
CORBA Replication Support for Fault-Tolerance in a Partitionable Distributed
System∗

Stefan Beyer, Francesc D. Muñoz-Escoı́ and Pablo Galdámez
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Abstract

The Common Request Broker Architecture (CORBA)
specification originally did not include any support for
fault-tolerance. The Fault-Tolerant CORBA standard was
added to address this issue. One drawback of the stan-
dard is that it does not include fault-tolerance in the case of
network partitioning faults. However, wide area networks,
over which distributed systems are often employed, are es-
pecially susceptible to network partitioning.

The main contribution of this paper is the design of a
fault-tolerance CORBA add-on for partitionable environ-
ments. In contrast to other solutions, our modular design
separates replication and reconciliation policies from the
basic replication mechanisms. This modularity allows the
replication and reconciliation strategies to be modified eas-
ily.

1 Introduction

The Common Request Broker Architecture (CORBA)
[20] is a popular middleware framework to construct dis-
tributed object systems. As distributed systems are subject
to host and network failures, fault-tolerance is an impor-
tant aspect in the design of such systems. However, the
CORBA specification did originally not include any support
for fault-tolerance. Since then, the Fault-Tolerant CORBA
specification (FT-CORBA) [22] has been added to introduce
a degree of fault-tolerance to CORBA. However, the stan-
dard has various drawbacks. One important shortcoming
of FT-CORBA is that it does not provide support for fault-
tolerance in a partitioned network. Wide area networks,
over which distributed systems are often employed, are es-
pecially susceptible to network partitioning.

∗This work has been funded by the European Community under the
FP6 IST project DeDiSys (Dependable Distributed Systems, contract num-
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In this paper we present the architecture of a middleware
add-on that adds fault-tolerance to CORBA in a partitioned
environment by means of replication. The system is part of
the DeDiSys project [23]. DeDiSys aims at providing fault-
tolerance through add-ons for various middlewares. The
CORBA add-on presented here uses CORBA Portable In-
terceptors [21] to intercept calls to server objects in a trans-
parent manner and divert these calls through a replication
manager. An underlying group membership and communi-
cation service provides reliable communication.

In contrast to other systems, the modular design of the
DeDiSys replication support allows different replication
and reconciliation policies to be implemented easily. The
design of the replication support is based on a separation of
mechanism and policy. Replication mechanisms are basic
primitives such as creating a replica and changing its role,
or the ability of managing object and replica references. In
our system these mechanisms are provided by a distributed
replication manager. Many replication protocols will have
these mechanisms in common. In contrast, replication and
reconciliation policies, such as the update propagation pol-
icy or reconciliation strategy, may vary between replica-
tion protocols. We extract such policy from the replication
manager and place it into a replication protocol component.
The replication manager and the replication protocol com-
ponents provide fixed interfaces. New replication protocols
can be implemented by replacing the replication protocol
component.

A default replication protocol [3] is included. The proto-
col allows operations in each partition in a partitioned sys-
tem to continue. Resulting conflicts can be resolved auto-
matically by the reconciliation support or manually by the
application.

A non-CORBA prototype [4] of our architecture has
been implemented and we are currently in the process of
implementing the full CORBA system, taking into account
the lessons learnt from the prototype.
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2 Related Work

In order to add fault-tolerance to CORBA, certain mech-
anisms, such as replication, are required. Existing systems
either implement the FT-CORBA [22] standard to provide
fault-tolerance or suggest their own fault tolerance exten-
sions. There are two possible reasons for a system not
to comply with the FT-CORBA standard. Some systems
reviewed here were simply developed before the standard
was defined. Other systems try to overcome some of the
drawbacks associated with FT-CORBA. As DeDiSys is a
research project, aimed at partitionable distributed systems,
which are not covered by the FT-CORBA standard, we do
not consider FT-CORBA compliance as the main factor for
this review.

In literature, approaches to add fault-tolerance mecha-
nisms to CORBA are typically classified into three cate-
gories: In the integration approach, the ORB itself is mod-
ified to include the required fault tolerance mechanisms. It
is easy to provide transparency using this approach, but ex-
isting commercial ORBs cannot be used. Orbix+Isis [11],
Electra [13] and Maestro [28] are examples of systems us-
ing the integration approach. More recently, the authors of
[14] and [30] have proposed the integration of group com-
munication support by modifying the CORBA Open Com-
munication Interface (OCI) and using the Pluggable Proto-
cols Framework [12]respectively.

In the service approach, the mechanisms required to
provide fault tolerance are provided as CORBA services.
This approach has the advantage that existing ORBs can be
used. However, transparency is difficult to achieve with this
approach, as applications have to be aware of the fault toler-
ance services. Object Group Services (OGS) [7] and New-
top Object Group Service [15] provide services for object
group support which can be used to provide fault-tolerance.
FTS [8], OPEN EDEN [9], IRL [2] and AQuA [29] are ex-
amples of reliable CORBA systems using the service ap-
proach, although it can be argued that these systems also
use elements of the interceptor approach.

In the interceptor approach, CORBA invocations are
intercepted and redirected to fault tolerance mechanisms.
Recent systems make use of CORBA Portable Interceptors
[21]. The only systems using a pure interception approach
we are aware of are Eternal [18] [19] and DAISY [26].

Three of the systems mentioned above - Maestro, FTS
and Eternal - provide some support for network partitioning.
Therefore, these systems are reviewed here in more detail.
Newtop also provides support for network partitioning, but,
as a mere object group toolkit, does not provide any support
for reconciling replica state after partitioning. Therefore,
we do not discuss Newtop in detail here.

Maestro uses the integration approach. The system was
developed before the FT-CORBA specification existed. It is

not a pure CORBA implementation, but was designed as
a distributed object layer to be used on its own or to be
integrated in CORBA or in other distributed object tech-
nologies. The system uses Ensemble [27] as an underlying
group communication and membership toolkit. Partition-
ing is supported using a variation of the primary partition
model [24]. Only updates in one partition are permanently
accepted, but in contrast to the regular primary partition
model, the decision on which partition dominates is post-
poned until recovery time. At recovery time the partition
with “the most updated” state is chosen.

FTS is an attempt to remain close to the FT-CORBA
specification, whilst also providing support for partitioning.
The system uses a mixture of the service and interceptor
approaches. A group object adapter (GOA) is provided as a
CORBA object adapter. The GOA is implemented on top
of the portable object adapter (POA) to allow for object
groups; that is, groups of replicas representing the same
logical object. The main drawback of FTS is that it only
implements active replication, although the authors claim
it would be easy to adapt FTS to passive replication. In
DeDiSys we use also use the idea of an object adapter pro-
viding object group support. FTS uses the primary partition
model for consistency in case of network partitioning.

Eternal is probably the most advanced of the systems
of which we are aware in terms of support for partition-
ing, despite being one of the oldest systems. The system
allows for active and passive replication. The Eternal repli-
cation manager keeps track of replicated objects. CORBA
messages are intercepted at the transport level and are redi-
rected using the Totem group communication toolkit [17].
Totem provides Eternal with the extended virtual synchrony
model, which allows for network partitioning. As far as
we know, Eternal is unique in partition-aware CORBA sys-
tems, in that it does not use a variant of the primary par-
tition model, but does allow operations in all partitions to
continue. A simple reconciliation algorithm is provided.
When the network partitions, a primary subgroup is cho-
sen for each object. However, operations are also allowed
to continue in secondary subgroups. When subgroups are
re-merged, Eternal gives preference to the state contained
in the primary subgroup. However, operations in secondary
subgroups are queued and applied after the state of the pri-
mary subgroup has been installed in all the merging sub-
groups during recovery. Conflicts that cannot be resolved
are reported to the application.

In DeDiSys we make use of some techniques from Eter-
nal, DAISY and FTS. In particular, we use interception, as
in Eternal and DAISY, and the implementation of the repli-
cation support as a CORBA object adapter, as in FTS. In
contrast to Eternal’s interception at the operating system
level approach we use DAISY’s approach of using portable
interceptors, which were not available when Eternal was de-
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signed. Furthermore, in DeDisys we aim at making replica-
tion and recovery flexible and configurable. To this end we
do not embed replication protocol and reconciliation policy
in the replication manager, as done in Eternal, but provide
an easily interchangeable replication and reconciliation pro-
tocol component.

3 Design Principles

In order to design a replication support for partionable
environments in CORBA we have followed the following
design principles:
Separation of Mechanism and Policy. Replication mech-
anisms are basic primitives, such as the ability to create a
replica or manage the relation between object references
and replica references. The provided mechanisms can be
used in different ways to implement replication policies,
such as the object state transfer policy or the reconciliation
strategy. Policies may vary, whereas mechanisms are pro-
vided to support different policies. In conventional systems
policies and mechanism are often embedded in the same
component. This makes it difficult to implement different
policies. In DeDiSys, we extract replication and reconcil-
iation policy from the main replication component, which
only provides mechanisms that allow to implement a vari-
ety of policies.
Interception The DeDiSys concept is to provide a Middle-
ware add-on rather than modifying existing middleware. To
achieve this in CORBA, we intercept object invocations. To
this end, CORBA portable interceptors are used to pass con-
trol to the replication support.
Client-Side Transparency Replication should be transpar-
ent to the client application. That is, the client is not aware
it is dealing with a replicated object and existing CORBA
clients do not have to be modified to use DeDiSys, apart
from calling a simple initialisation routine.
Server-Side Transparency It is our goal to make server
side integration of the replication support as transparent as
possible. However, the server application should have some
control over the replication support. Therefore, a simple
interface provides mechanisms, such as replica creation,
and has to be used by the server application. It is our
goal to make CORBA server applications as easy to port
to DeDiSys as possible, whilst allowing configurability of
key parameters, such as number and location of replicas.

4 The DeDiSys Replication Model

DeDiSys aims to introduce fault-tolerance through repli-
cation. In this section we describe the failure model we
support and the replication model used to achieve this.

The “crash model” [6] is assumed for node failures, and
the “link failure model” [25] for communication services.

As we cannot distinguish between a failed node and an iso-
lated node until recovery time, we treat every failure as par-
titioning. Partitions can occur in any number and order. Re-
covery of partitioning can be in a different order in which
the partitioning originally occurred.

In order to provide support for partitioning, DeDiSys
uses the Spread group communication and membership
toolkit [1]. Spread provides the extended virtual synchrony
model [16]. This model simplifies the reconciliation pro-
cess of potential replication protocols, as nodes are aware
which views have been installed in re-joining partitions.

We employ the passive replication model. In passive
replication [5] [10] requests are only processed by one pri-
mary copy. Updates are then propagated to the secondary
copies. The passive model lends itself to a system where
consistency is to be configured as it allows variations in the
way updates are propagated. If synchronous update propa-
gation is used, a primary copy must propagate any updates
immediately; that is, before the result of the operation that
has caused the update is returned to the client. In asyn-
chronous update propagation the result is returned and the
propagation of state changes performed some time later. We
leave the choice of which update propagation paradigm to
use to the replication protocol.

The default replication protocol [3] allows operations
in all partitions to continue. Object state updates are
propagated synchronously in a healthy system and asyn-
chronously during partitioning. If a primary copy of an
object is not reachable, the protocol promotes a secondary
copy to a temporary primary copy. The protocol therefore
implements a “primary per partition model”. The protocol
also includes a reconciliation protocol that restores consis-
tency when partitions are merged. Conflicts that occur when
replicas of the same object are written to in different parti-
tions can be resolved automatically by the replication pro-
tocol or manually by the application. However, the design
of our system is such that many replication and reconcili-
ation protocols based on the passive replication model can
be implemented.

5 Replication Support Integration in
CORBA

Figure 1 shows how the DeDiSys replication support
is integrated in CORBA. Portable interceptors are used to
transfer control to the replication support, without client
code having to be modified. The client invokes an object in
the standard CORBA way, using a logical object reference.
The DeDiSys replication support takes care of identifying
the real object reference of the primary replica. The client-
side request interceptor is used to intercept object invoca-
tions, before they are sent. This interceptor uses the repli-
cation manager (RM) to obtain the reference of the primary
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Figure 1. Replication Support Overview

replica and redirects the invocation to this primary replica.
The replication manager is also used to trigger some repli-
cation protocol specific tasks that might need to be executed
before the invocation can begin.

On the server side, the server-side request intercep-
tor also intercepts the incoming request, in order to trigger
replication protocol specific tasks. The object invocation
is then executed in the standard CORBA way. Before the
result is returned to the client, control is again passed to
the RM. At this stage the replication protocol might require
changes in the accessed object’s state to be propagated to
the secondary replicas of the object.

Before the request is delivered to the client application
the reply is again intercepted on the client side by the client-
side reply interceptor. At this stage a replication protocol
might trigger consistency checks that could cause the invo-
cation to be undone.

6 Object Reference Management

We distinguish between logical object references and
replica references. When using the term logical object ref-
erence, we are referring to the reference of a logical object.
When using the term replica reference we are referring to
the actual reference of an object replica; that is, a reference
of a real CORBA implementation of a logical object.

Both types of references are standard CORBA object ref-
erences. However, internally logical object references only
refer to an intermediate “dummy” object which is never
invoked. The replication system intercepts calls to these
objects and redirects them using the actual replica refer-
ence. Only logical object references are visible to client
and server applications.

The replication support keeps track of which logical ob-
ject references are associated with which replica references.

Figure 2. Replication Manager Overview

7 Replication Manager

Figure 2 shows the replication manager (RM). The RM
consists of various components. Only the Replication Ob-
ject Adapter (ROA) is visible to the server application.
The ROA is a CORBA object adapter. It internally uses
CORBA’s Portable Object Adapter (POA) and provides
standard POA functionality, such as associating objects with
object references. In addition, it manages object replicas
and allows replicas to be created and associated with a log-
ical object. The ROA provides the standard POA API and
a small set of additional methods needed to support replica-
tion. Client-side-only RMs do not need a ROA.

The RM also interacts with a replication protocol com-
ponent, in which replication protocol details, such as update
transfer policies, are implemented. By encapsulating such
policy in a separate component with a defined interface, the
replication protocol can be changed easily.

The RM also provides an interface to the DeDiSys inter-
ceptors, in order to pass control to the replication support.

Furthermore, the RM is an “application” of the Spread
group membership and communication service. RMs on
different nodes use Spread to exchange information on new
replicas or to broadcast replica role changes. Furthermore,
the RM keeps track of which replicas are reachable. There-
fore Spread callbacks handling the reception of group mes-
sages and new membership views need to be implemented
in the RM.

8 The Replication Protocol Component

The replication protocol (RP) component encapsulates
replication and reconciliation policies. We locate replica-
tion policy and reconciliation policy in the same compo-
nent, as the policies have to match each other. For instance,
a replication protocol that allows updates in each of the par-
titions of a partitioned system requires a reconciliation pol-

4



icy that allows the system to recover from the inconsisten-
cies this might introduce.

The RM passes control to the RP before and after ev-
ery object invocation, in order to allow the RP to allow
or deny certain object invocations to maintain consistency
and to keep track of changes to objects and maintain inter-
nal data structures that hold information necessary for rec-
onciliation. The activities of the RP in a healthy system
vary from that in a system in which one or more nodes are
not reachable, as different data-structures have to be main-
tained in these different system modes. Furthermore, the
RP implements update propagation and reconciliation. Fi-
nally, the RP implements Spread callbacks to receive replica
update messages and any other messages necessary for syn-
chronising RPs on different nodes.

Different RPs can be implemented by modifying the RP
component. To this end, the RP component consists of an
abstract ReplicationProtocol class, which should
be extended, in order to implement a replication proto-
col. ReplicationProtocol also provides default im-
plementations of some methods, that may or may not be
overwritten by a particular replication protocol. A default
update propagation method is provided. The method can be
called by any subclass implementing a specific replication
protocol to broadcast the state of a specific primary replica
to all secondary copies. Furthermore, a default method han-
dling incoming replica updates is provided. This method
just sets the state of all the secondary copies it holds of
a particular primary copy to that included in the message.
Both the update propagator and the incoming message han-
dler can be overwritten by protocols that require more spe-
cialised implementations.

9 Conclusion and Future Work

In this paper we have described the design of our
fault-tolerance support for CORBA. In contrast to most
approaches to fault-tolerance in CORBA and the Fault-
Tolerance CORBA specification [22], the system can cope
with network partitioning. The system forms part of
the DeDiSys project [23], which aims at providing fault-
tolerance add-ons for a variety of middlewares.

We have implemented our design in our own non-
CORBA evaluation environment. The DeDiSys Lite plat-
form [4] serves as both a first prototype implementation of
DeDiSys and an evaluation platform for replication proto-
cols. However, it does not make use of CORBA.

We are currently implementing the architecture de-
scribed here in CORBA using Java as an implementation
language, taking into account the experiences gained with
our non-CORBA prototype. After evaluating our imple-
mentation, the results obtained will be compared with im-
plementations of the DeDiSys approach in other middle-

ware architectures which are currently being developed in
parallel by our project partners.

Furthermore, we are planning to extend our modular de-
sign to allow replication protocols using models other than
passive replication to be implemented.
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