
FOBr: A Version-Based Recovery Protocol For Replicated Databases∗

Francisco Castro-Company Luis Irún-Briz Félix Garcı́a-Neiva
Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

46022 Valencia (SPAIN)
{fcastro,lirun,fgarcia,fmunyoz}@iti.upv.es

Abstract

Within the field of databases that are deployed in dis-
tributed environments there is a need to guarantee consis-
tency among replicas and availability among nodes despite
of network disconnections and node crashes.

A recovery protocol, such as FOBr, manages the
database update of a recovering node as it might have
missed many transactions during its absence. FOBr does
so without stopping data access, and minimizing its inter-
ference with the active nodes, their memory usage, and the
network traffic.

The recovery protocol we propose here is very suitable
when a fast recovery of the missed data is required. It bal-
ances the recovery issues among nodes very fairly and due
to this, out-dated data will promptly be recovered. Thus
accesses to data that is not out-dated are not interrupted
or delayed in any way. These characteristics allow regular
transactions to be performed during the recovery process.

1. Introduction

The adoption of Internet as a quotidian tool for data ac-
cess and the spectacular growth of users impose the un-
derlying databases to stretch the services they offer sev-
eral steps beyond. These databases must maintain a huge
amount of information and, furthermore, a huge load as the
number of concurrent users increases highly. This is the
point where need of database replication arises. Replication
must provide some advantages such as availability, scalabil-
ity and transparency. However, it implies some dangers that
must be solved such as inconsistency or high retrieval la-
tency.

∗ This work has been partially supported by the Spanish MCYT grant
TIC2003-09420-C02-01.

While users access the information from very distant and
geographically scattered locations, the database view we
must be able to provide must be global, i.e it has to be the
same as it would be if the data was centralised. Choosing
a single server as the information provider doesn’t supply
any of the characteristics mentioned as replication advan-
tages: the required bandwidth would be excessive and the
service performance would be very poor.

Replication is achieved with the use of consistency pro-
tocols. A consistency protocol in such an environment takes
care of several tasks such as data replication among nodes,
load balance or accesses efficiency. In addition, it makes all
these tasks invisible to the user. All the issues regarding con-
sistency, availality and information retrieval or updates are
internally managed while the user accesses the database as
if it was not replicated at all.

Several consistency protocols have already been pre-
sented [8, 12]. They all benefit from the advances in the
broadcast algorithms area [2, 7]. Communication primitives
are used as the basis for consistency coordination among
nodes. Notice that a wide area network (WAN) restricts
communication capabilities and thus the consistency proto-
cols design: communication among nodes must be carried
only when strictly necessary and the information exchanged
in each message mustn’t exceed a reasonable size.

No database replication protocol can be considered com-
plete if it does not provide recovery capabilities. Network
partitions, node crashes and node failures are a common is-
sue to be dealt with. Recovery protocols manage the node
updates during failures and guarantee fault tolerance (we
can use replication to guarantee that a crashed node that of-
fered several services can be replaced by another one).

Traditionally, this is performed overloading one of the
active nodes until a crashed node recovers. At best, a log
is used to store all the transactions that any node might be
missing and to be able to apply them later during its recov-
ery.

We have designed and developed several consistency

protocols for our COPLA system. COPLA is the result of
the GlobData [3] project: an architecture that provides an
object–oriented view of a replicated database. This system
includes the consistency protocol as a pluggable module so
that it is a great basis for the implementation and testing of
these protocols with real applications.

We are currently deploying two consistency protocols,
each one with a different update propagation approach; ea-
ger in FOB [10], and lazy in COLUP [5]. The approach
to provide FOB with recovery capabilities that we are in-
troducing in this paper is based on versions management.
When the system shows node failures, we keep a structure
in the alive nodes with the object identifiers (this way we
reduce the amount of memory needed to supply recovery)
modified during the crashes. When a node recovers, these
previously active nodes collect bunches of the identifiers
states and send them to the recovering nodes. We only re-
quire reliable FIFO broadcast [2] guarantees for these mes-
sages which makes the delivery very fast.

This way we split the recovering steps between the rest
of active nodes into small work packages that are performed
simultaneously so that not only one of them is affected for a
long time. Neither the recovering nodes nor the previously
active nodes need to stop the users regular database accesses
during recovery.

This paper is organized as follows. Section 2 introduces
several details used through the rest of the paper. Section
3 describes the algorithm and section 4 studies the failures
analysis and solutions. Later, performance results are pro-
vided in section 5, related work is discussed in section 6,
and finally, section 7 concludes the paper.

2. Common Concepts

We assume a distributed system where database repli-
cas are placed each one in a different node. This system is
partially synchronous; i.e., clocks are not synchronised but
message transmission time can be bounded. The database is
fully replicated in each node, i.e., each replica has a com-
plete copy of the whole database.

A partial-amnesia crash failure model [1] is assumed for
processes, whilst links may produce omission failures. This
failure model is more realistic than the crash or fail-stop
failure models [2], where a node is assumed to stop once
it has failed, forcing to recover with another node identifier
and without any previous state. A strict adoption of such
models implies a complete database transfer in each recov-
ery and that action will be too costly. However, it will be
needed in case of a database replica corruption. In such a
case, the faulty replica has to notify all the others about
the crash of its copy, requesting a complete transfer of its
database.

In our COPLA replication support each replica of the
database communicates with the other replicas through the
local consistency managers. COPLA isolates the user as
well as the database manager from several tasks such as
replication and a relational to object–oriented conversion.

As the consistency protocol can be changed as a plug–
in, multiple consistency protocols may be used to achieve
consistency but only one is allowed at a time. The consis-
tency protocol uses a communication service to coordinate
the network replicas. These replicas are preconfigured so
that the network group and the node identifiers are known
as soon as the system starts.

In our protocols, we deal with the concept of ownership.
A node is owner of a set of objects and an object belongs
to a node. The ownership allows us to identify which node
is in charge to maintain the most updated version of every
object.

Regarding ownership of a given object, a node can be
classified into the following roles:

• Owner node: Initially it is the node where the object
was created; this is what we call physical ownership.
However, the node where a set of objects was created
might have crashed and the ownership migrates (logi-
cal ownership). This owner node is the manager of ac-
cess confirmation requests (or ACR, see section 2.4 for
details on this) for that object.

• Synchronous nodes: These nodes did not create the ob-
ject but are considered up-to-date replicas of it. They
provide us with fault tolerance.

As our consistency manager has been designed for dis-
tributed systems that may use both local and wide area net-
works and where network errors may occur (nodes may
crash and network partitions may happen), a membership
service in charge to detect these situations is needed.

2.1. Membership Service

The membership service detects and informs about net-
work changes. When a node crashes or rejoins the system,
the membership service informs about the new system view
to the consistency manager.

This service is in charge to assign view numbers when
some node or group of nodes fail or recover. If a network
partition arises, the view number is incremented and con-
sensuated as a result of a view change in a primary sub-
group. Minor subgroups can not increase their view num-
ber until they rejoin the primary one. Thus, this view num-
ber allows us to identify partitions and order them sequen-
tially.

The membership service also detects when the group of
nodes belongs to a primary or to a minor subgroup. Our

system uses the primary partition [11] model: only the sub-
group with more than half of the network nodes is allowed
to proceed and commit transactions. A minor subgroup will
always be identified by a view number lower than the one of
the primary subgroup in spite of the configuration changes
the minor one might suffer.

2.2. Session Identifier

A session groups a number of transactions. Since we use
ACR management, the session identifiers (or SIDs) include
information about the node identifier where it was initiated.

In case of a node failure, the consistency protocol is able
to know the owner of the granted ACR and if faulty, it will be
able to manage the situation appropriately. The SID is use-
ful for a number of issues such as transaction abortions or
message identification and delivery.

2.3. Object Identifier

Objects are identified similarly as Sessions with object
identifiers (OIDs). These OIDs hold several information,
including the owner node, that identify them univocally
through all the nodes.

Besides the OID, the consistency protocol may need
(FOB does) to maintain extra information associated to each
OID such as version numbers, timestamps, . . .

This information is called metadata and will also need to
be transferred when a recovering node receives its updated
information.

2.4. Consistency protocol: FOB

The recovery protocol explained in section 3 is designed
to be a complement for our FOB consistency protocol. FOB
–which stands for “Full Object Broadcast”– is an eager
and optimistic protocol. It is eager because all updates are
broadcast before the transaction commits. It is optimistic
because no distributed concurrency control operations are
taken before a session tries to commit.

When the user calls commit, the protocol performs sev-
eral operations before it is effectively applied into the
database:

1. It collects the transaction WriteSet (i.e., the set of ob-
jects inserted, updated, or deleted in a given transac-
tion) and groups its OIDs by their owner node.

2. An access confirmation request (or ACR, for short) is
sent to each owner node of these WriteSet objects. The
owner nodes decide then whether to grant or revoke
the access to these OIDs. This sending is performed
sequentially and in ascending order of node identifiers
in order to avoid multiple abortions.

3. The node receives the ACR responses and:
(a) If any ACR is revoked, the transaction must abort.

If any of the other ACRs was granted, a message
must be sent to that node in order to release the
grants.

(b) If they are all granted, the transaction is propa-
gated with a reliable broadcast and when deliv-
ered, it is committed in all the nodes. When a
node receives this broadcast:

i. It aborts other locally conflicting sessions
that are still in early phases of operation.

ii. It applies the changes into the database.
iii. It releases the ACRs granted to the finished

transaction.

3. Algorithm Specification

The recovery protocol has two different phases that will
be described separately. The first one comprises all the
events happened from the instant when a node failure was
detected until the moment when it rejoins the system. Dur-
ing this phase some records have to be taken about all the
transactions that the faulty node has missed. On the sequel,
we refer to this phase as the collection phase.

The second phase comprises the steps followed by all
the system nodes when a previously faulty node starts again.
This is the true recovery protocol; however, as it depends on
the information collected during the collection phase, both
phases must be described to define the complete recovery
process. We refer to this last part of the protocol as the re-
covery phase.

3.1. Collection Phase

As soon as the node is notified about a node failure by
the membership protocol, two steps are taken:

• The remaining alive nodes decide which ones of them
inherit the ownership of the faulty node objects. The
criterion used to migrate this inheritance is determin-
istic and it can be as simple as choosing the following
alive node (in ascending order) as the inheriting node.

• A structure is created in each alive node in order to
hold the OIDs of all the objects that will be updated
while these nodes are not present. The structure needs
to be stored persistently in order to allow node fail-
ures where the node does not simply disconnect, but it
also crashes. This ensures that we will be able to pro-
vide recovery after total system failures; i.e., when all
the system nodes crash. Notice also that the system is
not allowed to perfom operations in a minor subgroup
in case of network partitions. In that case, the struc-
ture is not necessary.

This structure will hold a recovery list. This list
stores the updated OIDs that any faulty node is miss-
ing during any network view.

As multiple network view changes may oc-
cur, while there exist faulty nodes in the system the
structure needs to be maintained. For the same rea-
son, every alive node has to maintain every up-
dated object in its recovery list, even if it is not their
owner.

3.2. Recovery Phase

During the recovery phase two different roles are distin-
guished among the set of participating nodes:

• Recovering node: The node, or set of nodes, that is
trying to join the system and that needs to bring its
database up-to-date.

• Previously-active node: The nodes that hold informa-
tion to help the joining ones join the system. These
nodes have their databases updated and they provide
the changes needed by the recovering nodes.

A node chooses its role when a network view change is no-
tified. At this time, it has to compare the view number of
its group with the view number of the joining group to de-
cide which of the two groups is the updated one.

While this recovery protocol is run, all previously-active
nodes go on processing local transactions and multicasting
their updates as usual.

If any object accessed by any transaction started during
the recovery period belongs to any of the recovering nodes,
the inheriting node is still in charge of the ACR messages
service. The recovering nodes are also able to proceed as
usual, except for the fact that they are still not owners of
any objects.

The recovery phase begins when the previously-active
nodes receive a notification, by the membership service,
about the recovery of some previously considered faulty
node. This notification has two parameters, the recovering
nodes list and the actual view number. Then, the following
steps are taken:

1. The previously-active nodes build a JOIN UPDATE
message to update the currently owned objects that
they know the recovering nodes have missed. Ad-
ditionally, the transactions started in the previously-
active nodes include the recovering node in the desti-
nation set of their update broadcasts. This way, the re-
covering node participates in the group regular opera-
tion as soon as possible. The recovering node receives
these updates, but postpones their application until it
applies all the JOIN UPDATE messages.

This JOIN UPDATE message is built following
this procedure:

(a) The recovery list is checked to obtain the set of
updated OIDs that the node currently owns.

(b) The set of OIDs’ states is retrieved from the
database and it is included in the message in or-
der to update the recovering node database.

(c) The set of missed OIDs and network views is
included too because the recovering node needs
to hold recovery information until the system is
complete. However, this information is not trans-
ferred if the currently recovering node is the lat-
est one; i.e., no other faulty node exists when it
has finished its recovery.

As every previously-active node is in charge only
of the set of missed OIDs that it currently owns, the re-
covery work is distributed among the active replicas so
that none of them is overloaded and the work is per-
formed in parallel.

Once this information is collected, the nodes send
the JOIN UPDATE messages to the recovering nodes.
The message needs to be sent even if the recovery list
is empty or the previously-active node is not owner of
any missed object, because the recovering node does
not know this fact and it is expecting a message from
all active nodes.

Moreover, if failures arise while this protocol is run-
ning at this step, all objects owned by the previously-
active node that fails will be inherited by one of the
remaining previously-active nodes. This new owner
node has to send an additional JOIN UPDATE mes-
sage with the information that has just inherited.

Once sent, the previously-active nodes will be ex-
pecting MERGED responses from the recovering
node.

2. The recovering node waits until it has received the
JOIN UPDATE message from all previously-active
nodes.

As soon as a JOIN UPDATE message arrives,
the recovery list is reconstructed with the informa-
tion provided by the message. The recovering node
will have created a transaction to apply all the up-
dates that it had to receive. All these JOIN UPDATE
messages have to be applied in the same transac-
tional context. Otherwise, as information is split
into pieces, some integrity constraints might be bro-
ken. When all the JOIN UPDATE messages are re-
ceived, this transaction is committed. Notice that
our FOB protocol is optimistic and regular transac-
tions might have performed write accesses that in-
tersect with the JOIN UPDATE messages OIDs.
To avoid this situation, the JOIN UPDATE applica-
tion must be preceded by the abortion of the locally
conflicting transactions.

Once committed, the recovering node sends a
MERGED message to all the previously-active nodes
and waits for a NO ACT(NO ACT stands for “node
active”) response.

We can take advantage of the lapse of time occurred
from the MERGED sending to the NO ACT recep-
tion to apply the postponed updates in a background
process. This way, the ownership migration is not de-
layed.

3. When the previously-active nodes receive the
MERGED message they know that the recover-
ing node has applied all the remaining updates.

If the MERGED receiver was not the inheritor of
the recovering node objects, it simply assumes that the
recovering node has recovered the ownership. If the re-
ceiver is the inheritor, it has to migrate this ownership
packing the ACR granted locks into a NO ACT mes-
sage and send it to the recovering node.

Once the NO ACT is sent, the previously-active
node is not responsible for the objects of the recovered
node anymore. If this previously inheriting node re-
ceives any ACR for an object whose ownership is lost,
it will be forwarded to the real owner.

From the previously-active point of view, the own-
ership is not returned until the recovering node has
completely recovered.

4. Finally, when the recovering node receives the
NO ACT message, will be able to manage its ob-
jects and the recovery is completed.

3.2.1. Considerations Let us consider a case where two
minority partitions with recovery lists are joined (This is
possible because a network disconnection may occur dur-
ing a recovery period). The role of previously-active parti-
tion is also chosen using the partition with the greatest num-
ber view.

Note also that all multicasts used by this protocol need
FIFO ordering guarantees. They have to be delivered to all
the alive nodes, but that delivery may occur at different
times.

4. Failure Analysis

The failure analysis has two key points that will be de-
scribed separately.

4.1. Crash of a node during the recovery phase

A recovering node waits the JOIN UPDATE messages
from all the alive nodes. If a previously-active node crashes
during this step, an inheriting node is chosen when the
membership monitor notifies the network view change. This
inheriting node sends the JOIN UPDATE message that the

faulty node should have sent because at this point, it is not
sure that the sending was complete. In case the recovering
node had already received this message, it discards the fol-
lowing copies and goes on. In case the faulty node is the in-
heritor of the recovering node objects, the transactions ac-
cessing its objects will be aborted. This process is repeated
for the cases of multiple crashes.

If the faulty node is one that is recovering, no extra ac-
tions need to be performed if we take some care. As soon as
a previously-active node receives the MERGED message,
it removes the recovery list if the system is complete. This
step must be performed before the NO ACT is sent. Other-
wise the non inheriting nodes would have removed the re-
covery list while the inheriting nodes might have not.

4.2. Joining of a node during the recovery phase

The incorporation of a member while a node recovers,
may occur during two stages of recovery: before or after the
MERGED message:

• Before: The previously recovering node waits for
an answer from all the previously-active nodes but
the newly recovering node must not be consid-
ered as previously-active because it does not have
enough information to participate in this recov-
ery. The newly recovery node inheritor already as-
sumes this role.

For the newly recovering node it is indiffer-
ent where the update messages come from, since the
rest of nodes are able to update it.

• After: At this moment, the previously recovering node
will be waiting for a NO ACT confirmation but this
message arrival will be delayed a little bit: The inher-
iting node needs to send the JOIN UPDATE message
to the newly recovering node with information from
the previously recovering node.

5. Performance Results

In order to check the performance gains that may intro-
duce the FOBr algorithm, we have implemented a similar
algorithm based on update-logging. Once a node fails, the
log-based recovery algorithm begins to save all the missed
update messages in secondary storage. If the faulty node re-
covers, these missed messages are resent to it in the recov-
ery process.

In these tests, a database with 6000 objects has been
used. Their ownership is balanced among the four nodes
that compose the system; i.e., each node has created 1500
objects. The tests are started with a first phase (the collec-
tion phase described in section 3.1) where one of the four
nodes is not accessible, simulating a node failure. In the sec-
ond phase (the proper recovery phase described in section

3.2), we measure the time needed to complete the recov-
ery of this isolated node.

The system nodes are arranged in a cluster and use a
high-speed network to interconnect them, so communica-
tion latency is negligible.

Two series of tests have been designed. In the first one,
each transaction updates a set of 10 different objects ran-
domly distributed among the 6000 ones that compose the
replicated database. Different number of transactions have
been used in this first series, but in all cases the probabil-
ity of accessing and updating more than once each object is
minimal. As a result, this first series corresponds in all the
cases to a short-term failure, and the behaviour of FOBr is
always worse than that of a log-based solution, as we can
see in figure 1. This can be easily explained, since FOBr
needs additional effort to get the state of each updated ob-
ject: it has to read its OID from its log and later it has to
retrieve its state. A log-based solution only needs to read
the log and transfer it to the recovering replica. Since each
logged update corresponds to a different object, no gain can
be achieved with FOBr.

 0

 50

 100

 150

 200

 250

 10 50 100 1000

Ti
m

e
(s

)

Number of missed transactions

Log-based recovery
FOBr recovery

Figure 1. Recovery time with random access
to objects.

The second series of tests corresponds to the best case
environment for FOBr; i.e., one where the transactions exe-
cuted during the failure period have accessed multiple times
the same objects. In such a case, FOBr only needs to transfer
the latest state version of these objects, whilst a log-based
solution still has to transfer all the logged messages.

In this series, a sequence of transactions accessing ob-
jects in a set of 15 or 150 objects is repeated multiple times.
As a result, each accessed object has been accessed mul-
tiple times and it needs to be transferred only once using
FOBr. This experiment will provide us a guide on the num-

ber of updates on each object during the failure period that
are needed to make FOBr more convenient than a log-based
solution.

Thus, in figure 2, the set of accessed objects corresponds
only to 15 in each of the active nodes. As a result, in FOBr
each of the source nodes need only to transfer the state of
these 15 objects. As we can see, a log-based solution is still
better than FOBr if a low number of transactions has been
executed whilst the recovering node was faulty. But FOBr
becomes the best one if each object has been updated more
than 7 times.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 10 50

Ti
m

e
(s

)

Number of missed transactions

Log-based recovery
FOBr recovery

Figure 2. Recovery time with 15 ob-
jects/trans.

In figure 3 the same experiment is repeated again, but
now each transaction accesses 150 objects in each of the ac-
tive nodes. In this second experiment of the second series,
the update messages are bigger than in the previous one.
As a result, the recovery times of a log-based solution are
worse than those of FOBr. In order to reduce this penalty,
the log-based solution used in these experiments does not
transfer the state of the updated objects, but the SQL sen-
tence needed to complete such updates. This reduces the
message size, but not the time needed to apply the updates
in the recovering node.

Anyway, as we can see in figure 3, FOBr provides ini-
tially a longer recovery time than a log-based solution
(when only one update has been applied to each object dur-
ing the failure period), but becomes the best option if more
than two updates are applied on average to the set objects to
be recovered.

To sum up, a log-based solution is better than FOBr if
we can ensure that the objects will not be updated multi-
ple times during the time a node remains faulty. The exact
number of updates needed to ensure that FOBr is the best

option depends on the whole number of objects to be trans-
ferred in the recovery process, but both needed numbers are
quite low in all cases.

 0

 50

 100

 150

 200

 250

 300

 1 10 50

Ti
m

e
(s

)

Number of missed transactions

Log-based recovery
FOBr recovery

Figure 3. Recovery time with 150 ob-
jects/trans.

6. Related Work

Recent works on replicated database recovery algorithms
exist [4, 6, 9] and all of them try to minimize the time re-
quired to complete such recovery, and the blocking time in
the replicas taken as the source of such information trans-
fer.

In order to do so, in [9] several approaches are described,
and finally one with a multiple-phase (or lazy) state trans-
fer is used, requiring enriched view synchrony and atomic
broadcasts. Both features demand higher communication
costs than the uniform reliable FIFO broadcast used in
FOBr. This lazy transfer algorithm minimizes the blocking
time in the active replicas since only one of them is partially
blocked during the recovery, but requiring a longer period
to get the recovering replica in a serving state. However,
the basic approach being followed in each of these trans-
fer phases is similar to ours: to collapse multiple updates on
each object, transferring only the latest version of them. Ad-
ditionally, since FOBr divides the source work among all
the previously active replicas, our blocking time could be
lower than that required in [9].

A similar approach is provided in [6] where all the ac-
tive replicas are able to collaborate in the recovering tasks
as sources of the state transfer. Additionally, it also places
its support in the middleware layer (as FOBr does), instead
of in the core of the DBMS as in [9]. However, the algorithm
described in [6] also requires a total order broadcast proto-

col and strong virtual synchrony; i.e., it requires a commu-
nication support more expensive than FOBr, needing addi-
tional rounds to deliver a message. Additionally, this recov-
ery protocol uses a missed-updates log, in order to trans-
fer all writeset broadcasts missed by the faulty node. A
version-based propagation technique like the one used in
FOBr might provide better results for long-term outages,
requiring also a lower amount of secondary storage, since
OIDs are smaller than missed updates. On the other hand, in
[6] an additional solution is described to reduce the amount
of information to be logged and transferred, using check-
pointing to install a recent copy of the database and later
applying only the updates lost since the latest checkpoint.
As a result, we cannot ensure that the performance of FOBr
is better or worse than that provided by [9] and [6].

Finally, the solution described in [4] needs a shorter re-
covering time than FOBr, but it is integrated into a hybrid
replication protocol that generally produces a higher abor-
tion rate than FOB.

7. Conclusions

We have discussed in this paper a solution to pro-
vide recovery capabilities to consistency protocols for
replicated databases minimizing the amount of informa-
tion being transferred. This is particularly suitable in wide
area networks.

Our approach ensures that the integrity constraints will
hold and the fact that the recovery work is balanced among
the system alive nodes guarantees low interference with the
database regular operation.

The recovery process design allows transactions to be ex-
ecuted even while the recovery protocol has not finished so
that users will not notice an extended interruption of ser-
vice but only minimum delays for the transactions execu-
tion.

The use of node identifiers allows the protocol to deal
with the concept of object ownership. This is the key of load
balancing: Each node contributes with a subset of the whole
bunch of objects to be recovered thus it is free to serve other
user requests.

The use of object identifiers (OIDs) and versions im-
poses very low requirements of space to keep the missed
objects. This fact makes information access faster and more
selective: Only the last version of an object is migrated,
as oppossed to the techniques where a log of transactions
needs to be maintained and each object is transferred as
many times as updates where applied on it. This advantage
is very desirable for large scale environments, reducing thus
the communication traffic.

Another task that has been considered carefully is the
maximum maintenance of data availability even during the
recovery process. In our protocol, a recovering node is in-

cluded as destination of transaction update broadcasts im-
mediately. Moreover, the objects owned by the recovering
node are completely accesible as they are managed by an
inheriting node.

References

[1] F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, Feb. 1991.

[2] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and re-
lated problems. In S. Mullender, editor, Distributed Systems,
chapter 5, pages 97–145. ACM Press, 2nd edition, 1993.
ISBN 0-201-62427-3.

[3] Instituto Tecnológico de Informática. GlobData Web Site,
2004. Accessible in URL: http://globdata.iti.es.

[4] L. Irún-Briz, F. Castro-Company, F. Garcı́a-Neiva,
A. Calero-Monteagudo, and F. D. Muñoz-Escoı́. Lazy
recovery in a hybrid database replication protocol. In
Proc. of XII Jornadas de Concurrencia y Sistemas Dis-
tribuidos, Las Navas del Marqués, Ávila, Spain, June
2004.

[5] L. Irún-Briz, F. D. Muñoz-Escoı́, and J. M. Bernabéu-Aubán.
An improved optimistic and fault-tolerant replication pro-
tocol. In Proc. of 3rd Workshop on Databases in Net-
worked Information Systems, volume 2822 of Lecture Notes
in Computer Science, pages 188–200, Aizu, Japan, Sept.
2003. Springer.

[6] R. Jiménez-Peris, M. Patiño-Martı́nez, and G. Alonso. Non-
intrusive, parallel recovery of replicated data. In Proc. of 21st
Symposium on Reliable Distributed Systems, pages 150–159,
Osaka Univ., Suita, Japan, Oct. 2002. IEEE-CS Press.

[7] B. Kemme and G. Alonso. A suite of database replication
protocols based on group communication primitives. In In-
ternational Conference on Distributed Computing Systems,
pages 156–163, 1998.

[8] B. Kemme and G. Alonso. A new approach to develop-
ing and implementing eager database replication protocols.
ACM Transactions on Database Systems, 25(3):333–379,
Sept. 2000.

[9] B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfig-
uration in replicated databases based on group communica-
tion. In Proc. of the IEEE Int. Conf. on Dependable Sys-
tems and Networks, pages 117–130, Göteborg, Sweden, July
2001.

[10] F. Muñoz-Escoı́, L. Irún-Briz, P. Galdámez, J. Bernabéu-
Aubán, J. Bataller, and M. Bañuls. GlobData: Consistency
protocols for replicated databases. In Proc. of the IEEE-
YUFORIC’2001, pages 97–104, Valencia, Spain, Nov. 2001.

[11] A. Ricciardi, A. Schiper, and K. Birman. Understanding par-
titions and the “no partition” assumption. In Proc. of the 4th
IEEE Workshop on Future Trends in Distributed Computing
Systems, pages 354–360, Lisbon, Portugal, Sept. 1993.

[12] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vi-
cente. Strong replication in the GlobData middleware. In
Proc. of Workshop on Dependable Middleware-Based Sys-
tems (in DSN 2002), pages G96–G104, Washington D.C.,
USA, 2002.

