
Implementing Network Partition-Aware
Fault-Tolerant CORBA Systems

Stefan Beyer, Francesc D. Muñoz-Escoı́ and Pablo Galdámez
Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia

Spain
{stefan, fmunyoz, pgaldamez}@iti.upv.es

Abstract— The current standard for Fault-Tolerance in the
Common Object Request Broker Architecture (CORBA) does
not support network partitioning. However, distributed systems,
and those deployed on wide area networks in particular, are
susceptible to network partitions.

The contribution of this paper is the description of the design
and implementation of a CORBA fault-tolerance add-on for
partionable environments. Our solution can be applied to an
off-the-shelf Object Request Broker, without having access to
the ORB’s source code and with minimal changes to existing
CORBA applications.

The system distinguishes itself from existing solutions in the
way different replication and reconciliation strategies can be
implemented easily. Furthermore, we provide a novel replication
and reconciliation protocol that increases the availability of
systems, by allowing operations in all partitions, including non-
majority partitons to continue.

I. INTRODUCTION

The Common Object Request Broker Architecture
(CORBA) [1] originally did not provide fault-tolerance. The
Fault-Tolerant CORBA specification (FT-CORBA) [2] has
been added to introduce a degree of fault-tolerance. However,
one of the biggest draw-backs of FT-CORBA, is that it
does not consider network partition failures. As distributed
systems become more and more used in wide-area networks,
communication link failures are likely. Link failures might
split a network into two or more partitions which are isolated
from each other. Replication techniques reduce the likelyhood
of a resource being unreachable. Nevertheless, updates to
object states on isolated nodes can lead to inconsistencies,
as not all replicas of the object might be reachable for
synchronising this new object state. To deal with this
consistency problem, replication and reconciliation protocols
are required. These protocols are very application-specific,
since a certain degree of inconsistency might be acceptable
for one application, but not for another. Similarly, certain
problems, such as nested invocation might simply not arise in
some applications. Existing solutions to add partition-aware
replication to CORBA do not allow these application-specific
replication policies to be configured easily.

The main contributions of this paper are twofold: Firstly,
we present the architecture of a middleware add-on that adds

fault-tolerance to CORBA in a partitioned environment by
means of replication. The system is part of the DeDiSys project
[3]. DeDiSys aims at providing fault-tolerance through add-
ons for various middlewares. In contrast to other systems,
the modular design of the DeDiSys replication support allows
different replication and reconciliation policies to be provided
easily. The design of the replication support is based on a
separation of mechanism and policy. We extract replication
policy from the replication manager and place it into a
replication protocol component. The replication manager and
the replication protocol components provide fixed interfaces.
New replication protocols can be implemented by replacing
the replication protocol component.

The second contribution of this paper is a replication and
reconciliation protocol, which allows consistency to be traded
for higher availability in a controlled manner. The Primary
per Partition Protocol (P4) is the default protocol in our
architecture. The protocol allows consistency to be traded for
availability in a configurable manner. Objects in all partitions
of a partitioned systems are allowed to continue serving
requests, including write requests. The state of replicas of
the same objects in different partitions may diverge in some
cases. Whether or not possible state convergence is allowed
for a certain object can be configured by the application
programmer. To do so, we base consistency on integrity
constraints, which a programmer can use to define restrictions
on the state of a single object or between several objects.
These constraints can be marked as critical for those objects
for which strict consistency is required; that is, those objects,
whose state should not diverge in different partitions.

In a system, which allows the state of replicated objects
in different partitions to diverge, protocols for restoring con-
sistency at the time partitioning is repaired are required. To
this end, we also introduce a reconciliation protocol, which
can restore consistency either fully automatically, or with the
help of the application, depending on how the protocol is
configured. A general description of the P4 protocol together
with a analytical evaluation has been published in [4]. In this
paper we describe a revised version of the protocol and its
actual implementation in our CORBA architecture.



The rest of this paper is organised as follows: In Section II
we present realted work in the field of fault-tolerant CORBA
architectures. In Section III the general architecture of the
DeDiSys middleware add-on is described, together with the
employed system model. This is followed by a description of
the mapping of the general DeDiSys architure to the CORBA
middleware and the actual implementation in Section IV. In
Section V we introduce our new replication and reconciliation
protocol. Finally, we conclude the paper with a description of
future work and a conclusion in Section VI and Section VII
respectively.

II. RELATED WORK

In order to add fault-tolerance to CORBA, certain mech-
anisms, such as replication, are required. Existing systems
either implement the FT-CORBA [1] standard to provide fault-
tolerance or suggest their own fault tolerance extensions. Some
systems reviewed here were simply developed before the
standard was defined. Other systems try to overcome some
of the drawbacks associated with FT-CORBA. As DeDiSys is
a research project, aimed at partitionable distributed systems,
which are not covered by the FT-CORBA standard, we do not
consider FT-CORBA compliance as the main factor for this
review.

In literature, approaches to add fault-tolerance mechanisms
to CORBA are typically classified into three categories: In the
integration approach, the ORB itself is modified to include
the required fault tolerance mechanisms. It is easy to provide
transparency using this approach, but existing commercial
ORBs cannot be used. Orbix+Isis [5], Electra [6] and Maestro
[7] are examples of systems using the integration approach.
More recently, the authors of [8] and [9] have proposed the
integration of group communication support by modifying the
CORBA Open Communication Interface (OCI) and using the
Pluggable Protocols Framework [10]respectively.

In the service approach, the mechanisms required to
provide fault tolerance are provided as CORBA services.
This approach has the advantage that existing ORBs can
be used. However, transparency is difficult to achieve with
this approach, as applications have to be aware of the fault
tolerance services. Object Group Services (OGS) [11] and
Newtop Object Group Service [12] provide services for object
group support which can be used to provide fault-tolerance.
FTS [13], OPEN EDEN [14], IRL [15] and AQuA [16]
are examples of reliable CORBA systems using the service
approach, although it can be argued that these systems also
use elements of the interceptor approach.

In the interceptor approach, CORBA invocations are inter-
cepted and redirected to fault tolerance mechanisms. Recent
systems make use of CORBA Portable Interceptor [1]. The
only systems using a pure interception approach we are aware
of are Eternal [17] and DAISY [18].

Three of the systems mentioned above - Maestro, FTS
and Eternal - provide some support for network partitioning.
Therefore, these systems are reviewed here in more detail.
Newtop also provides support for network partitioning, but, as

a mere object group toolkit, does not provide any support for
reconciling replica state after partitioning. Therefore, we do
not discuss Newtop in detail here.

Maestro uses the integration approach. The system was
developed before the FT-CORBA specification existed. It is
not a pure CORBA implementation, but was designed as a
distributed object layer to be used on its own or to be integrated
in CORBA or in other distributed object technologies. Only
updates in one partition are permanently accepted, but in con-
trast to the regular primary partition model [19], the decision
on which partition dominates is postponed until recovery time.
At recovery time the partition with “the most updated” state
is chosen.

FTS is an attempt to remain close to the FT-CORBA
specification, whilst also providing support for partitioning.
The system uses a mixture of the service and interceptor
approaches. A group object adapter (GOA) is provided as a
CORBA object adapter. The GOA is implemented on top of
the portable object adapter (POA) to allow for object groups.
In DeDiSys we use also use the idea of an object adapter
providing object group support. FTS uses the primary partition
model for consistency in case of network partitioning.

Eternal is probably the most advanced of the systems of
which we are aware in terms of support for partitioning,
despite being one of the oldest systems. The system allows
for active and passive replication. The Eternal replication
manager keeps track of replicated objects. CORBA messages
are intercepted at the transport level and are redirected using
the Totem group communication toolkit [20]. As far as we
know, Eternal is unique in partition-aware CORBA systems,
in that it does not use a variant of the primary partition model,
but does allow operations in all partitions to continue. A simple
reconciliation algorithm is provided. Conflicts that cannot be
resolved are reported to the application.

In DeDiSys we make use of some techniques from Eternal,
DAISY and FTS. In particular, we use interception, as in
Eternal and DAISY, and the implementation of the replication
support as a CORBA object adapter, as in FTS. In contrast to
Eternal’s interception at the operating system level approach
we use DAISY’s approach of using portable interceptor, which
were not available when Eternal was designed. Furthermore, in
DeDiSys we aim at making replication and recovery flexible
and configurable. To this end we do not embed replication
protocol and reconciliation policy in the replication manager,
as done in Eternal, but provide an easily interchangeable
replication and reconciliation protocol component.

III. THE DeDiSys ARCHITECTURE

A. Overview

The DeDiSys project aims to introduce fault-tolerance in
distributed object systems through replication. In replicated
systems, there is a trade-off between availability and consis-
tency, as it is difficult to maintain consistency between replicas
without restricting certain object accesses when parts of the
distributed system are inaccessible. Consistency is particularly
difficult to maintain, if network link failures are to be tolerated



and all parts of partitioned system are to continue operating.
In DeDiSys we aim at the trade-off between availability and
consistency to be configurable. The architecture is designed
as a add-on for various middlewares, in which different
replication and reconciliation techniques can be implemented.
This paper focuses on the design and implementation of the
CORBA add-on.

The main idea behind DeDiSys is to base consistency
on integrity constraints. Integrity constraints are present in
most applications, but are usually implicitly hard-coded in the
software. In DeDiSys integrity constraints can be expressed
explicitely and are evaluated by a Constraint Consistency
Manager (CCM). The CCM is not the subject of this paper.
It has been described previously in [21]. In this paper we
assume the presence of such a CCM component, which allows
constraints to be registered and evaluated. Integrity constraints
are associated with object methods, in the form of pre- and
post-conditions, and with sets of objects. We distinguish two
priorities for constraints. A constraint can be marked critical or
regular. Replication protocols can make use of these priorities
to temporarily allow certain inconsistencies.

The P4 replication protocol is the default replication pro-
tocol in the DeDiSys architecture. This novel protocol allows
objects in all partitions in a partitioned system to be updated.
Operations are rejected when a constraint is not met or cannot
be evaluated. Furthermore, constraints the protocol makes use
of the priorisation of constraints. The consistency of regular
constraints can be relaxed during the presence of a failure
in the system. That is, it is possible to evaluate non-critical
constraints using possibly out of date object states. Critical
constraints on the contrary can only be evaluated on up-to-
date data. Different replicaton protocols might make different
use of the priorisation of the constriants or not use it at all. In
theory it would be easy to extend the architecture to provide
more than two constraint priorities, but since all the replication
protocols that have been implemented so far only use the two
priorities, we have not done so.

B. System Model

The “crash model” [22] is assumed for node failures, and
the “link failure model” [23] for communication services. As
we cannot distinguish between a failed node and an isolated
node until recovery time, we treat every failure as partitioning.

In order to provide support for partitioning, DeDiSys uses
the Spread group communication and membership toolkit [24].
Spread provides the extended virtual synchrony model [25].
This model simplifies the reconciliation process of potential
replication protocols, as nodes are aware which views have
been installed in re-joining partitions.

Furthermore, we assume the presence of a transaction man-
ager that provides nested transaction. DeDiSys provides such a
transaction manager, which is based on the group membership
service, rather than on time-outs as other transaction managers
do. However, a detailed description of the transaction manager
is outside the scope of this paper.

We employ the passive replication model in our default
replication protocol, although the architecture can easily be
extended to deal with active replication. In passive replication
[26] [27] requests are only processed by one primary copy.
Updates are then propagated to the secondary copies. The
passive model lends itself to a system where consistency is
to be configured as it allows variations in the way updates
are propagated. If synchronous update propagation is used, a
primary copy must propagate any updates immediately; that
is, before the result of the operation that has caused the update
is returned to the client. In asynchronous update propagation
the result is returned and the propagation of state changes
performed some time later. We leave the choice of which
update propagation paradigm to use to the replication pro-
tocol, although our default protocol uses synchronous update
propagation.

IV. CORBA IMPLEMENTATION

A. Modular Design

In order to allow different replication strategies to be im-
plemented as easily as possible, we have based our design on
a separation of mechanism and policy. Replication mecha-
nisms are basic primitives, such as the ability to create a replica
or manage the relation between object references and replica
references. The provided mechanisms can be used in different
ways to implement replication policies, such as the object state
transfer policy or the reconciliation strategy. Policies may vary,
whereas mechanisms are provided to support different policies.

In conventional systems policies and mechanism are often
embedded in the same component. This makes it difficult to
implement different policies. In DeDiSys, we extract repli-
cation and reconciliation policy from the main replication
component, which only provides mechanisms that allow to
implement a variety of policies.

As DeDiSys is a middleware add-on, it is one of our design
goals to allow it to be integrated easily in an existing CORBA
environment. We use interception of CORBA invocations to
redirect call through DeDiSys, in order to allow the integration
of DeDiSys with an off-the-shelf ORB, without having to
modify the ORB.

Replication should be as transparent to the application as
possible, to avoid having to apply many changes to existing
applications. The integration of DeDiSys on the client side
is completely transparent. That is, the client is not aware
it is dealing with a replicated object and existing CORBA
clients do not have to be modified to use DeDiSys. However,
the server application should have some control over the
replication support. Therefore, a simple interface provides
mechanisms, such as replica creation, and has to be used by
the server application. It is our goal to make CORBA server
applications as easy to port to DeDiSys as possible, whilst
allowing configurability of key parameters, such as number
and location of replicas.

B. Implementation



Fig. 1. Replication Support Overview

1) Overview: Figure 1 shows how the DeDiSys replication
support is integrated in CORBA. Portable interceptor are used
to transfer control to the replication support, without client
code having to be modified. The client invokes an object in
the standard CORBA way, using a logical object reference.
The DeDiSys replication support takes care of identifying the
real object reference of the primary replica. The client-side
request interceptor is used to intercept object invocations,
before they are sent. This interceptor uses the replication
suport to obtain the reference of the primary replica and
redirects the invocation to this primary replica. The replication
manager is also used to trigger some replication protocol
specific tasks that might need to be executed before the
invocation can begin.

On the server side, the server-side request interceptor also
intercepts the incoming request, in order to trigger replication
protocol specific tasks. The object invocation is then executed
in the standard CORBA way. Before the result is returned to
the client, control is again passed to the replication support.
At this stage the replication protocol might require changes in
the accessed object’s state to be propagated to the secondary
replicas of the object.

Before the request is delivered to the client application the
reply is again intercepted on the client side by the client-side
reply interceptor. At this stage a replication protocol might
trigger consistency checks that could cause the invocation to
be undone.

C. Object Reference Management

We distinguish between logical object references and
replica references. When using the term logical object refer-
ence, we are referring to an object, which might have various
replicas, rather than a specific replica. When using the term
replica reference we are referring to the actual reference of an
object replica; that is, a reference of a real CORBA implemen-
tation of a logical object. Only logical object references are
visible to client applications. The replication support keeps
track of which logical object references are associated with
which replica references and redirect invocations on logical
object references to the correct replica object reference.

Each object is also given a unique system wide string name.

Each object name corresponds to exactly one logical object
reference, but to several replica references.

D. System Modes

Fig. 2. P4 System Modes

During operation we distinguish between three system
modes. These modes and the transitions between them are
pictured in figure 2. In normal mode there are no detected
faults present in the system. The membership view on each
node contains all the nodes in the system; that is, the all
the nodes that the system is configured to include. When
a membership view change is detected by the underlying
group membership service, the system moves into degraded
mode. In degraded mode the replication protocol might have
to take different actions. For instance, certain operations might
have to be rejected or version numbers of updated objects
might have to be saved to a data-structure. When the group
membership service reports one or more or joining or re-
joining nodes, the system enters reconciliation mode. Control
is passed to the replication protocol which in turn can invoke a
reconciliation protocol sub-component. A replication protocol
might reject, block or accept operations during this mode,
depending on how it deals with the consistency issues that
arise with accepting state changes during the resolution of
possible inconsistent states. When reconciliation is complete
the system either returns normal mode or to degraded mode,
depending on whether all faults have been repaired or whether
some nodes are still not in the new membership view.

E. Components

1) The Replication Manager: The central component of
the DeDiSys replication support is the replication manager
(RM), which is shown in Figure 3. The main task of the RM
is to keep track of objects and their replicas. Several tables
are maintained, that map logical object references and object



Fig. 3. Replication Support Overview

names to replica references, replica references to nodes and
vis versa. These tables are used indirectly by the replication
protocol to re-direct invocations to the corresponding primary
replica of an invoked object.

The RM consists of various sub-components. Only the
Replication Object Adapter (ROA) is visible to the server
application. The ROA is a CORBA object adapter. It internally
uses CORBA’s Portable Object Adapter (POA) and provides
standard POA functionality, such as associating objects with
object references. In addition, it manages object replicas and
allows replicas to be created and associated with a logical
object.

The RM is an “application” of the Spread group mem-
bership and communication service. RMs on different nodes
use Spread to exchange information on new replicas or to
broadcast replica role changes. Furthermore, the RM keeps
track of which nodes are reachable. Therefore Spread callbacks
handling the reception of group messages and new member-
ship views need to be implemented in the RM. This infomation
is used to set the system mode. If a membership view indicates
that not all nodes are currently reachable, the RM enters
degraded mode and notifies all system components of this new
system mode. Similarly, when the group membership service
indicates joining or re-joining nodes, the RM is responsible
for triggering reconciliation and enter normal mode, when
reconciliation is complete and the system is fully recovered,
or re-enter degraded mode, when reconciliation is completed
and further nodes remain unreachable.

The RM also interacts with a replication protocol com-
ponent (RP), in which replication protocol details, such as
update transfer policies, are implemented. By encapsulating
such policy in a separate component with a defined interface,
the replication protocol can be changed easily.

Furthermore, the RM serves as a communication interface
for other components. Although in theory, each component can
implement handlers for the reception of group communication
messages, the RM centralises communications. A type field in
our messages indicates which component a message should be
delivered to and the RM used this field to re-direct messages
to their corresponding components. Similarly, components use

the RM to transmit messages.
2) Replication Manager APIs: The RM provides three

different APIs:
• The Interceptor Interface serves as an entry point for

the interceptors. As described in Section IV-B.1 there
are four interceptors. These interceptors use the RM’s
interceptor API to pass control to the RM before and
after each operation. This is done on the client side, as
well as on the server side. The RM in turn passes control
to the RP. Not all replication protocols will require action
to be performed in each of these interception points,
but they are given the chance to do so. In fact, our
default replication protocol does not make use of all four
interception points.

• The Server API is provided by the ROA. As explained
above, the ROA performs the functionality of the standard
POA. Therefore, many methods of this API form part of
the standard POA API. In addtition, the server API allows
logical object references to be created. Replicas can be
created and associated with logical object references.
Furthermore, existing logical object references can be
discovered to associate further replicas with the same
logical object reference. Finally, as each object has an
unique string name, the server API, also provides basic
name server facilities.

• The Replication Protocol API gives the RP to controlled
access to the RM internal tables managing objects and
theire replicas. Operations to obtain the primary replica
reference of an object, to promote a secondary object to
a temporary primary and to discover all the secondary
copies of an object for update propagation are provided.

3) The Replication Protocol Component: The replication
protocol (RP) component encapsulates replication and recon-
ciliation policies. We locate replication policy and reconcil-
iation policy in the same component, as the policies have
to match each other. For instance, a replication protocol that
allows updates in each of the partitions of a partitioned system
requires a reconciliation policy that allows the system to
recover from the inconsistencies this might introduce.

The RM passes control to the RP before and after every
object invocation, in order to allow the RP to allow or deny
certain object invocations to maintain consistency and to
keep track of changes to objects and maintain internal data
structures that hold information necessary for reconciliation.
The activities of the RP in a healthy system vary from that
in a system in which one or more nodes are not reachable,
as different data-structures have to be maintained in these
different system modes. Furthermore, the RP implements
update propagation and reconciliation.

Different RPs can be implemented by modifying the RP
component. To this end, the RP component consists of an
abstract ReplicationProtocol class, which should be
extended, in order to implement a replication protocol. The
ReplicationProtocol class also provides default im-
plementations of some methods, that may or may not be
overwritten by a particular replication protocol. A default



update propagation method is provided. The method can be
called by any subclass implementing a specific replication
protocol to broadcast the state of a specific primary replica to
all secondary copies. Furthermore, a default method handling
incoming replica updates is provided. This method just sets the
state of all the secondary copies it holds of a particular primary
copy to that included in the message. Both the update prop-
agator and the incoming message handler can be overwritten
by protocols that require more specialised implementations.

In the next section, we will describe how we have used this
modular architecture to implement a novel replication protocol
that bases consistency on integrity constraints.

V. THE PRIMARY PER PARTITION PROTOCOL

A. Overview

The primary per partition protocol (P4) is a replication
protocol that allows consistency to be traded for availability.
The protocol uses passvie replication. That is, invocations
are direted to a primary replica. Once the invocation has
completed, possible object state changes are propagated to all
secondary copies of the object.

In the P4, when a primary copy of an object is not available
due to a node failure or network partitioning, a reachable
secondary copy is promoted to a temporary primary and
invocations are allowed to proceed on this temporary primary.
In contrast to other solutions, we allow the state of temporary
primaries of a single object to be modified in all the partitions
of the systems. This can cause the state of replicas to diverge.
To deal with this inconsistency a reconciliation protocol is
executed when partititons merge, in order to restore data
consistency.

The protocol makes use of integrity constraints, as explained
in Section III. If an operation causes a constraint to be violated
it is rejected. Furthermore, the degree to which inconsisten-
cies are allowed can be configured using the priorisation of
integrity constraints in DeDiSys. In addition to association
of constriants with operations in the form of pre- and post-
conditions and with sets of objects, constraints in DeDisys are
classified as critical or regular, as explained in Section III.
Using the P4, critical constraints can only be evaluated, if all
the objects they refer to are known to be up to date. That
is, all primary copies must be reachable. Regular constraints
can be evaluated on secondary copies of objects for which the
primary is not reachable. Such a copy might hold a stale state.
We call this a consistency threat.

An example of typical integrity constraint used in this way
is a constraint placed on a bank account object. The constraint
states that the balance of the account cannot go below zero.
The constraint is associated with a withdrawl operation as
a post-condition. Should the system be partitioned and the
freshness of the account balance value cannot be verified when
a customer tries to withdraw money, a consistency threat is
present, as the constraint cannot be evaluated on a value known
to be up-to-date. The bank might wish to never allow this
possible inconsistency, in which case, the constraint is marked
as critical. However, for some important customers the bank

might be willing to take a risk. In this case, the constraint is
marked as regular and consistency threats are accepted by our
protocol. This constraint involves only one object. However,
constraints can involve several objects. An example of such
an inter-object constraint is a constraint restricting the sum of
all bank accounts a single customer might have with a bank
to be above zero.

Consistency threats are resolved at reconciliation time. A
post-condition expressed as a regular constraint has to be re-
evaluated, once all the objects are up-to-date. However, a pre-
condition is not re-evaluated at reconciliation time. Replica
conflicts and data integrity can be dealt with automatically or
referred to the application, depending on the chosen reconcil-
iation strategy.

B. Protocol Details

This section describes the behaviour of the P4 in different
system modes. The protocol makes full use of the replication
managers’s three system modes and operates differently in
each mode. As explained above, the protocol is triggered using
the RM’s interceptor interface. To send update propagation
messages and receive such messages the default implementa-
tions in the ReplicationProtocol super-class are used.
This particular implementation of the protocol also makes use
of the DeDiSys transaction manager. Invocations are executed
within nested transactions, which are started and ended by
the replication protocol. Transaction management has been
omitted in this section in order to simplify the protocol
description, but it is important to be aware of its existence,
as it explains how rollbacks are performed.

Read operations cannot introduce data inconsistencies. The
following description therefore focuses on write operations.
Read operations are treated in the same way, but no object
state changes occur.
Normal Mode

1) All object invocations are directed to the primary replica.
2) All the pre-condition constraints, associated with the

operation are evaluated. If a constraint is not met, the
operation is aborted.

3) The operation is invoked. Nested invocations might be
started.

4) Once the primary replica has updated its local state,
all the post-condition constraints, associated with the
operation are evaluated. If a constraint is not met, the
operation is aborted.

5) Once these checks have been successfully completed, all
primary replicas updated in the operation propagate the
new object states to the backup replicas.

6) Once this update transfer has terminated, the operation
result is returned to the client.

Degraded Mode
A write operation in degraded mode is similar to that in normal
mode with the following additions:

1) If the primary copy of an object being written to is
not found, a secondary copy is chosen in some pre-
determined way, for example based on the replica iden-



tifier. The chosen secondary replica is promoted to a
“temporary primary”. This is not done, if the operation
has a critical constraint as a pre- or post-condition.

2) Objects that are changed are marked as “revocable”, if
any of the post-condition constraints associated to the
operation that has been executed has been evaluated on
possibly stale objects.

3) Critical constraints are not evaluated, if a participating
object might be stale. If this is the case, the operation
is aborted.

4) Regular post-condition constraints with possibly stale
objects are marked for re-evaluation at reconciliation
time.

5) Operations with critical constraints that include a revo-
cable object are not permitted, so that critical constraints
cannot be violated retrospectively, when a revocable
object is rolled back.

Reconciliation
When two or more partitions re-join, reconciliation is started.
During this process no write operations are processed. Recon-
ciliation is done in three phases:
Phase 1: Restoring replica consistency.
When partitions are being joined, replica consistency is re-
stored. If two primary copies of the same object have been
modified in different partitions a write-write conflict has
occurred. To solve this conflict the application is asked to
resolve the conflict. To this end a handler routine which has
been previously registered by the application is called. Conflict
resolution strategies the application may employ range from
choosing one of the conflicting primary copies to installing a
completely new version.
Phase 2: Restoring constraint consistency.
All constraints that are marked for re-evaluation and for which
the original primary copy of all participating objects is now
available are now re-evaluated. If a constraint is violated, the
application is again asked to resolve the conflict. To this end
another handler routine is called. The application handler can
restore consistency by setting one of the objects marked as
revocable to a state that meets the constraint. All other post-
condition constraints of operations that have been executed
during partitioning and in which the revocable object partic-
ipates have to be re-evaluated. This re-evaluation has to be
performed to avoid constraints being violated retrospectively.
Phase 3: Updating secondary copies.
Finally, all changes to primary copies which have occurred in
phase 1 or phase 2 have to be applied to the secondary copies
of the modified objects.

C. Automatic reconciliation

The P4 protocol can also be employed without application
interaction; that is, through using automatic reconciliation,
instead of application handler routines. However this involves
storing a large amount of extra data about object changes
during degraded mode. For each object, a list with previous

versions has to be kept. Furthermore, for each of the object
versions a list of the nodes present in the current partition
during the time of the write access needs to be kept. Finally,
for each regular post-condition constraint, a reference to the
last known version to meet the constraint of each updated
participating object needs to be saved.

If several partitions try to re-join and write-write conflicts
between two primary copies occur, the protocol can choose
one of the primaries according to some pre-defined precedence
order or a more complex algorithm.

Constraint violations that are detected at reconciliation time
could also be dealt with automatically. If on re-evaluation a
regular constraint is not met, one associated object marked as
revocable is chosen to revert to its previous version. Among
all the revocable objects, one of them is chosen following an
increasing order of object identifiers. This object is reverted
to previous versions repeatedly, until a version is found that
either leads to the regular consistency constraint being met
or has the same version number as the last known version
that satisfied the constraint. If the later case occurs, without
the constraint being met, another revocable object must go
through the process of reverting to previous versions. Once the
constraint is met, all other regular post-condition consistency
constraints associated with the objects that have reverted to a
previous version have to be re-evaluated.

VI. FUTURE WORK

We are currently in the process of evaluating the architec-
ture. In particular experiments to evaluate the new replication
protocol are being performed. To do so, we have implemented
a test application which has been designed, so that key
parameters, such as the number of constraints, the ratio of
critical constraints, the frequency and nesting of invocations
and the degree of replication can be easily modified. We are
planning to extract these parameters from real work target
applications provided by our industrial partners.

Once the suitability of the protocol for the target application
has been verified, we will integrate our middleware add-on
with these applications to perform further real-world evalua-
tion experiments.

Furthermore, we are planning to improve the current repli-
cation protocol and study alternative protocols.

VII. CONCLUSION

In this paper we have described a fault-tolerance add-on for
CORBA. In contrast to most approaches to fault-tolerance in
CORBA and the Fault-Tolerance CORBA specification [1], the
system can cope with network partitioning. The system forms
part of the DeDiSys project [3], which aims at providing fault-
tolerance add-ons for a variety of middlewares.

The modularity of the design allows different replication
strategies to implemented easily. One such strategy, the Pri-
mary per Partition protocol has been implemented. The proto-
col has been found to increase the availability in applications
where consistency can be temporarily relaxed, when compared
theoretically with the conventional primary partition model



[4]. We are currently evaluating the protocol in practical
experiments.

We have implemented the architecture described here in
CORBA using Java as an implementation language. We are
currently evaluating our implementation with target applica-
tions provided by industrial partners of the DeDiSys project.

VIII. ACKNOWLEDGEMENTS

This work has been funded by the European Community
under the FP6 IST project DeDiSys (Dependable Distributed
Systems, contract number 004152).

REFERENCES

[1] Object Management Group, “The common object request broker archi-
tecture (corba) v.3.0.3,” March 2004.

[2] ——, “The common object request broker architecture (corba) v.3.0.3.
chapter 23. fault tolerant corba,” March 2004.

[3] J. Osrael, L. Froihofer, K. M. Goeschka, S. Beyer, F. D. Muñoz-Escoı́,
and P. Galdámez, “A system architecture for enhanced availability of
tightly coupled distributed systems,” in Int. Conference on Availability,
Reliability and Security, 2006, pp. 400–407.

[4] S. Beyer, M. Bañuls, P. Galdámez, and F. D. Muñoz-Escoı́, “Increasing
availability in a replicated partionable distributed object system,” Lecture
Notes in Computer Science: Parallel and Distributed Processing and
Applications, vol. 4330/2006, pp. 682–695, 2006.

[5] IONA and Isis, “An Introduction to Orbix+Isis, IONA Technologies Ltd.
and Isis Distributed Sytems Inc.” 1994.

[6] S. Landis and S. Maffeis, “Building reliable distributed systems with
CORBA,” Theory and Practice of Object Systems, vol. 3, no. 1, pp. 31–
43, 1997. [Online]. Available: citeseer.ist.psu.edu/landis97building.html

[7] A. Vaysburd and K. Birman, “The maestro approach to building reliable
interoperable distributed applications with multiple execution styles,”
Theor. Pract. Object Syst., vol. 4, no. 2, pp. 71–80, 1998.

[8] D. Lee, D. Nam, H. Y. Youn, and C. Yu, “Oci-based group communica-
tion support in corba,” IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 11, pp. 1126–1139, november 2003.

[9] W. Zhao, L. E. Moser, and P. M. Melliar-Smith, “Design and imple-
mentation of a pluggable fault-tolerant corba infrastructure.” Cluster
Computing, vol. 7, no. 4, pp. 317–330, 2004.

[10] F. Kuhns, C. O’Ryan, D. C. Schmidt, O. Othman, and J. Parsons,
“The design and performance of a pluggable protocols framework for
corba middleware,” in IEEE ComSoc TC on Gigabit Networking Sixth
International Workshop on Protocols for High Speed Networks VI, 1999,
pp. 81–98.

[11] P. Felber, B. Garbinato, and R. Guerraoui, “The design of a corba group
communication service,” in Symposium on Reliable Distributed Systems,
1996, p. 150.

[12] G. Morgan, S. K. Shrivastava, P. Ezhilchelvan, and M. Little, “Design
and implementation of a corba fault-tolerant object group service,”
in International Working Conference on Distributed Applications and
Interoperable Systems, June 1999.

[13] R. Friedman and E. Hadad, “Fts: A high-performance corba fault-
tolerance service,” in IEEE Int. Workshop on Object-Oriented Real-Time
Dependable Systems, 2002, pp. 61–68.

[14] F. Greve, M. Hurfin, and J.-P. L. Narzul, “Open eden: a portable
fault tolerant corba architecture.” in Int. Symposium on Parallel and
Distributed Computing, 2003, pp. 88–95.

[15] R. Baldoni and C. Marchetti, “Three-tier replication for ft-corba infras-
tructures,” Softw. Pract. Exper., vol. 33, no. 8, pp. 767–797, 2003.

[16] Yansong (Jennifer) Ren et al., “Aqua: An adaptive architecture that
provides dependable distributed objects,” IEEE Trans. Comput., vol. 52,
no. 1, pp. 31–50, 2003.

[17] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan, “Consistent object
replication in the eternal system,” Theor. Pract. Object Syst., vol. 4, no. 2,
pp. 81–92, 1998.

[18] Taha Bennani et al., “Implementing simple replication protocols using
corba portable interceptors and java serialization.” in International
Conference on Dependable Systems and Networks, 2004, pp. 549–554.

[19] A. Ricciardi, A. Schiper, and K. Birman, “Understanding partitions
and the ”non partition” assumption,” in Workshop on Future Trends of
Distributed Systems, 1993.

[20] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
Budhia, and C. A. Lingley-Papadopoulos, “Totem: A fault-tolerant
multicast group communication system,” Communications of the
ACM, vol. 39, no. 4, pp. 54–63, 1996. [Online]. Available:
citeseer.ist.psu.edu/moser96totem.html

[21] L. Froihofer, J. Osrael, and K. M. Goeschka, “Trading integrity for
availability by means of explicit runtime constraints,” in COMPSAC
’06: Proceedings of the 30th Annual International Computer Software
and Applications Conference (COMPSAC’06), 2006, pp. 14–17.

[22] F. Cristian, “Understanding fault-tolerant distributed systems,” Commun.
ACM, vol. 34, no. 2, pp. 56–78, 1991.

[23] F. B. Schneider, “What good are models and what models are good?”
in Distributed Systems, 2nd ed. ACM Press, Addison-Wesley, 1993,
ch. 2, pp. 17–26.

[24] Y. Amir, C. Danilov, and J. R. Stanton, “A low latency, loss tolerant
architecture and protocol for wide area group communication,” in
International Conference on Dependable Systems and Networks, 2000,
pp. 327–336.

[25] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal,
“Extended virtual synchrony,” in The 14th IEEE International
Conference on Distributed Computing Systems (ICDCS), 1994, pp.
56–65. [Online]. Available: citeseer.ist.psu.edu/moser94extended.html

[26] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, The primary-
backup approach. ACM Press, Addison-Wesley, 1993, pp. 199–216.

[27] R. Guerraoui and A. Schiper, “Software-based replication for fault
tolerance,” Computer, vol. 30, no. 4, pp. 68–74, 1997.


