
COPLA: A Platform for Eager and Lazy Replication in Networked
Databases.

�

Francesc D. Muñoz-Escoı́ and Luis Irún-Briz and Hendrik Decker and Josep M. Bernabéu-Aubán
Institut Tecnològic d’Informàtica

Universitat Politècnica de València
Camı́ de Vera, s/n

46071 València, SPAIN
Email:

�
fmunyoz,lirun,hendrik,josep � @iti.upv.es

Key words: distributed databases, concurrency control, database replication

Abstract: COPLA is a software tool that provides an object-oriented view of a network of replicated relational databases.
It supports a range of consistency protocols, each of which supports different consistency modes. The resulting
scenario is a distributed environment where applications may start multiple database sessions, which may use
different consistency modes, according to their needs. This paper describes the COPLA platform, its archi-
tecture, its support for database replication and one of the consistency algorithms that have been implemented
on it. A system of this kind may be used in the development of applications for companies that have several
branch offices, such as banks, hypermarkets, etc. In such settings, several applications typically use on-site
generated data in local branches, while other applications also use information generated in other branches
and offices. The services provided by COPLA enable an efficient catering for both local and non-local data
querying and processing.

1 Introduction

Distributed applications may use replicated
databases for taking advantage of a heightened
availability enabled by a multitude of replicas of each
data object. Some of such distributed applications are
used by companies with multiple branches or offices
that are distributed in a wide-spread area (national
or international). Most of these companies distribute
their information per branch, ensuring that the data
are mainly updated locally, by the branch where they
were created. Examples of such companies could
be hypermarkets and banks (although very many of
them still use a centralized solution).

Such applications mainly deal with data objects
related to the local branch, but sometimes they re-
quire additional access to data objects created in other
branches. If these accesses need to be done on a re-
mote database, they could be inefficient. So, it seems
advisable to replicate all data objects, independent of
the company branch (and, in a sense, also of the lo-
cal node embodied by the branch’s database) where
they have been created. Moreover, the majority of ac-
cesses made on non-local-branch data objects will be

�
This work has been partially supported by the EU grant

IST-1999-20997.

read-only accesses. If data are replicated, “remote”
accesses can be accomplished locally, improving ac-
cess times as well as availability, in case of node fail-
ures in the network). However, each time a data object
is modified, updates have to be multicast to a given
number of database replicas (not necessarily to all,
depending on the replication technique being used),
and this also needs some extra time. Hence, consid-
ering the system performance, database replication is
only convenient if the larger share of accesses do not
modify the data objects. But this limitation can be
overcome if we also consider the availability benefits
of having multiple replicas for each object. After all,
in a WAN, node failures or network partitioning are
not uncommon.

COPLA is a software platform in the GlobData
project (Instituto Tecnol ógico de Inform ática, 2002)
which supports database replication. It provides
an object-oriented view of a network of relational
DBMSs. The COPLA architecture is structured in
three different layers, which interact using CORBA
interfaces, enabling the placement of each layer in a
different machine. Thus, multiple applications (run-
ning in different nodes) may access the same database
replica using the COPLA support. All updates ap-
plied to these replica are propagated to other database

1

replicas using the replication management compo-
nents of COPLA.

One of the problems solved by COPLA is to en-
sure the consistency among transactions being exe-
cuted in different database replicas. The solution to
this problem depends mainly on the update propaga-
tion model: eager or lazy. COPLA is flexible enough
to allow multiple update approaches, each one be-
ing managed by a dedicated consistency protocol. A
particular COPLA component implements the consis-
tency protocol. Multiple implementations of its inter-
faces are possible, thus allowing that a GlobData sys-
tem could change its consistency protocol at will.

Moreover, all consistency protocols support three
different consistency modes that can be used by any
database session. Each session can change dynam-
ically its consistency mode, thereby modifying the
conflict handling rules for its accesses to data ob-
jects concurrently being accessed by other sessions
in the same or other database replicas. So, a pro-
grammer who uses the COPLA support disposes of
a rich toolset from which appropriate guarantees can
be chosen for satisfying the needs of the application
to access its data objects.

This paper provides an outline of COPLA and a de-
tailed description of one of its “eager update” Glob-
Data consistency protocols (lazy and other GlobData
protocols have been described elsewhere (Muñoz-
Esco ı́ et al., 2001)). To this end, the following sec-
tion describes the structure and the functionality of
COPLA. Section 3 explains the GlobData-FB consis-
tency protocol. Section 4 compares this protocol with
other systems. Finally, section 5 gives some conclu-
sions.

2 The COPLA Architecture

The COPLA architecture consists of the three lay-
ers as depicted in figure 1. From bottom to top, they
are the following:

Uniform Data Store

COPLA
Manager Consistency Manager

CORBA
interfaces

COPLA Programmer Library

Local

Figure 1: COPLA architecture.

� Uniform Data Store (UDS). This component man-
ages the persistent data of a GlobData system. It
interacts directly with a relational DBMS, storing
there the persistent objects of the given applica-
tion and the metadata of the consistency protocol.
It isolates the upper layers from the actual stor-
age system used. In practice, support for different
RDBMSs will be provided in the final release of
the UDS (currently, it only manages PostgreSQL
repositories).

The definition of the application databases is made
using GODL, a simplified version of the ODMG
ODL language (Cattell et al., 2000).

� COPLA Manager. The COPLA manager is the
core component of the COPLA architecture. It
manages database sessions (which may include
multiple sequential transactions, working in dif-
ferent consistency modes) and controls the set of
database replicas that compose the GlobData sys-
tem. This manager also provides some caches to
improve the efficiency of the database accesses.

A local consistency manager is included in this
layer. Multiple consistency protocol objects may
be used in this component, but only one is al-
lowed at a time. All consistency protocols share
some characteristics. For instance, all of them are
rather optimistic, since no locks are used “a priori”
to request the objects being accessed. Hence, the
consistency checks must be done at commit time.
If a session is allowed to commit, its updates are
multicast by its local consistency component to all
consistency components placed in other GlobData
nodes. The way this is done depends on the consis-
tency protocol being used. All of the communica-
tion among GlobData databases is managed by this
component.

� COPLA Programmer Library. This library is the
layer used in GlobData applications to access sys-
tem services. It also provides some cache support
and multithreading optimizations that improve the
overall system performance.

The applications need not be installed in the same
node where the COPLA manager or the UDS are
placed. They only require this library layer on their
nodes.

Between each pair of consecutive layers, there is
a CORBA interface. So, each layer could be placed
in a different node. To enable communication across
layers, an object request broker (ORB) is needed. The
current system release is implemented in Java, and the
Java ORB of the Sun J2SDK is used.

2

3 GlobData-FB Consistency
Protocol

The GlobData-FB consistency protocol uses “Full
Broadcast” of the session updates, once the session is
allowed to commit. It is one of the protocols available
within COPLA for consistency management (others
are described in (Muñoz-Esco ı́ et al., 2001)). It is de-
scribed in 3.3; further clarifications are presented in
the subsections thereafter.

3.1 Node Roles

Considering a given session that tries to commit, the
nodes involved in its execution may have two differ-
ent roles:

� Active node. The node where the COPLA Manager
that has directly served the session’s execution is
placed.

� Synchronous nodes. All other nodes that have a
COPLA Manager. In these nodes, the session up-
dates will be eventually received, if such updates
exist. Note that read-only sessions do not generate
any database updates. Hence, these sessions do not
have any synchronous node.

Moreover, in a given session, multiple objects may
have been accessed. Before committing a session,
some checks have to be made to ensure that the ac-
cessed objects’ states were up-to-date. One of the
nodes receives a distinguished role in these checks,
and the others will accept its decisions.

Consequently, for each object, there exists its
owner node. That is the node where the object was
created; it is the manager for the access confirmation
requests sent by the active nodes at commit time. The
management of these access confirmation requests is
similar to lock management, but at commit time. To
this end, the owner node compares two object ver-
sions, the one sent in the request (which is the ob-
ject version accessed by the requesting session), and
the latest object version that exists in the database. If
they are not equal, the request is denied and the ses-
sion will be aborted because it has accessed an out-
dated object version. On the other hand, if they are
equal and there is no other granted request in a con-
flicting mode (a conflict exists if one of the requests
comes from a session that has modified the object), a
positive reply is sent to that active node. An active
node can commit a session if all access confirmation
requests that it has sent have been replied positively.

3.2 Consistency Modes

A session can be considered as a sequence of “trans-
actions” made in the same database connection. Each

of this “transactions” can be made in one of the fol-
lowing consistency modes:

� Plain consistency. This mode does not allow any
write access on objects. It guarantees that all read
accesses made in this mode follow a causal order.
On the other hand, this mode imposes no restriction
on the currentness of the objects being read. Thus,
they may be outdated.

� Checkout consistency. This mode is similar to the
traditional sequential consistency, although it does
not guarantee isolation. Thus, if several sessions
have read a given object, one of these sessions is
allowed to promote its access mode to “writing”.
However, if two of these sessions have promoted
their access modes from reading to writing, one of
them will be aborted.

� Transaction consistency. In this mode, the usual
transaction guarantees: atomicity, sequential con-
sistency, isolation and durability, are enforced.

A session always starts in plain mode. If the guar-
antees provided in this mode are not sufficient for the
application, it can promote its consistency mode to
checkout or transaction. In these two modes, all ac-
cesses are temporarily stored until an explicit call to
the commit() or rollback() operations is made (with
the usual meaning of such operations). Once one of
these operations have been made, the session returns
automatically to plain mode.

Thus, the programmer is able to choose the consis-
tency mode of each session that composes her or his
application, and this consistency mode can be varie-
gated as needed while a session is running.

3.3 Protocol

As described above, the GlobData-FB consistency
protocol broadcasts object updates to all synchronous
nodes when a session is allowed to commit, thereafter.
Consistency conflicts among sessions are resolved us-
ing object versioning. To this end, the protocol uses
some metadata tables in the database where the cur-
rent object versions can be stored.

The protocol processes the following steps:

1. In active nodes, sessions are created and executed
without any additional check. They are allowed to
proceed until they request their commit operation.

2. When an application tries to commit one of its ses-
sions, such operation arrives at its COPLA man-
ager, and before applying the commit to the asso-
ciated UDS, the local consistency manager is in-
formed thereof. To this end, the COPLA manager
builds two sets containing the identifiers of all ob-
jects read and written in such a session. These are
the session read-set and session write-set.

3

3. Once these sets have been received by the local
consistency manager, the latter sends an access
confirmation request to the owner of each of the
objects in the sets. Such messages include the ob-
ject identifiers, their accessed versions, the access
modes (read or write) and the consistency mode
used by the session (checkout or transaction, since
plain mode does not need a commit operation).

4. The owner node of each object checks if this access
confirmation request would conflict in any way
with previous access confirmation requests granted
to other sessions but not yet released. A conflict
arises if the requesting session has written the ob-
ject and there is another session that has previously
obtained a write grant on the same object version.
Additional conflicts depend on the consistency
mode of the sessions involved in the check. If
all sessions have used checkout mode, then a con-
flict only arises if the requesting session has mod-
ified the object and other read-access grants have
been obtained previously by other sessions. But in
checkout mode, a session does not run into conflicts
by having read outdated object versions.
On the other hand, if at least one of the currently
committing sessions has used transaction mode,
then conflicts arise when either the requesting ses-
sion has used an outdated object version, or when
there are multiple sessions accessing the object and
at least one of the sessions has written it.
If the owner finds that a conflict arises, then it an-
swers the access confirmation request with a deny
reply. Otherwise, it sends a grant reply and the ses-
sion identifier is recorded as “granted” until it ex-
plicitly releases this grant in step 5 or 8.

5. When the active local consistency manager re-
ceives the replies, and if at least one reply denies
the access confirmation requests, then the session is
aborted. However, if all of them grant the request,
then the session will commit.
If the session has been aborted, then a release mes-
sage is sent to the object owners that had replied
using a “grant” message.

6. If the session has been allowed to commit in the
previous step, then the consistency manager of the
active node broadcasts the session updates to all
GlobData system nodes; i.e., to all nodes that have
a consistency manager. This is an atomic broad-
cast.

7. Once the update message is received, the active
node for that session commits it. The synchronous
nodes will also commit the session updates. But
before doing so, they have to check that no local
session has accessed any of the objects received in
that update message. If such local sessions exist,
they are aborted.

8. Once the update has been completed, the consis-
tency managers placed in the synchronous nodes
check if they are the owners of some of the ob-
jects updated. If that is the case, the grants set in
step 4 are released immediately. Since no explicit
message is needed to do so, this accomplishes the
protocol.

3.4 Fault Tolerance

Since data objects are replicated in several RDBMSs,
COPLA is able to tolerate failures of part of the sys-
tem nodes. To this end, the following protocol details
must be considered.

� Session completion. If the active node of a session
fails before it completes the atomic broadcast of the
session updates, the occurrence of such a session is
unknown on the rest of nodes. Hence, the session
has to be aborted when the active node recovers.
However, if the update atomic broadcast has been
completed, the session has been committed on all
system nodes. In this case, the only node that prob-
ably has not committed that session is the active
one. But this does not matter, since the session up-
dates will be transferred to that node when it recov-
ers, if needed.
Another undesirable effect of this kind of failure
is related to the access grants that the session may
have obtained. Since the session has not been com-
mitted, these grants would remain assigned to the
faulty node, preventing other sessions from obtain-
ing access to such objects. The solution to this
problem is easy. When the access confirmation re-
quests have been received by an owner node, the
identifier of the node that has made such requests
is memo’ed and associated to the requests in some
data structure of the owner. When the member-
ship service notifies that a node has failed, this data
structure is scanned and all grants assigned to it are
automatically released.

� Ownership role migration. When a node fails, all
objects that were created in there have lost their
owner. To replace it, the node with the next iden-
tifier in increasing order is chosen as a temporary
owner for such objects. This temporary owner re-
tains its role until it also fails and is replaced by
another one, or until the original owner recovers.
Moreover, some steps are needed to obtain the lists
of access grants that the faulty owner had when it
failed. COPLA uses a membership service that no-
tifies all live nodes about any membership change
(either join or failure). When such a notification
is received, each consistency manager scans its list
of received access grants and builds a message con-
taining all the information of all grants given by the

4

faulty owner. This message is then sent to the tem-
porary owner that will replace the faulty one. If a
node does not hold any grant of this kind, it must
send an empty message.
The temporary owner collects all such messages
and builds a list of its granted confirmation re-
quests. New access confirmation requests are not
replied until such a list has been rebuilt.

� Node recovery. The recovery steps needed when a
node rejoins the GlobData system are thoroughly
described in (ITI and FCUL, 2002). An outline of
these steps is provided subsequently.

1. Once a given node has failed, all remaining live
nodes memorize the OIDs of all objects updated
in all sessions committed since then, and asso-
ciate these notes to the faulty node identifier, i.e.,
they add the OIDs to a hash table or some data
structure which is indexed by node identifiers.
Hence, all live nodes have registered the same
state.

2. Once a faulty node recovers and tries to join
again the GlobData system, all live nodes freeze
their respective databases. To this end, if some
session has started the commit protocol or has
modified at least one of the objects owned by its
local node, it is allowed to terminate. Other ses-
sions are blocked until the joining node is inte-
grated in the system.

3. Once the allowed sessions have terminated, the
live nodes send a message to the joining one,
communicating that their local databases are pre-
pared for the joining procedure. The joining
node waits for all such messages. When it has
received all of them, it broadcasts a message
to these nodes, indicating that it expects the
database updates.

4. The aforementioned nodes of the GlobData sys-
tem reply to this message by another one, includ-
ing the contents of all objects whose OIDs can be
found in the hash table described in the first step
and that are owned by the replying node. Hence,
the database updates are collected from different
nodes.
Note that this recovery protocol is used in all
consistency protocols outlined in (Muñoz-Esco ı́
et al., 2001). Although the distributed collection
of database updates as described in the previ-
ous paragraph does not provide any advantage or
inconvenience for the GlobData-FB consistency
protocol, it permits a fast collection when the
updates are propagated lazily. Instead of using
another approach for the GlobData-FB case, we
prefer to use the same recovery steps as in the
lazy consistency protocols.

5. Later, the joining node applies all such updates
using a newly created transaction, which will

be committed when the whole set of replies has
been received.

6. Finally, the joining node broadcasts another mes-
sage, indicating that the joining process has con-
cluded and allowing the blocked sessions to go
on.

3.5 Performance Measurements

The COPLA architecture provides a mapping from
an object-oriented view of a given database to the
replicated DBMS where the data is physically placed.
Moreover, it provides support for data replication. As
a result, this support implies some performance costs
in the system services.

We have taken some measurements of these extra
costs. To this end, we have considered two types of
transactions used on a database where only two ob-
jects exist. The first one reads all the database objects,
whilst the second one reads both objects and updates
one of them (at random). The tests have used a Glob-
Data system composed by one, two or four nodes.
One node is the owner of both objects in all tests. In
all cases, only a session has been created in all nodes,
and all the transactions have been executed sequen-
tially in that session. This is the worst case in our sys-
tem, since the multithreaded support and the caches
are not be used in this system arrangement.

�
���
� �
���
���
�����
�	���
� � �
�����
�����

�	���
���� ������� �������

�� ���������

������������� "!��$#�%&�'#�()!�� ��%&�

���* �$��#�+����-,.�/10"2��

3

3

3

33
����* �$��#�+����-,.�/10"2��

4

4

4

4
4

�	���5* �'�	#�+&���-,.�/10627�

8

8

8

8

8
�	���5* �'�	#�+&����95:�;,�

< < < <

<

Figure 2: Elapsed times in a GlobData system with
only 1 node .

Figure 2 shows the additional costs introduced by
our COPLA support. We compare the time required
to execute a given number of transactions in a system
composed by only one node. So, in this environment
the consistency protocol is not used, but all COPLA
layers must be used to map the object accesses in the
application layer to the accesses needed in the rela-
tional database.

Four lines are shown. The lowest one corresponds
to the times needed when read-only transactions use
directly the JDBC support; i.e., without COPLA. The

5

���

�����

���

�����

�	�

�	���

���

�����

�	���
 ��� �������

!��&��� �	� �$��(� �

���&� ������� �-!�#��-!���+ !��'#�%&�'#�()!�� ��%��

�/�
 � % # �� %&� +��������'!$�	� ��/���� � � ����� �	����� ��� 2 � �

� (�� � ��%�! ���5* �'��#�+&�

3

3
33

� (�� � �	%�!$� ���5* �'��#�+&�

4
4

4

4
4

� (�� � �	%�!$� ���5* �'��#�+&�

8

8
8

8
8

8

Figure 3: Load delivery in a minimal GlobData sys-
tem configuration.

other three correspond to a load of read-only trans-
actions, another with 80% of read-only transactions
and the last one with 50% of read-only transactions,
all of them using the COPLA services. The read-
only COPLA transactions have a cost 9 times greater
than the JDBC read-only transactions. However, we
have to consider that currently JDBC does not provide
any replication support nor an interface easily usable
in object-oriented programming (at least when it is
compared to the interfaces provided by an ODMG-
compliant system like COPLA).

Another interesting measurement performed can be
observed in figure 3. There is shown the evolution of
the transactions commited per second in a minimal
GlobData system. This scenario is composed by a
single node, where multiple clients access to a com-
mon repository. The set of sessions initiated by these
clients has been modelated as mix of 80% read-only
and 20% update transactions. The database used to
this experiment contains only four elements, in or-
der to increase the effects of the concurrency of the
clients.

The experiments shows how the number of transac-
tions commited in the system decrease when the num-
ber of clients grows up. This is caused by two reasons:
overhead introduced by the concurrency control, and
the cost of the aborted sessions.

The figure shows the system trend to reach an sta-
ble situation, in which the aborted sessions balance
the load of the system.

Figure 4 compares the results gotten from different
system configurations when a mix of 80% read-only
and 20% update transactions are used. We consider
five different configurations. The first one uses only
one node. All the others use a system with two nodes.
In the second and third configurations, only one of the
two nodes executes all the transactions, so the updates
have to be transmitted to the passive node. The re-
sults vary depending on the ownership of the objects.
If all transactions have been executed by the owner

�

��

�����

�	
��

� ���

��
��

�����

�	���
���� ������� �������

�� ���������

������������� "!��$#�%&�'#�()!�� ��%&�

� %�� +&�

3
3

3

3

3
� %�� +&��� � � ����	(�� !�� %�� � ��� %&���

4
4

4

4

4
� %�� +&��� � � ����	(�� !�� %�� � %&��! ��� %����

8

8

8

8

8
� %�� +&��� � � ����	(�� !�� %�� � ��� %&���

<
<

<

<

<
� %�� +&��� � � ����	(�� !�� %�� � %&��! ��� %����

�
�

�

�

�

Figure 4: Elapsed times in different GlobData system
configurations.

node, the differences with the one-node configuration
are minimal. However, if the transactions have been
executed by the not-owner node they require almost
twice the time of the previous case, due to the access
permission requesting and granting messages.

The last two configurations correspond to a two-
node system where both nodes execute transactions.
In this case, the load is balanced between them and
there is not an appreciable difference between the
owner and not-owner nodes. Additionally, the over-
all time is lower than that of the one-node system.

We have taken other measurments with a 4-node
system. When only one node executes the transac-
tions and propagates the updates to the other ones, the
measured times are equal than in the 2-node system
described above. This is the expected result, since
the updates are broadcast and such a broadcast cost
does not depend on the number of targets. On the
other hand, when all the nodes directly execute trans-
actions, the overall cost is reduced to approximately a
half of the time measured in the 2-node system when
both nodes executed the sessions. This result is also
reasonable, since the use of multiple nodes allows a
better balancing of the system load. 1

4 Related Work

Current work in consistency protocols for repli-
cated databases can be found using either eager
(Agrawal et al., 1997; Kemme and Alonso, 1998;
Wiesmann et al., 2000) or lazy protocols (Breitbart
et al., 1999; Ferrandina et al., 1994; Muñoz-Esco ı́
et al., 2001). Each has its pros and cons, as described
in (Gray et al., 1996). Eager protocols usually hamper

1We are planning to include the abort rates in the final
version of the paper, but currently we are unable to provide
them due to a bug in the protocol implementation.

6

the update performance and increase transaction re-
sponse times but, on the positive side, they can yield
serializable execution of multiple transactions with-
out requiring too much effort. On the other hand, lazy
protocols may answer read requests by stale data ver-
sions (or at least they require extra work to avoid that),
but they improve transaction response times and allow
disconnected operation.

Although COPLA provides a framework able to ac-
cept different consistency protocols (indeed, lazy pro-
tocols have also been designed for this environment
(Muñoz-Esco ı́ et al., 2001)), the presented approach
uses an eager replication alternative. A good classi-
fication of eager protocols is presented in (Wiesmann
et al., 2000), according to three parameters: server
architecture (primary copy vs. update everywhere),
server interaction (constant vs. linear) and transaction
termination (voting vs. non-voting). Among the eight
alternatives resulting from combining these three pa-
rameters, only two of them seem to lead to a good bal-
ance of scalability and efficiency: those based on “up-
date everywhere” and “constant interaction”. This is
mainly due to the load distribution achievable with the
“update everywhere” approach, i.e., a delegate server
executes the transaction and broadcasts the changes
everywhere. The election of such a delegate server
is dynamic. Each transaction can choose a differ-
ent delegate. Moreover, low communication costs re-
sult from a “constant interaction”, where the update
broadcast is done just once, either at the beginning
or end of the transaction, rather than in each transac-
tional operation, as is the case in the “linear interac-
tion” approach.

The GlobData-FB protocol shares these two char-
acteristics. It uses “update everywhere” (instead of
“primary copy”), because each transaction is done
initially at the node where it was initiated, indepen-
dently of the objects being accessed. It also uses “con-
stant interaction”, since the updates are only broad-
cast at transaction termination, once the object ver-
sion checking has been made. Due to this version
checking on the object owners’ nodes, this proto-
col must be classified as “voting termination”. Al-
though “non-voting termination” approaches require
less message rounds, they either need atomic reliable
broadcasts (with total order delivery) if the updates
are made at commit time, or all nodes need to ex-
ecute completely all transactions, even those that fi-
nally will be aborted (if the broadcasts are made when
the transactions start). So, at first sight, a “voting ter-
mination” approach seems better.

However, our design differs a bit from the guide-
lines provided in (Wiesmann et al., 2000) for the “vot-
ing termination” approach. Control of the transaction
termination is based in our case on object versioning.
Hence, the votes consist only in checking the accessed
object versions, verifying that they have been the lat-

est ones. We do not need a total order broadcast nor
a 2PC to find out if a transaction is allowed to com-
mit or not. Indeed, in the best case, we only need a
single round of requests and answers to do the vot-
ing, and this round does not use a total order. So, our
solution requires lower costs than those referenced as
examples in (Wiesmann et al., 2000).

Finally, although our technique provides good re-
sults in terms of communication needs (i.e., deliv-
ery ordering and number of messages), the use of a
communication tool that provides total order guaran-
tees may simplify the recovery protocols when fail-
ures occur. Indeed, the recovery protocols described
in (Kemme et al., 2001) allow that the previously run-
ning nodes do not block when a faulty node recovers.
This advantage currently is not available in our sys-
tem.

5 Conclusions

The COPLA architecture provides an object-
oriented view of data items in a network of distributed
and replicated relational databases. This architecture
establishes a framework where it is easy to install dif-
ferent consistency protocols. Depending on the needs
of a given volume of applications, the COPLA users
may choose among the set of available consistency
protocols the one which fits best for these applica-
tions.

Moreover, COPLA provides support for three con-
sistency modes in each of its consistency protocols.
So, the application programmer may also choose
which consistency mode may fit best for each se-
quence of accesses, for a given application.

In this paper, we have sketched the COPLA archi-
tecture and described one of several available consis-
tency protocols in the GlobData system. It is based
on eager update propagation, but it does not need a
total order broadcast communication nor multiple up-
date rounds. Hence, it minimizes the communication
needs of such a kind of protocols, reducing in this way
the usually long transaction completion time, which is
one of the main drawbacks of eager protocols.

REFERENCES

Agrawal, D., Alonso, G., El Abbadi, A., and Stanoi,
I. (1997). Exploiting atomic broadcast in repli-
cated databases. Lecture Notes in Computer Science,
1300:496–503.

Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S., and
Silberschatz, A. (1999). Update propagation proto-
cols for replicated databases. SIGMOD Record (ACM

7

Special Interest Group on Management of Data),
28(2):97–108.

Cattell, R., Barry, D., Berler, M., Eastman, J., Jordan, D.,
Russell, C., Schadow, O., Stanienda, T., and Velez, F.,
editors (2000). The Object Data Standard: ODMG
3.0. Morgan Kaufmann Publishers. 300 pgs., ISBN
1-55860647-5.

Ferrandina, F., Meyer, T., and Zicari, R. (1994). Implement-
ing Lazy Database Updates for an Object Database
System. In Proceedings of the Twentieth International
Conference on Very Large Databases, pages 261–272,
Santiago, Chile.

Gray, J., Helland, P., O’Neil, P., and Shasha, D. (1996).
The dangers of replication and a solution. In Proc.
of the 1996 ACM SIGMOD International Conference
on Management of Data, pages 173–182, Montreal,
Canada.

Instituto Tecnol ógico de Inform ática (2002). GlobData web
site. Accessible in URL: http://globdata.iti.es.

ITI and FCUL (2002). Implementation of the scattered data
manager. Technical report, D07, GlobData Working
Group, IST Programme, project number: IST-1999-
20997.

Kemme, B. and Alonso, G. (1998). A suite of database
replication protocols based on group communication
primitives. In International Conference on Distributed
Computing Systems, pages 156–163.

Kemme, B., Bartoli, A., and Babaoğlu, Ö. (2001). Online
reconfiguration in replicated databases based on group
communication. In Proceedings of the Internation-
nal Conference on Dependable Systems and Networks
(DSN2001), Göteborg, Sweden.

Mu ñoz-Esco ı́, F., Ir ún-Briz, L., Gald ámez, P., Bernab éu-
Aub án, J., Bataller, J., and Ba ñuls, M. (2001). Glob-
Data: Consistency protocols for replicated databases.
In Proc. of the IEEE-YUFORIC’2001, pages 97–104,
Valencia, Spain.

Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., and
Alonso, G. (2000). Database replication techniques:
A three parameter classification. In Proc. of the
19th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’00), pages 206–217.

8

