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1. Introduction

The increasing business globalization, and the growing
diffusion of Internet and of Wide Area Networks (WANs)
in general, creates for corporations and institutions the need
to store very large amounts of data in distributed databases
that span buildings, cities, countries and even continents.
These data must be accessed by users, also geographically
scattered, that must consult or work with them, very often
in a concurrent way. This sharing and interaction is not well
handled by traditional data base methods, and requires new
software engineering processes.

We will develop our Optimistic Two-Phase Locking
(O2PL) consistency protocol [2], along with its correspond-
ing recovery protocol –that has never been described by its
original authors–, in a replicated architecture called Glob-
Data [4]. The overall objective of GlobData is to design
and produce an efficient software development tool and
support system called COPLA, to provide application de-
velopers with a global view of an object database reposi-
tory. It provides a transactional access to geographically
distributed persistent object repositories, no matter where
they are physically located. Therefore, it reduces the tradi-
tional bottleneck of remote access, allowing application de-
velopers to efficiently work against a single logical object
environment, although the actual objects are geographically
distributed.

We consider a fail-stop and primary partition system
model. In this context we propose two recovery protocols.
The first one mixes the advantages of logs and object states
transfer. It stores both, logs of transactions performed while
a node was down and object identifiers (OIDs) modified by
these transactions. A threshold is set up so as to neglect
the logs due to its size and to start object state transmission
for those objects modified while a node was down. The
second protocol serves local transactions in the recovering
replica even in the recovery process, but it cannot use log
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transfers. Additionally, in both cases the extra recovery
workload can be distributed among all the alive nodes so
all nodes are equally penalized, and none of our algorithms
needs to block any of the non-recovering replicas, following
an approach similar to that described in [3]. A multi-version
concurrency control solution is assumed in the underlying
DBMS, and this guarantees that the OID-based algorithm
does not block the non-recovering replicas.

In the following, we will depict the consistency protocol
and the recovery protocols used in our system.

2. Optimistic Two-Phase Locking in COPLA

We have developed an implementation of the O2PL orig-
inally proposed by Carey in [2]. In fact, it is an optimistic
version of the Two Phase-Locking (2PL) described by Bern-
stein et al. in [1]. It handles read requests and deadlock
detection exactly the same way 2PL does. However, they
differ in how replicated data items are treated. When a co-
hort updates a data item, its write request is managed lo-
cally, but it defers requesting locks on remote copies until
the commit phase is reached. Since locks on copies are de-
layed until end of transaction, blocking and deadlocks may
become rather late in the execution of a transaction. It de-
fines a new kind of locks, called copy-locks, which behaves
the same way as an ordinary write-lock and speeds up the
detection of deadlocks.

3. Recovery Protocols for O2PL in COPLA

Here is sketched a first draft of our recovery algorithms
proposal. We propose two different alternatives, which pro-
vide different parameters settings, such as the transmission
of logs missed by the faulty node or, otherwise, the trans-
mission of the state of objects modified while the failed
node was out. This first alternative will block the recover-
ing node; i.e., it will not accept local transactions processing
until the end of the recovery process.



The second approach will only store OIDs that have been
modified while the faulty node crashed. Once the node is
raised again, it will receive all the updates from all the alive
nodes (this workload will be uniformly distributed). At the
same time, it will allow to create new local transactions, that
will be aborted either when an update request comes or at
commit time if the local transaction accesses or updates an
outdated object.

3.1. Switching Between Log and Object Transfer

An outline of this algorithm can be described in the fol-
lowing steps:

1. Alive nodes will not request copy-locks on the recov-
ering node until the recovery process is done.

2. Thus, the transaction updates and the OIDs are stored
by all alive nodes, which will be transmitted once the
node rejoins the system.

3. Once a node is raised, all the transaction updates will
be sent to the faulty node1. Meanwhile, all transac-
tion updates generated by active nodes are stored too,
as long as the recovery process takes place. This will
continue indefinitely until the log size is smaller than a
given value.

4. In the last transfer, a flag is set notifying the recovering
node about the end of data transfers.

5. Then, the recovering node is considered to be alive (it
broadcasts an “I am alive” message) and locks can be
requested following the ordinary procedure. It will not
answer to this lock requests until all pending transac-
tion updates have been applied.

6. A node being recovered will not accept local transac-
tions until the previous step has finished.

3.2. Non-Blocking on Recovering Node

As it has been previously depicted, this recovery proto-
col stores OIDs updated by transactions while a node has
crashed. This approach avoids multiple update transfers on
the same object, reducing them to the latest one. The algo-
rithm is described hereafter:

1. Whenever a node fails the rest of alive nodes store the
OIDs subsequently modified.

2. Once the faulty node is up, the rest of nodes deliver
the state of objects modified. At the same time, it can
immediately start local transactions following a special
policy:

1We will also consider object state transfer instead of transaction up-
dates whenever the amount of data is considerably large.

(a) If a local transaction is accessing an object that is
going to be updated, it will be aborted.

(b) Otherwise, it reaches the commit phase. The read
and write locks acquired are sent to an alive node,
it checks whether these objects are up to date
(searching them in the set of OIDs to be trans-
ferred to the recovering node), otherwise these
lock requests are rejected and the transaction is
aborted. If it is not aborted it can request copy-
locks on the rest of alive nodes.

3. The end of this algorithm uses steps 4 to 6 of the pre-
vious protocol.

4. Conclusions

This extended abstract deals with the definition of recov-
ery algorithms to be implemented in a replicated middle-
ware architecture. This architecture utilizes several consis-
tency protocols, one of them is the O2PL proposed by Carey
et al. in [2]. We have outlined two recovery algorithms for
this consistency protocol. The first one may use either a log-
or OID-based update transfer to the recovering node. This
may speed up the recovery process, since logs are a better
solution in case of short-term crashes, but objects transfers
are more adequate in the long-term case.

The second recovery algorithm allows local transactions
service in the recovering node. Usually this may lead to a
high abortion rate, but this solution can be optimal for ap-
plications with a high degree of locality, at least for update
accesses.
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