
On Optimizing Certification-Based Database Recovery
Supporting Amnesia?

R. de Juan-Marín, M. I. Ruiz-Fuertes, J. Pla-Civera,
L. H. García-Muñoz, F. D. Muñoz-Escoí

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia
Camino de Vera, s/n, 46022 Valencia (SPAIN)

e-mail: {rjuan,miruifue,jpla,lgarcia,fmunyoz}@iti.upv.es

Abstract. Certification-based database replication protocols are a good basis to
develop replica recovery when they provide the snapshot isolation level. For such
isolation level, no readset needs to be transferred between replicas nor checked
in the certification phase. Additionally, these protocols need to maintain a his-
toric list of writesets that is used for certifying the transactions that arrive to the
commit phase. Such historic list can be used to transfer the missed state of a re-
covering replica. In this paper we design a basic recovery approach –to transfer
all missed writesets– and a version-based optimization –to transfer the latest ver-
sion of each missed item, compacting thus the writeset list–, and study and solve
problems associated to the adoption of the crash-recovery with partial amnesia
failure model.

1 Introduction

Performance, high availability and fault tolerance are key aspects in the information
systems success. So, many computer science research efforts have been oriented to
reach them, being replication the regular solution for achieving them.

A key aspect of these replicated systems is to recover or substitute crashed replicas.
In this research area, database replication is a special kind of highly-available service
since in this case replica recovery implies the application of the missed updates, being
inefficient a complete state transfer since it needs a long time to be completed as has
been detailed in many previous works as [1,2,3,4,5].

The aim of this paper is to design a replica recovery protocol for replicated databases
which economises as much as possible recovery processes. As the recovery cost de-
pends on several aspects, we have selected for the most important ones –failure model,
replication protocol and recovery strategy– the techniques which can provide better be-
havior from a cost point of view when talking about large databases.

The failure model that we have adopted is the crash recovery with partial amnesia
[6] instead of the fail-stop one, because the first one allows crashed replicas to be re-
covered while the second one forces to substitute them –being necessary to transfer the

? This work has been partially supported by FEDER and the Spanish MEC under grant
TIN2006-14738-C02-01.

whole database–. Then, the first model gives us a more economic approach from the
beginning.

In relation to the replication technique, we have tried to select the database replica-
tion kind [7] that provides the best support for developing an easy recovery: certification-
based replication. In this replication variant, a historic list of the applied writesets needs
to be maintained in order to certificate transactions (i.e., validate and locally decide in
each replica about the success of each terminating transaction). Such a historic writeset
list can be stored and used for transferring the missed updates to recovering replicas.
Additionally, the resulting replication protocol does not need any voting termination
[8] and provides very good performance if the conflicting rate is low [7]. Moreover, for
the snapshot isolation level, a certification-based replication protocol is the natural so-
lution, since it does not demand readset transfers. So, such kind of replication protocol
provides an ideal basis to research on replica recovery and a basic recovery protocol
can be easily developed.

But such a basic recovery protocol can be optimized in order to get better results.
To this end, we have combined a version-based approach, similar to those proposed
by other research groups (e.g., in some of the recovery variants of [5]) and in some
of our previous papers [2,9] but specifically adapted to a certification-based replication
protocol.

Moreover, we have studied in this paper the possible problems that can arise in the
designed recovery protocol for assuming the crash recovery with partial amnesia failure
model as it has been done in [10,11]. On one hand, we have analyzed the amnesia
phenomenon support from the recovery information to transfer perspective. And on
the other hand, we have studied the possible replication inconsistent state effects of
combining the amnesia phenomenon with the selected progress condition and how they
can be solved.

The rest of this paper is structured as follows. Section 2 presents the assumed system
model. Section 3 describes the replication protocol taken as the basis for our recovery
proposals. Section 4 thoroughly explains the recovery strategies. Section 5 discusses
the amnesia support. Finally, Section 6 presents some related work and Section 7 gives
the conclusions.

2 System Model

We assume a partially synchronous distributed system –where clocks are not synchro-
nized but the message transmission time is bounded– composed by N nodes where each
one holds a replica of a given database; i.e., the database is fully replicated in all system
nodes. These replicas might fail according to the partial-amnesia crash failure model
proposed in [6], since all already committed transactions are able to recover but on-
going ones are lost when a node crashes. We consider this kind of failures as we want
to deal with node recovery after its failure.

Each system node has a local DBMS that is used for locally managing transactions.
On top of the DBMS a middleware is deployed in order to provide support for repli-
cation. More information about our MADIS middleware can be found in [12,13]. This

middleware has also access to a group communication service (abbreviated as GCS, on
the sequel).

A GCS provides a communication and a membership service supporting virtual
synchrony [14]. The communication service features a total order multicast for mes-
sage exchange among nodes through reliable channels. Membership service provides
the notion of view (current connected and active nodes with a unique view identifier).
Changes in the composition of a view (addition or deletion) are delivered to the recovery
protocol. We assume a primary component membership [14]. In a primary component
membership, views installed by all nodes are totally ordered (there are no concurrent
views), and for every pair of consecutive views there is at least one process that remains
operational in both views. The GCS groups messages delivered in views [14]. The uni-
form reliable multicast facility [15] ensures that if a multicast message is delivered by
a node (correct or not) then it will be delivered to all available nodes in that view. All
these characteristics permit us to know which writesets have been applied in the context
of an installed view. In this work, we use Spread [16] as our GCS.

We use a replication protocol based on certification [7], which does not require
any kind of voting in order to decide how a transaction should be terminated (either
committing or aborting).

This replication protocol transfers writesets, compound by pairs (item identifier -
value) in order to propagate transaction updates, instead of spreading the corresponding
SQL sentences that generated these updates. This form of update propagation is also
used by the designed recovery protocol due to the adoption of a version-based approach.

3 Replication Protocol

We have selected the SIR-SBD protocol (see Figure 1) described in [13] for a case
study of our recovery mechanisms, because it is a good sample of a certification-based
[7] database replication protocol, providing the Generalized Snapshot Isolation level
[17] and thus avoiding the transfer of transaction readsets.

This protocol uses an atomic multicast [15], i.e., a reliable multicast with total or-
der delivery, and thus it ensures that the writesets being multicast by each replica at
commit time are delivered in all replicas in the same order. It uses two in-memory data
structures for dealing with writesets: ws_list, which stores all the writesets known
(i.e., delivered) until now, and tocommit queue, which holds those writesets locally
certified but not yet applied in the local database replica. Moreover, for each transac-
tion, the attributes start and end hold something similar to the transaction start and
commit timestamps, respectively. Due to the total order multicast and the behavior of
the protocol, the second counter is the same for a system transaction in all the replicas,
i.e., all the replicas identify with the same commit timestamp a system transaction.

Note that we have tacitly assumed that the underlying database system is supposed
to be able to check for conflicts, and to abort transactions whose access patterns violate
the snapshot isolation level rules.

This protocol is also based on the existence of a block detection mechanism [13]. We
have assigned the following priorities to the transactions. All transactions are initialized
with a 0 priority level. They get level 1 when they are multicast in their local node or

Initialization: II. Upon receiving Ti in total order
1. lastvalidated_tid := 0 1. obtain wsmutex
2. lastcommitted_tid := 0 2. if ∃ Tj ∈ ws_list : Ti.start < Tj .end ∧
3. ws_list := ∅ Ti.WS ∩ Tj .WS 6= ∅
4. tocommit_queue_k := ∅ a. release wsmutex

I. Upon operation request for Ti from local client b. if Ti is local then abort Ti at Rk else discard
1. If select, update, insert, delete 3. else

a. if first operation of Ti a. Ti.end := ++lastvalidated_tid
- Ti.start := lastcommitted_tid b. append Ti to ws_list and tocommit_queue_k
- Ti.priority := 0 c. release wsmutex

b. execute operation at Rk and return to client III. Ti := head(tocommit_queue_k)
2. else /* commit */ 1. if Ti is remote at Rk

a. Ti.WS := getwriteset(Tik) from local Rk a. begin Tik at Rk

b. if Ti.WS = ∅, then commit and return b. apply Ti.WS to Rk

c. Ti.priority := 1 c. ∀ Tj : Tj is local in Rk ∧ Tj .WS ∩ Ti.WS 6= ∅
d. multicast Ti using total order ∧ Tj has not arrived to step II

(this is analyzed by our conflict detector,
concurrently with the previous step III.1.b)
- abort Tj

2. commit Tik at Rk

3. ++lastcommitted_tid
4. remove Ti from tocommit_queue_k

Fig. 1. SIR-SBD algorithm at replica Rk

when their writeset is delivered in their remote nodes. This ensures the correctness of
this alternative, since our blocking detection mechanism aborts a transaction only if all
of these conditions are satisfied. Otherwise, no particular action is taken:

– The transaction to be aborted is local.
– It has not locally requested its commit; i.e., its writeset has not been multicast.
– The transaction that causes its abortion has been generated for applying a remote

writeset.

This approach satisfies the correctness criteria of the snapshot isolation level, since the
writeset above mentioned is associated to a transaction that has successfully passed its
global validation phase. It already has a commit timestamp which of course is in the
range of the [start, commit] interval of the local transaction, since the latter has not yet
requested its commit.

An important replication protocol detail is that the ws_list in each node maintains
the writesets necessary to perform the certification work at this replica and the writesets
that have not been processed by other replicas. A writeset only can be deleted from
the list once it has been processed by all replicas –being then not necessary for the
certification work–. This deleting policy has a key aspect for recovery purposes.

4 Recovery Strategies

We describe a basic recovery in Section 4.1 and its optimized version in Section 4.2.
The optimization consists in compacting the list of missed writesets, maintaining only
the last version of each missed item.

4.1 Basic Recovery

As a general overview of the main goal of our recovery protocol, let us say that one
node (recoverer) will transfer the missed writesets to the recovering node arranged by
their respective versions. This means that user application transactions executed on the
recovering node will run under GSI [17] in a slower replica. As it may be seen there are
no restrictions to execute user transactions in the replica and transactions executing at
other replicas will behave as if nothing happens in the system. To achieve this we take
the ideas outlined in [17].

A recovering replica Ri joins the group, triggering a view change. As part of this
procedure, the recovering protocol instance running in Ri multicasts in total order an
ask-for-help message indicating the versioni of its last applied writeset –this version
corresponds to the commit timestamp of the last transaction applied in that node. No
message activity in the recovering node is done –all delivered messages are ignored–
until this message is delivered. At this moment, the recovering node starts to enqueue
the total order delivered messages –with writeset information about other transactions
in the system sent by the rest of the replicas– to be processed later.

In parallel to this, a deterministic procedure takes place to choose a recoverer replica.
The recoverer replica (Rj), after receiving the ask-for-help message, starts a recovery
thread that sends a point-to-point message with all the missed writesets starting from
versioni +1, i.e., the recoverer node sends the portion of its ws_list that covers from
versioni + 1 to the end of the ws_list at that moment. Note that this ws_list is one
of the elements on which the replication protocol algorithm is based, and it can also be
used for our recovery purposes, as it contains all the information we need. This way, we
reuse the data maintained by the replication protocol, minimizing the overhead intro-
duced by the recovery support in normal operation (i.e. no additional data collection is
needed to support possible recovery processes). Note also that this approach guarantees
that the recovering node will receive, on one hand, the writesets from versioni + 1
to the last known version of the recoverer at the moment of the ask-for-help message
reception. On the other hand, the writesets delivered in total order in the system after
the ask-for-help message will be enqueued in the recovering message buffer. This way,
it is ensured that the recovering node will not miss any writeset.

When this point-to-point recovery message is delivered to the recovery protocol,
it stores this information in both the ws_list and the tocommit queue, as all these
writesets were already certified in the recoverer node. Then, the replication protocol is
ready to directly apply in the database the writesets in the tocommit queue and to start
certifying its own enqueued total order messages –delivered after the ask-for-help mes-
sage. Note that the certification of the enqueued messages must wait for the recovering
information to be stored in the ws_list, as this structure is used in the certification
process, but it is not necessary to wait to the application of these missed writesets in the
database. In other words, just after the storage of the transmitted writesets in both data
structures, the recovering node can act as in normal mode.

4.2 Compacting

This basic procedure can be enhanced by compacting the point-to-point message in
order to minimize the transmission and application time. The point-to-point recovery

message has to provide all the changes in the database made from versioni + 1 to the
current version of the recoverer node. This information can be sent in a raw mode, i.e.,
sending the writesets of all the transactions committed during this period of time. Then,
in the recovering node, all writesets are applied in the context of a single transaction.
This is the way used in the basic recovering protocol explained before.

All this procedure can be enhanced if the recoverer replica elaborates a special
writeset composed by the last version of each modified object in all the transactions
committed during the crash time, i.e., if the same object was modified by more than one
transaction, only the last version of it would be transmitted along with its correspond-
ing end timestamp. This special writeset, built only in the recoverer replica at recovery
start time, would be applied by the recovering replica in a single transaction, which can
greatly improve the committing time, not only for being just one –although possibly
big– transaction, but also for avoiding useless updates of the same object. This way,
compacting will reduce both the transmission and the checking time. The time needed
by the recoverer node to prepare this compacted message is not negligible, but it does
not imply any noticeable overhead.

Note also that the regular function of the replication protocol is not compromised by
this optimization. Indeed, the recovering replica can start processing transactions imme-
diately. The writesets transferred in the recovery message are not needed by the recover-
ing replica in order to certify any new local writeset, since such new writesets should be
certified against the writesets regularly delivered in the new view in which such recov-
ering replica has rejoined the group. However, such compacted writesets can be needed
for certifying remote transactions in such recovering replica, but its compacted version
is enough for such kind of certification. Note that can exist long remote transactions that
have started before the recovery process started, and their [start, commit] interval might
overlap the end of some transactions included in the compacted missed writesets. Since
at least the latest version of each missed updated item is present in such compacted set,
all conflicts detectable with the original writeset list will be detectable with such com-
pacted sequence. For instance, assume that there were N transactions T1, T2, ..., TN in
the original missed writeset list and that each writeset contained M items a11, a12, ...,
a1M , ..., aN1, aN2, ..., aNM , and each of these transactions has a consecutive logical
commit timestamp (ti for Ti, being ti+1=ti + 1). Without generalization loss, let us as-
sume that there are only M/2 items per writeset that have not been updated in any of its
successive writesets (except in the last writeset of such compacted list that is the single
one that cannot be compacted –their updated items are their trivially latest versions in
the recovery transfer set–), being aiKi those items (where Ki⊂{j ∈ N : 1 ≤j ≤M}
and |Ki| = M/2). So, if a given "future" transaction Tj was started between, e.g. T1

and T2, its writeset should be checked against all writesets in the range [T2, Tj−1]. Note
that Tj has been terminated after TN , and as a result of this, all items updated by all
transactions in the range [T2, Tj−1] are also included in its "compacted variant" since
N < j − 1, and our compacting process guarantees that only items rewritten during
the [T1,TN−1] interval are removed from the T1..TN writeset sequence (but if any item
has not been rewritten, it appears in such compacted sequence, and this guarantees that
exactly one version of all original writeset elements appears in the compacted version).
Additionally, we have the advantage of a boost in the checking time, since instead of

having the complete sequence of [T1, TN] writesets, we only have a compacted item
sequence a1K1 ..aNKN

, as assumed above (i.e., half of the items, in this hypothetical
example).

Our optimization shares some of the characteristics of the fifth recovery strategy
described in [5] ("Restricting the set of objects to check") but further optimizes that
technique. To this end, our compacting is able to restrict the objects being checked
without needing any additional table where the objects are being recorded during the
crash interval. Additionally, it still shares the advantage of getting such set of items to
be transferred without requiring any read lock nor global read operation on the items
stored in the regular database tables. But, on the other hand, it is partially dependent on
the replication protocol approach (certification-based), and can not be easily adapted to
all other database replication variants (e.g., the active and weak-voting variants [7] do
not need any historic writeset log).

5 Amnesia Support

As we have said in Section 2, replicas fail according to the partial-amnesia crash failure
model. This assumption allows crashed replicas to be recovered when they reincorpo-
rate to the replicated database system. Therefore, in order to update them it is only nec-
essary to transfer them the changes they have missed during their disconnection time.
This characteristic is a great advantage compared to the fail-stop failure model –which
forces to transfer the whole database– when we are talking about great databases as
explains [10]. The basic idea is that the recovery process must transfer less information,
implying smaller recovery times, and so:

– shorter periods with low replicated system performance due to the overhead intro-
duced by the recovery process work,

– shorter periods with decreased fault tolerance support because outdated replicas are
updated in a faster way –only fully updated replicas can be used to guarantee the
correct and consistent state evolution in the replicated system–.

But, adopting this failure model presents several problems as described in [10]. In
fact, it can lead to replicated inconsistencies in two different scenarios if they are not
correctly managed by the combination of the replication and recovery protocol used by
the replicated database.

In the following subsections we will present these two scenarios and study if our
solution –replication and recovery protocol combination– manages them correctly.

5.1 Recovery Information to Transfer

Firstly, the recovery protocol must ensure that the state in the recovering node after
the recovery process is consistent. In this scenario, consistent means that the recovered
node reaches the replicated system state. Thus, the replicated system must know which
is the last consistent state reached by the crashed node, in order to transfer the exact
needed information, avoiding the problems of losing some changes –which would lead

to an inconsistent state in the recovered node–. Notice that applying changes twice or
more in a version-based recovery strategy as ours –where are transferred the values and
not the operations– does not imply inconsistencies, simply is redundant work.

This problem arises in those replicated database systems whose crashed members
can not remember exactly which was their last state before their crash occurrence. In
other words, it can be said that when nodes crash they expect to have a theoretic last state
that can differ from their real last state due to amnesia. This happens in those protocols
which use atomic broadcast, and virtual synchrony, and rely only on their message order
delivery, making the assumption that all delivered messages are correctly processed.
But, as it has been demonstrated in [18] this assumption is not correct. It is possible that
some delivered transactions have not been processed before the node crashed, therefore
when this node reconnects it has a gap between its last delivered transaction and its last
committed one.

Our replication proposal avoids this problem because does not rely on this assump-
tion. In fact, both recovery protocols, the basic one described in subsection 4.1 and the
compacted one detailed in subsection 4.2, use the information of the last applied write-
set in the node being recovered –versioni, the commit timestamp of its last commit-
ted transaction–. Then when a node reconnects –needing to be updated– it multicasts
this information which is used by the recoverer replica to determine which subset of
database information must be transferred for updating the recovering replica. This is
possible because each node marks which is its last committed transaction. Thus, our
recovery protocols deal with this problem correctly, ensuring that it will not be any gap
in the recovery information transferred avoiding then possible diverging state evolution
in recovered replicas.

Now, after describing how our recovery protocols handle accurately one of the pos-
sible problematic scenarios we will study the second one.

5.2 Amnesia and Progress Condition

The second scenario that can lead to replicated state inconsistencies –an undesired
situation– appears when combining the amnesia problem with the replicated system
progress condition –primary partition–. The problem is that the system is unable to
guarantee the correct system data state progress. We will explain this scenario with an
example.

Consider that we have a replicated system, α = {R1, R2, R3}, compound by three
replicas. All three replicas are fully updated and working at the instant t0, being the
last delivered and committed transaction in all nodes T1. Then the replicated system
delivers T2 to all replicas, which is committed in R1 and R2 but not in R3 because
it crashes before being able to commit it, moreover, R3 loses the T2 writeset because
the replication protocol does not persist it. And R3 crash triggers the installation of a
new view which still fulfils the primary partition progress condition, therefore R1 and
R2 can go on working. At this time the replicated system delivers T3 to the currently
alive nodes R1 and R2, but this transaction is only committed in R1 because R2 crashes
before committing it –losing the T3 writeset. Then a new view is installed, but as it is
compound only by R1 it does not fulfil the progress condition, so the replicated system
stops working. At this point, R2 reconnects to the system, and a new view compound

by R1 and R2 is installed. Therefore, the recovery process of R2 starts –it has lost T3

updates–. But R1 crashes before recovering R2 –before sending T3 updates–. Then the
system installs a new view which does not fulfil the progress condition, so the system
can not work. Later, R3 reconnects to the system, triggering the installation of a new
view which fulfils the progress condition –R2 and R3 are alive–. But then arises a
consistency problem, R2 can update R3 with the changes associated to T2 but no one
has the changes belonging to T3. Therefore, as they fulfil the progress condition they can
go on working, but if they work they will start from the state reached after committing
T2 and not T3 –the last really committed transaction in the replicated database system–
leading to a diverging state evolution to R1 state –which is the correct one–.

First of all, it must be said that this situation or another events combination that
leads to a similar situation is very improbable. And this probability diminishes as long
as the number of replicas increases.

Anyway, our proposals as they are currently defined do not handle this problem ac-
curately, and improbable does not mean impossible, so these situations must be avoided.
The way for overcoming this problem is the same one proposed in [19] in order to adopt
the majority of alive nodes progress condition, or the generic way for solving the amne-
sia problem presented in [10] in log-based recovery strategies for transactional systems.

The idea consists in storing persistently the delivered messages in each replica as
an atomic step of the delivery message, being only possible to delete them as soon
as they have been correctly processed by the replica and they are not necessary for
the certification phase, in other words to persist the ws_list. Therefore, in the above
described sequence of events, when R2 crashes it will have not committed T3 but it will
have not lost its associated writeset because it would be persistently stored. Then, in the
last reached view, compound by R2 and R3, the replicated database system would have
the necessary information to apply T3 in both replicas in the recovery process, allowing
the system to go on working without generating replicated inconsistent states.

This work way when included in the general recovery protocol will alter it in a slight
way. This evolution implies that as soon as a crashed node reconnects it starts a stage of
self recovery, which implies to process all the persistently stored messages which have
not been correctly processed yet. It must be noticed that this persistence policy wraps
all the necessary information for certification purposes –broadcast messages–, ensuring
a correct transaction execution. Once the node being recovered finishes this step it can
go on using the original recovery protocols, sending the versioni of its last committed
transaction after the self recovery process.

Obviously, persisting messages as soon as they are delivered implies an overhead
during the replication work. A study of the associated overhead cost is presented in
[10]. An overhead that will penalize constantly the replication work in order to avoid
problems for situations that will rarely occur.

Therefore, another possible solution is to do nothing and assume these situations can
happen in our replicated system. In this case, the idea is that among the alive nodes that
compound the new primary partition –instead of not having the last consistent state–
decide a new last consistent replicated state, allowing the system to go on working from
this point. Later, when a replica which really reached the last consistent state of the
replicated system reconnects, it must undo the transactions not processed in the new

consistent replicated state before being recovered. Then, in the previous example, R2

and R3 would be able to go on working, taking as starting consistent state the one
reached after applying T2. And later, when R1 reconnects it would have to undo T3

before recovering the updates performed by R2 and R3. This solution avoids the over-
head of persisting messages and simply implies to undo –in very rare occasions– some
transactions –usually very few–. This solution is similar in concept to some approaches
used in reconciling processes for partitionable systems.

Which solution must be adopted? It depends. The first solution solves the prob-
lem ensuring that committed transactions are not lost, but implies a constant overhead
during the normal work for solving a problem that will rarely happen. While the sec-
ond solution avoids the problem without implying any overhead, but some transactions
must be undone when this improbable scenario happens. So, it depends on the repli-
cated system tolerance to undo some already committed transactions. If this tolerance
is critical we have to select the first approach, while if there are not important problems
of undoing some committed transactions, the second one can be adopted.

6 Related Work

The use of version-based recovery protocols –the same approach taken as the basis of
our proposed optimization– had been already suggested in the fourth and fifth recovery
variants of [5], but in both cases still demanded a lot of effort for maintaining the set
of versions to be transferred to each crashed replica. Either a version-based DBMS was
assumed or a special additional table needs to be managed and updated each time a
transaction commits. We used the latter solution in [2,9] but in both papers such proto-
cols were designed as a recovery approach for a replication system that did not provide
any standard isolation level. Those solutions were developed in our COPLA system
[20], and such middleware was targeted to provide an object-relational translation, with
an object-oriented programming interface where the traditional isolation levels did not
match. In the current paper, we have optimized the version-based approach taking as its
basis a certification-based [7] replication variant in order to support the snapshot [21]
isolation level.

A similar compacting technique has been also applied in [22], in order to optimize
the recovery protocol presented in [23] but in this case it used view granularity and not
transaction granularity.

In regard to the failure model adopted, process replication has traditionally been
oriented to the fail-stop failure model as in [24], while replicated transactional systems
which manage large data amounts as databases have oriented to the crash-recovery with
partial amnesia as [1,2,5]. In this last scenario few protocols have adopted the fail-stop
model as [25].

Thus all these recovery protocols that have adopted the crash-recovery with partial
amnesia failure model have to solve the amnesia problem. But, instead of this fact there
are few recovery protocols that have analyzed the problem in a deep way.

In [18] authors noticed that message delivery does not imply message processing,
situation that, as it has been seen in this paper, can lead to consistency problems af-

ter recovery processes. For solving this problem [18] presented the successful delivery
concept.

This problem has been also studied in the context of log-based recovery techniques
as in [10,11]. In this context, [2] proposes a solution for the amnesia phenomenon in
log-based strategies based on logging received messages. [4] presents a different way to
deal with the amnesia problem in similar scenarios. In this paper the authors mix check-
pointing with message transfer; in other words, they combine as recovery information
to transfer a snapshot of the data state and the needed messages from the snapshot in-
stant point. This combination allows the protocol to overcome the amnesia problem. A
possible drawback of this solution depends on the way in which the checkpoint process
is performed, because if the whole data state is transferred, the benefits of adopting the
crash-recovery failure model are lost.

In [5] several version-based protocols are proposed. Without considering the one
consisting in transferring the whole database, it proposes the approach of checking ver-
sion numbers. This recovery protocol manages correctly the amnesia problem because
it marks each data object with the identifier of the last transaction that updated it –even
when there are not failed nodes– as our proposals do. And they optimized it presenting
a new recovery protocol which restricts the set of objects to check. This protocol main-
tained in a database table –reconstruction table– the identifiers of the modified objects
when there were failed nodes. Each one of these object identifiers was inserted in a dif-
ferent row, storing at the same time the identifier of the transaction which modified the
object. Therefore, when an object was modified, the system checked if its identifier was
already inserted in this table. If not, the protocol created a new entry with the object
identifier and the transaction identifier. If it already existed an entry with this object
identifier, the protocol simply updated in this entry the transaction identifier. But the
problem of this new protocol is that it does not handle accurately the amnesia problem
in transitions from a view without failed nodes to one with failed nodes. In this case, it
is possible that the node whose crash triggered the new view has delivered before crash-
ing one transaction without processing it correctly, so it loses its changes. The problem
arises because the other nodes consider that this transaction belongs to the view where
all nodes were alive, and therefore they do not store its changes in the reconstruction
table, being afterwards impossible to transfer these updates in the recovery process.

In the version-based area a similar study of amnesia support, presented in [22], has
been performed for the recovery protocol described in [23]. In this case the broadcast
messages were also forced to be stored persistently in order to avoid the amnesia prob-
lem.

As far as we know, few studies have been performed considering the effects derived
from combining the adopted progress condition in the replicated system, the replica-
tion and recovery protocols used. The papers [11,19] perform such study for replicated
transactional systems which uses log-based recovery techniques.

7 Conclusions

We have presented a first basic recovery approach for certification-based replication
protocols. Although certification-based replication protocols provide a good basis for

developing recovery protocols, this first basic approach can be easily improved. A pos-
sible optimization based on a missed updates compacting has also been presented.

We have also detailed the advantages of using the crash-recovery with partial am-
nesia failure model instead of the fail-stop when talking about large databases. These
reasons have led us to adopt this system failure model in our replicated database sys-
tem from the beginning. But this assumption can cause different problems, therefore we
have also included a study of the amnesia support provided by our certification-based
recovery proposals, analyzing the associated problems, studying how they are managed
by our protocols, and proposing enhancements when needed.

References

1. Armendáriz-Iñigo, J.E.: Design and Implementation of Database Replication Protocols in
the MADIS Architecture. PhD thesis, Universidad Pública de Navarra, Pamplona (Spain)
(2006)

2. Castro, F., Esparza, J., Ruiz, M.I., Irún, L., Decker, H., Muñoz, F.D.: CLOB: Communication
support for efficient replicated database recovery. In: PDP, Lugano, Switzerland, IEEE-CS
Press (2005) 314–321

3. Holliday, J.: Replicated database recovery using multicast communication. In: NCA, IEEE-
CS Press (2001)

4. Jiménez, R., Patiño, M., Alonso, G.: An algorithm for non-intrusive, parallel recovery of
replicated data and its correctness. In: SRDS, IEEE-CS Press (2002) 150–159

5. Kemme, B., Bartoli, A., Babaoglu, O.: Online reconfiguration in replicated databases based
on group communication. In: IEEE Int. Conf. on Dependable Systems and Networks, Göte-
borg, Sweden (2001) 117–130

6. Cristian, F.: Understanding fault-tolerant distributed systems. Commun. ACM 34(2) (1991)
56–78

7. Wiesmann, M., Schiper, A.: Comparison of database replication techniques based on total
order broadcast. In: IEEE Trans. Knowl. Data Eng. 17(4). (2005) 551–566

8. Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., Alonso, G.: Database replication tech-
niques: A three parameter classification. In: SRDS. (2000) 206–217

9. Castro, F., Irún, L., García, F., Muñoz, F.D.: FOBr: A version-based recovery protocol for
replicated databases. In: PDP, Lugano, Switzerland, IEEE-CS Press (2005) 306–313

10. de Juan-Marín, R., Irún-Briz, L., Muñoz-Escoí, F.D.: Supporting amnesia in log-based re-
covery protocols. In: Euro-American Conference On Telematics and Information Systems
(EATIS 2007), Faro, Portugal. (2007)

11. de Juan-Marín, R., Irún-Briz, L., Muñoz-Escoí, F.D.: Recovery strategies for linear replica-
tion. In: ISPA. (2006) 710–723

12. Irún, L., Decker, H., de Juan, R., Castro, F., Armendáriz, J.E., Muñoz, F.D.: MADIS: a
slim middleware for database replication. In: 11th Intnl. Euro-Par Conf., Monte de Caparica
(Lisbon), Portugal (2005) 349–359

13. Muñoz-Escoí, F.D., Pla-Civera, J., Ruiz-Fuertes, M.I., Irún-Briz, L., Decker, H., Armendáriz-
Iñigo, J.E., González de Mendívil, J.R.: Managing transaction conflicts in middleware-based
database replication architectures. In: SRDS, IEEE-CS Press (2006) 401–410

14. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: A compre-
hensive study. ACM Computing Surveys 33(4) (2001) 427–469

15. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In Mullender, S.,
ed.: Distributed Systems. 2nd edn. ACM Press (1993) 97–145

16. Spread: The Spread communication toolkit. Accessible in URL: http://www.spread.org
(2007)

17. Elnikety, S., Pedone, F., Zwaenepoel, W.: Database replication providing generalized snap-
shot isolation. In: 24th IEEE Symposium on Reliable Distributed Systems, Orlando, FL,
USA (2005) 73–84

18. Wiesmann, M., Schiper, A.: Beyond 1-Safety and 2-Safety for replicated databases: Group-
Safety. In: 9th International Conference on Extending Database Technology. (2004) 165–182

19. de Juan-Marín, R.: (n/2+1) alive nodes progress condition. In: Sixth European Dependable
Computing Conference, EDCC-6. (2006)

20. Esparza, J., Calero, A., Bataller, J., Muñoz, F., Decker, H., Bernabéu, J.: COPLA: A mid-
dleware for distributed databases. In: 3rd Asian Workshop on Programming Languages and
Systems (APLAS ’02). (2002) 102–113

21. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A critique of
ANSI SQL isolation levels. In: SIGMOD, ACM Press (1995) 1–10

22. García-Muñoz, L.H., de Juan-Marín, R., Armendáriz, J.E., Muñoz-Escoí, F.D.: Adding am-
nesia support and compacting mechanisms to replicated database recovery. Technical report,
ITI-ITE-07/08, Instituto Tecnológico de Informática (2007)

23. Armendáriz, J.E., Muñoz, F.D., Decker, H., Juárez, J.R., de Mendívil, J.R.G.: A protocol
for reconciling recovery and high-availability in replicated databases. 21st International
Symposium on Computer Information Sciences, Springer 4263 (2006) 634–644

24. Birman, K.P., Renesse, R.V.: Reliable Distributed Computing with the ISIS Toolkit. IEEE
Computer Society Press, Los Alamitos, CA, USA (1993)

25. Lau, E., Madden, S.: An integrated approach to recovery and high availability in an updat-
able, distributed data warehouse. In: VLDB. (2006) 703–714

