Optimizing Certification-Based Database Recovery*

J. Pla-Civera, M. 1. Ruiz-Fuertes, L. H. Garcia-Muiioz, F. D. Mufioz-Escoi
Instituto Tecnoldgico de Informatica
Universidad Politécnica de Valencia
Camino de Vera, s/n
46022 Valencia (SPAIN)
e-mail: {jpla,miruifue,lgarcia,fmunyoz} @iti.upv.es

Abstract

Certification-based database replication protocols are
a good basis to develop replica recovery when they pro-
vide the snapshot isolation level. For such isolation level,
no readset needs to be transferred between replicas nor
checked in the certification phase. Additionally, these pro-
tocols need to maintain a historic list of writesets that is
used for certifying the transactions that arrive to the com-
mit phase. Such historic list can be used to transfer the
missed state of a recovering replica. We study the per-
formance of the basic recovery approach —to transfer all
missed writesets— and a version-based optimization —to
transfer the latest version of each missed item, compact-
ing thus the writeset list—, and the results show that such
optimization reduces a lot the recovery time.

1 Introduction

Replication has been the regular solution for achieving
high availability. But such level of availability requires that
crashed replicas were recovered. Database replication is a
special kind of highly-available service since in this case
replica recovery implies the application of the missed up-
dates, being inefficient a complete state transfer since it
needs a long time to be completed. Even transferring only
the missed updates, there is no easy way to complete such
recovery in a short time.

There have been many good works devoted to database
replication recovery [1, 3, 10, 13, 14], but almost none of
them has provided a rigorous performance study of the pro-
posed approaches. The aim of this paper is to show that
replica recovery is not easy when the load of the replicated
system is not light, and that some optimizations can par-

*This work has been partially supported by FEDER and the Spanish
MEC under grant TIN2006-14738-C02-01.

tially overcome such problem. To this end, we have tried
to select the database replication kind [19] that provides the
best support for developing an easy recovery: certification-
based replication. In this replication variant a historic list
of the applied writesets needs to be maintained in order to
certificate transactions (i.e., validate and locally decide in
each replica about the success of each terminating transac-
tion). Such a historic writeset list can be stored and used for
transferring the missed updates to recovering replicas. Ad-
ditionally, the resulting replication protocol does not need
any voting termination [20] and provides very good per-
formance if the conflicting rate is low [19]. Moreover, for
the snapshot isolation level, a certification-based replication
protocol is the natural solution, since it does not demand
readset transfers. So, such kind of replication protocol pro-
vides an ideal basis to research on replica recovery and a
basic recovery protocol can be easily developed.

But such a basic recovery protocol does not provide good
performance (i.e., a short recovery time). So, some opti-
mizations are needed in order to get acceptable results. To
this end, we have combined a version-based approach, simi-
lar to those proposed by other research groups (e.g., in some
of the recovery variants of [14]) and in some of our previous
papers [3, 4] but specifically adapted to a certification-based
replication protocol. Such optimization introduces a negli-
gible overhead and shortens the recovery time, as shown in
Section 5.

The rest of this paper is structured as follows. Section 2
presents the assumed system model. Section 3 describes the
replication protocol taken as the basis for our recovery pro-
posals. Section 4 thoroughly explains the recovery strate-
gies. Section 5 discusses the performance results. Finally,
Section 6 presents some related work and Section 7 gives
the conclusions.

2 System Model

We assume a partially synchronous distributed system
—where clocks are not synchronized but the message trans-
mission time is bounded— composed by N nodes where each
one holds a replica of a given database; i.e., the database is
fully replicated in all system nodes. These replicas might
fail according to the partial-amnesia crash failure model
proposed in [6], since all already committed transactions
are able to recover but on-going ones are lost when a node
crashes. We consider this kind of failures as we want to deal
with node recovery after its failure.

Each system node has a local DBMS that is used for lo-
cally managing transactions. On top of the DBMS a mid-
dleware is deployed in order to provide support for replica-
tion. More information about our MADIS middleware can
be found in [12, 15]. This middleware also has access to a
group communication service (abbreviated as GCS, on the
sequel).

A GCS provides a communication and a membership
service supporting virtual synchrony [S]. The communi-
cation service features a total order multicast for message
exchange among nodes through reliable channels. Member-
ship services provide the notion of view (current connected
and active nodes with a unique view identifier). Changes in
the composition of a view (addition or deletion) are deliv-
ered to the recovery protocol. We assume a primary compo-
nent membership [5]. In a primary component membership,
views installed by all nodes are totally ordered (there are no
concurrent views), and for every pair of consecutive views
there is at least one process that remains operational in both
views. The GCS groups messages delivered in views [5].
The uniform reliable multicast facility [9] ensures that if a
multicast message is delivered by a node (correct or not)
then it will be delivered to all available nodes in that view.
All these characteristics permit us to know which writesets
have been applied in the context of an installed view. In this
work, we use Spread [18] as our GCS.

We use a replication protocol based on certification [19],
which does not require any kind of voting in order to decide
how a transaction should be terminated (either committing
or aborting).

3 Replication Protocol

We have selected the SIR-SBD protocol (see Figure 1)
described in [15] for a case study of our recovery mecha-
nisms, because it is a good sample of a certification-based
[19] database replication protocol, providing the snapshot
isolation level [2] and thus avoiding the transfer of transac-
tion readsets.

This protocol uses an atomic multicast [9], i.e., a reliable
multicast with total order delivery, and thus it ensures that

Initialization:
1. lastvalidated_tid := 0
2. lastcommitted_tid := 0
3. ws_list:=0
4. tocommit_queue_k := 0
I. Upon operation request for T, from local client
1. If select, update, insert, delete
a. if first operation of T;
- T,.start := lastcommitted_tid
- T,.priority := 0
b. execute operation at Ry and return to client
2. else /* commit */
a. T;.WS := getwriteset(T ;) from local R
b. if T;.WS = 0, then commit and return
c. T;.priority :=1
d. multicast T, using total order
Il. Upon receiving T; in total order
1. obtain wsmutex
2.if3T; € ws_list: T;.start < T;.end A
T, WSNT;WS#0
a. release wsmutex
b. if T; is local then abort T; at R, else discard
3. else
a. T;.end := ++lastvalidated_tid
b. append T; to ws_list and tocommit_queue_k
c. release wsmutex
Ill. T; := head(tocommit_queue_k)
1.if T, is remote at Ry,
a. begin T;;, at Ry
b. apply T;.WS to R
c.VT;:Tjislocalin Ry A T; WS NT;.WS # 0
A T; has not arrived to step Il
(this is analyzed by our conflict detector,
concurrently with the previous step 111.1.b)
- abort T;
..commit T;x at Ry
. ++lastcommitted_tid
. remove T; from tocommit_queue_k

A WD

Figure 1. SIR-SBD algorithm at replica R,

the writesets being multicast by each replica at commit time
are delivered in all replicas in the same order. It uses two
data structures for dealing with writesets: ws_1ist, which
stores all the writesets known (i.e., delivered) until now, and
tocommit queue, which holds those writesets locally certi-
fied but not yet applied in the local database replica. More-
over, for each transaction, the attributes start and end
hold something similar to the transaction start and commit
timestamps, respectively. Due to the total order multicast
and the behavior of the protocol, the second counter is the
same for a system transaction in all the replicas, i.e., all the
replicas identify with the same commit timestamp a system
transaction —this will be handy when studying the perfor-
mance graphs.

Note that we have tacitly assumed that the underlying
database system is supposed to be able to check for con-
flicts, and to abort transactions whose access patterns vio-
late the snapshot isolation level rules.

This protocol is also based on the existence of a block

detection mechanism [15]. We have assigned the following
priorities to the transactions. All transactions are initialized
with a 0 priority level. They get level 1 when they are multi-
cast in their local node or when their writeset is delivered in
their remote nodes. This ensures the correctness of this al-
ternative, since our blocking detection mechanism aborts a
transaction only if all of these conditions are satisfied. Oth-
erwise, no particular action is taken:

e The transaction to be aborted is local.

e It has not locally requested its commit; i.e., its writeset
has not been multicast.

e The transaction that causes its abortion has been gen-
erated for applying a remote writeset.

This approach satisfies the correctness criteria of the snap-
shot isolation level, since the writeset above mentioned is
associated to a transaction that has successfully passed its
global validation phase. It already has a commit timestamp
which of course is in the range of the [start, commit] in-
terval of the local transaction, since the latter has not yet
requested its commit.

4 Recovery Strategies

We describe a basic recovery in Section 4.1 and its op-
timized version in Section 4.2. The optimization consists
in compacting the list of missed writesets, maintaining only
the last version of each missed item.

4.1 Basic Recovery

As a general overview of the main goal of our recov-
ery protocol, let us say that one node (recoverer) will trans-
fer the missed writesets to the recovering node arranged by
their respective versions. This means that user application
transactions executed on the recovering node will run un-
der GSI [7] in a slower replica. As it may be seen there
are no restrictions to execute user transactions in the replica
and transactions executing at other replicas will behave as it
nothing happens in the system. To achieve this we take the
ideas outlined in [7].

A recovering replica R; joins the group, triggering a
view change. As part of this procedure, the recovering
protocol instance running in R; multicasts an ask-for-help
message indicating the version; of its last applied write-
set —this version corresponds to the commit timestamp of
the last transaction applied in that node. No message activ-
ity in the recovering node is done —all messages delivered
are ignored— until this message is delivered. At this mo-
ment, the recovering node starts to enqueue the total order
delivered messages —with writeset information about other

transactions in the system sent by the rest of the replicas— to
be processed later.

In parallel to this, a deterministic procedure takes place
to choose a recoverer replica. The recoverer replica (1),
after receiving the ask-for-help message, starts a recov-
ery thread that sends a point-to-point message with all the
missed writesets starting from version; + 1, i.e., the re-
coverer node sends the portion of its ws_1ist that covers
from version; + 1 to the end of the ws_1ist at that mo-
ment. Note that this ws_1list is one of the elements on
which the replication protocol algorithm is based, and it can
also be used for our recovery purposes, as it contains all the
information we need. This way, we reuse the data main-
tained by the replication protocol, minimizing the overhead
introduced by the recovery support in normal operation (i.e.
no additional data collection is needed to support possible
recovery processes). Note also that this approach guaran-
tees that the recovering node will receive, on one hand, the
writesets from version; + 1 to the last known version of
the recoverer at the moment of the ask-for-help message re-
ception. On the other hand, the writesets delivered in total
order in the system after the ask-for-help message will be
enqueued in the recovering message buffer. This way, it is
ensured that the recovering node will not miss any writeset.

When this point-to-point recovery message is delivered
to the recovery protocol, it stores this information in both
the ws_1list and the tocommit queue, as all these write-
sets were already certified in the recoverer node. Then, the
replication protocol is ready to directly apply in the database
the writesets in the tocommit queue and to start certifying
its own enqueued total order messages —delivered after the
ask-for-help message. Note that the certification of the en-
queued messages must wait for the recovering information
to be stored in the ws_1ist, as this structure is used in the
certification process, but it is not necessary to wait to the ap-
plication of these missed writesets in the database. In other
words, just after the storage of the transmitted writesets in
both data structures, the recovering node can act as in nor-
mal mode.

This kind of recovery inherits the main ideas of the sec-
ond approach described in [14] ("Data transfer within the
database system") and, up to our knowledge, had been al-
ready implemented and studied in other projects (e.g., Glob-
Data, in order to add recovery capacity to the protocols pre-
sented in [17], but its performance results were only de-
scribed in an internal project report).

4.2 Compacting

This basic procedure can be enhanced by compacting
the point-to-point message in order to minimize the trans-
mission and application time. The point-to-point recov-
ery message has to provide all the changes in the database

made from version; + 1 to the current version of the re-
coverer node. This information can be sent in a raw mode,
i.e., sending the writesets of all the transactions committed
during this period of time. Then, in the recovering node,
each writeset is applied in a new transaction —like any other
replica does in normal function. This is the way used in the
basic recovering protocol explained before.

All this procedure can be enhanced if the recoverer
replica elaborates a special writeset composed by the last
version of each modified object in all the transactions com-
mitted during the crash time, i.e., if the same object was
modified by more than one transaction, only the last ver-
sion of it would be transmitted along with its correspond-
ing end timestamp. This special writeset, built only in the
recoverer replica at recovery start time, would be applied
by the recovering replica in a single transaction, which can
greatly improve the committing time, not only for being just
one —although possibly big— transaction, but also for avoid-
ing useless updates of the same object. This way, compact-
ing will reduce both the transmission and the checking time
as we will see later in the performance results. The time
needed by the recoverer node to prepare this compacted
message is not negligible, but we will see in the graphs that
it does not imply any noticeable overhead.

Note also that the regular function of the replication pro-
tocol is not compromised by this optimization. Indeed, the
recovering replica can start processing transactions immedi-
ately. The writesets transferred in the recovery message are
not needed by the recovering replica in order to certify any
new local writeset, since such new writesets should be certi-
fied against the writesets regularly delivered in the new view
in which such recovering replica has rejoined the group.
However, such compacted writesets can be needed for cer-
tifying remote transactions in such recovering replica, but
its compacted version is enough for such kind of certifica-
tion. Note that can exist long remote transactions that have
started before the recovery process started, and their [start,
commit] interval might overlap the end of some transactions
included in the compacted missed writesets. Since at least
the latest version of each missed updated item is present in
such compacted set, all conflicts detectable with the origi-
nal writeset list will be detectable with such compacted se-
quence. For instance, assume that there were N transactions
Ty, Ts, ..., TN in the original missed writeset list and that
each writeset contained M items a11, @12, ..., A1 M --rs GN1,
apn2, ..., an M, and each of these transactions has a consecu-
tive logical commit timestamp (¢; for T}, being ¢;,.1=t; +1).
Without generalization loss, let us assume that there are
only M/2 items per writeset that have not been updated in
any of its successive writesets (except in the last writeset
of such compacted list that is the single one that cannot be
compacted —their updated items are their trivially latest ver-
sions in the recovery transfer set-), being a;k, those items

(where K;C{j € N:1 <j <M} and |K;| = M/2). So, if
a given "future" transaction 7); was started between, e.g. T
and 75, its writeset should be checked against all writesets
in the range [75, T;_1]. Note that T} has been terminated
after Ty, and as a result of this, all items updated by all
transactions in the range [75, T;_1] are also included in its
"compacted variant" since N < j — 1, and our compact-
ing process guarantees that only items rewritten during the
[11,Tn_1] interval are removed from the T%.. T writeset
sequence (but if any item has not been rewritten, it appears
in such compacted sequence, and this guarantees that ex-
actly one version of all original writeset elements appears in
the compacted version). Additionally, we have the advan-
tage of a boost in the checking time, since instead of having
the complete sequence of [T}, T'v] writesets, we only have
a compacted item sequence a1k, ..G Nk » as assumed above
(i.e., half of the items, in this hypothetical example).

Our optimization shares some of the characteristics of
the fifth recovery strategy described in [14] ("Restricting
the set of objects to check") but further optimizes that tech-
nique. To this end, our compacting is able to restrict the
objects being checked without needing any additional ta-
ble where the objects are being recorded during the crash
interval. Additionally, it still shares the advantage of get-
ting such set of items to be transferred without requir-
ing any read lock nor global read operation on the items
stored in the regular database tables. But, on the other
hand, it is partially dependent on the replication protocol ap-
proach (certification-based), and can not be easily adapted
to all other database replication variants (e.g., the active and
weak-voting variants [19] do not need any historic writeset

log).
S Performance Study

In this work we intend to measure several aspects of our
recovery implementation: (a) under which circumstances
(work load and crash length) a failed node can recover and
reach the state of the other replicas; (b) how long does it take
to reach the state of the other replicas; and (c) compacting
impact.

To accomplish the comparison, we use PostgreSQL [16]
as the underlying DBMS, and a database with a single table
with two columns and 10000 rows. One column is declared
as primary key, containing natural numbers from 1 to 10000
as values.

All protocols have been tested using our MADIS mid-
dleware with 4 replica nodes. Each node has an AMD
Athlon(tm) 64 Processor at 2.0 GHz with 2 GB of RAM
running Linux Fedora Core 5 with PostgreSQL 8.1.4 and
Sun Java 1.5.0. They are interconnected by a 1 Gbit/s Eth-
ernet. In each replica, there is a varying number of concur-
rent clients (from 4 to 12). Each client executes an endless

stream of sequential transactions, each one accessing a fixed
number of 20 items for writing, with a fixed pause of 500
ms between each consecutive transaction. Each test begins
with the execution of 500 global transactions, after that, a
failure occurs in a random replica (the failure of a replica
consists in the termination of its process). The failure lasts
for a period in which a varying number of global transac-
tions is executed by the other replicas. After this time, the
failed node restarts and begins the recovery process until it
reaches the state of any of the other replicas. The test con-
tinues once the recovery ends, until the completion of 500
more global transactions, when the experiment finishes.

In the figures we show the evolution of nodes in commit-
ting transactions in the system. All the transactions have a
global identifier —the end counter— and must be committed
locally in each replica. This way, one global transaction re-
quires a local transaction in each replica, and we can know
how quick a node goes by seeing the last committed global
identifier at that node (see the vertical axes in both Figure
2 and Figure 3). This way, each graph shows this evolution
in three nodes in the system: the failed, the recoverer and
another node. The bigger the slope of that curve, the faster
the node goes committing global transactions.

The results obtained show that the basic recovery tech-
nique was very poor in comparison with the compacting ap-
proach. The graphs included show the results when both
recovery techniques allow the immediate start of new local
transactions in the recovering replica.

The results obtained without compacting (see Figure 2.a)
and light load show that the recovering node can easily
reach the current state of the system. We can see in the
figure that all the replicas have a linear evolution and when
the failure occurs, the failed node does not make any ad-
vance —and so its line is horizontal. Then, when the recov-
ery process begins, the recovering node starts to progress
with more slope than the other nodes, i.e., it commits more
transactions per second, and thus it can reach the global
state and continue with the same previous linear behavior.

With medium and heavy loads (Figures 2.b and 2.c) the
recovery trend is too slow and the recovering replica is not
able to cope with its intended work. Note that our MADIS
middleware is not a commercial prototype and performance
is not our main goal. So, the load parameters considered
are relative to the current capabilities of our middleware.
This way, with the previously described conditions and 12
clients per node, the system has to deal with near 20 transac-
tions per second, which is almost our middleware saturation
point. Because of this, this load parameter combination has
been called heavy.

Obviously, the recovering node can catch the other repli-
cas as long as the current load in the system provides
enough idle time (due to no clients to attend) to apply the
missed writesets. Local transactions starting in the recover-

ing node during the recovery process are very likely to abort
because of their outdated snapshot. These local transactions
will delay the application of the missed writesets due to the
conflicts arisen in the underlying database. Thus, the lighter
the load of local transactions in the recovering node, the
faster these missed writesets will be applied. To sum up,
the system load affects in two ways: it determines the idle
time available to reduce the gap with the other replicas, and
also the amount of local transactions in the recovering node
possibly delaying the application of these missed writesets.

In the light environment, replicas have an important
amount of this idle time and the recovering node has no
problem to catch the rest. In the medium one, the replicas
have little idle time, and the amount of local transactions
make impossible to reduce the gap. And in the heavy case,
there is no idle time and local transactions even broaden this
gap.

As it can be seen in the graphs, the compacting technique
(see Figure 3) allows the failed replica to quickly achieve a
state close to those of the other replicas. In all the tests,
the recovering replica is able to do so without too much
delay. Specifically, when the load and the crash time are
small, we can observe that the evolution of the recovering
node after the crash is not as progressive as in the basic
technique, but it has two phases. The first one is a big step
towards the global state due to the application of the com-
pacted writeset; and the second, the final evolution during
the application of the enqueued messages delivered in the
meanwhile. Comparing with the previous basic technique,
it can be noticed that the recovery process lasts quite less
with the compacting approach. Indeed, the recovery time is
only 30 seconds with this approach, while it was 42 seconds
with the basic recovery; i.e., almost a 28.6% reduction.

The next graph (Figure 3.b) shows the behavior of the
system when both the load and the crash time are medium.
The shape of the curves is similar to that of a light load
and the recovery process is much more faster than with the
basic technique. In the example provided in our figures,
the recovery takes only 72 seconds with the compacting op-
timization, whilst the recovery was not possible using the
basic recovery strategy.

Finally, when the load and crash time are maximum (Fig-
ure 3.c), the optimized technique increases its completion
time, as expected, but it is still able to complete the recov-
ery in an acceptable time (92 seconds).

Note that in these two last cases —with a medium and
heavy load—, the time needed for completing the recovery
is quite long —72 and 92 seconds, respectively—, but the
non-recovering replicas and the recoverer one have been
able to process new transactions at a regular pace; i.e., their
availability is not compromised by the recovery of another
replica. Additionally, the recovering replica has accepted
new transactions as soon as possible, and this introduces a

last committed tid

2

last committed tid

last committed tid

2000

160

Recovering node T T T T T
Recoverer node -
Other node -
Recovery start ¥
Recoveryend =
7 (129, 1646)
1500
1000
500
(87,512)
0 L L L L L L
0 20 40 60 80 100 120 140
time (s)
Light load (4 clients per node), short crash (500 transactions).
20000 T T T T T
Recovering node -
Recoverer node -- 7
18000 Other node - e
Recovery start ~ x e
s
~
16000 - e
////
14000 [ye
«’//
-
12000 - ’//
v
L e
10000 S
,/’
%
8000 -
///
/
y
6000 | i
,//
%
4000 -
P
-
2000 - -~
/'/
= (103, 522)
0 K L L L L
0 200 400 600 800 1000
time (s)

Medium load (8 clients per node), medium crash (1000 transactions).

25000 — T T T T T
Recovering node
Recoverer node --
Other node - e
Recovery start % e
-
20000 e
-
pe
////
-
-
15000 | -~
rd -
/’//
yd
-
/'/
10000 [-
rd -
S
g -
rd g
e
5000 - yd
e
/
s
/’/
//
o L= L(154,527)
0 200 400 600 800 1000 1200
time (s)

¢) Heavy load (12 clients per node), long crash (2000 transactions).

Figure 2. Recovery without compacting

2000 T T T T
Recovering node
Recoverer node -
1800 | Other node -
Recovery start ~ x
Recoveryend =

1600

1400 (117, 1460)
he]
= 1200 -
E d
£ L
£ 1000
S
3
2 so0f

600

(87,507)
400
200 [
0 L L L L L L L
0 20 40 60 80 100 120 140

time (s)

a) Light load (4 clients per node), short crash (500 transactions).

160

3500 - T T T
Recovering node
Recoverer node -
Other node -
Recovery start
3000 - Recoveryend ®
2500 -
)
E 2000 -
£
£
8
« 1500 |
7]
<
1000
L
el
500
(103, 507)
0 L L L
0 50 100 150
time (s)

200

b) Medium load (8 clients per node), medium crash (1000 transactions).

4500 T
Recovering node
Recoc\/)erer node -
ther node -
4000 - Recovery start
Recoveryend =

3500 -

3000 -
=
B 2500 |
E
£
8 2000
@
o

1500

1000

500

(147, 492)
0 L L L L
0 50 100 150 200

time (s)

¢) Heavy load (12 clients per node), long crash (2000 transactions).

Figure 3. Recovery with compacting

250

1300 T T T
Recovering node
Recoverer node -------

Other node ---- =
1200 - Recoveryevents o =

1100 T

1000 p""

last committed tid

800

700 -

600

500 F

L L L
85 920 95 100 105
time (s)

Figure 4. Recovery events

non-negligible delay in its recovery, but also shortens a lot
the interval where the service in such replica is not avail-
able.

More tests were performed disabling the start of new lo-
cal transactions in the recovering replica in order to quantify
the improvement when both techniques achieve the com-
pletion of the recovery process. The results show that, in
a medium loaded environment the compacting technique
achieves the completion of the process in 36 seconds while
the basic one lasts 59 seconds (38.98% of improvement). In
the heavy loaded environment case, the reduction obtained
is up to 60.82% (97" versus 38”). Note that the compact-
ing technique, even allowing new local transactions in the
recovering node, is faster than the basic one without these
new local transactions.

In order to analyze more deeply the cost related to each
step of the recovery process, Figure 4 has been included
showing the recovery events from the starting point of the
recovery process to the compacted writeset application in
the case of a light load environment. These events are the
following: s, the starting point of the recovery (when the
failed replica restarts); as, the ask-for-help message is sent
by the recovering node; ar, this ask-for-help message is re-
ceived in the recoverer node; rs, the recoverer node sends
its compacted point-to-point message; rr, this point-to-point
message is completely received and preprocessed in the re-
covering node (the information contained is provided to the
necessary components); ra, the recovering node finishes the
application of the writesets contained in the recovery mes-
sage. At this point, the recovery algorithm is done, but the
recovery process will last until the the recovering node, al-
ready in a normal function, processes all its buffered mes-
sages and the incoming ones until it reaches the state of the
rest of the replicas.

This way, the interval between s and as includes the start
of the MADIS replica and its node recovery process (regard-

ing global issues independent of the repositories and proto-
cols used), as this is not in the scope of this paper, no further
analysis is necessary. The interval between as and ar is the
time the group communication toolkit takes to deliver the
ask-for-help message. The interval rs-rr is the time between
the end of the submission and the end of the preprocessing
of the recovery message; this time is, in all cases, negligi-
ble as the implementation used overlaps the creation, send-
ing, receiving and processing of the message (the recovery
message is transmitted via a stream). The two interesting
intervals are, therefore, ar-rs and rr-ra. The first one is the
time needed to create and send the compacted message in
the recoverer node and it can be seen in the graph that dur-
ing this time, the recoverer node decreases its performance
drastically, but only momentarily, due to the effort required
to compact the data. Note that such compacting period lasts
approximately two seconds in this example, but the regu-
lar pace of other nodes is retaken by the recoverer in less
than one additional second. The second important interval
(rr-ra) is the time needed to apply locally all the updates
contained in the compacted message. This is the greatest
interval, as expected, as it implies interaction with the un-
derlying database. As showed, the compacting technique
introduces an extra step (only a light overhead compared
with the total processing time) but achieves notable reduc-
tions in the recovery time.

The enlarged graphs corresponding to the other two
cases show similar results to the above exposed.

To sum up, the optimization presented in this work has
been able to reduce the recovery time to a 71.4% of the orig-
inal recovery time in a lightly loaded environment. More-
over, with 1000 missed transactions, the basic recovery
technique fails to complete the recovery, since the recover-
ing replica is not able to process the queue of received write-
sets on time, and its receiving queue continuously grows,
whilst the optimized version does not get overloaded with
ten times such load.

6 Related Work

The use of version-based recovery protocols —the same
approach taken as the basis of our proposed optimization—
had been already suggested in the fourth and fifth recovery
variants of [14], but in both cases still demanded a lot of
effort for maintaining the set of versions to be transferred to
each crashed replica. Either a version-based DBMS was as-
sumed or a special additional table needs to be managed and
updated each time a transaction commits. We used the latter
solution in [3, 4] but in both papers such protocols were de-
signed as a recovery approach for a replication system that
did not provide any standard isolation level. Those solutions
were developed in our COPLA system [8], and such mid-
dleware was targeted to provide an object-relational transla-

tion, with an object-oriented programming interface where
the traditional isolation levels did not match. In the current
paper, we have optimized the version-based approach tak-
ing as its basis a certification-based [19] replication variant
in order to support the snapshot [2] isolation level.

Only in [3] and [11] there are some performance anal-
yses of database recovery protocols. But, as already said,
[3] is penalized by its non-standard features (non-standard
API and non-standard isolation level), whilst the replication
protocol assumed in [11] was hybrid (could be configured
either as eager or lazy, but always with a lazy core) and this
introduced a high abortion rate that was partially compen-
sated with an outdateness estimation function. In all cases,
the advantages of both approaches —and both were devel-
oped by our research group— have been improved by the
solution presented now (shortest recovery time, and lowest
abortion rate).

There have been many other works devoted to database
replica recovery [1, 4, 10, 13, 14] but, up to our knowledge,
none of them has presented a performance study of their
proposed solutions.

7 Conclusions

We have presented a first basic recovery approach for
certification-based recovery protocols, analyzing its recov-
ery time when the system load varies. Up to our knowledge
this is the first performance study for such kind of recovery
techniques in the field of database replication. Although
certification-based replication protocols provide a good ba-
sis for developing recovery protocols, this first basic ap-
proach can be easily improved. A possible optimization
based on a missed update compacting has also been pre-
sented. The performance study shows that the overall re-
covery time can be reduced up to a 71.4% of the recovery
time of the basic approach, in the less favorable configura-
tion for the optimized technique.

References

[1] J. E. Armenddriz-Iiiigo. Design and Implementation of
Database Replication Protocols in the MADIS Architec-
ture. PhD thesis, Universidad Publica de Navarra, Pamplona
(Spain), Feb. 2006.

[2] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A critique of ANSI SQL isola-
tion levels. In SIGMOD, pages 1-10. ACM Press, 1995.

[3] F. Castro, J. Esparza, M. I. Ruiz, L. Irin, H. Decker, and
F. D. Mufioz. CLOB: Communication support for effi-
cient replicated database recovery. In PDP, pages 314-321,
Lugano, Switzerland, Feb. 2005. IEEE-CS Press.

[4] E. Castro, L. Irdn, F. Garcia, and F. D. Mufioz. FOBr:
A version-based recovery protocol for replicated databases.

(5]

(6]
(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

In PDP, pages 306-313, Lugano, Switzerland, Feb. 2005.
IEEE-CS Press.

G. V. Chockler, I. Keidar, and R. Vitenberg. Group com-
munication specifications: A comprehensive study. ACM
Computing Surveys, 33(4):427-469, Dec. 2001.

F. Cristian. Understanding fault-tolerant distributed systems.
Commun. ACM, 34(2):56-78, 1991.

S. Elnikety, F. Pedone, and W. Zwaenepoel. Database repli-
cation providing generalized snapshot isolation. In 24th
IEEE Symposium on Reliable Distributed Systems, pages
73-84, Orlando, FL, USA, Oct. 2005.

J. Esparza, A. Calero, J. Bataller, F. Mufioz, H. Decker,
and J. Bernabéu. COPLA: A middleware for distributed
databases. In 3rd Asian Workshop on Programming Lan-
guages and Systems (APLAS '02), pages 102-113, 2002.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. Mullender, editor, Distributed Sys-
tems, chapter 5, pages 97-145. ACM Press, 2nd edition,
1993.

J. Holliday. Replicated database recovery using multicast
communication. In NCA. IEEE-CS Press, 2001.

L. Irdn, F. Castro, F. Garcia, A. Calero, and F. Mufioz.
Lazy recovery in a hybrid database replication protocol. In
XII Jornadas de Concurrencia y Sistemas Distribuidos, Las
Navas del Marqués, Avila (Spain), 2004.

L. Irdn, H. Decker, R. de Juan, F. Castro, J. E. Armenddriz,
and F. D. Mufioz. MADIS: a slim middleware for database
replication. In [7th Intnl. Euro-Par Conf., pages 349-359,
Monte de Caparica (Lisbon), Portugal, Sept. 2005.

R. Jiménez, M. Patifio, and G. Alonso. An algorithm for
non-intrusive, parallel recovery of replicated data and its
correctness. In SRDS, pages 150-159. IEEE-CS Press, 2002.
B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfig-
uration in replicated databases based on group communica-
tion. In IEEE Int. Conf. on Dependable Systems and Net-
works, pages 117-130, Goteborg, Sweden, July 2001.

F. D. Muioz-Escoi, J. Pla-Civera, M. 1. Ruiz-Fuertes,
L. Irtin-Briz, H. Decker, J. E. Armenddriz-Iiigo, and J. R.
Gonzélez de Mendivil. Managing transaction conflicts in
middleware-based database replication architectures. In
SRDS, pages 401-410. IEEE-CS Press, Oct. 2006.
PostgreSQL. Web site. Accessible in URL:
http://www.postgresql.org, 2007.

L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and
P. Vicente. Strong replication in the GlobData middle-
ware. In Workshop on Dependable Middleware-Based Sys-
tems (in DSN 2002), pages G96-G104, Washington D.C.,
USA, 2002.

Spread. The Spread communication toolkit. Accessible in
URL.: http://www.spread.org, 2007.

M. Wiesmann and A. Schiper. Comparison of database repli-
cation techniques based on total order broadcast. In /IEEE
Trans. Knowl. Data Eng. 17(4), pages 551-566, 2005.

M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
G. Alonso. Database replication techniques: A three pa-
rameter classification. In SRDS, pages 206-217, 2000.

