
Dynamic Software Update⋆

Emili Miedes and Francesc D. Muñoz-Escóı

Instituto Universitario Mixto Tecnológico de Inforḿatica
Universitat Polit̀ecnica de Val̀encia

Campus de Vera s/n, 46022 Valencia (Spain)
{emiedes,fmunyoz}@iti.upv.es

Abstract. Software systems are continuously evolving. New features are re-
quested and then added and bugs are found and then fixed. The drawback of a
classicstop, update and restartmodel is that it reduces the availability of the
software. ADynamic Software Update(DSU) mechanism allows to dynamically
apply updates to running software, without having to stop it. This paper is a short
survey on the existing literature related to DSU. We present a selection of the
maingoals and requirementsof a DSU mechanism, as identified by a number of
authors. We also provide a selection of the most common techniques and issues
considered in the surveyed references.

1 Introduction

Software systems are continuously evolving. Some typical examples of software changes
may be changing the implementation of a given service, adding a new service, remov-
ing an existing one or fixing a bug or a security vulnerability. The classic way to apply
a change to a software system that is currently running consists in producing a new
version of the software, stopping the installed version of the software, removing it, in-
stalling the new version and restarting it.

This procedure has a number of drawbacks. First, it forces the unavailabilityof the
service offered by the software. Moreover, it forces therestartof the client software that
was accessing the software. Furthermore, it complicates the design and development of
the software service. For instance, the software must be able to handle update requests,
probably save some state to a persistent device and switch itself off. When the next
version is started up, it must retrieve the persisted stated, use it to initialize itself and
finally go on providing its service.

The alternative is the use of adynamic update mechanismwhich allows a software
system to be updateddynamically, this is, without requiring it to be switched off and
on again, thus avoiding the issues pointed out above. Nowadays, such mechanisms are
useful for many types of software systems and applications.First, they are useful for
common final user desktop applications to transparently apply regular updates and bug
fixes, without forcing the user to restart the application. Second, they are useful for
updating and upgrading the operating systems themselves, this is, to apply both the

⋆ This work has been supported by EU FEDER and Spanish MICINN underresearch grants
TIN2009-14460-C03-01 and TIN2010-17193.



regular updates that fix bugs or include minor changes and themajor upgrades that
include a large number of changes, without forcing the user to restart the system.

In a more wide scale context, dynamic software update mechanisms are useful to
update any type of web service or application that offers a 24/7 service to a potentially
large set of users. Without a dynamic update mechanism, to update such an application,
a stop-and-restart model would be used, which causes significant nuisances to the user
and may cause a significant harm to the holders of the application. First, the ongoing
user requests must beaborted, thus causing a significant nuisance to the connected
users, which sooner or later turns out to have a negative impact on the entity responsible
of the service. Moreover, the application must be kept inactive during the time needed to
perform the update or upgrade and the corresponding testing, this yielding it unavailable
so it can not serve new user requests, which definitely has a negative impact on the
holder entity.

Another example in which a dynamic update mechanism is highly desirable is the
cloud computing ecosystemas a general example of an on-line 24/7 high-scale environ-
ment. Indeed, one of the major features promised by any cloudcomputing provider is
a high level of availability of the application deployedin the cloud. Nevertheless, all
the cloud providers run a software infrastructure that sooner or later has to be updated
and upgraded. As in the previous examples, a dynamic software update mechanism al-
lows the cloud providers to update their systems while keeping the highest levels of
availability and transparency from the point of view of the user.

The dynamic software update topic has been studied in the last three decades by
a number of authors, in different contexts, and a number of techniques and solutions
of different types have been proposed. During that time, fewsurveys of dynamic up-
date mechanisms have been published, too. Nevertheless, tothe best of our knowledge,
no study surveying and classifying the common dynamic update techniques has been
published yet.

The goal of this paper is to help the interested reader to order some of the concepts
and techniques found in the literature of dynamic software updating. First, in Section
2 we propose a selection of requirements and goals we identify as beingbasic in any
dynamic software update mechanism. Then, in Section 3 we identify a number of tech-
niques used in the existing literature. The paper is concluded in Section 4. An extended
version of this survey can be found in [50].

2 Requirements and Goals

In the existing literature related to dynamic software updating, we found a variety of
authors that provide their owndefinitionof dynamic software update and list the re-
quirements and goals that a dynamic update mechanism may have. In this section we
identify a number of such requirements and goals. For each requirement, we describe
the main issues and provide some literature references in which the topic is somehow
covered. In some cases, the authors propose slight variations.

Continuity and Minimal Disruption. The update can be performed in run-time, without
stopping and restarting the system to update and it does not interrupt the execution of
the software for a too long period of time.



The first part of the requirement (the avoidance of a stop and restart) is theessential
concept in thedynamic software updatetopic, as explained in Section 1 and all the
references that cover the dynamic update software just implicitly assume it. Some of
the references that identify it explicitly are [26,61,29,62,52,32].

The second part of the requirement can be seen as anextensionof the first part.
The goal is to ensure that the availability of the service offered by the software or its
performance do not decrease significantly.

Many authors consider arelaxed versionof this requirements. In some cases, it is
just required that the update process causes theminimal performance overheador dis-
ruption to the updateable software, without specifying what thedisruptionmay consist
in ([45,61,29,40,22,32,49]). In other cases, this requirement is more specific, like in
[26], which admits amomentary delayin the normal execution of user requests or [62]
which accepts that the update process may interrupt the application the shortest time
possible.

Moreover, some authors require the system to upgrade to be inaquiescentstate for
the update to be performed, while others allow to apply a dynamic update while the
software is fully operative. In Section 3.1 we review some issues related to the concept
of quiescence.

Transparency. The update process is transparent, which means that it has no signif-
icant impact on its context (the user, the programmer and themanaged application)
beyond the results it provides (a dynamic update). Several types of transparency can be
considered.

Theuser transparencyis the transparency from the point of view of the final user.
According to it, in an ideal case, the update mechanism ishiddento the user, this is,
the user does not need to be aware of the update mechanism. Moreover, it does not
require the user to interact with the application in any specific manner or have any
specific knowledge or skills. In the worst case, the user needs to know about the update
mechanism and it changes the way the user interacts with the software.

Regarding the programmer’s point of view, aprogrammer transparentupdate proce-
dure is one that does not require the programmers to have specific knowledge about the
update process itself and does not change the way they designand develop the systems.

Moreover, the update process can also beapplication transparent, this is, transpar-
ent from the point of view of the software itself. Ideally, the update mechanism is one
that does not impose any constraint to the program about how to be designed or imple-
mented, does not change the expected behavior of the program, does not impose any
noticeable performance impact or any other constraint and is not noticeable to those
parts of the system that are not related to it.

Regarding the literature, these transparency requirements are identified by several
authors. Theuser transparencyrequirement, as expressed above, is not found in any of
the references surveyed although we can consider that all those references that admit
a smalldisruption in the correct operation of the update mechanismare implicitly us-
ing a relaxedform of user transparency. On the other hand, [32] requiresprogrammer
transparencyand [62,15] requireapplication transparency.



Generality. The update process is general.First, the update mechanism allows to apply
different types of updates, of different types of complexity. The types of changes thatare
easier to apply are reimplementing some part of the system yet keeping the interfaces
and the semantics intact and extending the software in aconstructivemanner (this is,
keeping the existing components and adding new ones). More complex changes are
modifying the interface of some of the components in anincompatibleway or removing
some existing components. In the general case, a dynamic update mechanism that offers
generalitymay allow any type of change that could be applied by theclassic stop-and-
restartupdate mechanism referred to in Section 1.

A second interpretation is thatthe updateable systems can be of different types. It
refers to the ability of the dynamic update mechanisms to updateheterogeneouscom-
ponents (those using different technologies, models, programming paradigms and lan-
guages, etc.).

The first interpretation is the one used by [10,11] and [32] while the second inter-
pretation is used by [62]. Moreover, [49] provides a classification of dynamic updates.

Consistency and Integrity. The update of a component leavesit and the whole applica-
tion in a consistent or correct state.This requirement also has some variants. Generally
speaking, the main variant is related to the state of the software after a dynamic update
is applied and requires that once the update has been applied, the software is in a state
similar to the one that would be got if the update had been applied statically. Moreover,
after the dynamic update, the software is equally able to go on serving user requests.
A second variant of the requirement is related to the proper termination of the pending
user requests. Ideally, the requests that are interrupted by a dynamic update are properly
terminated and the state of the software is likewise correct.

In the literature, some authors identify this requirement in avaguemanner. For in-
stance [45,64,62,52] require that the update process leavethe system in aconsistentor
correctstate but do not elaborate too much about the concept ofconsistencyor correct-
ness. [32] is a bit more specific and requires that the state of the software after a dynamic
update be the same than the obtained by starting and running the application once the
updates have been appliedstatically. The behavior is expected to be correct even dur-
ing the update. [15] requiresdata consistencyand alsoconsistency of flow(the proper
termination of pending requests). Finally, [49] identifiesboth variants ofconsistency
pointed out above.

State Preservation. The update of a component preserves as much of its state as pos-
sible.When aclassic stop-and-restartdeployment model is used, the software system
is stopped, which means that its state is lost unless it is previously saved to some per-
sistent device. Sometimes, the user is made responsible of doing the task. Nevertheless,
the use of adynamic updatemechanism does not directly guarantee that the state kept
by the old version of the application is preserved so a specific requirement to keep the
state of the application is needed.

Thus, the update mechanism must provide some way to capture the state of the com-
ponent to update andpreserve itin some way, to ensure that when a dynamic update is
applied to an application, the state it had just before the update istransferredto the new
version so it can operate with it. The state transfer may include the transformation steps



required toadaptthe data formats understood by the previous version of the application
to the formats used by the new version. In Section 3.5 we review some issues related to
state transfer and transformation functions, respectively.

Some references declare this requirement explicitly, like[64,10,11] who also con-
sider the possibility of applying the necessary transformations to the data.

Version Coexistence. The update process allows a componentthat has been updated
to coexist with an old version of the same component.This requirement is important
from a practical point of view. For instance, in a client/server application in which the
server is dynamically updated, this requirement helps to ensure asmoothtransition of
the set of clients that send requests to the server. If the server only keeps one version
of the updateable components, when they are updated the whole set of clients may be
forced to restart, in order to be able to communicate with the new versions of those
components (unless some indirection level is used among theclients and the server
side, as pointed out in Section 3.3). The coexistence of old and new versions of the
updateable components running in the server allows to keep the clients alive and let
them go on working normally until they are shut down. New clients started after the
update would access the new version of the updated components.

Moreover, the coexistence of versions also allows the clients to be dynamically
updated (so there is no need to shut them down). The old-version clients can issue their
requests to the old-version components of the application.Once a client is dynamically
updated, it can issue its requests to the corresponding new versions of the components.

On the other hand, this requirement is also important from the point of view of the
server side, especially in distributed applications and, in particular, in replicated sys-
tems. In such a case, besides theintra-nodeversion coexistence requirement explained
above, we can also consider aninter-nodeversion of the requirement, by whichthe
update process allows that the new versions of a component that is replicated in a num-
ber of nodes of a distributed system coexist with old versions of the same component
running in some other nodes of the system.

This requirement allows to perform the update of the distributed nodes in stages, for
instance, updating a few at a time, instead of being forced toupdate them all at once.
In small-scale distributed systems, this is just a useful feature but it turns to be essential
in medium to large-scale systems, in which it is not possibleto update all the nodes at
once.

Few references, like [10,11] (they call itmixed mode operation) and [62] include a
requirement similar to this one.

Other Requirements.In [50] we include some additional secondary requirements (Atom-
icity and Rollbackness, Schedulability and AutomationandSimultaneous Updates).

3 Concepts and Techniques

In this section we identify a number of concepts and techniques used and found in the
surveyed references and somehow related with dynamic software updating.



3.1 Quiescence

A number of papers use some form ofquiescence. The basic idea is that an update of a
component of a program, from a given version to the next one, can not be applied at any
moment during the execution of the program. Instead, beforeupdating the component,
the update mechanism must ensure that the update does not interrupt any running pro-
cesses (for instance, the invocation of a service). For this, different authors try to ensure
that the component to update reaches somestablestate. Depending on the author, this
stability requirement is given a different name and described in different ways and a
number of mechanisms can be used to enforce it.

Search in the Execution Stack.Some authors [37,36,61,29,56,42,55] inspect the execu-
tion stack of a process in order to know if a given function (orprocedure) of a program
is currently being executed. If no reference to the functionis found, then it is not being
called from the program and it is safe to dynamically update the function (by redirecting
the calls as in Section 3.3, applying a binary patch as in Section 3.2, etc.).

Reach of a Safe Point.Some techniques [37,24,30] depend on the program to reach a
specific point or state. This can be achieved by making the program to enter a given
idle function or procedure. Once the program has reached such a point, the update can
be applied safely. The program is forced to stay idle in thesafe pointwhile the update
procedure takes place. Once the update finishes, the execution can be resumed.

Communication Quiescence.The original concept ofquiescencewas defined by [45]
in the context of dynamic software update of distributed systems. Informally, a node is
quiescentif it is not going to start a data exchange or attending any data exchange with
any other node. The authors argue that to apply an update thataffects some nodes, they
must be in a quiescent state.

When a node of the system has to be updated, it is forced topassivate, this is, to
reach a passive state, in which the node is not communicating(in short, it is not bound in
a communication with any other node and it agrees not to starta new communication).
Moreover, all the nodes in thepassive setof the given node (this is, all the nodes that
may communicate with the given node) are also forced to reachsuch a passive state.
Once a node and its passive set are passive, the given node canbe safely updated. As
pointed out in [45] this procedure requires the collaboration of the application1.

On the other hand, thequiescenceconcept and especially itsblocking requirements
have been criticized by some authors. They argue that in a general case, to passivate a
component, a number of components must be passivated before, thus blocking them. In
the worst case, all the components in the system would have tobe passivated, which may
lead the application to an unavailability state, which is totally contrary to the essence of
any dynamic software update mechanism.

For instance, [69] argues that thequiescenceconcept in [45] is, in general, stricter
than necessary. They propose the concept oftranquility as a more relaxed alternative
and justify that it can be used as astable statein a dynamic software update process. In

1 See also Section 3.4 for some other forms ofintrusionandcouplingbetween and application
and the underlying dynamic update mechanism.



[50] we provide a short comparison between the originalquiescenceand thetranquility
concepts.

Pause and Resume.Another technique used by some authors consists in pausing the
reception of incoming requests, waiting until the pending ones finish, applying the up-
date and then resuming the handling of incoming requests. For this, someintermediary
level is used that may be implemented in various forms (see Section 3.3 for other ex-
amples that use some kind of intermediary level). For instance, some sort ofcentral
updatemanageror intermediaryproxies may be used to intercept the user requests and,
if needed, pause them and rely them once the update is finished. This technique is used
by [15] in their FREJA framework.

Other References.This idea ofstable statusor quiescenceappears in many other ref-
erences: [19,16,41,18,59,13,68,39]. It can also be applied in other settings more or less
related to dynamic software update but somehow different from the work referenced
above. For instance, [25] talks about the dynamic update of methods of Java classes
and the support offered by the HotSpot Java Virtual Machine.The mechanism is still
under development, but it already offers some limited dynamic update mechanism, to
ease the development and debugging processes and accessible by means theJava De-
bugger Wire Protocol(JDWP). This mechanism is not mature enough to be considered
production-ready yet. The mechanism requires the collaboration of the programmer,
which must ensure”that the execution will actually reach the point where there are no
active old methods”, which can be seen as some kind ofuser-ensured quiescence.

3.2 Rewriting of Binary Code

There are some proposals that use some sort ofrewriting of the binary code of the
programs and applications to update. Several techniques can be identified.

Binary Redirection.Basically,binary redirectionmeans dynamically modifying the bi-
nary code that is being executed by a process (this is, the code saved in the main memory
of the computer and directly read by its processor) so one or several call instructions
that point to some function are changed to point to some otherplace.

This was one of the first techniques proposed to be used by a dynamic update mech-
anism. Nevertheless, it has a number of disadvantages. First, it is strongly dependent on
the particular compiler and especially on the hardware architecture it is aimed to. It also
requires from the designers and programmers a deep knowledge in low level details
like the exact machine language used by the target processor. To apply an update to a
program, to update its versionv to versionv + 1, the programmer must know the ex-
act binary representation of both the code to replace and thenew code. Below we cite
some alternatives that avoid this last restriction although they still require some deep
low level knowledge to be applied.

This technique has some other disadvantages, derived from its low level nature.
For instance, this technique is difficult to automate, sinceeach update depends on the
binary code of both the original and the new version of the program. Moreover, it is



also difficult to port to other architectures and would forcethe programmers to have a
deep low level knowledge of both thesourceand thetargetarchitectures.

Furthermore, some precautions must be carefully taken. Forinstance, before updat-
ing the binary code of a function or procedure, it must be ensured that it is not currently
being executed. Otherwise, undesirable effects may be produced.

One of the first references to propose the use ofbinary redirectionwas [26]. As a
base context, there is someclient codethat performs a call to a fragment of binary code
that implements a given function. To update the function, a new fragment of binary code
is loaded in memory. The problem to solve consists in making that the old call from the
client program stopspointingto the old code and points to the new code.

In [26] two different alternatives to perform such a redirection are proposed. Both
are based on adding a level of indirection (see Section 3.3) and rewriting some low level
binary instructions to update such indirection level.

General Binary Rewriting.The binary redirection idea showed above is actually a par-
ticular case of the more general concept ofbinary rewriting that consists in rewriting
any part of the program. Some examples may be changing the implementation of a func-
tion or even its list of parameter types. The modifications are applied at a binary level,
this is, modifying the binary executables or even modifyingthe code currently loaded
in memory, as it is being executed. This general technique has the same disadvantages
than the particularbinary redirectionshowed above, derived from its low-level nature.

In [40], they use some binary rewriting techniques to modifythe service imple-
mentation, data types and the client code that accesses to the patched code. To apply
changes to the code and the type definitions,dynamic patchesare used. Given a version
of the program to update and the next version to apply, some automated tool is used
to compute thepatchesto apply. Besides creating regular patches (like with thediff
andpatch UNIX commands), the transformation of the data is also considered. The
programmer can definetransformation functions(see Section 3.5) to apply to the data
any transformation needed.

In [22,23], the authors describe POLUS, a tool that offers support to dynamically
update a software system. Roughly speaking, to update a running program from version
v to v+ 1, the operation of the proposed procedure is as follows. Fromthe source code
of both versions, apatchis generated and then compiled into a dynamic library, which
is injected into the running binary code (see Section 3.6 for other proposals that use
some sort of static analysis of the source code). For each function that changes in the
new version, POLUS inserts a jump instruction to redirect the program flow to the new
implementation of the function, which is provided by the patch (see Section 3.3 for
other forms of level indirection).

Binary Rewriting in Java.Another particular case of binary rewriting is its application
to Java programs. From an abstract point of view, the idea is similar to the general
rewriting technique showed above, but in this case the binary language and format are
those defined by the Java Language and Virtual Machine Specifications ([31,47]). The
modifications are typically expected to preserve theJava binary compatibility([31]).
As in the previous cases, this technique also has the disadvantage of depending upon



a binary level although in this case, it has a minor practicalimpact, since the Java
language is widely supported by many operating systems and hardware platforms.

Several authors have studied the use of binary rewriting in Java programs [51,32,15].
On the other hand, there are currently available a number of tools and libraries that
offer services related to bytecode manipulation (including run-time manipulations).
For the Java programming language, there are many alternatives like ObjectWeb ASM
[54,21,46], CGLIB [7], Javassist [9,66], Apache Commons BCEL [28], Javeleon [8,33],
JRebel [71] and some others listed in [4].

3.3 Use of Proxies, Intermediaries and Indirection Levels

There are a large number of authors that propose dynamic update procedures, mecha-
nisms and tools based on the use of different sorts of proxies, intermediary objects and
other indirection levels. These techniques are useful in client/server systems in which
there are a number of dynamically updateable servers offering some service and also a
number of clients that issue requests to the former.

The basic idea consists in adding an intermediary level between a client and the
dynamically updateable server it is accessing. Instead of having the client directly call
the functions and procedures that implement the service, itcalls some intermediary code
that points to the current implementation of the service. Such an intermediary code can
be dynamically overwritten (see Section 3.2).

A number of authors [26,19,61,29,22,23,56,55,64,51,11,32,24,15] have used differ-
ent versions of this approach. They are briefly reviewed in [50].

3.4 Intrusion and Cooperation

A number of authors identify the necessity or dependence on some level ofintrusion
by the update mechanism, thus making the managed programs and applications aware
of the update mechanism. The goal is to allow a managed application to cooperate with
the update mechanism. Thisintrusioncan take different forms.

A first type of intrusionconsists in defining special functions or procedures in both
the update mechanism and the application to update. The ideais that, on the one hand,
the application to manage offers a number of functions to be called by the update mecha-
nism to perform its tasks. An example of this kind ofintrusionis the use ofgetState-
andsetState-like functions assumed by many state transfer mechanisms (see Sec-
tion 3.5) to retrieve or set the state of an updateable component. On the other hand, the
update mechanism offers to the managed application other functions it may also call,
for instance, to inform that its state has been changed or that the last requested update
has been sucessfully finished. The update mechanism proposed by [45] is one of the
first works that follows this approach.

A second type ofintrusionis the generalization of the first one and occurs when the
update mechanism forces the whole application to follow specific constraints like the
adoption of a given architecture, design principles, hardware platforms or software en-
vironments, programming languages or any other set of rulesor conventions that force
the whole application to be built or behave in a specific manner. This category includes
all the proposals of update mechanisms based on the OSGi platform (see Section 3.6).



A third type of intrusionconsists in making the application to provide some sort of
meta-informationthat may be used by the update mechanism. Different versionsof this
approach are considered by [29,53,40,15,30] and briefly described in [50].

To conclude, we can say that, in principle, the use ofintrusion mechanismsoffers
both the update mechanisms and the managed applications thepossibility to cooperate
in the application of the dynamic updates. Nevertheless, itmust be considered that such
intrusion mechanismsreduce the level oftransparencyoffered by the update mech-
anism, especially theapplication transparency(see thetransparencyrequirement in
Section 2). Indeed, forcing the application to provide somespecific functions, adapt to
a specific architecture, have some special marks, etc. makesit dependent on the update
mechanisms and also makes the latter less transparent to theapplication.

3.5 State Transfer and Transformation Functions

Several authors identify the need to perform some sort ofstate transferbetween the
current version of an updateable item (typically an object or component, but it may also
be a function or procedure or even the whole program or application, etc.) and the next
version, in order not to lose it when the update is applied.

Some of them use a variation of the idea proposed by [38]. The basic idea consists
in defining twoaccessor functionslike getState andsetState to retrieve and set
the state of a component. Before replacing a component, thegetState-like function
may be called and someserializablerepresentation of the state may be got. This state
may betransformedin some way (see below) and then transferred to the new version
of the updateable item, by means of itssetState-like function.

A number of authors [19,56,55,36,63,62,64,32,24,15] haveconsidered this tech-
nique. On the other hand, one of the problems that may appear when updating a com-
ponent from a version to the next one is that the new version may have anincompatible
state format. Several authors consider this problem and propose the use of some kind
of transformation functionsto transform the state of a component in the format used
by a given version to the proper format. These functions are typically provided by the
programmer, like in [19,29,56,40,11,65,52,24].

3.6 Other Issues

In this section we briefly review some other issues related todynamic software update.

Source Code Static Analysis. In a number of papers, some kind ofstatic analysisof
the application source code is performed, according to different objectives. Some au-
thors use it to know in which points of the programs is safe to perform a dynamic update
or in which ones an update should not be performed at all. The key idea is toprotect
the state of the component or program so the update does not yield the component or
program in an inconsistent state. For instance, it is safe toapply an update during the
execution of aread-onlyfunction or procedure (this is, one that does not alter the state
of the program). It is also safe to apply it in the very beginning of the execution of a
regular function, before it modifies any part of the program’s state. On the other hand,



it may not be safe to apply an update during the execution of a regular function since it
may be changing the state of the program. Such aninterruptingupdate hinders and can
even avoid a proper state transfer and reconstruction.

Other authors compare the source code of the current versionof a program with
the next version and build apatchout of the differences, to be applied dynamically. In
some cases, the analysis can be completely automated while in others it is a manual or
human-assisted process.

In [50] we discuss a number of proposals that use some sort of static analysis of the
source code [65,52,53,14,40,22,23,17].

Use of Underlying Facilities A number of authors base their proposals on features
of a given underlyinginfrastructure: a given hardware architecture, a programming
methodology or paradigm, an ad-hoc programming or configuration language, a specific
general-purpose programming language or any other specificbase level.

For instance, [61,29] need that the hardware architecture of the underlying machine
offers anindirect addressing mode. The proposal in [36] was also designed to work on
a specific hardware and software platform (SunOS running on aSun 3/60 workstation)
and also depends on a specific feature of the hardware architecture (specifically, the
segment-based memory addressingmode. Other references propose solutions that are
a bit more general and can be used with programs written inimperative languages,
like [40]. There are also some authors who develop their proposal based on their own
infrastructure. For instance, [44,45] is based on their CONIC configuration language
and infrastructure [43]. In Proteus, the authors [65] describe a dynamic software update
solution based on its own programming language, compiler and run-time, among other
tools and resources. In [19] a dynamic update solution for programs written with the
Argus programming language ([48]) is presented. For the C programming languages
there are some options, like [35,53,22,23]. Regarding the Java programming language
and Virtual Machine (JVM), there are a large number of references [59,51,32,15,25,34].

As a particular case of Java technology, the OSGi platform [6,12] allows to build
Java applications from a number of modular, reusable and collaborative components
(calledbundles), that can be dynamically reloaded. The applications register their bun-
dles in an OSGi server (or implementation), that acts as a software bus, thus allowing
a loosely coupling among the bundles. These can be dynamically reloaded and OSGi
provides some sort ofsnapshotview of the bundles. When a bundle is reloaded, existing
bundles keep anold-version viewof it while bundles started from then on justseethe
new version. In [50] we provide a more detailed explanation of this and other features of
OSGi. A short introduction to OSGi can be found in [67]. Moreover, there are a number
of implementations of OSGi, like Apache Felix [27], Concierge [1,58] (especially de-
signed for resource-constrained devices), Equinox [2], KnopflerFish [3] and Oscar [5],
among others. Moreover, there are some other proposals thatextend OSGi or are related
to it in some way. R-OSGi [57] is an extension of the standard OSGi specification to
build distributed systems. OSGi4C [60] focuses on distributed and cloud systems and
[24] includes a mechanism to dynamically update the bundlesof an OSGi application.



Version Coexistence Version coexistenceis the ability of a dynamic update system to
allow different versions of an updateable component to concurrently coexist, providing
a regular service according to their specifications. In Section 2 we identified this feature
as one of the fundamental requirements a dynamic update mechanism should have.
However, the support needed to provide it may have a cost, from different points of
view. First, it has to be implemented, which means a significant effort. Then, it may
have some other cost in run-time, imposing some performanceoverhead regarding an
update mechanism without such a support.

Thus, in many of the proposals reviewed, the dynamic update mechanism ensures
that the new version of a component will nevercoexistwith an older version. Some of
them ensure this behavior by asking the program (or at least,the component to be re-
placed) to reach some stable or quiescent state (see Section3.1), performing the update
anduninstallingor otherwise preventing both versions to run at the same time.

Nevertheless, there are some authors that provide some support to version coexis-
tence [61,29,11,10,22,23,25].

Replication Few papers have tackled the topic of applying dynamic updates to repli-
cated systems. For instance, [63] proposes a procedure to dynamically update a dis-
tributed system that usesactive replication. The procedure relies on a group communi-
cation system that offers a total order message delivery service and operates by iterat-
ing over the available replicas, shutting them off, updating them (in astaticway) and
restarting them. This work is later extended by [62], by adding a procedure applicable to
systems that usepassive replication. The procedure does not actually apply a dynamic
update of the replicas. Instead, the new version of the software is installed in brand new
replicas and the old ones are shut down manually. Finally, a failover mechanism is used
to promote to primary replica one of the new replicas.

Moreover, [70] proposes a mechanism to dynamically change the consistency mode
used by the replicas of a replicated system. They argue that the consistency needs of
a replicated system can change in run-time, during the regular execution, according to
the observed rates of read and write operations issued by theclients. The rate of read
an write operations may below or high and thus, at any moment, the system can be
in any of the four possible combinations. The authors propose to consider the current
combination to dynamically change the consistency mode of the replicas, from arelaxed
consistency mode to astrongconsistency mode.

Scheduling and synchronizing In Section 3.4 we provided a number of references
of systems that allow the user to mark places in the program. In some cases, those are
places in which a dynamic update may be applied. In other cases, they are places in
which a dynamic update should not be applied.

Other systems consider the scheduling of the updates at a higher level of abstraction.
For instance, [11,10] propose the use ofscheduling functions, in the context of updating
distributed systems. These functions are provided by the programmer of the managed
system and may be called by the dynamic update mechanism to decide when each node
has to be updated with respect to the other nodes.



Rollbacks Some mechanisms offer the possibility torollback or undoan update.
For instance POLUS [22,23] uses a mechanism based on the generation ofdynamic

patchesto update a running program from versionv to v + 1. The mechanism can also
be applied torollback an update, for instance when it is not behaving correctly or for
any other reason, as decided by the programmer. For this, it is enough to apply a patch
to updatethe program from versionv + 1 to v.

Moreover, in [20], the authors propose a model for rollback mechanisms, as a so-
lution to theexternal inconsistencyproblem, which happens when the rollback of an
update made to an application also discards changes to the data that haveseenby the
user. An extended explanation can be found in [50].

4 Conclusion

This report is a reduced version of a technical report in which we survey a number of
references related to thedynamic software updatetopic. The main goal is to introduce
the topic to the interested readers in astructuredmanner and help them to learn about a
number of references available in the literature of this topic. First, we study the variety
of definitionsof dynamic software updatefound in the surveyed references. In Section 2
we provide a selection of the most important requirements chosen by the authors. Then,
in Section 3, we also analyze which are the techniques and other related concepts and
issues in those references and identify which are the most used.

References

1. Concierge, http://concierge.sourceforge.net/
2. Equinox, http://eclipse.org/equinox/
3. Knopflerfish, http://www.knopflerfish.org/
4. Open Source ByteCode Libraries in Java, http://java-source.net/open-source/bytecode-

libraries
5. Oscar, http://oscar.objectweb.org
6. OSGi Alliance, http://www.osgi.org
7. CGLib 2.2.2 (April 2011), http://cglib.sourceforge.net/
8. Javeleon 1.5 (September 2011), http://javeleon.org
9. Javassist 3.16.1 (March 2012), http://www.csg.ci.i.u-tokyo.ac.jp/ chiba/javassist/

10. Ajmani, S.: Automatic Software Upgrades for Distributed Systems. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA (2004)

11. Ajmani, S., Liskov, B., Shrira, L.: Modular Software Upgrades for Distributed Systems. In:
European Conference on Object-Oriented Programming (ECOOP) (July 2006)

12. Alliance, O.: About the OSGi Service Platform. Technical Whitepaper. Revision 4.1. (June
2007)

13. Almeida, J.P., Wegdam, M., van Sinderen, M., Nieuwenhuis, L.:Transparent Dynamic Re-
configuration for CORBA. In: 3rd International Symposium on Distributed Objects and Ap-
plications (DOA). pp. 197–207 (2001)

14. Altekar, G., Bagrak, I., Burstein, P., Schultz, A.: OPUS: Online Patches and Updates for
Security. In: 14th Conference on USENIX Security Symposium. SSYM’05, USENIX Asso-
ciation, Baltimore, MD (2005)



15. Banǹo, F., Marletta, D., Pappalardo, G., Tramontana, E.: Handling Consistent Dynamic Up-
dates on Distributed Systems. In: 2010 IEEE Symposium on Computers and Communica-
tions (ISCC). pp. 471–476 (June 2010)

16. Barbacci, M.R., Doubleday, D.L., Weinstock, C.B., Gardner,M.J., Lichota, R.W.: Building
Fault Tolerant Distributed Applications with Durra. In: International Workshop on Config-
urable Distributed Systems. pp. 128–139 (March 1992)

17. Bauml, J., Brada, P.: Automated Versioning in OSGi: a Mechanism for Component Software
Consistency Guarantee. In: 35th Euromicro Conference on SoftwareEngineering and Ad-
vanced Applications (SEAA ’09). pp. 428–435 (August 2009),http://ieeexplore.
ieee.org/assets/img/btn.pdf-access-full-text.gif

18. Bidan, C., Issarny, V., Saridakis, T., Zarras, A.: A Dynamic Reconfiguration Service for
CORBA. In: Fourth International Conference on Configurable Distributed Systems. pp. 35–
42 (May 1998)

19. Bloom, T.: Dynamic Module Replacement in a Distributed ProgrammingSystem. Ph.D. the-
sis, Massachusetts Institute of Technology, Cambridge, MA, USA (1983)

20. Brown, A.B., Patterson, D.A.: Rewind, repair, replay: three R’s to dependability. In: 10th
workshop on ACM SIGOPS European workshop. pp. 70–77. EW 10, ACM, Saint-Emilion,
France (2002)

21. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a Code ManipulationTool to Implement
Adaptable Systems (November 2002)

22. Chen, H., Yu, J., Chen, R., Zang, B., Yew, P.C.: POLUS: A POwerful Live Updating System.
In: 29th international conference on Software Engineering. pp. 271–281. ICSE ’07, IEEE
Computer Society (May 2007)

23. Chen, H., Yu, J., Hang, C., Zang, B., Yew, P.C.: Dynamic Software Updating Using a
Relaxed Consistency Model. IEEE Transactions on Software Engineering 37(5), 679–694
(September-October 2011)

24. Chen, J., Huang, L.: Dynamic Service Update Based on OSGi. In:WRI World Congress on
Software Engineering (WCSE ’09). vol. 3, pp. 493–497. IEEE Computer Society, Xiamen,
China (May 2009)

25. Dmitriev, M.: Towards Flexible and Safe Technology for Runtime Evolution of Java Lan-
guage Applications. In: Workshop on Engineering Complex Object-Oriented Systems for
Evolution, in association with OOPSLA 2001 International Conference (2001)

26. Fabry, R.S.: How to Design a System in Which Modules Can be Changed on the Fly. In: 2nd
International Conference on Software Engineering (ICSE ’76). pp.470–476. IEEE Computer
Society Press, Los Alamitos, CA, USA, San Francisco, California, UnitedStates (1976)

27. Foundation, T.A.S.: Apache Felix, http://felix.apache.org
28. Foundation, T.A.S.: Apache Commons BCEL 6.0 (October 2011),

http://commons.apache.org/bcel/
29. Frieder, O., Segal, M.E.: On Dynamically Updating a Computer Program: from Concept to

Prototype. Journal of Systems and Software 14(2), 111–128 (February 1991)
30. Giuffrida, C., Tanenbaum, A.S.: A Taxonomy of Live Updates.In: Advanced School for

Computing and Imaging (ASCI) 2010 Conference. Veldhoven, The Netherlands (November
2010)

31. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. Third edition
edn. (2005)

32. Gregersen, A.R., Jørgensen, B.N.: Dynamic Update of Java Applications—balancing Change
Flexibility vs Programming Transparency. Journal of Software Maintenance and Evolution:
Research and Practice 21(2), 81–112 (March 2009)

33. Gregersen, A.R., Simon, D., Jørgensen, B.N.: Towards a Dynamic-update-enabled JVM. In:
Workshop on AOP and Meta-Data for Software Evolution. RAM-SE ’09, ACM, Genova,
Italy (2009)



34. Gregersen, A.R., Simon, D., Jørgensen, B.N.: Towards a Dynamic-update-enabled JVM. In:
Workshop on AOP and Meta-Data for Software Evolution. RAM-SE ’09, ACM, Genova,
Italy (2009)

35. Gupta, D.: On-line Software Version Change. Ph.D. thesis, Department of Computer Science
and Engineering, Indian Institute of Technology, Kanpur, India (November 1994)

36. Gupta, D., Jalote, P.: On Line Software Version Change Using State Transfer Between Pro-
cesses. Software Practice and Experience 23(9), 949–964 (September 1993)

37. Gupta, D., Jalote, P., Barua, G.: A Formal Framework for On-line Software Version Change.
IEEE Transactions on Software Engineering 22(2), 120–131 (February 1996)

38. Herlihy, M.P., Liskov, B.: A Value Transmission Method for Abstract Data Types. ACM
Transactions on Programming Languages and Systems (TOPLAS) 4(4), 527–551 (October
1982)

39. Hicks, M., Moore, J.T., Nettles, S.: Dynamic Software Updating. In: ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation. pp. 13–23. PLDI ’01,
ACM, Snowbird, Utah, United States (May 2001)

40. Hicks, M., Nettles, S.: Dynamic Software Updating. ACM Transactions on Programming
Languages and Systems (TOPLAS) 27(6), 1049–1096 (November 2005)

41. Hofmeister, C.R., Purtilo, J.M.: A Framework for Dynamic Reconfiguration of Distributed
Programs. Tech. Rep. UMIACS-TR-93-78 (1993)

42. Hofmeister, C.R.: Dynamic Reconfiguration of Distributed Applications. Ph.D. thesis, Uni-
versity of Maryland at College Park, College Park, MD, USA (1993)

43. Kramer, J., Magee, J., Sloman, M., Lister, A.: CONIC: an Integrated Approach to Distributed
Computer Control Systems. IEE Proceedings E Computers and Digital Techniques 130(1)
(January 1983)

44. Kramer, J., Magee, J.: Dynamic Configuration for Distributed Systems. IEEE Transactions
on Software Engineering SE-11(4), 424–436 (April 1985),http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1702024&tag=1,http:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1702024

45. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Management.
IEEE Transactions on Software Engineering 16(11), 1293–1306 (Nov 1990), http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=60317,http:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=60317

46. Kuleshov, E.: Using ASM Framework to Implement Common Bytecode Transformation Pat-
terns. Vancouver, Canada (March 2007)

47. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, Second Edition (1999)
48. Liskov, B., Scheifler, R.: Guardians and Actions: Linguistic Support for Robust, Distributed

Programs. ACM Transactions on Programming Languages and Systems (TOPLAS) 5(3),
381–404 (July 1983)

49. Manna, V.P.L.: Dynamic Software Update for Component-basedDistributed Systems. In:
Proceedings of the 16th international workshop on Component-orientedprogramming.
pp. 1–8. WCOP ’11, ACM, New York, NY, USA (2011),http://dl.acm.org/
citation.cfm?doid=2000292.2000294

50. Miedes, E., Mũnoz-Escóı, F.D.: A Survey about Dynamic Software Updating. Tech. Rep.
ITI-SIDI-2012/004, Instituto Universitario Mixto Tecnológico de Inforḿatica, Universitat
Politècnica de Val̀encia (2012)

51. Milazzo, M., Pappalardo, G., Tramontana, E., Ursino, G.: Handling Run-time Updates in
Distributed Applications. In: 2005 ACM symposium on Applied computing. pp. 1375–1380.
SAC ’05, ACM, Santa Fe, New Mexico (2005)

52. Murarka, Y., Bellur, U.: Correctness of Request Executions in Online Updates of Concurrent
Object Oriented Programs. In: 15th Asia-Pacific Software EngineeringConference (APSEC
’08). pp. 93–100. IEEE Computer Society (December 2008)



53. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical Dynamic Software Updating for C.
In: ACM SIGPLAN conference on Programming language design and implementation. pp.
72–83. PLDI ’06, ACM, Ottawa, Ontario, Canada (2006)

54. ObjectWeb: ASM 4.0 (October 2011), http://asm.ow2.org/
55. Purtilo, J.M.: The POLYLITH Software Bus. ACM Transactions on Programming Lan-

guages and Systems 16(1), 151–174 (January 1994)
56. Purtilo, J.M., Hofmeister, C.R.: Dynamic Reconfiguration of Distributed Programs. In: 11th

International Conference on Distributed Computing Systems. pp. 560–571 (May 1991)
57. Rellermeyer, J., Alonso, G., Roscoe, T.: R-OSGi: Distributed Applications Through Soft-

ware Modularization. In: Cerqueira, R., Campbell, R. (eds.) Middleware. Lecture Notes in
Computer Science, vol. 4834, pp. 1–20. Springer Berlin, Heidelberg,Newport Beach, CA,
USA (2007)

58. Rellermeyer, J.S., Alonso, G.: Concierge: a Service Platform for Resource-constrained De-
vices. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems. EuroSys ’07, vol. 41, pp. 245–258. ACM, Lisbon, Portugal (March 2007)

59. Ritzau, T., Andersson, J.: Dynamic Deployment of Java Applications. In: Java for Embedded
Systems Workshop. London, United Kingdom (May 2000)

60. Schmidt, H., Elsholz, J.P., Nikolov, V., Hauck, F.J., Kapitza, R.: OSGi4C: Enabling OSGi for
the Cloud. In: Fourth International ICST Conference on COMmunicationSystem softWAre
and middlewaRE (COMSWARE ’09). COMSWARE ’09, ACM, Dublin, Ireland (June 2009)

61. Segal, M.E., Frieder, O.: Dynamic Program Updating in a DistributedComputer System. In:
Conference of Software Maintenance. pp. 198–203. Scottsdale, AZ,USA (October 1988)

62. Solarski, M.: Dynamic Upgrade of Distributed Software components. Ph.D. thesis, Fakultät
IV (Elektrotechnik und Informatik), Technische Universität Berlin (2004)

63. Solarski, M., Meling, H.: Towards Upgrading Actively Replicated Servers on-the-fly. In:
26th Annual International Computer Software and Applications Conference (COMPSAC
2002). pp. 1038–1043 (2002)

64. Sridhar, N., Pike, S., Weide, B.: Dynamic Module Replacement in Distributed Protocols. In:
23rd International Conference on Distributed Computing Systems. pp. 620–627 (May 2003)

65. Stoyle, G., Hicks, M., Bierman, G., Sewell, P., Neamtiu, I.: Mutatis Mutandis: Safe and
Predictable Dynamic Software Updating. ACM Transactions on Programming Languages
and Systems (TOPLAS) 29(4) (August 2007)

66. Tatsubori, M., Sasaki, T., Chiba, S., Itano, K.: A Bytecode Translator for Distributed Exe-
cution of “Legacy” Java Software. In: 15th European Conference on Object-Oriented Pro-
gramming (ECOOP ’01). pp. 236–255. ECOOP ’01, Springer-Verlag(2001)

67. Tavares, A.L.C., Valente, M.T.: A Gentle Introduction to OSGi. SIGSOFT Software Engi-
neering Notes 33(5) (September 2008)

68. Tewksbury, L., Moser, L., Melliar-Smith, P.: Live Upgrades ofCORBA Applications Us-
ing Object Replication. In: Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’01). pp. 488–497. ICSM ’01, IEEE Computer Society (2001)

69. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A Low Disruptive Alter-
native to Quiescence for Ensuring Safe Dynamic Updates. IEEE Transactions on Software
Engineering 33(12), 856–868 (December 2007)

70. Wang, X., Yang, S., Wang, S., Niu, X., Xu, J.: An Application-Based Adaptive Replica Con-
sistency for Cloud Storage. In: 2010 Ninth International Conference on Grid and Cooperative
Computing. pp. 13–17. Nanjing (November 2010)

71. ZeroTurnaround: JRebel 4.5.4 (January 2012), http://zeroturnaround.com/jrebel/


