
no stale access should appear for this transaction. For the non-local transactions, the
accessed objects are elected in a uniform way from the rest of nodes (i.e. 450 objects)
of the system.

Each transaction accesses in read-write mode to two objects elected in the described
way.

For each object, it has been parameterized the size of the synchronous set of repli-
cas (i.e. |S|). The minimum value for |S| is 1, because the owner node is always a
synchronous replica for its owned objects. We have established the synchronous set of
an object S(oi) = {Nown(oi), Nown(oi)+1, ...}, that is, starting with the owner node of
the object, the next |S| − 1 nodes.

For the recovery measurements, we have always considered N3 as the faulty node
(note that the election of the faulty node has no relevance, due to the symmetry of the
algorithms).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1
P

[a
bo

rt]
P[local]

Normal Execution

|S|=1
|S|=2
|S|=3
|S|=4

(a) Normal Execution

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

P
[a

bo
rt]

P[local]

During Recovery of node 3

|S|=2
|S|=3
|S|=4

(b) During Recovery of Node 3

Fig. 1. Evolution of the abortion rate for different P[local]

Figure 1 shows a comparison of the abortion rate provided by the COLU protocol
during a normal execution (subfigure 1(a)), in contrast to the abortion rates provided
when the node 3 is recovering using the lazy recovery technique (subfigure 1(b)). In
both situations, when the locality is increased, the abortion rate decreases, reaching the
value of 0 when every transaction accesses exclusively to local objects. The maximum
value of the abortion rate is obtained when all transactions access to remote objects. It
can be seen that the adaptative algorithm for the optimum threshold keeps the abortion
rate below reasonable limits. The only exception is encountered when the system is
configured to have |S| = 1, where the abortion rate reaches the maximum value. In
addition, this configuration avoids the system to provide fault-tolerance, because there
exists a single replica for each object.

Finally, the figure also shows the similarities between the abortion rates in the rest
of scenarios.

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

S
er

vi
ce

 T
im

e
(m

s)

P[local]

Normal Execution

|S|=1
|S|=2
|S|=3
|S|=4

(a) Normal Execution

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

S
er

vi
ce

 T
im

e
(m

s)

P[local]

During Recovery of node 3

|S|=2
|S|=3
|S|=4

(b) During Recovery of Node 3

Fig. 2. Evolution of the service time for different P[local]

Figure 2 performs an analogous comparison with the provided service time. The
obtained results showed that the service time obtained is more sensible to the locality
when |S| is decreased. This fact is also kept during the recovery of a node. Finally, it

was shown that the performance of the system was very similar during the recovery in
contrast to the normal execution of the system.

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

10
0*

(P
[a

bo
rtR

]-P
[a

bo
rt]

)/P
[a

bo
rt]

 (%
)

P[local]

Overhead of the recovery process over the abortion rate

|S|=2
|S|=3
|S|=4

(a) Abortion rate

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

10
0*

(S
tim

eR
-S

tim
e)

/S
tim

e
(%

)

P[local]

Overhead of the recovery process over the service time

|S|=2
|S|=3
|S|=4

(b) Service time

Fig. 3. Overhead introduced by the Recovery, for different P[local]

In the figure 3, we show the overhead introduced in the system by the lazy recovery
process. It is shown that the abortion rate (subfigure 3(a)) is increased below a 10%
when the number of synchronous replicas is lower than 4 (for |S| = 3 it is kept below
1.5%). In addition, when the number of replicas is increased, the overhead is reduced,
even introducing an improvement. This improvement is caused by the lower level of
concurrency introduced by the recovering node.

Regarding performance (subfigure 3(a)), the locality of transactions reduces the
overhead of lazy recovery. Higher values of |S| also reduce this overhead, even pro-
ducing better performance for certain configurations.

As a conclusion, lazy recovery produces overheads in terms of performance and
abortion rate lower that 10%, and in some configurations it may provide better results
than in the non-recovering case.

5 Related Work

One of the most important characteristics of a good recovery protocol consists of the
capability of the non-recovering replicas of serving incoming transactions during the
recovery of a node. This guarantees a higher availability while the recovery process is
carried out.

Moreover, avoiding the maintenance of activity logs in the survining nodes when
a failure is detected is another desirable feature of a recovery protocol. This reduces
the overhead introduced by the system for providing fault-tolerance to the distributed
service.

In replicated databases this means that transactions must be served even when any
replica is being recovered. Moreover, a minimal overhead is wanted in this recovery
process, as well as during the time a node is considered down.

Some eager replication protocols[1,8,13] are based on a total order delivery policy
such as atomic broadcast primitives[3]. Many of them do not discuss their recovery sub-
protocols, although they share the same principles of their replication techniques. The

main disadvantage of such algorithms consists of their blocking nature[9], introducing
a ”not-so-minimal” interference in the system. This problem was also present in our
previous eager replication protocols[11].

Newer approaches make use of the principle of enriched view synchrony [2], but
the need of logging the activity often introduces a poor scalability in the system during
relatively long time failures.

Regarding the amount of transferred data, when the update information requested
by the recovering node exceeds a certain amount, synchronous recovery approaches are
unpracticable, due to the interference introduced in the system. To avoid this, cascading
reconfiguration with lazy transfer was proposed in [9] as an asynchronous alternative.

In [7] another non-blocking recovery solution is presented, solving also some mi-
nor problems of the work described in [9]. However, the recovery tasks of [7] need a
transaction log that maintains all writesets of the lost transactions for faulty nodes, and
it has to transfer such logs to the recovering nodes. In order to minimize the amount of
data that needs to be transferred, this log is periodically shortened using checkpoints.
Thus, when a replica recovers, the latest checkpoint is initially applied, followed by
the logged updates stored after such checkpoint. Our solution only considers the latest
versions of the objects that have been updated during the failure period, so the costs of
these two approaches have to be similar.

The main advantage offered by our algorithm is that our recovery tasks are natively
supported by the basic hybrid protocol. Thus, the recovery is part of the basic algo-
rithm, and no additional code is needed to consider failures. Another advantage is that,
as the update is performed on demand (i.e. when the recovering node accesses an out-
dated object), there is no need of locking any object in the rest of replicas. Finally, our
proposal makes use of a less expensive communication primitive (just a uniform causal
reliable multicast is needed, instead of a uniform atomic one) to carry out the recovery
tasks. Unfortunately, the transaction service time of COLUP is usually longer than that
of pure lazy database replication protocols.

6 Conclusions

We have presented a configurable solution to replicated transactional systems making
use of a hybrid approach, flexible enough to have a variety of behaviors from a pure
eager protocol, to a pure lazy one.

As a result, the presented approach is able to provide the advantages of pure ea-
ger and pure lazy approaches, and it can also be configured to include asynchronous
replication, forestalling their traditionally found disadvantages. Thus, our approach can
reduce the abortion rate, improving the performance of the system.

A new lazy recovering protocol is presented. It makes use of the principles applied
by the COLUP algorithms to get the full state of a recovering node without suspending
the activity of such a node during the process. Moreover, there is no node in the system
suspending its activity during the system recovery, because this recovery is performed
following a lazy paradigm. In addition, the algorithm avoids the necessity of any log
maintenance, providing thus a scalable behavior.

The abortion rate, however, is also managed with the statistical conservative tech-
niques on which the COLU protocol is based. This decreases the abortion rate of the
transactions initiated in the recovering node, and the recovery algorithm takes profit of
the infrastructure used by the replication protocol to propagate the changes.

As a result, the proposed recovery algorithm will not interfere in the functionality of
the system, allowing the recovering node to proceed immediately after its re-inclusion.
Moreover, the performance of the rest of the system will be almost unchanged, because
the only node making additional work will be the recovering one. On the other hand,
this recovering node will suffer this overhead with a lazy policy, making it possible
for the local scheduler of the recovering node to proceed with the update of the local
replica with a conservative policy, using the idle time of the node to advance part of
such updates.

References

1. D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic broadcast in repli-
cated databases. Lecture Notes in Computer Science, 1300:496–503, 1997.

2. Ö. Babaoglu, A. Bartoli, and G. Dini. Enriched view syncrhony: A programming paradigm
for partitionable asynchronous distributed systems. IEEE Transactions on Computers,
46(6):642–658, June 1997.

3. V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullender,
editor, Distributed Systems, chapter 5, pages 97–145. ACM Press, 2nd edition, 1993. ISBN
0-201-62427-3.

4. Instituto Tecnológico de Informática. GlobData Web Site, 2004. Accessible in URL:
http://globdata.iti.es.

5. L. Irún-Briz, F. D. Muñoz-Escoı́, and J. M. Bernabéu-Aubán. An improved optimistic and
fault-tolerant replication protocol. In Proc. of 3rd Workshop on Databases in Networked
Information Systems, volume 2822 of Lecture Notes in Computer Science, pages 188–200,
Aizu, Japan, September 2003. Springer.

6. L. Irún-Briz, F. D. Muñoz-Escoı́, and J. M. Bernabéu-Aubán. Improving the bevahior of
optimistic lazy replication. In XI Jornadas de Concurrencia, Benicassim, Spain, June 2003.

7. R. Jiménez-Peris, M. Patiño-Martı́nez, and G. Alonso. Non-intrusive, parallel recovery of
replicated data. In Proc. of 21st Symposium on Reliable Distributed Systems, pages 150–159,
Osaka Univ., Suita, Japan, October 2002. IEEE-CS Press.

8. B. Kemme and G. Alonso. A new approach to developing and implementing eager database
replication protocols. ACM Transactions on Database Systems, 25(3):333–379, September
2000.

9. B. Kemme, A. Bartoli, and Ö. Babaoglu. Online reconfiguration in replicated databases
based on group communication. In Proc. of the IEEE Int. Conf. on Dependable Systems and
Networks, pages 117–130, Göteborg, Sweden, July 2001.

10. F. D. Muñoz-Escoı́, Ó. Gomis-Hilario, P. Galdámez, and J. M. Bernabéu-Aubán. HMM:
A cluster membership service. In Proc. of 7th International Euro-Par Conference, volume
2150 of Lecture Notes in Computer Science, pages 773–782, Manchester, UK, August 2001.
Springer.

11. F.D. Muñoz-Escoı́, L. Irún-Briz, P. Galdámez, J.M. Bernabéu-Aubán, J. Bataller, and M.C.
Bañuls. GlobData: Consistency protocols for replicated databases. In Proc. of the IEEE-
YUFORIC’2001, pages 97–104, Valencia, Spain, November 2001.

12. V. P. Nelson. Fault-tolerant computing: Fundamental concepts. IEEE Computer, 23(7):19–
25, July 1990.

13. L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong replication in the
GlobData middleware. In Proc. of Workshop on Dependable Middleware-Based Systems (in
DSN 2002), pages G96–G104, Washington D.C., USA, 2002.

