Dynamic Software Update*

Emili Miedes and Francesc D. Nioz-Escd

Instituto Universitario Mixto Tecndigico de Infornatica
Universitat Poligcnica de Vaincia
Campus de Vera s/n, 46022 Valencia (Spain)
{em edes, f nunyoz}@ti . upv. es

Abstract. Software systems are continuously evolving. New features are re-
quested and then added and bugs are found and then fixed. Theadkaofta
classicstop, update and restarhodel is that it reduces the availability of the
software. ADynamic Software Updat@®SU) mechanism allows to dynamically
apply updates to running software, without having to stop it. This papetiera s
survey on the existing literature related to DSU. We present a selection of the
maingoals and requirementsf a DSU mechanism, as identified by a number of
authors. We also provide a selection of the most common techniquessaed is
considered in the surveyed references.

1 Introduction

Software systems are continuously evolving. Some typicatgples of software changes
may be changing the implementation of a given service, adainew service, remov-
ing an existing one or fixing a bug or a security vulnerahilitife classic way to apply
a change to a software system that is currently running stmsi producing a new
version of the software, stopping the installed versiorhefsoftware, removing it, in-
stalling the new version and restarting it.

This procedure has a number of drawbacks. First, it foroesivailability of the
service offered by the software. Moreover, it forcesrgstartof the client software that
was accessing the software. Furthermore, it complicateddkign and development of
the software service. For instance, the software must eetalilandle update requests,
probably save some state to a persistent device and swself d@ff. When the next
version is started up, it must retrieve the persisted staiteel it to initialize itself and
finally go on providing its service.

The alternative is the use ofdynamic update mechanismhich allows a software
system to be updatediynamically this is, without requiring it to be switched off and
on again, thus avoiding the issues pointed out above. Noygadach mechanisms are
useful for many types of software systems and applicatibinst, they are useful for
common final user desktop applications to transparentlfyapgular updates and bug
fixes, without forcing the user to restart the applicatioac@&d, they are useful for
updating and upgrading the operating systems themselvissist to apply both the

* This work has been supported by EU FEDER and Spanish MICINN urederarch grants
TIN2009-14460-C03-01 and TIN2010-17193.

regular updates that fix bugs or include minor changes andntijer upgrades that
include a large number of changes, without forcing the usegdtart the system.

In a more wide scale context, dynamic software update mésinarare useful to
update any type of web service or application that offers/@ 2drvice to a potentially
large set of users. Without a dynamic update mechanism datagsuch an application,
a stop-and-restart model would be used, which causes s@mifiluisances to the user
and may cause a significant harm to the holders of the apipliceEirst, the ongoing
user requests must taborted thus causing a significant nuisance to the connected
users, which sooner or later turns out to have a negativedthgpethe entity responsible
of the service. Moreover, the application must be kept imacturing the time needed to
perform the update or upgrade and the corresponding te#itisyielding it unavailable
S0 it can not serve new user requests, which definitely hagatise impact on the
holder entity.

Another example in which a dynamic update mechanism is yidesirable is the
cloud computing ecosysteas a general example of an on-line 24/7 high-scale environ-
ment. Indeed, one of the major features promised by any douatputing provider is
a high level of availability of the application deploy@dthe cloud Nevertheless, all
the cloud providers run a software infrastructure that soan later has to be updated
and upgraded. As in the previous examples, a dynamic saftwadate mechanism al-
lows the cloud providers to update their systems while kegpiie highest levels of
availability and transparency from the point of view of theeu

The dynamic software update topic has been studied in tihéhieee decades by
a number of authors, in different contexts, and a numberdafrigues and solutions
of different types have been proposed. During that time, $aweys of dynamic up-
date mechanisms have been published, too. Neverthelehs, best of our knowledge,
no study surveying and classifying the common dynamic wptithniques has been
published yet.

The goal of this paper is to help the interested reader tor@alae of the concepts
and techniques found in the literature of dynamic softwareating. First, in Section
2 we propose a selection of requirements and goals we igeagibeingbasicin any
dynamic software update mechanism. Then, in Section 3 wiifd@ number of tech-
niques used in the existing literature. The paper is comdud Section 4. An extended
version of this survey can be found in [50].

2 Requirementsand Goals

In the existing literature related to dynamic software ujpdg we found a variety of
authors that provide their owdefinition of dynamic software update and list the re-
quirements and goals that a dynamic update mechanism may Imathis section we
identify a number of such requirements and goals. For eaphirement, we describe
the main issues and provide some literature references ichvttie topic is somehow
covered. In some cases, the authors propose slight vaisatio

Continuity and Minimal Disruption. The update can be peried in run-time, without
stopping and restarting the system to update and it doesmeitrupt the execution of
the software for a too long period of time

The first part of the requirement (the avoidance of a stop esi@urt) is thessential
concept in thedynamic software updatepic, as explained in Section 1 and all the
references that cover the dynamic update software justditiplassume it. Some of
the references that identify it explicitly are [26,61,28%2,32].

The second part of the requirement can be seen axtemsionof the first part.
The goal is to ensure that the availability of the servicemft by the software or its
performance do not decrease significantly.

Many authors consider @laxed versiorof this requirements. In some cases, it is
just required that the update process causesiihanal performance overheaat dis-
ruptionto the updateable software, without specifying whatdiseuptionmay consist
in ([45,61,29,40,22,32,49]). In other cases, this requéet is more specific, like in
[26], which admits anomentary delain the normal execution of user requests or [62]
which accepts that the update process may interrupt thécafiphthe shortest time
possible

Moreover, some authors require the system to upgrade todeguiirescenstate for
the update to be performed, while others allow to apply a dyoaipdate while the
software is fully operative. In Section 3.1 we review sonsel&s related to the concept
of quiescence

Transparency. The update process is transpareshiich means that it has no signif-
icant impact on its context (the user, the programmer andrtapaged application)
beyond the results it provides (a dynamic update). Sewgpaktof transparency can be
considered.

The user transparencys the transparency from the point of view of the final user.
According to it, in an ideal case, the update mechanishiddento the user, this is,
the user does not need to be aware of the update mechanisraowéarit does not
require the user to interact with the application in any #gemanner or have any
specific knowledge or skills. In the worst case, the user sitmlinow about the update
mechanism and it changes the way the user interacts witloftvease.

Regarding the programmer’s point of viewpi@grammer transparentpdate proce-
dure is one that does not require the programmers to havéispeowledge about the
update process itself and does not change the way they desigtevelop the systems.

Moreover, the update process can als@pplication transparentthis is, transpar-
ent from the point of view of the software itself. Ideallyethpdate mechanism is one
that does not impose any constraint to the program about s tlesigned or imple-
mented, does not change the expected behavior of the progmes not impose any
noticeable performance impact or any other constraint ambi noticeable to those
parts of the system that are not related to it.

Regarding the literature, these transparency requiresrastidentified by several
authors. Thaiser transparencyequirement, as expressed above, is not found in any of
the references surveyed although we can consider thatcsétreferences that admit
a smalldisruption in the correct operation of the update mecharisgrimplicitly us-
ing arelaxedform of user transparency. On the other hand, [32] requiregrammer
transparencyand [62,15] requir@pplication transparency

Generality. The update process is geneFaist, the update mechanism allows to apply
different types of updatesf different types of complexity. The types of changes trat
easier to apply are reimplementing some part of the systerkegping the interfaces
and the semantics intact and extending the softwareconatructivemanner (this is,
keeping the existing components and adding new ones). Murglex changes are
modifying the interface of some of the components inreompatiblevay or removing
some existing components. In the general case, a dynamateiptechanism that offers
generalitymay allow any type of change that could be applied bydssic stop-and-
restartupdate mechanism referred to in Section 1.

A second interpretation is th#te updateable systems can be of different tyjtes
refers to the ability of the dynamic update mechanisms tatgiteterogeneousom-
ponents (those using different technologies, models,raroning paradigms and lan-
guages, etc.).

The first interpretation is the one used by [10,11] and [32]evihe second inter-
pretation is used by [62]. Moreover, [49] provides a clasatfon of dynamic updates.

Consistency and Integrity. The update of a component leéaaes the whole applica-
tion in a consistent or correct stat€his requirement also has some variants. Generally
speaking, the main variant is related to the state of thevaoét after a dynamic update
is applied and requires that once the update has been gppkesbftware is in a state
similar to the one that would be got if the update had been applieidaist Moreover,
after the dynamic update, the software is equally able torgeesving user requests.
A second variant of the requirement is related to the pragrenihation of the pending
user requests. Ideally, the requests that are interruptadipnamic update are properly
terminated and the state of the software is likewise carrect

In the literature, some authors identify this requiremera vaguemanner. For in-
stance [45,64,62,52] require that the update process thaw&/stem in @onsistenbr
correctstate but do not elaborate too much about the concegrdistencyr correct-
ness[32] is a bit more specific and requires that the state ofdiftevare after a dynamic
update be the same than the obtained by starting and rurtméngpiplication once the
updates have been applisthtically. The behavior is expected to be correct even dur-
ing the update. [15] requiredata consistencgnd alsoconsistency of flothe proper
termination of pending requests). Finally, [49] identiflesth variants ofconsistency
pointed out above.

State Preservation. The update of a component preservesics of its state as pos-
sible.When aclassic stop-and-restadeployment model is used, the software system
is stopped, which means that its state is lost unless it iqusly saved to some per-
sistent device. Sometimes, the user is made responsibtrgf the task. Nevertheless,
the use of alynamic updatenechanism does not directly guarantee that the state kept
by the old version of the application is preserved so a spastjuirement to keep the
state of the application is needed.

Thus, the update mechanism must provide some way to capeistete of the com-
ponent to update anateserve iin some way, to ensure that when a dynamic update is
applied to an application, the state it had just before tluatgistransferredto the new
version so it can operate with it. The state transfer mayhekhe transformation steps

required tcadaptthe data formats understood by the previous version of thicapion
to the formats used by the new version. In Section 3.5 wewes@ne issues related to
state transfer and transformation functions, respegtivel

Some references declare this requirement explicitly, [§410,11] who also con-
sider the possibility of applying the necessary transfdiona to the data.

Version Coexistence. The update process allows a comptmariias been updated
to coexist with an old version of the same compon€his requirement is important
from a practical point of view. For instance, in a clientierapplication in which the
server is dynamically updated, this requirement helps suenasmoothtransition of
the set of clients that send requests to the server. If thesenly keeps one version
of the updateable components, when they are updated thewbbbf clients may be
forcedto restart, in order to be able to communicate with the newigas of those
components (unless some indirection level is used amonglidets and the server
side, as pointed out in Section 3.3). The coexistence of otirew versions of the
updateable components running in the server allows to Keegltents alive and let
them go on working normally until they are shut down. New mtigestarted after the
update would access the new version of the updated component

Moreover, the coexistence of versions also allows the wiém be dynamically
updated (so there is no need to shut them down). The oldevectients can issue their
requests to the old-version components of the applica@oice a client is dynamically
updated, it can issue its requests to the corresponding eesions of the components.

On the other hand, this requirement is also important froerptbint of view of the
server side, especially in distributed applications andyarticular, in replicated sys-
tems. In such a case, besidesithitea-nodeversion coexistence requirement explained
above, we can also consider arter-nodeversion of the requirement, by whiche
update process allows that the new versions of a componatistreplicated in a num-
ber of nodes of a distributed system coexist with old vessafrthe same component
running in some other nodes of the system.

This requirement allows to perform the update of the diated nodes in stages, for
instance, updating a few at a time, instead of being forcatpttate them all at once.
In small-scale distributed systems, this is just a usefatifiee but it turns to be essential
in medium to large-scale systems, in which it is not posdiblepdate all the nodes at
once.

Few references, like [10,11] (they callntixed mode operatigrand [62] include a
requirement similar to this one.

Other Requirementdn [50] we include some additional secondary requiremektisri-
icity and Rollbackness$chedulability and AutomaticandSimultaneous Updatgs

3 Conceptsand Techniques

In this section we identify a number of concepts and techesqused and found in the
surveyed references and somehow related with dynamic aaftupdating.

3.1 Quiescence

A number of papers use some formafiescenceThe basic idea is that an update of a
component of a program, from a given version to the next cerenot be applied at any
moment during the execution of the program. Instead, befpdating the component,
the update mechanism must ensure that the update doeserotjttany running pro-
cesses (for instance, the invocation of a service). Fordifferent authors try to ensure
that the component to update reaches setablestate. Depending on the author, this
stability requirement is given a different name and desctilm different ways and a
number of mechanisms can be used to enforce it.

Search in the Execution Stackome authors [37,36,61,29,56,42,55] inspect the execu-
tion stack of a process in order to know if a given functiongamycedure) of a program

is currently being executed. If no reference to the funcisdiound, then it is not being
called from the program and it is safe to dynamically updaggfainction (by redirecting

the calls as in Section 3.3, applying a binary patch as ini@e8t2, etc.).

Reach of a Safe PointSome techniques [37,24,30] depend on the program to reach a
specific point or state. This can be achieved by making thgrpro to enter a given

idle function or procedure. Once the program has reached sucint the update can

be applied safely. The program is forced to stay idle inghfe pointwhile the update
procedure takes place. Once the update finishes, the execatn be resumed.

Communication Quiescencé&.he original concept ofjuiescencevas defined by [45]
in the context of dynamic software update of distributedeays. Informally, a node is
quiescenitf it is not going to start a data exchange or attending ang dathange with
any other node. The authors argue that to apply an updatafteats some nodes, they
must be in a quiescent state.

When a node of the system has to be updated, it is forcgadeivatethis is, to
reach a passive state, in which the node is not communic@tiisort, it is not bound in
a communication with any other node and it agrees not to atagtv communication).
Moreover, all the nodes in theassive sebf the given node (this is, all the nodes that
may communicate with the given node) are also forced to reach a passive state.
Once a node and its passive set are passive, the given note cafely updated. As
pointed out in [45] this procedure requires the collaboratf the applicatioh

On the other hand, thguiescenceoncept and especially itdocking requirements
have been criticized by some authors. They argue that in ergecase, to passivate a
component, a number of components must be passivated pefoseblocking them. In
the worst case, all the components in the system would hdepassivated, which may
lead the application to an unavailability state, which talilg contrary to the essence of
any dynamic software update mechanism.

For instance, [69] argues that thaiescenceoncept in [45] is, in general, stricter
than necessary. They propose the conceptasfquility as a more relaxed alternative
and justify that it can be used astable statén a dynamic software update process. In

! See also Section 3.4 for some other forméntfusion andcouplingbetween and application
and the underlying dynamic update mechanism.

[50] we provide a short comparison between the originaéscencend thetranquility
concepts.

Pause and Resumenother technique used by some authors consists in pauséng t
reception of incoming requests, waiting until the pending®finish, applying the up-
date and then resuming the handling of incoming requestghis) someantermediary
level is used that may be implemented in various forms (setid®e3.3 for other ex-
amples that use some kind of intermediary level). For irgasome sort ofentral
updatemanagetror intermediaryproxies may be used to intercept the user requests and,
if needed, pause them and rely them once the update is finifhedtechnique is used

by [15] in their FREJA framework.

Other ReferencesThis idea ofstable statu®r quiescencappears in many other ref-
erences: [19,16,41,18,59,13,68,39]. It can also be appliether settings more or less
related to dynamic software update but somehow differemhfthe work referenced
above. For instance, [25] talks about the dynamic updateaihauds of Java classes
and the support offered by the HotSpot Java Virtual Machliee mechanism is still
under development, but it already offers some limited dyicarpdate mechanism, to
ease the development and debugging processes and aeeégsibkans thdava De-
bugger Wire Protoco{(JDWP). This mechanism is not mature enough to be considered
production-ready yet. The mechanism requires the colilmor of the programmer,
which must ensuréthat the execution will actually reach the point where thare no
active old methods"which can be seen as some kinduser-ensured quiescence

3.2 Rewriting of Binary Code

There are some proposals that use some soréwfiting of the binary code of the
programs and applications to update. Several techniquelsealentified.

Binary Redirection.Basically,binary redirectionmeans dynamically modifying the bi-
nary code that is being executed by a process (this is, treesanabd in the main memory
of the computer and directly read by its processor) so oneweral call instructions
that point to some function are changed to point to some qiaee.

This was one of the first techniques proposed to be used byaadgmupdate mech-
anism. Nevertheless, it has a number of disadvantages. iFissstrongly dependent on
the particular compiler and especially on the hardwareitacture it is aimed to. It also
requires from the designers and programmers a deep knosviedgw level details
like the exact machine language used by the target procé&sapply an update to a
program, to update its versianto versionv + 1, the programmer must know the ex-
act binary representation of both the code to replace andefecode. Below we cite
some alternatives that avoid this last restriction althotigey still require some deep
low level knowledge to be applied.

This technique has some other disadvantages, derived teotow level nature.
For instance, this technique is difficult to automate, sieaeh update depends on the
binary code of both the original and the new version of thegmam. Moreover, it is

also difficult to port to other architectures and would fotiee programmers to have a
deep low level knowledge of both tls®urceand thetargetarchitectures.

Furthermore, some precautions must be carefully takeninstance, before updat-
ing the binary code of a function or procedure, it must be mtsthat it is not currently
being executed. Otherwise, undesirable effects may baipeati

One of the first references to propose the uskiwéry redirectionwas [26]. As a
base context, there is sorokent codethat performs a call to a fragment of binary code
that implements a given function. To update the functiorew fragment of binary code
is loaded in memory. The problem to solve consists in makiagthe old call from the
client program stoppointingto the old code and points to the new code.

In [26] two different alternatives to perform such a rediiec are proposed. Both
are based on adding a level of indirection (see Section B@jewriting some low level
binary instructions to update such indirection level.

General Binary Rewriting.The binary redirection idea showed above is actually a par-
ticular case of the more general concepbofary rewriting that consists in rewriting
any part of the program. Some examples may be changing therimeptation of a func-
tion or even its list of parameter types. The modificatioresapplied at a binary level,
this is, modifying the binary executables or even modifyiihg code currently loaded
in memory, as it is being executed. This general technigsah@same disadvantages
than the particulabinary redirectionshowed above, derived from its low-level nature.

In [40], they use some binary rewriting techniques to modiifg service imple-
mentation, data types and the client code that accessee fmatbhed code. To apply
changes to the code and the type definitialysilamic patcheare used. Given a version
of the program to update and the next version to apply, sort@raied tool is used
to compute thepatcheso apply. Besides creating regular patches (like withdhéf
andpat ch UNIX commands), the transformation of the data is also a®rsid. The
programmer can defirteansformation functiongsee Section 3.5) to apply to the data
any transformation needed.

In [22,23], the authors describe POLUS, a tool that offeggpsut to dynamically
update a software system. Roughly speaking, to update &giprogram from version
vtowv + 1, the operation of the proposed procedure is as follows. Ehensource code
of both versions, patchis generated and then compiled into a dynamic library, which
is injectedinto the running binary code (see Section 3.6 for other psafsothat use
some sort of static analysis of the source code). For eaattifumthat changes in the
new version, POLUS inserts a jump instruction to redireetgtogram flow to the new
implementation of the function, which is provided by thegbaf{see Section 3.3 for
other forms of level indirection).

Binary Rewriting in Java.Another particular case of binary rewriting is its applioat
to Java programs. From an abstract point of view, the ide&ridas to the general
rewriting technique showed above, but in this case the bilzenguage and format are
those defined by the Java Language and Virtual Machine Sgegadfins ([31,47]). The
modifications are typically expected to preserve Jaea binary compatibility([31]).
As in the previous cases, this technique also has the dista@ of depending upon

a binary level although in this case, it has a minor practicglact, since the Java
language is widely supported by many operating systems arthiare platforms.

Several authors have studied the use of binary rewritingvya frograms [51,32,15].
On the other hand, there are currently available a numbeoad$ tand libraries that
offer services related to bytecode manipulation (inclgdiran-time manipulations).
For the Java programming language, there are many altezaditke ObjectWeb ASM
[54,21,46], CGLIB [7], Javassist [9,66], Apache CommondR (28], Javeleon [8,33],
JRebel [71] and some others listed in [4].

3.3 Useof Proxies, Intermediaries and Indirection Levels

There are a large number of authors that propose dynamideipdacedures, mecha-
nisms and tools based on the use of different sorts of proxitssmediary objects and
other indirection levels. These techniques are usefulientkerver systems in which
there are a number of dynamically updateable servers offaome service and also a
number of clients that issue requests to the former.

The basic idea consists in adding an intermediary level éetwa client and the
dynamically updateable server it is accessing. Insteadwaihl the client directly call
the functions and procedures that implement the servicallg some intermediary code
that points to the current implementation of the servicehSan intermediary code can
be dynamically overwritten (see Section 3.2).

A number of authors [26,19,61,29,22,23,56,55,64,512,24815] have used differ-
ent versions of this approach. They are briefly reviewed @}.[5

3.4 Intrusion and Cooperation

A number of authors identify the necessity or dependenceooredevel ofintrusion
by the update mechanism, thus making the managed prograirepalications aware
of the update mechanism. The goal is to allow a managed aypiplicto cooperate with
the update mechanism. Thigrusioncan take different forms.

A first type ofintrusionconsists in defining special functions or procedures in both
the update mechanism and the application to update. Thesdkeat, on the one hand,
the application to manage offers a number of functions talied by the update mecha-
nism to perform its tasks. An example of this kindmtfusionis the use ofjet St at e-
andset St at e-like functions assumed by many state transfer mechanisees $ec-
tion 3.5) to retrieve or set the state of an updateable coemto®n the other hand, the
update mechanism offers to the managed application otmetifuns it may also call,
for instance, to inform that its state has been changed othbdast requested update
has been sucessfully finished. The update mechanism pibpysgl5] is one of the
first works that follows this approach.

A second type ointrusionis the generalization of the first one and occurs when the
update mechanism forces the whole application to followc#igeconstraints like the
adoption of a given architecture, design principles, har@platforms or software en-
vironments, programming languages or any other set of arlesnventions that force
the whole application to be built or behave in a specific manftgs category includes
all the proposals of update mechanisms based on the OS@irpigisee Section 3.6).

A third type ofintrusionconsists in making the application to provide some sort of
meta-informatiorthat may be used by the update mechanism. Different versitthss
approach are considered by [29,53,40,15,30] and brieflgridtesl in [50].

To conclude, we can say that, in principle, the usentfusion mechanismeffers
both the update mechanisms and the managed applicatiopssb#bility to cooperate
in the application of the dynamic updates. Neverthelessugt be considered that such
intrusion mechanismeeduce the level ofransparencyoffered by the update mech-
anism, especially thapplication transparencysee thetransparencyrequirement in
Section 2). Indeed, forcing the application to provide s@pecific functions, adapt to
a specific architecture, have some special marks, etc. nitadksendent on the update
mechanisms and also makes the latter less transparentapplieation.

3.5 State Transfer and Transformation Functions

Several authors identify the need to perform some sostate transfebetween the

current version of an updateable item (typically an objectamponent, but it may also
be a function or procedure or even the whole program or agdic, etc.) and the next
version, in order not to lose it when the update is applied.

Some of them use a variation of the idea proposed by [38]. Bse&lidea consists
in defining twoaccessor functionkke get St at e andset St at e to retrieve and set
the state of a component. Before replacing a componengehé&t at e-like function
may be called and sonwerializablerepresentation of the state may be got. This state
may betransformedin some way (see below) and then transferred to the new versio
of the updateable item, by means ofstst St at e-like function.

A number of authors [19,56,55,36,63,62,64,32,24,15] hawesidered this tech-
nique. On the other hand, one of the problems that may appeam wpdating a com-
ponent from a version to the next one is that the new versignhaae arincompatible
state format Several authors consider this problem and propose thefus®sre kind
of transformation functionso transform the state of a component in the format used
by a given version to the proper format. These functionsygieally provided by the
programmer, like in [19,29,56,40,11,65,52,24].

3.6 Other Issues

In this section we briefly review some other issues relatetytmmic software update.

Source Code Static Analysis. In a number of papers, some kind sthtic analysisof
the application source code is performed, according t@wdifit objectives. Some au-
thors use it to know in which points of the programs is safestdgrm a dynamic update
or in which ones an update should not be performed at all. Elyeidea is toprotect
the state of the component or program so the update doeseidttiie component or
program in an inconsistent state. For instance, it is safgply an update during the
execution of aead-onlyfunction or procedure (this is, one that does not alter tatest
of the program). It is also safe to apply it in the very begmgnof the execution of a
regular function, before it modifies any part of the progmstate. On the other hand,

it may not be safe to apply an update during the execution efjalar function since it
may be changing the state of the program. Sucim@mruptingupdate hinders and can
even avoid a proper state transfer and reconstruction.

Other authors compare the source code of the current veo§iarprogram with
the next version and build gatchout of the differences, to be applied dynamically. In
some cases, the analysis can be completely automated wiatkérs it is a manual or
human-assisted process.

In [50] we discuss a number of proposals that use some sataf analysis of the
source code [65,52,53,14,40,22,23,17].

Use of Underlying Facilities A number of authors base their proposals on features
of a given underlyingnfrastructure a given hardware architecture, a programming
methodology or paradigm, an ad-hoc programming or conftguréanguage, a specific
general-purpose programming language or any other spbasie level.

For instance, [61,29] need that the hardware architecfitfeeainderlying machine
offers anindirect addressing modd&he proposal in [36] was also designed to work on
a specific hardware and software platform (SunOS running ®ma3/60 workstation)
and also depends on a specific feature of the hardware arthge(specifically, the
segment-based memory addressimgde. Other references propose solutions that are
a bit more general and can be used with programs writtemperative languages
like [40]. There are also some authors who develop theirgsapbased on their own
infrastructure. For instance, [44,45] is based on their @Obbnfiguration language
and infrastructure [43]. In Proteus, the authors [65] dbsa dynamic software update
solution based on its own programming language, compiléran-time, among other
tools and resources. In [19] a dynamic update solution fogams written with the
Argus programming language ([48]) is presented. For thedgnamming languages
there are some options, like [35,53,22,23]. Regarding &va programming language
and Virtual Machine (JVM), there are a large number of refees [59,51,32,15,25,34].

As a particular case of Java technology, the OSGi platforh?f6allows to build
Java applications from a number of modular, reusable andbmwhtive components
(calledbundle$, that can be dynamically reloaded. The applications tegtheir bun-
dles in an OSGi server (or implementation), that acts astavacd bus, thus allowing
a loosely coupling among the bundles. These can be dyndyieddaded and OSGi
provides some sort gihapshoview of the bundles. When a bundle is reloaded, existing
bundles keep anld-version viewof it while bundles started from then on justethe
new version. In [50] we provide a more detailed explanatithis and other features of
OSGi. A short introduction to OSGi can be found in [67]. Moreq there are a number
of implementations of OSGi, like Apache Felix [27], Congel[1,58] (especially de-
signed for resource-constrained devices), Equinox [2hpdlerFish [3] and Oscar [5],
among others. Moreover, there are some other proposakxdtestd OSGi or are related
to it in some way. R-OSGi [57] is an extension of the standaBG0specification to
build distributed systems. OS@ET [60] focuses on distributed and cloud systems and
[24] includes a mechanism to dynamically update the burafles OSGi application.

Version Coexistence Version coexistends the ability of a dynamic update system to
allow different versions of an updateable component to someatly coexist, providing
aregular service according to their specifications. IniSe@ we identified this feature
as one of the fundamental requirements a dynamic updateamisch should have.
However, the support needed to provide it may have a cost) flifferent points of
view. First, it has to be implemented, which means a sigmifiedfort. Then, it may
have some other cost in run-time, imposing some performanesghead regarding an
update mechanism without such a support.

Thus, in many of the proposals reviewed, the dynamic updahanism ensures
that the new version of a component will newsexistwith an older version. Some of
them ensure this behavior by asking the program (or at l#asizomponent to be re-
placed) to reach some stable or quiescent state (see S8ctjpperforming the update
anduninstallingor otherwise preventing both versions to run at the same time

Nevertheless, there are some authors that provide somersipwersion coexis-
tence [61,29,11,10,22,23,25].

Replication Few papers have tackled the topic of applying dynamic updateepli-
cated systems. For instance, [63] proposes a procedurensmnigally update a dis-
tributed system that usestive replication The procedure relies on a group communi-
cation system that offers a total order message delivercgeand operates by iterat-
ing over the available replicas, shutting them off, updatimem (in astaticway) and
restarting them. This work is later extended by [62], by addi procedure applicable to
systems that usgassive replicationThe procedure does not actually apply a dynamic
update of the replicas. Instead, the new version of the soés installed in brand new
replicas and the old ones are shut down manually. Finalgilaer mechanism is used
to promote to primary replica one of the new replicas.

Moreover, [70] proposes a mechanism to dynamically chamgeansistency mode
used by the replicas of a replicated system. They argue libatdnsistency needs of
a replicated system can change in run-time, during the aegxlecution, according to
the observed rates of read and write operations issued bglidms. The rate of read
an write operations may Hew or high and thus, at any moment, the system can be
in any of the four possible combinations. The authors pregosonsider the current
combination to dynamically change the consistency modeafeplicas, from eelaxed
consistency mode togtrongconsistency mode.

Scheduling and synchronizing In Section 3.4 we provided a number of references
of systems that allow the user to mark places in the prograrsoine cases, those are
places in which a dynamic update may be applied. In otherscdlsey are places in
which a dynamic update should not be applied.

Other systems consider the scheduling of the updates ahartayel of abstraction.
For instance, [11,10] propose the usedfieduling functionsn the context of updating
distributed systems. These functions are provided by thgrammer of the managed
system and may be called by the dynamic update mechanisrneittedghen each node
has to be updated with respect to the other nodes.

Rollbacks Some mechanisms offer the possibilityrtdiback or undoan update.

For instance POLUS [22,23] uses a mechanism based on theaienefdynamic
patchedo update a running program from versioto v 4+ 1. The mechanism can also
be applied taollback an update, for instance when it is not behaving correctlyoor f
any other reason, as decided by the programmer. For théseitdugh to apply a patch
to updatethe program from version + 1 to v.

Moreover, in [20], the authors propose a model for rollbadchanisms, as a so-
lution to theexternal inconsistencgroblem, which happens when the rollback of an
update made to an application also discards changes to thehda haveseenby the
user. An extended explanation can be found in [50].

4 Conclusion

This report is a reduced version of a technical report in Whie survey a number of
references related to tliynamic software updatepic. The main goal is to introduce
the topic to the interested readers istaucturedmanner and help them to learn about a
number of references available in the literature of thisadpirst, we study the variety
of definitionsof dynamic software updafeund in the surveyed references. In Section 2
we provide a selection of the most important requirementseh by the authors. Then,
in Section 3, we also analyze which are the techniques arad ottated concepts and
issues in those references and identify which are the mest us

References

. Concierge, http://concierge.sourceforge.net/

. Equinox, http://eclipse.org/equinox/

. Knopflerfish, http://www.knopflerfish.org/

Open Source ByteCode Libraries in Java, http://java-source.netéoprce/bytecode-

libraries

. Oscar, http://oscar.objectweb.org

. OSGi Alliance, http://www.0sgi.org

. CGLib 2.2.2 (April 2011), http://cglib.sourceforge.net/

. Javeleon 1.5 (September 2011), http://javeleon.org

. Javassist 3.16.1 (March 2012), http://www.csg.ci.i.u-tokymachiba/javassist/

. Ajmani, S.: Automatic Software Upgrades for Distributed SystemsD.Pthesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA (2004)

11. Ajmani, S., Liskov, B., Shrira, L.: Modular Software UpgradesDistributed Systems. In:
European Conference on Object-Oriented Programming (ECOOIR)2006)

12. Alliance, O.: About the OSGi Service Platform. Technical WhitepaRevision 4.1. (June
2007)

13. Almeida, J.P., Wegdam, M., van Sinderen, M., NieuwenhuisTdansparent Dynamic Re-
configuration for CORBA. In: 3rd International Symposium on Distribu@bjects and Ap-
plications (DOA). pp. 197-207 (2001)

14. Altekar, G., Bagrak, l., Burstein, P., Schultz, A.: OPUS: OnlimécRes and Updates for

Security. In: 14th Conference on USENIX Security Symposium. SS¥AVUSENIX Asso-

ciation, Baltimore, MD (2005)

AWNR

O OO0 ~NO O

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Banm, F., Marletta, D., Pappalardo, G., Tramontana, E.: Handling CemsiBynamic Up-
dates on Distributed Systems. In: 2010 IEEE Symposium on Computér€a@ammunica-
tions (ISCC). pp. 471-476 (June 2010)

Barbacci, M.R., Doubleday, D.L., Weinstock, C.B., Gardied., Lichota, R.W.: Building
Fault Tolerant Distributed Applications with Durra. In: International Wdrap on Config-
urable Distributed Systems. pp. 128-139 (March 1992)

Bauml, J., Brada, P.: Automated Versioning in OSGi: a Mechanisf@dmponent Software
Consistency Guarantee. In: 35th Euromicro Conference on Softérsgmeering and Ad-
vanced Applications (SEAA '09). pp. 428-435 (August 200®)t p: / / i eeexpl or e.

i eee. org/ assets/ing/btn. pdf-access-full-text.gif

Bidan, C., Issarny, V., Saridakis, T., Zarras, A.: A Dynamacénfiguration Service for
CORBA. In: Fourth International Conference on Configurable Disted8ystems. pp. 35—
42 (May 1998)

Bloom, T.: Dynamic Module Replacement in a Distributed Programi@jrsgem. Ph.D. the-
sis, Massachusetts Institute of Technology, Cambridge, MA, USA (1983

Brown, A.B., Patterson, D.A.: Rewind, repair, replay: threg & dependability. In: 10th
workshop on ACM SIGOPS European workshop. pp. 70-77. EW OM ASaint-Emilion,
France (2002)

Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a Code Manipulaliool to Implement
Adaptable Systems (November 2002)

Chen, H., Yu, J., Chen, R., Zang, B., Yew, P.C.: POLUS: Ave@ul Live Updating System.
In: 29th international conference on Software Engineering. pp. 281-CSE '07, IEEE
Computer Society (May 2007)

Chen, H., Yu, J.,, Hang, C., Zang, B., Yew, P.C.: Dynamictafe Updating Using a
Relaxed Consistency Model. IEEE Transactions on Software Engige@ri(b), 679-694
(September-October 2011)

Chen, J., Huang, L.: Dynamic Service Update Based on OSGNRi:World Congress on
Software Engineering (WCSE '09). vol. 3, pp. 493-497. IEEE Camp8ociety, Xiamen,
China (May 2009)

Dmitriev, M.: Towards Flexible and Safe Technology for Runtimel&an of Java Lan-
guage Applications. In: Workshop on Engineering Complex Object-@rikSystems for
Evolution, in association with OOPSLA 2001 International Conferenc@Xp0

Fabry, R.S.: How to Design a System in Which Modules Can be Changthe Fly. In: 2nd
International Conference on Software Engineering (ICSE '76)4pp-476. IEEE Computer
Society Press, Los Alamitos, CA, USA, San Francisco, California, UiStates (1976)
Foundation, T.A.S.: Apache Felix, http://felix.apache.org

Foundation, T.A.S.. Apache Commons BCEL 6.0 (October 2011)
http://commons.apache.org/bcel/

Frieder, O., Segal, M.E.: On Dynamically Updating a Computermrogfrom Concept to
Prototype. Journal of Systems and Software 14(2), 111-128{&abt991)

Giuffrida, C., Tanenbaum, A.S.: A Taxonomy of Live Updates.Advanced School for
Computing and Imaging (ASCI) 2010 Conference. Veldhoven, Theatkands (November
2010)

Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java LaegBpgcification. Third edition
edn. (2005)

Gregersen, A.R., Jgrgensen, B.N.: Dynamic Update of Japhcations—balancing Change
Flexibility vs Programming Transparency. Journal of Software Maentea and Evolution:
Research and Practice 21(2), 81-112 (March 2009)

Gregersen, A.R., Simon, D., Jgrgensen, B.N.: Towardsamic-update-enabled JVM. In:
Workshop on AOP and Meta-Data for Software Evolution. RAM-SE '0€M\ Genova,
Italy (2009)

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.
47.
48.

49.

50.

51.

52.

Gregersen, A.R., Simon, D., Jgrgensen, B.N.: Towardsnamic-update-enabled JVM. In:
Workshop on AOP and Meta-Data for Software Evolution. RAM-SE '0€My Genova,
Italy (2009)

Gupta, D.: On-line Software Version Change. Ph.D. thesis, Bapat of Computer Science
and Engineering, Indian Institute of Technology, Kanpur, India (Madwver 1994)

Gupta, D., Jalote, P.: On Line Software Version Change Using Statsfér Between Pro-
cesses. Software Practice and Experience 23(9), 949-964 (Sept&893)

Gupta, D., Jalote, P., Barua, G.: A Formal Framework for Oadinftware Version Change.
IEEE Transactions on Software Engineering 22(2), 120-131 (Bepd996)

Herlihy, M.P., Liskov, B.: A Value Transmission Method for Abstr®ata Types. ACM
Transactions on Programming Languages and Systems (TOPLABB2#-551 (October
1982)

Hicks, M., Moore, J.T., Nettles, S.: Dynamic Software UpdatingACM SIGPLAN 2001
Conference on Programming Language Design and Implementatiof3pp3. PLDI '01,
ACM, Snowbird, Utah, United States (May 2001)

Hicks, M., Nettles, S.: Dynamic Software Updating. ACM Transastion Programming
Languages and Systems (TOPLAS) 27(6), 1049—-1096 (Noven@ifér) 2

Hofmeister, C.R., Purtilo, J.M.: A Framework for Dynamic Ref@uration of Distributed
Programs. Tech. Rep. UMIACS-TR-93-78 (1993)

Hofmeister, C.R.: Dynamic Reconfiguration of Distributed Applicatid?h.D. thesis, Uni-
versity of Maryland at College Park, College Park, MD, USA (1993)

Kramer, J., Magee, J., Sloman, M., Lister, A.: CONIC: an Iratzyl Approach to Distributed
Computer Control Systems. IEE Proceedings E Computers and Digitehifries 130(1)
(January 1983)

Kramer, J., Magee, J.: Dynamic Configuration for Distributede3gys. IEEE Transactions
on Software Engineering SE-11(4), 424-436 (April 198B),t p: / /i eeexpl ore.

i eee. org/ xpl s/ abs_al | . j sp?ar nunber =1702024&t ag=1, htt p:

/1ieeexpl ore.ieee.org/stanp/stanp.jsp?tp=&ar nunber =1702024
Kramer, J., Magee, J.: The Evolving Philosophers ProblemaBy;mChange Management.
IEEE Transactions on Software Engineering 16(11), 1293-1306&/ (dNg90), ht t p:
/'lieeexplore.ieee.org/xpls/abs_all.jsp?arnunber=60317, http:

/ /i eeexplore.ieee.org/stanp/stanp.jsp?tp=&ar nunber =60317
Kuleshov, E.: Using ASM Framework to Implement Common Bytech@nsformation Pat-
terns. Vancouver, Canada (March 2007)

Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, @&tEdition (1999)
Liskov, B., Scheifler, R.: Guardians and Actions: Linguistic Supfow Robust, Distributed
Programs. ACM Transactions on Programming Languages and Sy$T@iPLAS) 5(3),
381-404 (July 1983)

Manna, V.P.L.: Dynamic Software Update for Component-b&istiibuted Systems. In:
Proceedings of the 16th international workshop on Component-origuriegtamming.
pp. 1-8. WCOP '11, ACM, New York, NY, USA (2011phttp://dl.acm org/

ci tation. cfn?doi d=2000292. 2000294

Miedes, E., Miloz-Escd, F.D.: A Survey about Dynamic Software Updating. Tech. Rep.
ITI-SIDI-2012/004, Instituto Universitario Mixto Tecnafjico de Infornatica, Universitat
Politecnica de Vancia (2012)

Milazzo, M., Pappalardo, G., Tramontana, E., Ursino, G.: Hiagpdrun-time Updates in
Distributed Applications. In: 2005 ACM symposium on Applied computing.J§¥5-1380.
SAC '05, ACM, Santa Fe, New Mexico (2005)

Murarka, Y., Bellur, U.: Correctness of Request Executiongilin® Updates of Concurrent
Object Oriented Programs. In: 15th Asia-Pacific Software Engine€@orgerence (APSEC
'08). pp. 93-100. IEEE Computer Society (December 2008)

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical Dynamic 8a@fre Updating for C.
In: ACM SIGPLAN conference on Programming language design aqdeimentation. pp.
72-83. PLDI '06, ACM, Ottawa, Ontario, Canada (2006)

ObjectWeh: ASM 4.0 (October 2011), http://asm.ow2.org/

Purtilo, J.M.: The POLYLITH Software Bus. ACM Transactions amd?amming Lan-
guages and Systems 16(1), 151-174 (January 1994)

Purtilo, J.M., Hofmeister, C.R.: Dynamic Reconfiguration of Distiglol Programs. In: 11th
International Conference on Distributed Computing Systems. pp. 580(\Nsay 1991)
Rellermeyer, J., Alonso, G., Roscoe, T.: R-OSGi: Distributedlidafions Through Soft-
ware Modularization. In: Cerqueira, R., Campbell, R. (eds.) Middiewhecture Notes in
Computer Science, vol. 4834, pp. 1-20. Springer Berlin, Heidellidggiport Beach, CA,
USA (2007)

Rellermeyer, J.S., Alonso, G.: Concierge: a Service PlatforrRésource-constrained De-
vices. In: Proceedings of the 2nd ACM SIGOPS/EuroSys Europeafeé@mce on Computer
Systems. EuroSys '07, vol. 41, pp. 245-258. ACM, Lisbon, Pott{March 2007)

Ritzau, T., Andersson, J.: Dynamic Deployment of Java Applioatim: Java for Embedded
Systems Workshop. London, United Kingdom (May 2000)

Schmidt, H., Elsholz, J.P., Nikolov, V., Hauck, F.J., Kapitza@8Gi4C: Enabling OSGi for
the Cloud. In: Fourth International ICST Conference on COMmunice8igstem softWAre
and middlewaRE (COMSWARE '09). COMSWARE '09, ACM, Dublin, Ireth@@une 2009)
Segal, M.E., Frieder, O.: Dynamic Program Updating in a DistribG@mputer System. In:
Conference of Software Maintenance. pp. 198-203. ScottsdaléJ8Z,(October 1988)
Solarski, M.: Dynamic Upgrade of Distributed Software compondétiD. thesis, Fakuit
IV (Elektrotechnik und Informatik), Technische UniveggiBerlin (2004)

Solarski, M., Meling, H.: Towards Upgrading Actively Replicatedv@es on-the-fly. In:
26th Annual International Computer Software and Applications Conterd COMPSAC
2002). pp. 1038-1043 (2002)

Sridhar, N., Pike, S., Weide, B.: Dynamic Module Replacementstributed Protocols. In:
23rd International Conference on Distributed Computing Systems 28627 (May 2003)
Stoyle, G., Hicks, M., Bierman, G., Sewell, P., Neamtiu, |.: Mutatistavidis: Safe and
Predictable Dynamic Software Updating. ACM Transactions on Progiaghiranguages
and Systems (TOPLAS) 29(4) (August 2007)

Tatsubori, M., Sasaki, T., Chiba, S., Itano, K.: A Bytecode 3Jlator for Distributed Exe-
cution of “Legacy” Java Software. In: 15th European Conferent®bject-Oriented Pro-
gramming (ECOOP '01). pp. 236—255. ECOOP '01, Springer-Vei2891)

Tavares, A.L.C., Valente, M.T.: A Gentle Introduction to OSGi. SGFT Software Engi-
neering Notes 33(5) (September 2008)

Tewksbury, L., Moser, L., Melliar-Smith, P.: Live Upgrades@GDRBA Applications Us-
ing Object Replication. In: Proceedings of the IEEE International Genfze on Software
Maintenance (ICSM'01). pp. 488-497. ICSM '01, IEEE ComputeriSy (2001)
Vandewoude, Y., Ebraert, P., Berbers, Y., D’'Hondt, T.nGrality: A Low Disruptive Alter-
native to Quiescence for Ensuring Safe Dynamic Updates. IEEE dectors on Software
Engineering 33(12), 856-868 (December 2007)

Wang, X., Yang, S., Wang, S., Niu, X., Xu, J.: An ApplicationsBd Adaptive Replica Con-
sistency for Cloud Storage. In: 2010 Ninth International Conferendgral and Cooperative
Computing. pp. 13-17. Nanjing (November 2010)

ZeroTurnaround: JRebel 4.5.4 (January 2012), http://zexatomnd.com/jrebel/

