Wide-Area Replication Support for Global Data Repositories

*

Hendrik Decker!, Luis Irin-Briz', Rubén de Juan-Marin!, J. E. Armendériz?, Francesc Mufioz-Escoi®

! Instituto Tecnolégico de Informética
Universidad Politécnica de Valencia
Campus de Vera, 46022 Valencia, Spain
{hendrik, lirun, rjuan, fmunyoz}@iti.es

Abstract

Wide-area replication improves the availability and
performance of globally distributed data repositories.
Protocols needed for maintaining replication consis-
tency may cause an undesirable overhead. Different use
cases of repositories suggest the use of different replica-
tion protocols, each requiring different meta data. The
WADIS middleware for wide-area replication support of
distributed data repositories makes use of ready-made
database resources such as triggers and views, employ-
ing the underlying database management system to sup-
port replication protocols, the implementation of which
thus becomes more succinct and much simpler. WADIS
enables the simultaneous maintenance of multiple meta
data for different protocols, so that the latter can be
chosen, plugged in and exchanged on the fly in order to
adapt to the needs of different use cases best.

1 Introduction

For enhancing the user acceptance of globally
distributed data repositories, high availability and
fault tolerance are key criteria. Both are support-
able by replication. However, a possibly annoying
drawback of replication is the overhead for main-
taining the consistency of replicated data and the
complexity of developing suitable protocols [2].

In this paper, we introduce WADIS, an instance
of the MADIS architecture [6] for wide area replica-
tion of global repositories. The architecture is two-
layered and makes the consistency manager (CM)
independent of any DBMS particularities. WADIS

*Supported by the Spanish grant TIC2003-09420-C02
and the Generalitat Valenciana grant Grupos05/067.

2 Dpto. Matemética e Informética
Universidad Piblica de Navarra
Campus de Arrosadia, 31006 Pamplona, Spain
enrique.armendarizQunavarra. es

takes advantage of ready-made database resources
so that the protocols’ overhead is kept to a mini-
mum.

The upper layer consists of the protocol func-
tionalities for replication management, the lower
of a mechanism for extending the original database
schema. The extension exclusively uses standard
SQL features such as triggers and stored proce-
dures, so as to provide to the upper layer the in-
formation needed to carry out its tasks. Infor-
mation and meta-data about records created, ac-
cessed or deleted in a transaction are automati-
cally stored in particular tables of the extended
schema. The consistency protocol thus is able
to directly dispose of that information, instead of
having to use complex and error-prone routines
for that, otherwise. Thus, the handling of each
protocol’s meta-data becomes much simpler, when
compared to other middleware-based systems for
replicated databases, e.g., COPLA [3]. The up-
per layer can be implemented in any programming
language, on any platform with an SQL interface,
since its functionality exclusively relies on ready-
made standard SQL constructs executed by the
underlying DBMS. Of course, the performance of
such a middleware will always tend to be some-
what worse than that of a core-based solution,
such as Postgres-R [4], but its advantage is to
be independent of the given database and easily
portable to other DBMSs.

MADIS supports the pluggability of protocols,
i.e., a suitable protocol (e.g., with eager or
lazy update propagation, optimistic or pessimistic
concurrency control, etc) can be freely chosen,
plugged in and exchanged, according to the shift-

ing needs of given applications, even at runtime.
Protocol switching is seamless and fast, since the
meta data for each protocol in the WADIS reper-
toire is readily at hand at plug-in time.

In WADIS, the more general MADIS protocol
repertoire is trimmed to internet-based wide area
networks. Globally distributed repositories are a
typical case. Replication consistency characteris-
tics of global repositories relying on WANSs usually
are quite different from ethernet-based or wireless
LANs. Characteristics of different kinds of proto-
cols are surveyed in [7].

Section 2 describes the WADIS architecture in
general. Section 3 describes the schema extensions
effected by WADIS. Section 4 outlines an imple-
mentation of the CM as a standard JDBC driver.
Section 5 compares our approach with others. Sec-
tion 6 concludes the paper.

2 Architecture

The lower layer of the WADIS architecture
caters for schema modifications of the underly-
ing database, involving the creation of additional
tables called report tables. The upper layer han-
dles transaction requests from users or applica-
tions and uses the report tables for transparent
replication management.

The report tables account for transactions in
the local node, and are updated within the trans-
actions accounted for. The schema extension also
includes some stored procedures which hide some
schema extension details to the upper layer.

The upper layer is sandwiched between client
applications and database, acting as a database
mediator. Accesses to the database as well as com-
mit/rollback requests are intercepted, such that
the replication protocol can transparently do its
work. The protocol may access the report tables
to obtain information about transactions, in or-
der to cater for required consistency guarantees.
The protocol may also manipulate the extended
schema using stored procedures.

The implementation of the CM, i.e., the core of
WADIS, is independent of the underlying database.
We are going to describe a Java implementation,
to be used by client applications as a common

Figure 1. Layered WADIS architecture.

User Aplication
Jdbc interfaces Consistency Consistency
Manager Protocol
(JDBC Driver)
Standard JDBC Driver
O (@S]
Extended —=
Schema e
Original
Schema

JDBC driver. Its consistency control functional-
ity is provided transparently to users and applica-
tions. The CM handles transaction requests, in-
cluding multiple sequential transactions in differ-
ent JDBC consistency modes, and communicates
with database replicas. It provides the plug-in for
the replication protocol chosen according to given
needs and requirements. All supported protocols
share some common characteristics. Communica-
tion between the database replica is controlled by
the CM which is local to each network node.

3 Schema Modification

The lower WADIS layer consists of an extension
of the underlying database schema. Distribution
of a given database is initiated by an automatic
migration of the schema to each replicated node.
Migration includes the creation of tables, views,
triggers and database procedures for maintaining
records about activities performed at transaction
time. In particular, writesets and other transac-
tion meta data are recorded. As different meta
data are needed by different protocols, the exten-
sion caters for the meta data of each protocol in
the WADIS repertoire, also of those that are cur-
rently not plugged in. Optionally, also information

about readsets (possibly including the information
read to perform queries) can be maintained. If
that option is not taken, any protocol that would
need such information has to perform some work
that otherwise is done on the upper layer.

3.1 Modified and Added Tables

To each table T; in the original schema, WADIS
adds a field local T;_id for identifying and link-
ing each row of T; with its associated meta data.
This identifier is local to each node, i.e., each row
may have different local T;_id’s distributed over
the network. Each row also has a unique global
identifier, composed of the row’s creator node ID
and the row identifier local to that node, which is
equal in all replicas.

For each T;, a table WADIS Meta T} is created,
containing the meta data for any replication pro-
tocol in the repertoire. WADIS Meta_T; contains

e local_id local identifier; primary key.

global_id unique global identifier.
e version the row’s version number.

e transaction_id ID of the last transaction
that updated the row.

e timestamp most recent date the row was
locally updated.

In general, it contains all the information
needed by any protocol in the WADIS repertoire.
Hence, as all fields are maintained by the database
manager, any such protocol is suitable to be
plugged in deliberately.

In addition to meta tables, WADIS defines a ta-
ble WADIS_TrReport containing a log of all trans-
actions, with the following attributes:

e tr_id transaction identifier; part of primary
key.

e global_id global row identifier; part of pri-
mary key.

e field_id Optional accessed field identifier;
part of primary key.

e mode.

modified).

access mode (read/insert/delete/

For each transaction, one record for each field
of each row is maintained in the MADIS TrReport
table. Once a transaction 7 is committed, the con-
sistency manager eliminates any information re-
lated to 7 from MADIS TrReport. Note that sev-
eral MVCC-based DBMSs do not use locks with
row granularity, but block access to entire pages
or even tables. Such systems must use multiple
“per transaction” temporary TrReport tables.

3.2 Triggers

WADIS introduces a set of trigger definitions in
the schema. they can be classified in three groups:

o Writeset managers for collecting informa-
tion related to rows written by transactions.

e Readset managers for collecting information
related to rows read by transactions; their in-
clusion is optional.

o Metadata automation
data in meta tables.

for updating meta

The writeset collection uses, for each table T; in
the original schema, triggers which insert informa-
tion related to write-accesses to T; at transaction
time in the TrReport table.

The following example shows such a trigger, for
the insertion into mytab (say). With getTr_id (),
it gets the transaction’s identifier. A row is in-
serted in the TrReport table for each insertion to
mytable, in order to keep track of the transaction.
Deletions and updates are handled analogously.

CREATE TRIGGER WSC_insert_mytab

BEFORE INSERT ON mytab

FOR EACH ROW EXECUTE PROCEDURE
tr_insert(mytab,getTrid() ,NEW.1l_mytab_id)

Collecting readsets is optional, due to high costs
and also because some protocols can do without
readsets Costs are high since the implementation
must laboriously compensate for a lack of TRIGGER
...BEFORE SELECT in the SQL-99 standard.

Another group of WADIS triggers is responsible
for the meta data management. Whenever a row
is inserted, such a trigger also inserts the row in
the meta data table WADIS_Meta_T;. Since the
creator node’s identifier (i.e. the node where the

row was created), can be inferred from the row’s
global_id (i.e. the node where the row was cre-
ated), and the local identifier in the creator node
(maintained in another WADIS meta table), all
fields in WADIS_Meta_T; can be filled without in-
tervention of any consistency protocol.

Whenever a row is accessed in write mode,
another WADIS trigger updates the meta data
of that row in the corresponding meta table,
i.e., it updates the version, the transaction
identifier, and timestamp of the record in the
given meta data table. Conversely, whenever a
row is deleted, the corresponding meta data row
also is deleted, by yet another WADIS trigger.

In summary, WADIS adds, for each table, three
triggers, of type BEFORE INSERT, BEFORE UP-
DATE, BEFORE DELETE, which cater for trans-
action report management and meta data main-
tenance. Optionally, for readset management, the
INSTEAD OF trigger construct must be used, for
redirecting write accesses to approprioate tables.

4 Consistency Manager (CM)

WADIS makes use of ready-made database con-
structs for consistency management. Automati-
cally generated database triggers collect informa-
tion about accesses at transaction time for the CM,
which in turn is independent of the DBMS. Thus,
the CM can be ported from one platform to an-
other with minimal effort. This section sketches a
Java implementation of CM and how it makes use
of the WADIS schema modification.

In our prototype, a JDBC driver encapsulates an
existing PostgreSQL driver, for intercepting user
application requests. They are augmented to new
request for taking care of the meta data associated
to the arguments of the requests. Meta data han-
dling is completely hidden from users and appli-
cations. The plugged-in protocol is notified about
any application request to the database, includ-
ing query execution, row recovery, transaction ter-
mination (i.e. commit/rollback), etc. Thus, the
protocol can easily accomplish its tasks regarding
replication consistency.

WADIS intercepts queries by means of en-
capsulating the Statement class. Responding
to createStatement or prepareStatement calls,

WADIS generates statements that take care of
query execution. For each user application query
request, WADIS calls the processStatement ()
operation of the currently plugged-in protocol.
The latter updates the transaction report, and
may modify the statement by adding the patches
needed to retrieve some meta data. However, such
modifications are only needed by a few consistency
protocols, since the meta data can be retrieved
from the report tables, once the original query has
been completed. Optimistic consistency protocols
do not need such meta data before the transac-
tion has requested a commit. The WADIS query
execution process is shown in figure 2.

madis. madis.Core
ResultSet
postgressql.

madis.Statement

mS madis.grotocol

postgresqgl.
ResultsSet

|
I |
I
: I
! processOu‘bry(sthree)

Stat t
executeQuery(#qI) atemen

! p{s parseQuery(trid, sql)

| —>
I

I -

- !

1 _________ sql_tree’

|

I

Figure 2. Query Execution

Whenever, for a transaction, the user or appli-
cation requests a commit or when a rollback is in-
voked, WADIS notifies the protocol, which thus has
the opportunity to involve any replica nodes for
satisfying the request. If the protocol concludes
its activity with a positive result, then the trans-
action is ready to commit in the local database,
and the CM is notified accordingly, who in turn
responds to the user application. Any negative
result obtained from the protocol will be notified
directly to the application, after the abortion of
the local transaction. Similarly, rollback() re-
quests are also intercepted, redirected to the CM
and forwarded to the protocol.

5 Related Work

With regard to meta data, replication ap-
proaches can be classified as middleware-based (all
work is done by a database-external middleware),
trigger-based (meta data are collected by triggers
and calls to external procedures), shadow-table-
based (using shadow copies to build update mes-
sages for replicas), and control-table-based (times-
tamping each row). Benefits and drawbacks of
each are discussed in [9, 10]

In Postgres-R and Dragon [5], a DBMS core is
modified to support distribution. This approach
strongly depends on the underlying DBMS thus
not portable, and must be reviewed for each new
DBMS release. However, its performance is gen-
erally better than a middleware architecture. In
Globdata [3], a middleware providing a standard
Java API applications was used. Although pro-
tocols are pluggable, the system’s API is propri-
etary, thus impairing the development of appli-
cations. Moreover, Globdata’s object-orientation
turned out to be a drawback. Solutions based on
Java, implemented as JDBC drivers, can be found
in C-JDBC [8] and RJDBC [1]. The former empha-
sizes load balancing, the latter reliability. Porta-
bility is highly complex. PeerDirect [9] uses trig-
gers and procedures for replication, but no other
than a predefined protocol is usable.

6 Conclusion

Different applications require different kinds of
replication management. Hence, an adequate
choice of appropriate protocols is due. Hence,
a middleware which provides flexible support for
choosing, plugging in, operating and exchanging
suitable protocols is desirable for many applica-
tions. This innovative kind of pluggability is be-
ing realized in MADIS. As an instance of the lat-
ter which is trimmed to the purposes of wide area
replication in globally distributed repositories, we
have featured WADIS. It disposes of an ample
repertoire of replication protocols, each with par-
ticular consistency guarantees, from which WADIS
allows to plug in, run and exchange suitably cho-
sen ones on the fly. Our implementation makes
use of standard SQL-99 constructs such as tables,

views, triggers, constraints and stored procedures.
Experimental results of a prototype implementa-
tion will appear in a follow-up publication.

References

[1] J. Esparza, F. Munoz, L. Irin, J. Bernabéu:
RJDBC, a simple database replication engine.
Proc. 6th ICEIS, 587-590, 2004.

[2] J. Gray, P. Helland, P. O’Neil, and D. Shasha.
The dangers of replication and a solution.
Proc. ACM SIGMOD, 173-182, 1996.

[3] L. Irun, F. Munoz, H. Decker, J. Bernabéu:
COPLA: A Platform for Eager and Lazy

Replication in Networked Databases. Proc.
5th ICEIS, Vol. 1, 273-278, 2003.

[4] B. Kemme: Database Replication for Clusters
of Workstations. PhD thesis, ETH Zurich,
2000.

[5] B. Kemme, G. Alonso: A Suite of Database
Replication Protocols based on Group Com-
munication Primitives. Proc. Distributed
Computing Systems, 156-163, 1988.

[6] http://www.iti.upv.es/madis

[7] F. Munoz, L. Irtin, H. Decker: An Overview
of Different Approaches to Database Replica-
tion. Encyclopedia of Database Technologies
and Applications, Idea Group, 2005.

[8] http://c-jdbc.objectweb.org

[9] Overview & Comparison of Data Replication
Architectures. Peer Direct whitepaper, Nov.
2002.

[10] Replication Strategies: Data Migration,
Distribution and Synchronization. Sybase
whitepaper, Nov. 2003.

