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1. INTRODUCTION

Fault tolerance is one of the most tackle challenges in the
field of Distributed Systems, which for critical-mission sys-
tems is moved up to its most exigent level, with the target
of High Availability. For those systems, the main Quality
of Service (QoS) measurement consists in providing High
Availability. This goal requires to guarantee[1] that the sys-
tem responsiveness is up and working during the 99.9999
% of time. And, in addition to the percentage of availability
time, it is also critical for most systems the length of fail-
ures as another QoS measurement. This second measure-
ment indicates the length of the unavailability periods when
a failure arises. In a typical 24/7 application promising high
availability, the provided services must be unavailable for
less than 5 minutes per year. But in addition, for critical-
mission applications, this availability promise will not be
useful if a single failure produces an unavailability period
of 5 minutes, since this is a lapse long enough for failing
in its availability requirements. Consequently, bounding the
length of failures conforms a complementary goal not only
for critical-mission applications requiring 24/7 High Avail-
ability, but also for any Fault Tolerant system.

Update-Everywhere Replication[2][3][4] has proven to
be an adequate way for providing fault tolerance, and hence,
high availability. This technique ensures that a service pro-
vided by the distributed system can be served by several
system nodes at any time, and hence, a failure only happens
if all of the replicas fail, also benefitting performance.

An obvious and commonly accepted fact is that as a
consequence of the High Availability promise, protocols[5]
(either for replicating, recovering, or administering the dis-
tributed system) may allow any replica included in the sys-
tem to be able to serve requests at any time. Even as a com-
mon goal of any Fault Tolerant System (not only for Highly
Available systems), this remains true.

But sometimes, this is not possible, due to constraints
introduced by the presence of transactional contexts, which
in particular situations force the system to reach a point
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where no activity exists at any node, in order to perform
special actions, as for example, an administration task, or
a node recovery. Take as example an administration task
executed to replace (or upgrade) the replication protocol
used to maintain a distributed database. This change must
be done synchronously at every system replica, since the
replication protocol is a distributed piece of software which
must be coherent along the system. Moreover, a protocol
change must also take into account the running transactions
at the replacement time. The management of the protocol
change could become extremely complicated and costly if
it were performed in presence of active transactions, since
those active transactions should be “suspended” by the old
protocol, and “restored” by the new one. To this end, the
system must also maintain every single “transactional con-
text” along the normal system work, and the new started
protocol must recover it, thus degrading the overall system
performance. Consequently, a reasonable approach consists
in performing the replacement when the system contains no
active transactions. To this end, a classical approach makes
the system prevent the execution of new transactions at any
node once the protocol replacement is requested, and hence,
gradually stop the activity at each node in order to reach the
needed inactivity condition. Obviously, this gradual stop
of the activity degrades the system availability and perfor-
mance, and this is the reason for most of authors to discard
such alternative, and try to provide protocols including spe-
cific transaction-context reconstruction techniques. Unfor-
tunately, these techniques, as shown above, introduce rele-
vant overheads during the normal activity of the system.

As seen, there are many situations in which inactivity
points are needed to perform certain tasks in a distributed
system. In particular, for transactional distributed systems,
as for example distributed databases, the achievement of
those inactivity points comes with the necessity of keep-
ing the context of every transaction running in the moment
of performing the task. This suggests two alternatives: the
first one, gradually stops the activity at any node and then
performs the task; and the second alternative, intended for
highly available systems, performs the task without stop-
ping activity, but requires the continuous management of



transaction contexts, and their reconstruction when the sys-
tem can continue after the task.

We announce here an alternative to reach inactivity points,
which is not based on transaction-context reconstruction,
at the time it avoids to stop the service at any replica for
unconvenient long time periods. Our proposal is based on
the schedule of an inactivity point, agreed by every replica,
combined with a technique we name numbing transactions.

2. NUMBING TRANSACTIONS APPROACH

This approach is intended to be less aggressive than the
stopping activity solution and simpler and less costly than
the rebuild transaction approach. The underlying idea is to
reach the inactivity time window numbing the start of new
transactions at any node.

The work performed by the numbing process is as fol-
lows. When the inactivity condition request is broadcast
to the system, each node run a deterministic algorithm to
schedule: an inactivity point time that will be reached in a
determined time ��� , and a new-activity ban interval that sur-
rounds the inactivity point. Then, each new transaction only
can be started if it is supposed, according to a statistical or-
acle and a probability threshold, to finish before the sched-
uled inactivity point is reached. But, once the new-activity
ban interval is reached new transactions can not be started
even if they are assumed to end before the inactivity point.
The interval is in part used for dealing with the uncertainty
of asynchronous (but bounded) networked systems.

Each node broadcasts a STOPPED message when it achi-
eves the inactivity condition. If the system arrives to the
scheduled inactivity point and there still exist ongoing trans-
actions, the numbing process considers that this schedule
has failed, and every node repeats the process, performing
a new iteration. In each new iteration, the new scheduled
inactivity point is longer, and the new-activity ban interval
that surrounds it is also increased, in order to improve the
success probabilities. The oracle threshold is also corrected,
to improve the accuracy of the predictions. This process is
repeated as long as the inactivity condition is not reached,
guaranteeing that with a bounded number of iterations, the
algorithm behaves equivalently to the stop activity approach
commented previously. This is achieved by increasing the
ban interval faster than the inactivity schedule.

3. ANALYSIS OF THE ALGORITHM BEHAVIOR

As it could be seen our approach increases the numbing
level of the system until the non-activeness window is achieved.
The goal of this behavior is double: to affect as least as pos-
sible the current work of the system, and to reach the in-
activity system point as soon as possible. However, as it

usually occurs, these two goals imply a tradeoff. Improv-
ing one implies getting worse the other one. In fact, using
small inactivity intervals that will not affect very much the
system work, implies smaller probabilities to reach the non-
activeness point in the system. Whilst, high interval values
increase the success probabilities at the cost of getting worse
the system work.

We also perform an analytical study of the algorithm be-
havior under different scenarios. We use the notion of load
profile in order to describe those scenarios, and its charac-
terization is done through a number of parameters. The def-
inition of a profile is �	��

����� with ���������������� ��� where
��� is the probability of transactions of class ��� to appear,
and �� � is the average length of transactions of class ��� . Our
studies show the impact of the average transaction length of
transactions, the standard deviation of the profile, the com-
pactness of the profile (defined as the variation of lengths, as
a generalization of the kurtosis of a statistical distribution),
and others. Our results evidence a surprising independence
of the algorithm behavior regarding most of the parameters,
being the compactness the most relevant one.

Our experiments evidence that the overhead of the algo-
rithm (which is only introduced during the inactivity condi-
tion search) can be kept fixed, at the cost of increasing the
time the algorithm needs to reach the inactivity condition.
Analogously, if the goal is to reach rapidly such condition,
the overhead is increased, being the worst case equivalent
to the stopping approach.

We also show a good balance between these two ex-
tremes, providing advantageous results for the most unfa-
vorable profiles. The introduced overhead in such worst
case remains below 30% in respect to the normal system
performance, at the time the inactivity condition is reached
in less than 7 times the average transaction length (atl) in
this worst case. For a common profile, the inactivity condi-
tion is reached in 3 times the atl, with overheads below 8%
over the normal system performance.
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