
UNIVERSIDAD PÚBLICA DE NAVARRA

Departamento de Matemática e Informática

DESIGN AND IMPLEMENTATION
OF DATABASE REPLICATION PROTOCOLS

IN THE MADIS ARCHITECTURE

Dissertation presented by:

José Enrique Armendáriz Íñigo

Supervised by:

Dr. José Ramón González de Mendı́vil Moreno

Dr. Francesc Daniel Muñoz i Escoı́

A Marta, contigo he aprendido lo que que realmente significa la palabra “amor”.

A mi hermano Juan Martı́n. Mi modelo de entrega, trabajo, coraje, amor y respeto.

Gracias por enseñarme tanto.

A Joserra y Txerra por todo vuestro trabajo, crı́tica, esfuerzo y amistad.

Mucho de este trabajo no habrı́a sido posible sin vosotros.

A JR y Paco por su paciencia, dedicación y por mostrarme el camino.

Gracias de parte de vuestro padawan por introducirme en el mundo de la investigación.

“¡Que la fuerza os acompañe!”

A mis padres, Aurora y Martı́n. Nunca podré ser tan maravilloso como vosotros.

Os debo todo lo que soy.

“This is not the end. It is not even the beginning of the end.

But, it is, perhaps, the end of the beginning”

Wiston Churchill

Resumen

El objetivo de esta Tesis ha sido el diseño y la implementación de dos protocolos de repli-

cación basados en O2PL para una nueva arquitectura middleware de replicación de bases de datos

denominada MADIS. Esta arquitectura se caracteriza por ofrecer una interfaz JDBC a las aplica-

ciones de usuario y dar soporte, mediante la modificación del esquema de la base de datos, a un

amplio rango de protocolos de replicación. Esto último permite aislar el control de concurrencia

(gestionado por el sistema gestor de bases de datos) del control de replicación (gestionado por el

protocolo de replicación utilizado en MADIS).

Los dos protocolos desarrollados, BRP y ERP, se formalizan empleando un sistema de tran-

sición de estados que facilita la comprobación de su corrección (1-Copy-Serializable). Adicional-

mente, se formaliza un nuevo protocolo para MADIS, TORPE, basado en la entrega en orden total

de las difusiones por parte de los sistemas de comunicación a grupo, con el objeto de comparar el

comportamiento de este tipo de protocolos, ampliamente empleados en la literatura actual, con los

dos protocolos anteriores.

La implementación de estos tres protocolos en MADIS verifica los supuestos teóricos plantea-

dos para el BRP y el ERP en sus pruebas de corrección y muestra que los protocolos de orden total

son, en general, la mejor opción para la replicación de bases de datos. No obstante, se observa que

el protocolo ERP es la mejor alternativa para entornos con cargas bajas dentro de nuestro entorno

de pruebas.

Finalmente, se propone un protocolo de recuperación, diseñado también como un sistema de

transición de estados, que es válido tanto para el BRP como el ERP. Este protocolo emplea la

sincronı́a de vistas para gestionar la recuperación de nodos fallidos estableciendo las particiones

de recuperación que se crean en el nodo recuperador y a recuperar, de manera que este último

pueda comenzar a atender transacciones de usuario aunque no haya terminado de recuperarse. El

objetivo es abortar el menor número de transacciones que estén siendo ejecutadas en el sistema.

i

Abstract

The main goal of this Thesis is the design and implementation of two O2PL based replication pro-

tocols adapted to a middleware database replication architecture called MADIS. This architecture

provides a JDBC interface to user applications and supports, through a database schema modifi-

cation, a wide range of replication protocols. This last feature permits to isolate the concurrency

control (managed by the underlying database management system) from the replica control (done

by the current replication protocol plugged in MADIS).

The two protocols developed, BRP and ERP, are formalized as state transition systems that

ease their correctness proof (1-Copy-Serializable). Additionally, another replication protocol for

MADIS, TORPE, is formalized based on the total order delivery of multicast messages featured

by group communication systems, a widely used approach in the literature. Our purpose is to

compare its behavior with the two previous protocols.

The implementation of these three protocols in MADIS verifies the theoretical assumption

done for BRP and ERP in their correctness proofs and shows that total order protocols are, in

general, the best option to achieve database replication. However, it might be noted that the ERP

protocol is the best option in low workloaded environments under our experimental settings.

Finally, a recovery protocol, introduced as well as a state transition system, is proposed for

both BRP and ERP. This recovery protocol uses the view synchrony in order to manage the recov-

ery of faulty nodes by setting recovery partitions in the recoverer and recovering nodes; thus the

latter may execute user transactions even though it has not been recovered yet. The aim of this

proposal is to rollback as few as possible transactions in the system.

iii

Agradecimientos

En primer lugar, quiero dar las gracias a mis directores. A J.R. porque creyó y cree en mı́.

Hemos pasado muchas cosas juntos desde Junio de 2001 hasta hoy. En todas ellas ha dejado una

huella imborrable en mı́. Me encanta cómo es capaz de asimilar y generar más y más ideas. A

Paco por aceptar dirigirme y poder trabajar con él. Me gusta el empeño, seriedad y orden que

pone en el trabajo. Aunque es más, si cabe, todo el saber cientı́fico que atesora. Trabajar con él

es siempre un placer, sabe motivar para seguir adelante. Deseo con toda mi alma que se me haya

“pegado” algo de ellos. Muchas, muchas gracias a los dos. Pido disculpas a sus familias por el

tiempo que les ha quitado el nuevo “hijo”.

Por otro lado, ya conocı́a a una persona maravillosa, pero he conocido a un mejor investigador,

J.R. Garitagoitia. Son innumerables las horas que he pasado trabajando con él. Recuerdo cuando

llegué con un algoritmo de 8 hojas a su despacho. Trabajar con él, es como la canción: “para

cuando tú vas, yo vengo ...”. Gracias al nuevo fichaje, J.R. Juárez, que se ha dedicado en cuerpo y

alma a dar vida y forma a todo este trabajo. Fines de semana, noches y viajes incluidos. Le debo

una y bien grande.

Además quiero agradecer a todos mis compañeros del Dpto. de Matemática e Informática

por acogerme y darme la oportunidad de trabajar con ellos. Gracias también a la gente del ITI de

Valencia por hacerme sentir como en casa y poder trabajar con ellos, especialmente a M.C. Bañuls,

F. Castro, H. Decker, L. Irún, R. de Juan, E. Miedes e I. Ruiz. También quiero dar las gracias, de

todo corazón, por la paciencia, las discusiones y comentarios realizados, a M. Patiño-Martı́nez y

R. Jiménez-Peris.

En el apartado personal, quiero agradecer a mis padres todo el esfuerzo que han hecho con-

migo. Siempre estáis ahı́, aunque muchas veces no me dé cuenta y no sepa agradecerlo. Gracias

Martı́n, eres mi compañero de viaje ideal. Gracias Marta, “has aguantado carros y carretas” y me

has dado comprensión, cariño y confianza.

v

Table of Contents

1 Introduction 1
1.1 About this Thesis . 8

1.1.1 Research Goals . 8

1.2 Thesis Organization . 9

2 System Model and Definitions 11
2.1 General Architecture . 11

2.2 Group Communication System . 13

2.2.1 View Synchrony . 14

2.2.2 Communication Service . 15

2.2.3 Membership Service . 16

2.3 Database Management System . 16

2.4 Transactions . 19

2.5 State Transition Systems . 21

2.6 Discussion . 23

3 Middleware Replication Protocols 25
3.1 Introduction . 26

3.2 Basic Replication Protocol Description . 27

3.3 BRP Correctness Proof . 31

3.4 Enhanced Replication Protocol . 42

3.4.1 Performance . 43

3.4.2 Decreasing Abortion Rate . 44

3.4.3 The ERP Automaton . 45

3.5 ERP Correctness Proof . 46

3.6 The TORPE Replication Protocol . 57

3.7 Discussion . 60

3.7.1 Comparison with Related Works . 63

4 MADIS: A Slim Middleware for Database Replication 67
4.1 Introduction . 67

4.2 The MADIS Architecture . 69

4.3 Schema Modification . 70

vii

viii TABLE OF CONTENTS

4.3.1 Modified and Added Tables . 71
4.3.2 Triggers . 73

4.4 Consistency Manager . 77
4.4.1 Connection Establishment . 77
4.4.2 Common Query Execution . 78
4.4.3 Commit/Rollback Requests . 80

4.5 Protocol Interface . 81
4.5.1 Connection Establishment . 82

4.6 Experimental Results . 83
4.6.1 Overhead Description . 83
4.6.2 Overhead in the MADIS Architecture 84
4.6.3 Comparison of Overheads with Other Architectures 87
4.6.4 Experimental Results of the Replication Protocols Implementation in MA-

DIS . 88
4.7 Discussion . 97

4.7.1 Comparison with Related Works . 97

5 About Failures and the Recovery Process 101
5.1 Replication Protocol Modifications . 102
5.2 Recovery Protocol Outline . 103
5.3 Recovery Protocol Description . 107

5.3.1 Site Failure . 110
5.3.2 Site Recovery . 111

5.4 Discussion . 115
5.4.1 Comparison with Related Works . 117

6 Conclusions 121
6.1 Summary . 121
6.2 Future Lines . 124

Bibliography 125

List of Figures

2.1 Main components of the system . 12

2.2 Communication System . 13

2.3 Database Management System . 17

2.4 Transaction execution model . 21

3.1 Execution example of a local (left) and a remote transaction (right) 27

3.2 State transition system for the Basic Replication Protocol (BRP). pre indicates
precondition and eff effects respectively . 28

3.3 Valid transitions for a given statusi(t) of a transaction t ∈ T 29

3.4 Happens-before relationship for the BRP of a given transaction t between its exe-
cution at the master site and the rest of nodes 36

3.5 CASE (I): node(t) = node(t′) = x . 41

3.6 CASE (II): node(t) = x and node(t′) = y . 41

3.7 CASE (IV): node(t) = i and node(t′) = j . 42

3.8 State transition system for the Enhanced Replication Protocol (ERP) automaton . 43

3.9 Happens-before relationship for a given transaction t between its execution at the
master site and the rest of nodes . 50

3.10 CASE (I): node(t) = node(t′) = x . 56

3.11 CASE (II): node(t) = x and node(t′) = y . 56

3.12 CASE (IV): node(t) = i and node(t′) = j . 57

3.13 State transition system for TORPE, where updates are propagated using the total
order group communication primitives provided by the GCS 59

3.14 Valid transitions for a given statusi(t) of a transaction t ∈ T 60

4.1 The MADIS Architecture . 70

4.2 Query execution . 79

4.3 Update Execution . 80

4.4 Commit suceeded vs aborted . 81

4.5 Connection Establishment . 83

4.6 Database tables description of the experiment 85

4.7 MADIS absolute overhead (in ms) . 86

4.8 Relative MADIS/JDBC overhead (in %) . 86

4.9 Relative COPLA/JDBC overhead . 87

ix

x LIST OF FIGURES

4.10 Relative RJDBC/JDBC overhead . 88

4.11 BRP response time in a 5-server system varying the submission rate and the num-
ber of clients . 91

4.12 ERP response time in a 5-server system varying the submission rate and the num-
ber of clients . 91

4.13 TORPE response time in a 5-server system varying the submission rate and the
number of clients . 92

4.14 Response time of the replication protocols in a 5-server system varying the sub-
mission rate . 93

4.15 Response time of the replication protocols for a submission rate of 10 TPS varying
the number of servers . 94

4.16 Response time of the replication protocols in a 5-server system for a submission
rate of 10 TPS varying the transaction length . 95

4.17 Conflict Rate: Abort rate for BRP and ERP in a 5-server system for a submission
rate of 20 TPS . 96

5.1 In a failure free environment, the transaction master site directly commits. This is
not a correct approach in the presence of failures. A site may commit a transaction
that the rest of sites do not commit (left). The solution is to use the uniform reliable
multicast and the delivery of the message to the master site (right) 102

5.2 State transition system for the ERP so as to avoid data inconsistencies due to a site
failure . 104

5.3 The rest of nodes store objects modified while a site is crashed. In this case, node
j has failed and partitions (i.e. set of data items) P1 and P2 have been modified
during view id′. When it rejoins the system, the recovery metadata is transferred
to node j and the recovery protocol itself at node j can determine the partitions to
be recovered . 105

5.4 Object state transfer between the recoverer node i and a recovering node j. User
transactions may perform their operations with no restrictions unless they try to
access the recovery partitions. Partitions are released once changes are applied . . 106

5.5 Signature and states for the ERP recovery protocol 107

5.6 Specific recovery state transition system for ERP 108

5.7 Add-ons on the state transition system of ERP so as to support recovery features . 109

5.8 Valid transitions for a given sitesi(j).state of a node j ∈ N at node i 110

5.9 Actions to be done by the recovery protocol when a remote node (left) or a trans-
action master site (right) fails . 111

5.10 Actions to be done by the recovery protocol when a recovering node (left) or the
recoverer node (right) fails . 112

5.11 A new joining node may commit a transaction whose existence does not know
(left). Its modification (right) allows joining nodes to execute that transaction,
even though they have not recovered yet . 113

LIST OF FIGURES xi

5.12 Description of the ERP recovery protocol. It recovers node k that has been crashed
just for one view, id′. Data items {p, x, y} have been updated in that installed view 115

List of Tables

4.1 Parameters of experiments . 90
4.2 Conflict Rate: Data access distribution to achieve different conflict rates 96

xiii

Chapter 1

Introduction

This thesis is englobed inside the database replication research field. Database replication consists

in multiple nodes with a Database Management System (DBMS on the sequel) storing multiple

copies of some data items [BHG87]. Data access is done by means of transactions. A transaction

represents a logical unit of read and write operations. The main reason for using replicated data is

to increase system availability. By storing critical data at multiple sites, the system may continue

working even though some sites have failed. Another goal is performance improvement. As there

are many copies users access their closest site to perform operations. The drawback of this is that

updates have to be propagated to all copies of the updated data item. Hence, read operations may

run faster than write operations. Another drawback closely related to the latter is data consistency,

since some sites may have outdated information. Therefore, there is a constant tradeoff between

data consistency and performance.

There are two approaches to achieve database replication: via middleware [ACZ03, AGME05,

CMZ04, EPMEIBBA04, JPPMKA02, LKPMJP05, MEIBG+01, PMJPKA00, PA04, RMA+02,

RBSS02] or by means of database internals modification [AAES97, AT02, BHG87, HSAA03,

KA00a, KA00b, KPA+03, WK05]. Middleware based solutions use a layer between clients and

database replicas. This simplifies the development since the database internals remain inacces-

sible. Furthermore, middleware solutions may be maintained independently of the underlying

DBMS. We may add several tables, triggers and stored procedures to facilitate database replica-

tion using SQL and procedural languages. However, this solution may cause a degradation of the

system performance due to the overhead introduced to accomplish replication. The other alter-

native to achieve database replication is the modification of the database internals so as to add

1

2 Chapter 1. Introduction

communication facilities to interact with the other DBMS sites of the system. This approach has

a strong dependency on the database engine for which the system is developed, and it must be

reviewed each time the original DBMS software release is updated. On the other hand, its per-

formance is generally better than the one achievable using a middleware based architecture. This

approximation has different requirements and needs, and their comparison with middleware based

solutions is not fair. Nevertheless, there are several works in the literature dealing with this tech-

nique. In Postgres-R and Dragon [Kem00, KA00b, KA00a, KPA+03], a DBMS core is modified

in order to include distributed support to the database engine.

Both approaches share a main goal: how to coordinate replica control with concurrency con-

trol. This is done by means of a particular replication protocol that manages data consistency. The

strongest correctness criteria for a replicated database is 1-Copy-Serializability (1CS) [BHG87];

a system managing a replicated database should behave like a DBMS managing a non replicated

database insofar as users can tell. In a non replicated database, users expect the interleaved ex-

ecution of their transactions to be equivalent to a serial execution of those transactions. Since

replicated data should be transparent to them, they would like the interleaved execution of their

transactions on a replicated database to be equivalent to a serial execution of those transactions on

a non replicated database.

Database replication techniques have been classified according to [GHOS96]: who can per-

form updates (primary copy [Sto79] and update everywhere [KPA+03]) and the instant when a

transaction update propagation takes place (eager [CL91] and lazy [PST+97, SAS+96]). In eager

replication schemes, updates are propagated inside the context of the transaction. On the other

hand, lazy replication schemes follow the next sequence: update a local copy, commit the transac-

tion and propagate changes to the rest of available replicas. Data consistency is straightly forward

by eager replication techniques although it requires extra messages. On the contrary, data copies

may diverge on lazy schemes and, as there is no automatic way to reverse committed replica up-

dates, a program or a person must reconcile conflicting transactions. Regarding to who performs

the updates, the primary copy requires all updates to be performed on one copy and then propa-

gated; whilst update everywhere allows to perform updates at any copy but makes coordination

more complex [WPS+00]. Another parameter considered for replication protocols is the degree

of communication among sites [WPS+00]: constant interaction, where a constant number of mes-

sages are exchanged between sites for a given transaction, and linear interaction, where a site

3

propagates each operation of a transaction to the rest of sites. The last parameter is how a trans-

action terminates [WPS+00]: voting, when an extra round of messages are required to coordinate

replicas such as the 2-Phase-Commit (2PC) [BHG87] protocol or non voting, a site decides on its

own whether a transaction commits or is rolled back.

According to this database replication classification and its study, depicted in [GHOS96], show

that the first eager replication protocols, those based on the 2-Phase-Locking (2PL), such as the

Distributed 2PL (D2PL) [BHG87] is the worst of all replication techniques. D2PL needs to prop-

agate each operation performed by a transaction to all available sites, increasing the deadlock rate

and message overhead. The deadlock rate rises as the third power of the number of nodes in the

network, and the fifth power of the transaction size. Respectively, if we focus on lazy replication

schemes we reach to the same conclusion, since as long as there exists a transaction waiting for

another, in fact waits are more frequent that deadlocks [GHOS96], a reconciliation has to be done.

The reconciliation rate rises as the third power of the number of nodes or the size of the transac-

tion. In mobile environments disconnected nodes may not use an eager replication protocol, but

if they use a lazy replication scheme the conflicting updates done during the disconnection period

must require reconciliation too. Therefore, the reconciliation rate increases as the square of nodes

and proportionally to the disconnected period.

Hence, we are interested in developing eager replication protocols (no reconciliation) with

constant interaction (hence, distributed deadlock between sites, if occurs at all, it will be at the

end of the transaction lifetime) in fixed networks. Following the Read One Write All Available

(ROWAA) policy [GHOS96], the Optimistic 2PL (O2PL) [CL91] is introduced where all oper-

ations issued by a transaction are firstly performed at a single node and afterwards the update

operations are grouped and propagated to the rest of sites. The O2PL has constant interaction but

is deadlock prone. Hence, a deadlock prevention schema has to be defined so that distributed dead-

lock is avoided. Both, the D2PL and O2PL, are voting protocols and unilateral aborts may be pre-

vented [Ped99]. O2PL has been implemented in several architectures as in MIRROR [XRHS99]

where O2PL is enhanced with a novel-state-based real-time conflict. The O2PL algorithm has

been extended to comprise object based-locking as in [HT98], because object supports more ab-

stract operations than the low-level read and write operations. O2PL has been extended to the

mobile environment as it is depicted in [JBE95]. The algorithm introduced there is called O2PL

for Mobile Transactions (O2PL-MT) which allows a read unlock for an item to be executed at any

4 Chapter 1. Introduction

copy site of the item.

Concurrently to this, a research on Group Communication Systems (GCSs) [CKV01] was

emerging. The delivery guarantees provided by a standard GCS, more precisely total order deliv-

ery [CKV01], permit to order transactions so that all sites apply updates performed in the database

following the order set up by the GCS. Moreover, the GCS includes also a membership service

that permits to detect faulty nodes [CKV01]. In [AT02, KA00a, KA00b, JPPMKA02, LKPMJP05,

RMA+02, WK05] several database replication protocols based on GCSs are introduced. This so-

lution scales well, i.e. has constant interaction, but total order implementation needs extra mes-

sage rounds or sequencers [DSU04] that introduce additional latency to the system. Moreover,

if transactions executed in the system have low conflict rates then this solution is expensive in

terms of message latency. To improve this last drawback, the Optimistic Atomic Broadcast (OAB)

is introduced [KPA+03]. As messages delivered in a LAN are almost spontaneously totally or-

dered [Ped99], the OAB optimistically delivers a message containing a transaction and, afterwards,

if the total order decided by the GCS diverges from the optimistic approach the transaction will be

finally rolled back. Otherwise, it will be committed.

On one hand, GCS based replication protocols solve distributed deadlock by means of the

GCS total order delivery guarantee. Although this is not enough to prevent deadlocks in each

site [LKPMJP05]. However, in a system where aborted transactions are resubmitted total order

does not guarantee the fairness of transactions. Let us suppose that there exists a periodic transac-

tion that continuously update the same set of elements. We also assume that there exists another

transaction that modifies the same set of elements. The latter will be continuously aborted if

the transaction period of the former is less than the duration of a conflicting transaction and its

transaction restart time. On the other hand, O2PL has a deadlock prevention function that avoids

distributed deadlock cycles. The deadlock prevention function imposes a global ordering for trans-

actions. The ordering factor can be based on different transaction parameters such as the number

of restarts, timestamp, etc. The first solution has nothing to do with transaction intrinsics while

the latter does. However, O2PL may continually penalize certain pattern of transactions, e.g. if

we order transactions according to the size of the write set then a transaction whose write set is

smaller than the ones of the remaining transactions will be penalized continuously.

Data consistency depends on the guarantees the replication protocol may provide. As it has

been pointed out earlier, the 1CS is the strongest correctness criteria. This may be achieved if

5

the underlying DBMS provides the appropriate transaction isolation level, in this case serializ-

able as considered in [BBG+95]. Most commercial databases, such as Oracle [Ora97] and Post-

greSQL [Pos05], provide Snapshot Isolation (SI) [BBG+95]. Using this isolation level read oper-

ations never block as they get a database snapshot of committed data when the transaction started.

This form of transaction isolation does not guarantee serializable behavior, therefore 1CS is not

achievable. However, applications using SI databases may be modified in order to produce only se-

rializable executions [FLO+05]. There are several recent approaches for database replication with

DBMSs providing SI, such as Postgres-R(SI) [WK05] that is the evolution of Postgres-R [Kem00]

where the internals of PostgreSQL are modified to support SI. A more recent work features a mid-

dleware database replication protocol providing 1-Copy-SI (1CSI) [LKPMJP05] where transac-

tions read the latest system snapshot. In [EPZ05] another database replication protocol providing

Generalized SI (GSI) is introduced.

In this Thesis, we focus in the middleware approach to achieve database replication. Im-

plementing replication protocols in a middleware architecture may lead to re-implement some

features that may be obtained from the DBMS [AGME05]. However, replication protocols need

certain metadata information in order to properly work. Replication techniques may also be clas-

sified considering the way the metadata collection is implemented [Pee02]:

• Middleware-based. This technique inserts proprietary code. As the application makes

changes to the database, the middleware is able to capture the changes and store them in

message queues or other data format internally used by the rest of the middleware. It does

not require database schema changes. The change capture middleware typically does not

depend heavily on the idiosyncrasies of the underlying database. However, it is intrusive,

difficult and costly to implement.

It is incompatible with third-party tools, interactive query/update, and often web front-

ends. The middleware typically also cannot capture changes made through interactive

SQL query/update tools, including those provided with the database by the database ven-

dor, which is unacceptable to many database administrators who rely on interactive tools in

production environments.

• Trigger-based. It captures the changes into separate queues or uses the log itself as the

change queue for later replay at target sites. This way of implementing replication installs

6 Chapter 1. Introduction

insert, update, and delete triggers on all replicated tables to capture changed data. Its advan-

tages are that it does not require changes to the application and they work with third-party

and interactive query/update tools. However, it presents some drawbacks as it is not fully

heterogeneous and cannot work with all popular databases. Some databases that do have

logs do not document their transaction logs and/or APIs, which means that database-specific

log sniffers and readers are not only more difficult to code, but are likely to be unsupported

by the database vendor.

• Shadow-Table-based. It sets up a duplicate “shadow” database table (or external storage,

such as a disk file) for every replicated table, containing all rows and columns of the pri-

mary table. The shadow-table technique is one of the standard techniques used for imple-

menting DBMS (the alternative approach is by way of logs, either with a writeahead log or

a private workspace [TS01]). Hence, its cost is assumed in a replicated architecture if the

underlying DBMS uses this technique. It presents the advantages of the previous technique

but it is unworkable if the database size is large because of its severe space and performance

overhead.

• Control-Table-based. It creates a control table for every replicated table. This control table

does not duplicate any data fields from the replicated table. The control table contains the

primary key field of the table and two fields information such as the time, the transaction

identifier and site of the last update of the record. It presents the advantages of the prior tech-

niques and does not duplicate data. It permits fine-grained selection of updates performed

after a given time and it is database independent and works on all databases.

In a middleware architecture, users access to the system using a standard database interface

(such as JDBC) [CMZ04, EPMEIBBA04, JPPMKA02, LKPMJP05]. Hence, applications do not

have to change because of the middleware architecture usage. There exist middlewares with

linear interaction [CMZ04, EPMEIBBA04], these approaches are very similar and have scala-

bility problems, since a transaction is not allowed to proceed, after an update, until all nodes

have performed the previous update operation. On the contrary, in [PMJPKA00, JPPMKA02,

PMJPKA05, LKPMJP05] replication is managed by ad-hoc replication protocols which belong to

the constant interaction family. However, user transactions may only perform stored procedures

in [JPPMKA02] while in [LKPMJP05] they are free to perform any SQL statement although the

7

correctness criteria is rather different, 1CSI.

There are other middleware approaches like COPLA [IMDBA03] where a full object ori-

ented replication architecture providing object state persistence in Relational DBMSs with dif-

ferent replication protocols [AGME05, MEIBG+01, RMA+02] is introduced. Users may choose

among all of them according to the application profile. The replication protocols implemented in

COPLA share some inconveniences. The first one is that they have to re-implement several fea-

tures that are included in any DBMS (e.g. lock or version management) while in [LKPMJP05] it

is unnecessary. Another inconvenience is the persistence that is provided by a RDBMS that intro-

duces a mismatch between the application schema definition and its storage. Although allowing

multiple consistency protocols to be plugged into, the system provides a proprietary API for the

applications to gain access to distributed databases, reducing the generality of the solution.

Finally, we focus on how failures and recoveries are handled by a replicated database sys-

tem. These tasks are managed by taking advantage of the virtual synchrony [CKV01] provided by

GCSs. The GCS reports to the system about failures in form of view change messages excluding

unreachable sites. This happens in such a way that each site can individually decide on the out-

come of pending transactions avoiding any extra communication. In the same way, we consider

that sites will join again the system after a failure, we will have to cope with the recovery process.

This, however, is not as straightforward as the exclusion of nodes. Two key issues must be han-

dled [Kem00]: the current state of the database has to be installed efficiently at the joining node,

interfering as little as possible with concurrent processing of transactions in the rest of the system;

and, a synchronization point must be determined from which on the new node can start processing

transactions itself.

In [KBB01] several different alternatives, using the Enriched View Synchrony concept, are

shown for information transmission to the node recovery: embedding the recovery process inside

the GCS; the whole database; versioning; and, lazy data transfer. All these solutions greatly

depend on the DBMS considered, since these are not standard features.

Another recovery solution proposed in the literature is [JPPMA02] which is a recovery pro-

tocol for the protocol proposed in [PMJPKA00]. They use totally ordered logs for transferring

missed updates associated to a given partition. One node is selected as the recoverer of a given

partition which transfers missed information and current updates. Once this process is finished,

the node is considered to be online.

8 Chapter 1. Introduction

1.1 About this Thesis

The aim of this thesis is to develop an eager replication protocol whose formal correctness proof

(1CS [BHG87]) does not depend on the total order delivery imposed by the Group Communication

System (GCS) [CKV01]. The development of this protocol is enclosed inside the Middleware Al-

tamente DISponible (MADIS) research project (TIC2003-09420-C02), a national research project

jointly developed by Grupo de Sistemas Distribuidos from Universidad Pública de Navarra (Pam-

plona, Spain) and Instituto Tecnológico de Informática from Universidad Politécnica de Valencia

(Valencia, Spain).

MADIS is a middleware architecture that provides database replication: (i) Users may see a

JDBC interface to interact with the middleware, i.e. they do not modify their original applications.

(ii) Data consistency is managed by replication protocols. Another key point of this project is

the design of a generic protocol interface that permits to implement a wide range of replication

protocols and switching among them. As all replication protocols do not have the same metadata

needs, such as the version number or the timestamp of the last modification or the owner of an

object among others, we have to modify the database schema in order to support a wide range of

replication protocols. This will be thoroughly explained in this Thesis.

The replication protocols presented in this Thesis maintain replica consistency while the con-

currency control is left to the underlying DBMS. This implies that we do not need to reimplement

any specific database feature at the middleware level, such as lock tables. It only propagates the

updates performed by transactions. Deadlock situations among sites are prevented by defining a

dynamic deadlock prevention schema based on priorities.

1.1.1 Research Goals

The main research goals of this Thesis are the next:

1. The MADIS Architecture. As it has been previously pointed out, we have collaborated

in the design, development and implementation of the MADIS architecture. MADIS is

a database replication middleware architecture that tries to minimize the main drawbacks

of the middleware approach. Hence, it tries to offer a very similar interface to the one

already provided by the underlying DBMS. Replication protocols will take advantage of the

concurrency control offered by the DBMS so as to focus themselves exclusively in replica

1.2. Thesis Organization 9

control. Moreover, the database schema may be modified to simplify the metadata collection

for replication protocols.

2. Middleware Database Replication Protocols. A classic eager update everywhere repli-

cation protocol, such as O2PL, is taken as the cornerstone for developing new replication

protocols adapted to MADIS. It will be necessary to study their communication needs (e.g.

message ordering required or not), distributed deadlock prevention, site failure treatment

and atomic commitment protocol. We are very interested in comparing these protocols with

those based on the total order delivery guarantee [JPPMKA02, Kem00, KA00b, KPA+03,

PMJPKA00, PMJPKA05].

3. Correctness Proof. The strongest correctness criteria for replicated databases is 1CS. It

will be formally shown that the replication protocols developed are correct. Hence, a state

transition system [Sha93] will be used for the formalization of these protocols, followed by

a formal reasoning of the correctness properties.

4. Implementation and Comparison of Replication Protocols. From results obtained in

the previous two items, the designed replication protocols will be implemented in MADIS

in order to compare their performance. The key points to be compared are: transaction

response time, abortion rate and the influence of delivery guarantees.

5. Recovery Protocol Study and Design. As MADIS is a highly available system, we must

ensure this property by the specification of a recovery protocol. Hence, a new recovery

protocol must be defined so that it interferes as little as possible with previously available

nodes during the recovery process. Moreover, user transactions may be executed at the

recovering node although it has not been recovered yet.

1.2 Thesis Organization

This Thesis is organized as follows. Chapter 2 introduces the system and the formalization models

used throughout the thesis for the definition of the protocols proposed. Chapter 3 presents two

O2PL based replication protocols formalized as state transition systems along with their respective

correctness proofs. It also introduces the formalization of a total order replication protocol as a

state transition system. Chapter 4 is devoted to explain the MADIS architecture, its design and

10 Chapter 1. Introduction

implementation. It also shows some experimental results such as the overhead introduced by

MADIS and the comparison of the implementation of the O2PL based protocols in MADIS as

well as their comparison with a total order replication protocol implementation. The recovery

protocol for the O2PL based protocols is depicted as a state transition system in Chapter 5. Finally,

Chapter 6 summarizes the major results of this Thesis, along with some outlines of future research

directions.

Chapter 2

System Model and Definitions

This Chapter introduces the formal model and the tools used by the middleware architecture so as

to support the replication and recovery protocols which this Thesis is based on. The abstraction of

the architecture is divided in four parts in order to present its main components and the interfaces

they offer to interact between them. We start with the communication model description which

mainly consists in the view-oriented Group Communication System (GCS) [CKV01]. As we are

developing a replication protocol for a middleware architecture providing a JDBC interface, we

have to consider the Database Management System (DBMS) model. Finally, we introduce the

transaction model that points out our replication protocol basics.

We describe the behavior of our protocols using a formal state transition system [Sha93]. Thus,

protocols are described based on a set of actions, that are enabled if the state variables satisfy

certain conditions. Respectively, the body of an action modifies the state of variables so that other

actions may be enabled or disabled. This permits us to define liveness and safety properties by

way of an assertion language.

2.1 General Architecture

The system model, see Figure 2.1, considered in this Thesis is an abstraction of the MADIS mid-

dleware architecture [IBDdJM+05]. This middleware has been implemented in Java and provides

a JDBC interface to its client applications. The main parts of this architecture are described as an

abstraction in this Chapter. Details of its implementation will be introduced in Chapter 4, where

the interfaces presented there may easily be ported to its JDBC, DBMS or GCS own actions.

11

12 Chapter 2. System Model and Definitions

The architecture is composed byN sites (or nodes) which communicate among them by mes-

sage exchange, m ∈ M, where M is the set of possible messages that may be generated in our

system, using the communication primitives provided by a GCS [Bar04, CKV01, HT94]. We as-

sume a partially synchronous system; different sites may run at different rates, and message delay

is unknown but under certain bounded limit. Otherwise, with an asynchronous distributed sys-

tem with failures no consensus can be reached [FLP85] and group membership cannot be solved,

excepting the addition of a failure detector [CT96].

In regard to failures, we assume a partial amnesia crash [Cri91]. We consider this kind of

failures as we want to deal with node recovery after its failure. It occurs when, at restart, some

part of the state is the same as before the crash, while the rest of the state is reset to a predefined

initial state. In our model, all committed transactions prior to a node failure are maintained when

it joins again the system. On the other hand, active transactions and state variables are missed once

the node crashes. Hence, the recovery protocol must transfer the missed updates of faulty nodes

and update the state variables associated to the protocol.

We assume a fully replicated system. Each site has a DBMS containing a copy of the entire

database and executes transactions on its data copies. In the following, T denotes the set of all

possible transactions and OP denotes the set of all possible operations that may be submitted

to the database. A transaction, t ∈ T , submits operations (SQL statements), op ⊆ OP, for its

execution over its local DBMS via the middleware module. The replication protocol coordinates

the execution of transactions among different sites to ensure 1CS [BHG87].

Figure 2.1: Main components of the system

2.2. Group Communication System 13

2.2 Group Communication System

The GCS interacts only with the replication and recovery protocol module. It has been split into

two parts: the Communication Service (CS) and the Membership Service (MS). Their respective

interfaces are introduced in Figure 2.2.

The communication among sites is mainly based on reliable or total order multicast as pro-

vided by standard GCSs [HT94, CKV01], where multicast messages are grouped by views and

delivered to the list of available nodes in that view. GCS also provides a membership service

so as to detect failures and recoveries [CT91]. A view change is generated each time a node

crashes or recovers after a failure [CKV01]. More formally, a view, denoted V, is defined as a

pair (V.id,V.availableNodes) where V.id ∈ Z and V.availableNodes ⊆ N is the set of nodes

in such a view. VID = {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N} is the set of all

possible installed views in the system.

Reliable multicast does not restrict the order in which messages are delivered. Besides, its cost

is low in terms of physical messages per multicast. This low cost is one of the reasons to select

it for our replication protocol proposal [DSU04, KPA+03]. For some messages the protocol also

uses the traditional reliable unicast. On the other hand, total order multicast ensures that messages

are delivered in the same order at all nodes that deliver them [CKV01].

Figure 2.2: Communication System

14 Chapter 2. System Model and Definitions

2.2.1 View Synchrony

We have made the assumption that the GCS is view-oriented. This means that certain events

(such as: message sending; message delivery; node failures; and, node recoveries) occur at all

available sites in the context of views. It acts as a synchronization point for distributed systems

and it is denoted as view synchrony [BBD96]. The real utility of view synchrony in a GCS is not

in its individual components, reliable multicast and membership service, but in their integration.

Informally, view synchrony can be specified through the following properties on message reliable

deliveries:

- Agreement. All processes that survive from one view to the same next view deliver the same

set of messages.

- Uniqueness. A message is delivered in at most one view.

- Integrity. A message is delivered at most once by any process and only if some process

actually multicasts it.

We cope with transient or software (e.g. source and reception buffers management) commu-

nication failures. Our communication system reliability will not always be held. Access to certain

nodes may be missed due to possible hardware communication failures. At least in environments

where links are not replicated. Therefore, network partitions may appear, in such a case we will

adopt the primary partition model [RSB93].

In case of failures, the GCS must also guarantee a uniform reliable multicast [HT94], stating

that if a site (faulty or not) delivers a message in the context of a view, then all non-faulty nodes

will eventually deliver this message in the given view [CKV01]. This feature is desirable in order

to guarantee atomic commitment in replicated databases. We need the following properties to

guarantee uniform delivery:

- Uniform Agreement. If a site (whether correct or faulty) delivers a message m, then all

correct sites eventually deliver m.

- Uniform Integrity. For any message m, every site (whether correct or faulty) delivers m at

most once, and only if m was previously multicast by the origin site of m.

The latter property is also interesting for the recovery process of a node, since delivered mes-

sages may be grouped by installed views. Hence, all updates performed by transactions as long

2.2. Group Communication System 15

as there are crashed nodes will be much easier to store this way. Afterwards, when a failed node

joins the system again, we split the recovery process on the views missed by the recovering node.

The total order multicast must additionally include the following property [CT96, DSU04,

HT94] in order to be guaranteed:

- Uniform Total Order. If sites i and j both total-order deliver messages m and m′, then i

total-order delivers m before m′, if and only if j total-order delivers m before m′.

2.2.2 Communication Service

Each site has an input buffer of messages, denoted channeli ⊆ M for each i ∈ N , where messages

delivered by other nodes are stored. Therefore, sending a message implies filling the associated

buffer of all its possible destinations. We do not assume that message reception follows a FIFO

policy. Replication protocols may choose to receive one of the messages contained in channeli

does not need any special message ordering. The CS provides the following actions to the replica-

tion protocol (see Figure 2.2):

• sendRMulticast(m, group). It multicasts a message from a node, m ∈ M, to a set of nodes

(group ⊆ N). This action will put the given message in the associated buffer of each node.

More formally: ∀ j : j ∈ group : channel j ← channel j ∪ {m}.

• sendRUnicast(m, destination). This action sends a message, m ∈ M, to a given destination,

where destination ∈ N . In other words: channeldestination ← channeldestination ∪ {m}.

• receive(m). A message, m ∈ M, sent to a given node is stored in its associated buffer,

according to its special delivery guarantees. The protocol must explicitly invoke this action

in order to receive the message. Hence, this action removes the message from the buffer:

channel j ← channel j \ {m}.

• sendURMulticast(m, group). It uniformly multicasts a message, m ∈ M, to a set of nodes

(group ⊆ N) in the context of a given view,V.

• sendTOMulticast(m, group). It total-order multicasts a message, m ∈ M, to a set of nodes

(group ⊆ N) in the context of a given view,V. More formally: ∀ j : j ∈ group : channel j ←
channel j ∪TO {m}.

16 Chapter 2. System Model and Definitions

2.2.3 Membership Service

The MS has to maintain the set of the currently available nodes. This list may change whenever

a new node joins or leaves the group. When this list changes, the membership service reports the

change to the members by installing a new view. The MS installs the same view at all mutually

connected members. Therefore, a consensus on the new installed view among all members must

be done. This new view will increase its identifer and contain the list of current available nodes.

The sequence of view change events generated by the MS are installed in the same order on all

available nodes. Views have a partial order relationship defined by its identifier (V.id). Nodes i

and j belonging to two different views,V andV′ withV.id < V′.id, will both installV′ afterV.

We assume a primary partition model [RSB93] since we are interested in maintaining a globally

consistent replicated database. Therefore, we only allow a group of nodes to update the database.

The chosen nodes are the ones forming the majority of members in the group. The remaining

nodes, those belonging to a minority partition, will behave as failed nodes.

We have defined the following actions that notify the protocol a view change event whenever

a node (or several) joins or leaves the group of nodes as shown in Figure 2.2:

• join(V). This action passes as parameter the new installed view in the GCS due to the

recovery, or addition, of a given node. The V parameter is a tuple containing the fields:

V.id that corresponds to the new view identifier; and,V.availableNodes containing the list

of available nodes in this new installed view.

• leave(V). This action is invoked by the GCS each time a node (or several) crashes. As the

previous action, the parameter contains the identifier of the new view and the list of current

available nodes.

2.3 Database Management System

Each site includes a DBMS that stores a physical copy of the replicated database. The data-

base contains data items uniquely identified by an object identifier, oid ∈ OID with OID being

the set of all possible object identifiers. We assume that the DBMS ensures ACID properties

of transactions [BHG87] and satisfies the SQL serializable transaction isolation level as depicted

in [BBG+95]. As we are in a middleware architecture providing a JDBC interface, replication

2.3. Database Management System 17

protocols only have the standard way to access the DBMS, i.e. by way of SQL statements in the

context of a transaction.

Figure 2.3: Database Management System

The DBMS, as depicted in Figure 2.3, gives to the middleware common operations in order to

support standard database operations. It is important to note that these operations may be straightly

ported to their equivalent JDBC methods. We will give a rough outline of all of them:

• begin(t). This action starts a transaction t ∈ T in the underlying database.

• submit(t, op). It submits an operation, op ⊆ OP, to the database in the context of transaction

t ∈ T . When the operation is submitted to the DBMS, the transaction may not issue any

other operation until the DBMS responds back again reporting the successful completion of

the operation, as we will see afterwards.

• commit(t). It commits the transaction in the database.

• abort(t). Changes done in the context of this transaction are rolled back.

Each time an operation is submitted to the DBMS by a given transaction, the DBMS informs

about the completion of the given operation by way of the next action:

• notify(t, op). It informs about the success of an operation. It returns two possible values:

run when the submitted operation has been successfully completed; or, abort due to DBMS

internals, e.g., deadlock resolution or enforcing serialization.

18 Chapter 2. System Model and Definitions

We also assume that after the successful completion of a submitted operation by a transaction,

it can be committed at any time. In other words, a transaction may be unilaterally aborted by the

DBMS only while it is performing a submitted operation.

We modify the original database schema with additional metadata tables that store information

needed to ease replication and recovery tasks to the protocols. Right now, we will only focus in

the recovery metadata table called MISSED, the rest will be explained in Chapter 4. It contains

three fields: VIEW ID, NODES and OIDS. The first field contains the view identifier which acts

as an index to select the crashed nodes (or not recovered yet), NODES, and data items updated in

that view, OIDS.

Several functions, which are not provided by DBMSs, have been defined in order to facilitate

data replication to the replication and recovery protocols [IBDdJM+05]. They can be built by the

implementation of the appropriate database triggers, stored procedures and functions. The first

two procedures deal with transactions issued by user applications, the remainder are related to the

recovery process:

• WS(t). It retrieves the set of objects written by t and the respective SQL statements that

have modified the database, WS (t) = {〈oids, ops〉 : oids ⊆ OID, ops ⊆ OP}.

• getConflicts(WS). The set of conflictive transactions between a write set and current ac-

tive transactions (an active transaction in this context is a transaction that has neither com-

mitted nor aborted) at a given site is provided by this function. More formally, getCon-

f licts(WS (t)) = {t′ ∈ T : (WS (t′).oids ∪ RS (t′).oids) ∩WS (t).oids , ∅}.

• leave(view id, nodes). This action only fills the view identifier and the set of nodes unavail-

able as a result of a leave(W) action invoked by the GCS [CKV01].

• missed updates(view id, oids). Each time a transaction commits, it inserts the object iden-

tifiers corresponding to the updates performed by the transaction into the MISSED metadata

table in the respective view id row.

• recovered view(view id, node id). It removes node id from the record view id contained in

the MISSED table. This action is invoked after a recovering node, node id, has recovered

the view id missed updates. If the NODES field becomes empty this registry is deleted from

the MISSED table.

2.4. Transactions 19

• get missed updates(nodes). It returns the rows that contain any j ∈ nodes in the NODES

field. This is used to define the objects missed by failed nodes once they rejoin the system.

See Chapter 5 for details.

• set missed updates(view id, nodes, oids). It adds (or creates) some metadata to the respec-

tive row of the MISSED table. This is used by recovering nodes to update its metadata

information.

• recover me(t,missed). This is a special recovery function executed in the context of a

recovering transaction, t ∈ T . As its own name states, it is executed on a recovering node

in order to abort any possible transaction (if any) currently accessing objects contained in

missed (missed ⊆ OID) and preventing that local user transactions access these data items

(e.g. executing an “UPDATE” statement). Hence, this function defines a partition in the

database. As this is a database function, the recovery protocol must wait for the noti f y

action too. Meanwhile, it can receive the state of outdated registers from the recoverer node

that will be applied in the context of this recovery transaction, once it receives the noti f y of

this function. This recovery partition is released once the missed updates are applied in the

node.

• recover other(t,missed). The other recovery function is like the previous one, but it is ex-

ecuted on the recoverer node, and in the context of a recovering transaction t ∈ T , once it

knows which registers are outdated. This function rolls back transactions currently updat-

ing objects contained in missed (missed ⊆ OID) only at the time it sets up the database

partition; afterwards, they will get blocked. It prevents local user transactions from updat-

ing these registers while they are being transferred to the recovering node (e.g. executing a

“SELECT FOR UPDATE” statement). This function acts as a submitted operation, there-

fore we have to wait for its completion via the noti f y action. This partition remains in the

recoverer node until the data items belonging to it have been transferred to the recovering

node.

2.4 Transactions

Client applications access the system through their closest site to perform transactions by way of

actions introduced in Figure 2.1. As it was pointed out, this is an abstraction, in fact applications

20 Chapter 2. System Model and Definitions

employ the same JDBC interface as the underlying DBMS. Each transaction identifier includes

the information about the site where it was first created (t.site), called its transaction master site.

It allows the protocol to know if it is a local or a remote transaction. Each transaction has a unique

priority value (t.priority) based on transaction information.

A transaction t ∈ T created at site i ∈ N (t.site = i) is locally executed and follows

a sequence of actions initiated by create(t) and continued by multiple begin operation(t, op),

end operation(t, op) pairs actions in a normal behavior. The begin commit(t) action states that

the user wishes to commit the transaction. The end commit(t) notifies about the successful com-

pletion of the transaction on the replicated databases, as it is depicted in Figure 2.4. However, an

abort(t) action may be generated by the local DBMS or by a replication protocol decision. For

simplicity, we do not consider an application abort. On the following, we give an outline of the

main features of the actions performed by a user transaction:

• create(t). It starts the transaction on the system. This is only executed on the transaction

master site (t.site).

• begin operation(t, op). This is the way a user transaction executes SQL statements to the

replicated database in the context of a transaction. In our replication protocol, it may not

invoke this action again until it gets notified by the next action.

• end operation(t, op). This is invoked by the middleware instance each time it has been

successfully processed the SQL statement by the DBMS. In our concrete case, when the

database has completed the operation.

• begin commit(t). This action points out that the user application wishes to commit the

transaction. The middleware will notify this fact to the replication protocol, that makes the

replication protocol start to manage the commit of t at the rest of replicas.

• end commit(t). This is the middleware response action to the previous one. It means that

all updates of the transaction have been applied at all available replicas.

These actions represent the interface with the middleware. The invocation of an action is

notified to the replication protocol, which takes the right steps so as to guarantee data consistency.

As it has been pointed out, this replication protocol does not interact with the rest of replicas until

the application wants to commit its transaction.

2.5. State Transition Systems 21

Figure 2.4: Transaction execution model

2.5 State Transition Systems

Several protocols will be introduced in this thesis. They will be formally introduced using a state

transition system as presented in [Sha93]. In the following we briefly explain this system model.

A state transition system M is defined by:

• SignatureM. A set of actions.

• StatesM . A set of state variables and their domains, including an initial condition for each

variable.

• TransitionsM . For each action π ∈ SignatureM:

– preM(π). It is the precondition of π in M. It is a predicate in StatesM that enables its

execution.

– effM(π). The effects of the action π in M. It is a sequential program that atomically

modifies StatesM.

• A finite description of fairness requirements.

In the following we omit M for simplicity. We assume that the initial state is nonempty.

For each action π, its associated precondition, pre(π), and effects, eff(π), define a set of state

22 Chapter 2. System Model and Definitions

transitions. More formally, {(p, π, q) : p, q are system states; p satisfies pre(π); and q is the result

of executing eff(π) in p}.

An execution is a sequence of the form: α = s0π1s1 . . . πzsz . . . where the sz’s are system

states, the πz’s are actions, s0 is the initial state, and every (sz, πz, sz+1) is a transition of πz. An

execution can be infinite or finite. By definition, a finite execution ends in a state. Note that for

any execution α, every finite prefix of α ending in a state is also an execution. Let Executions

denote the set of executions for a system. Executions is enough for stating safety properties but

not its liveness properties (because it includes executions where system liveness requirements are

not satisfied).

We next define the executions of the system that satisfy liveness requirements. Let Π be a

subset of Signature. The precondition of Π, denoted pre(Π), is defined by [∃ π ∈ Π : pre(π)].

Thus, Π is enabled (disabled) in a state if and only if some (no) action of Π is enabled in the state.

Let α = s0π1s1 . . . πzsz . . . be an infinite execution. We say that Π is enabled (disabled) infinitely

often in α if Π is enabled (disabled) at an infinite number of sz’s belonging to Π. We say that Π

occurs infinitely often in α if an infinite number of πz’s belong to Π.

An execution α satisfies weak fairness for Π [LT87] if and only if one of the following occurs:

1. α is finite and Π is disabled in the last state of α.

2. α is infinite and either Π occurs infinitely often or is disabled infinitely often in α.

Informally, this means that if Π is enabled continuously, then it eventually occurs.

An execution α is fair if and only if it satisfies every fairness requirement of the system. Let

FairExecutions denote the set of fair executions of the system. FairExecutions is sufficient for

defining the liveness properties of the system, as well as its safety properties.

We allow actions to have parameters. This is a convenient way of defining a collection of

actions. For example, consider an action π(i) with precondition pre(π(i))≡ x = 0 and effects

eff(π(i))≡ x← i, where x is an integer and where the parameter i ranges over (1, 2, . . . , 50). Action

π(i) actually specifies a collection of 50 actions, π(1), π(2), . . . , π(50).

We use the term state formula to refer to a predicate in the state variables of the system. A

state formula evaluates to true or false for each state of the system. We consider assertions of the

form Invariant(P) and P leads-to Q, where P and Q are state formulas.

2.6. Discussion 23

Let α = s0π1s1 . . . πzsz . . . be an (finite or infinite) execution of the system. The execution

α satisfies Invariant(P) if and only if every state sz in α satisfies P. The execution α satisfies P

leads-to Q if and only if for every sz in α that satisfies P there is an sk in α, k ≥ z, that satisfies Q.

The system satisfies Invariant(P) if and only if every execution of the system satisfies Invariant(P).

Respectively, the system satisfies P leads-to Q if and only if every fair execution of the system

satisfies P leads-to Q. We allow assertions that are made up of invariant assertions or leads-to

assertions joined by logical connectives and containing parameters.

2.6 Discussion

In this Chapter we have introduced an abstraction of the MADIS middleware architecture which

will be shown in detail in Chapter 4. This architecture provides a standard database interface

(JDBC) to client applications, hence they do not need to be modified. In the same way, the mid-

dleware instance sees a JDBC interface with the underlying DBMS. The DBMS has to be modified

so as to include some functions that facilitate database replication via middleware, although we do

not have modified the database internals in order to generate these functions. It obviously penalizes

system performance but it maintains its validity for different DBMS vendors. Each middleware

instance has a replication protocol instance embedded in it. The replication protocol is responsible

for the communication with the rest of nodes using a GCS.

The abstraction followed eases the definition of replication and recovery protocols. As this

Thesis focuses on the replication and recovery protocols, it let us study them in depth without

worrying at implementation details. We have described the three main components of our system

as interfaces with actions that each component may invoke on the other and viceversa. This allows

us to formulate the replication and recovery protocols as state transition systems, as it will be

shown in Chapters 3 and 5.

We have described our failure system model. This will help us to clarify how our recovery

algorithm proposal works. Its description will be formulated in Chapter 5. With all the additional

features we have included in the underlying DBMS, it will not be a difficult task to accomplish

database recovery without penalizing system availability.

Finally, we have introduced the formal notation we are going to use in the description of our

protocols in Chapters 3 and 5. They are going to be defined as state transition systems. We have

24 Chapter 2. System Model and Definitions

stated all the background around this way of introducing protocols so that the definition of safety

and liveness properties will be straightforward with this notation.

Chapter 3

Middleware Replication Protocols

This Chapter presents the Basic Replication Protocol (BRP) for the MADIS [IBDdJM+05] middle-

ware architecture which is introduced in Chapter 4. The protocol is based on the O2PL protocol

proposed by Carey et al. in [CL91], without needing lock management or previous transaction

knowledge at the middleware layer. This fact avoids to reimplement on the replication protocol

component features that can be obtained in a simple way from the local DBMS. The replication

protocol is formalized and proved using a formal state transition system [Sha93]. The interfaces

shown in Chapter 2 serve us to define the actions performed by the BRP in the different compo-

nents of the system.

The 1CS [BHG87] property for database replication is obtained from the combination of as-

sumed serializability [BBG+95] on the local DBMSs and the message ordering imposed by the

replication protocol. As a result of the correctness proof, we may add several enhancements and

variations for BRP. These modifications lead to the definition of the Enhanced Replication Proto-

col (ERP). This new protocol reduces response times and transaction abortion rates by removing

the Two Phase Commit (2PC) rule [BHG87] and the use of queues. Failures and recovery issues

for these protocols are thoroughly explained in Chapter 5. Finally, we are very interested in com-

paring BRP and ERP with total order based replication protocols [AT02, EPZ05, JPPMKA02,

KA00b, KPA+03, WK05, LKPMJP05]. Hence, we introduce another replication protocol, named

Total Order Replication Protocol with Enhancements (TORPE), using the same formalism as the

previous ones that will be also implemented in MADIS for its comparison with the implementa-

tions of BRP and ERP.

25

26 Chapter 3. Middleware Replication Protocols

3.1 Introduction

BRP is an eager update everywhere replication protocol adapted to the MADIS [IBDdJM+05]

middleware architecture. It follows the idea of the atomic commitment protocol, more precisely

the 2PC protocol, and is an adaptation of the O2PL protocol proposed by Carey et al. [CL91]. We

need no lock management at the middleware level since we rely on the serializable behavior, as

stated in [BBG+95], of the underlying DBMS. Besides, it uses basic features present in common

DBMSs to generate the set of metadata needed to maintain each data item and conflict detection

among transactions, as pointed out in Chapter 2. This allows the underlying database to perform

the tasks needed to support the replication protocol and simplifies the BRP implementation. How-

ever, the BRP must have a dynamic deadlock prevention schema in order to prevent distributed

deadlocks appearance, which is based on the transaction priority and its state in the system.

The BRP presents some drawbacks. It is a 2PC protocol so it must wait for the application

of updates at all available sites before committing a transaction. The deadlock prevention schema

may unnecessarily abort two conflicting transactions due to the lack of order in the message de-

livery at different sites. Nevertheless, the BRP gives the basis to obtain a new protocol that avoids

such limitations. The study of the BRP and its subsequent formal correctness proof show us the key

points that serve to improve its behavior while maintaining its correctness. This new protocol is the

ERP which provides additional enhancements and modifications than those featured in the BRP. It

optimizes its response time and reduces the abortion rate of the BRP. However, there exists a group

of replication protocols [AT02, EPZ05, JPPMKA02, KA00b, KPA+03, WK05, LKPMJP05] that

uses the total order delivery of multicast messages [CKV01] to order transactions in the system.

Hence, distributed deadlock is avoided. We introduce TORPE as a simplification of the previous

protocols that uses the total order multicast to propagate the updates done by a transaction to the

rest of sites.

The contributions of this Chapter are the following: (a) We present an example of a lock-based

replication protocol that delegates such a lock management to the underlying DBMS, simplifying

the development of the replication protocol in the middleware layer. (b) The BRP is able to manage

unilateral aborts generated by the DBMS since it is a 2PC protocol. Only a few current replication

protocols are able to manage such kind of aborts [Ped99]. (c) It provides a formal correctness

proof of a variation of the O2PL protocol [CL91]. We have not found a proof of this kind for

the original O2PL protocol nor any of its variations. (d) We have avoided distributed deadlock

3.2. Basic Replication Protocol Description 27

cycles among sites by means of a deadlock prevention schema based on dynamic priorities that

come imposed by the atomicity of transactions. (e) A new replication protocol ERP, along with

its correctness proof, that increases its performance provided that unilateral aborts do not occur

and that the priority rule is modified; ERP does not have to wait for applying the updates at all

available sites before committing the transaction. (f) The ERP reduces its abortion rate by the

use of a queue and deciding a transaction abortion in its master site; hence if two conflicting

transactions are delivered in different order at different sites then at least one of then never gets

rolled back. (g) A formalization of a total order based replication protocol TORPE which is an

adaptation of the previous protocols using the total order multicast provided by a GCS to send the

updates of a transaction to the rest of available sites.

The rest of the Chapter is organized as follows: A formal description of the BRP in a failure

free environment is given in Section 3.2. The BRP correctness proof is shown in Section 3.3.

Section 3.4 introduces the ERP. The correctness proof of the ERP is depicted in Section 3.5. The

formal description of TORPE as a state transition system is given in Section 3.6. Finally, some

discussions about the protocols and related works are introduced in Section 3.7.

Figure 3.1: Execution example of a local (left) and a remote transaction (right)

3.2 Basic Replication Protocol Description

Informally, each time a client application issues a transaction (local transaction), all its operations

are locally performed over its master site. The remaining sites enter in the context of this transac-

tion when the application requests for the commitment of the transaction. All update operations

are grouped and sent to the rest of available sites, without any further assumption about message

ordering, following a ROWAA approach [BHG87]. If the given transaction is a read only one, as

its associated writeset is empty, it directly commits. We do not consider its behavior for simplic-

28 Chapter 3. Middleware Replication Protocols

Signature:
{∀ i ∈ N , t ∈ T ,m ∈ M, op ⊆ OP : createi(t),begin operationi(t, op), end operationi(t, op),begin commiti(t),

end commiti(t), local aborti(t), receive remotei(t,m), receive readyi(t,m), receive commiti(t,m),
receive aborti(t,m), receive rem aborti(t,m),discardi(t,m)}.

States:
∀ i ∈ N ,∀ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, aborted, committed},

initially (node(t) = i⇒ statusi(t) = start) ∧ (node(t) , i⇒ statusi(t) = idle).
∀ i ∈ N ,∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initiallyVi = 〈0,N〉.

Transitions:

createi(t) // t.site = i //
pre ≡ statusi(t) = start.
eff ≡ DBi.begin(t);

statusi(t)← active.

begin operationi(t, op) // t.site = i //
pre ≡ statusi(t) = active.
eff ≡ DBi.submit(t, op);

statusi(t)← blocked.

end operationi(t, op)
pre ≡statusi(t) = blocked ∧ DBi.noti f y(t, op) = run.
eff ≡ statusi(t)← active;

if t.site , i then
sendRUnicast(〈ready, t, i〉, t.site);
statusi(t)← pre commit.

begin commiti(t) // t.site = i //
pre ≡ statusi(t) = active.
eff ≡ statusi(t)← pre commit;

participantsi(t)←Vi.availableNodes \ {i};
sendRMulticast(〈remote, t,DBi.WS (t)〉, participantsi(t)).

end commiti(t) // t ∈ T ∧ t.site = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = ∅.
eff ≡ DBi.commit(t);

statusi(t)← committed;
sendRMulticast(〈commit, t〉,Vi.availableNodes \ {i}).

receive readyi(t,m) // t ∈ T ∧ t.site = i //
pre ≡ statusi(t) = pre commit ∧ participantsi(t) , ∅∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m);

participantsi(t)← participantsi(t) \ {source}.

local aborti(t)
pre ≡ statusi(t) = blocked ∧ DBi.noti f y(t, op) = abort.
eff ≡ statusi(t)← aborted; DBi.abort(t);

if t.site , i then
sendRUnicast(〈rem abort, t〉, t.site).

receive commiti(t,m) // t ∈ T ∧ t.site , i //
pre ≡ statusi(t) = pre commit ∧ m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m);

DBi.commit(t);
statusi(t)← committed.

receive remotei(t,m) // t ∈ T ∧ t.site , i //
pre ≡ statusi(t) = idle ∧ m = 〈remote, t,WS 〉 ∈ channeli.
eff ≡ receivei(m);

con f lictS et ← DBi.getCon f licts(WS);
if ∃ t′ ∈ con f lictS et : ¬higher priority(t, t′) then

statusi(t)← aborted;
sendRUnicast(〈rem abort, t〉, t.site)

else
// The delivered remote transaction has
// the highest priority or no conflicts
∀ t′ ∈ con f lictS et :

DBi.abort(t′);
if statusi(t′) = pre commit ∧ t′.site = i then

sendRMulticast(〈abort, t′〉,
Vi.availableNodes \ {i});

statusi(t′)← aborted;
DBi.begin(t);
DBi.submit(t,WS .ops);
statusi(t)← blocked.

receive aborti(t,m) // t ∈ T ∧ t.site , i //
pre ≡ statusi(t) < {aborted, committed} ∧

m = 〈abort, t〉 ∈ channeli.
eff ≡ receivei(m);

DBi.abort(t);
statusi(t)← aborted.

receive rem aborti(t,m) // t.site = i //
pre ≡ statusi(t) < {aborted, committed} ∧

m = 〈rem abort, t〉 ∈ channeli.
eff ≡ receivei(m); DBi.abort(t); statusi(t)← aborted;

sendRMulticast(〈abort, t〉,Vi.availableNodes \ {i}).

discardi(t,m) // t ∈ T //
pre ≡ statusi(t) = aborted ∧ m ∈ channeli.
eff ≡ receivei(m).

� function higher priority(t, t′) ≡ t.site = j , i
∧ (a ∨ b ∨ c)

(a) t′.site = i ∧ statusi(t′) ∈ {active, blocked}
(b) t′.site = i ∧ statusi(t′) = pre commit∧

t.priority > t′.priority
(c) t′.site = k ∧ k , j ∧ k , i ∧ statusi(t′) = blocked∧

t.priority > t′.priority

Figure 3.2: State transition system for the Basic Replication Protocol (BRP). pre indicates precondition and eff effects
respectively

ity. This replication protocol is different from the eager update everywhere 2PL protocol model

assumed by [GHOS96]. Instead of sending multiple messages for each operation issued by the

3.2. Basic Replication Protocol Description 29

transaction, only three messages are needed per transaction: one containing the remote update,

another one for the ready message, and, finally, a commit message.

All updates are applied in the context of another local transaction (remote transaction) on the

given local database where the message is delivered. This node will send back to the transaction

master site a message saying it is ready to commit the given transaction. When the reception of

ready messages is finished, that is, all nodes have answered to the transaction master site, it sends

a message saying that the transaction is committed. Figure 3.1 shows an execution, depicting

actions and message exchange, of a local transaction (left) and its respective remote execution

(right) when everything goes fine.

Our replication protocol relies for conflict detection on the mechanism implemented in the

underlying DBMS which guarantees an ANSI SQL serializable isolation level [BBG+95]. This

assumption frees us from implementing locks at the middleware level. However, this latter as-

sumption is not enough to prevent distributed deadlock [BHG87]. We have avoided this problem

using a deadlock prevention schema based on priorities.

In the following, we present this replication protocol as a formal state transition system using

the formal model of [Sha93]. In Figure 3.2, a formal description of the signature, states and

steps of the replication protocol for a site i is introduced. An action can be executed only if its

precondition is enabled. The effects modify the state of the system as stated by the sequence of

instructions included in the action effects. Actions are atomically executed. It is assumed weak

fairness for the execution of each action.

Figure 3.3: Valid transitions for a given statusi(t) of a transaction t ∈ T

We will start with the states defined for this replication protocol. Each site has its own state

30 Chapter 3. Middleware Replication Protocols

variables (i.e., they are not shared among other nodes). The statusi(t) variable indicates the execu-

tion state of a given transaction; its valid transitions are shown in Figure 3.3. The participantsi(t)

variable keeps track of the sites that have not yet sent the ready message to transaction t whose

master site is i. Vi is the system current view, which in this protocol description context, with a

failure-free assumption, is 〈0,N〉.

Each action is subscripted by the site at which it is executed. The set of actions includes:

createi(t), begin operationi(t, op), end operationi(t, op), begin commiti(t) and end commiti(t).

These actions are the ones executed by the application in the context of a local transaction. The

end operationi(t, op) is an exception to this. It is shared with a remote transaction that sends

the ready message to its transaction master site when the operation has been completed. The

begin commiti(t) action sends the write-set and update statements of a transaction t to every site

and starts the replica control for this transaction. This set of actions is entirely self-explanatory

from inspection of Figure 3.2.

The key action of our replication protocol is the receive remotei(t, 〈remote, t,WS 〉) one. Once

the remote message at node i is received, this action finds out the set of transactions that conflicts

with the received write set (WS) in the local database. The remote updates, for that WS , will only

be applied if there is no conflicting transaction at node i having a higher priority than the received

one. The higher priority(t, t′) defines a dynamic priority deadlock prevention function, since the

transaction global priority depends on the state of the transaction (statusi(t)) and its own unique

priority (t.priority). As a final remark, a delivered remote transaction has never a higher priority

than other conflictive remote transaction at node i in the pre commit state; this fact is needed to

guarantee the transaction execution atomicity.

If there exists a conflicting transaction at i with higher priority, the remote message is ignored

and a remote abort message to the transaction master site is sent. In this protocol version we

do not allow transactions to wait among different sites, therefore deadlock situations are trivially

avoided. Finally, if the remote transaction is the one with the highest priority among all at i,

then every conflictive transaction is aborted and the transaction updates are submitted for their

execution to the underlying DBMS. Aborted local transactions in pre commit state with lower

priority will multicast an abort message to the rest of sites. The finalization of the remote trans-

action (end operationi(t, op)), upon successful completion of DBi.submit(t,WS .ops), is in charge

of sending the ready message to the transaction master site. Once all ready messages are col-

3.3. BRP Correctness Proof 31

lected from all available sites, the transaction master site commits (end commiti(t)) and multicasts

a commit message to all available nodes. The reception of this message commits the transaction

at the remainder sites (receive commiti(t, 〈commit, t〉)).

When the remote updates fail while being applied in the DBMS (unilateral aborts), the local -

aborti(t) is responsible for sending the remote abort message to the transaction master site. Once

the updates have been finally applied, the transaction waits for the commit message from its master

site. One can note that the remote transaction is in the pre commit state and that it is committable

from the DBMS point of view.

3.3 BRP Correctness Proof

This Section contains the proofs (atomicity and 1CS) of the BRP, introduced in Figure 3.2, in a

failure free environment.

Let us start showing that BRP is deadlock free, assuming that deadlocks involving exclusively

local transactions at a given site are directly resolved by the underlying local DBMS executing

the local aborti(t) action. The BRP does not permit a transaction to wait for another transac-

tion at a different site. Any wait-for relation among transactions at different sites are prevented

when receive remotei(t, 〈remote, t,WS 〉) is executed. By inspection, its effects ∀ t′ ∈ DBi.get-

Con f licts(WS .oids) : (DBi.abort(t′) ∧ statusi(t′) = aborted) if ∀ t′, higher priority(t, t′) are true.

On the contrary, statusi(t) = aborted, and the received remote transaction is not executed. There-

fore, wait-for relations among transactions at different sites are excluded and distributed deadlock

situations never occur in the system.

The BRP must guarantee the atomicity of a transaction; that is, the transaction is either com-

mitted at all available sites or is aborted at all sites. If a transaction t is in pre commit state then it

is committable from the local DBMS point of view. Therefore, if a local transaction commits at its

master site (node(t) = i) (i.e. it executes the end commiti(t) action), it multicasts a commit mes-

sage to each remote transaction it has previously created. Such remote transactions are also in the

pre commit state. Priority rules ensure that remote transactions in the pre commit state are never

aborted by a local transaction or a remote one. Thus, by the reliable communication property, the

commit message will be eventually delivered. Every remote transaction of t will be committed

via the execution of the receive commit j(t, 〈commit, t〉) action with j , i. On the contrary, if a

32 Chapter 3. Middleware Replication Protocols

transaction t aborts, every remote transaction previously created for t will be aborted. Unilateral

aborts are considered [Ped99], they may appear during the execution of a remote transaction by a

DBMS decision. We formalize such behavior in the following Properties and Lemmas.

In this Section we use the notation and definitions introduced in Chapter 2. Each action has a

precondition (pre in Figure 3.2), a predicate over the state variables. Its effects (eff in Figure 3.2)

are a sequence program that is atomically executed and that modifies state variables. An execution

α, is a sequence of the form s0π1s1 . . . πzsz As stated in Chapter 2, it is sufficient to consider

the set of all possible executions in order to state safety properties. However, liveness properties

require the notion of fair execution. We assume that each BRP action requires weak fairness.

Informally, a fair execution will satisfy weak fairness for π; if π is continuously enabled, then it

will be eventually executed.

The following Property formalizes the status transition shown in Figure 3.3. It indicates that

some status transitions are unreachable, i.e., if sk.status j(t) = pre commit and sk′ .status j(t) =

committed with k′ > k. There is no action in α such that sk′′ .status j(t) = aborted with k′ > k′′ > k.

Property 1. Let α = soπ1s1 . . . πzsz . . . be an arbitrary execution of the BRP automaton and t ∈ T .

Let β = s0.status j(t) s1.status j(t) . . . sz′ .status j(t) be the sequence of status transitions of t at site

j ∈ N , obtained from α by removing the consecutive repetitions of the same status j(t) value and

maintaining the same order apparition in α. The following Property holds:

1. If node(t) = j then β is a finite prefix of the regular expression:

• start · active · (blocked · active)∗ · pre commit · committed

• start · active · (blocked · active)∗ · pre commit · aborted

• start · (active · blocked)+ · aborted

2. If node(t) , j then β is a finite prefix of the regular expression:

• idle

• idle · blocked · pre commit · committed

• idle · blocked · pre commit · aborted

• idle · blocked · aborted

• idle · aborted

3.3. BRP Correctness Proof 33

The Property is simply proved by induction over the length of α following the preconditions

and effects of the BRP actions introduced in Figure 3.2. A status transition for a transaction t in

Property 1 is associated with an operation on the DB module where the transaction was created, i.e.

pre commit to committed involves the DB.commit(t) operation. These aspects are straightforward

from the BRP state transition system inspection in Figure 3.2 and the status transition shown in

Figure 3.3.

The following Property introduces the BRP invariant properties. It states that if a transaction

is committed at a different site from its master site, it is due to the fact that it has been already

committed at the master site. If a transaction is committed at its master site it is because all remote

transactions executing at the remainder available sites were previously in the pre commit state. A

remote transaction in the pre commit state may only change its state due to a commit or an abort

message coming from its master site. Finally, if a transaction is committed at its master site then

all available sites will be either committed or in the pre commit state. This Property is needed to

prove Lemma 1.

Property 2. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the BRP automaton and t ∈ T ,

with node(t) = i.

1. If ∃ j ∈ N \ {i} : sz.status j(t) = committed then sz.statusi(t) = committed.

2. If sz.statusi(t) = committed then ∀ j ∈ N : ∃ z′ < z : s′z.status j(t) = pre commit.

3. If ∃ z′ < z : sz′ .status j(t) = sz.status j(t) = pre commit for any j ∈ N \ {i} then ∀ z′′ : z′ <

z′′ ≤ z : πz′′ < {receive commit j(t, 〈commit, t〉), receive abort j(t, 〈abort, t〉)}.

4. If sz.statusi(t) = committed then ∀ j ∈ N \ {i} : sz.status j(t) ∈ {pre commit, committed}.

Proof.

1. By induction over the length of α. The Property holds for the initial state s0 : s0.status j(t) =

idle. By hypothesis, assume the Property holds at sz−1, the induction is proved for each

(sz−1, πz, sz) transition of the BRP automaton. If sz−1.status j(t) = committed, the status

does not change. By Property 1.2, the only enabled action is πz = discardi(t,m), with

m ∈ M, which does not modify sz−1.statusi(t). If sz−1.status j(t) , committed, only πz =

receive commit j(t, 〈commit, t〉) makes sz.status j(t) = committed. By its precondition, we

have that 〈commit, t〉 ∈ sz−1.channel j. The only action that sent such a message is πz′ =

34 Chapter 3. Middleware Replication Protocols

end commiti(t) with z′ < z. By its effects sz′+1.statusi(t) = committed and by Property 1.1,

the statusi(t) never changes. Hence, the Property holds.

2. Let z be the first state such that sz.statusi(t) = committed. We assume that for some j ∈
N ,@ z′ < z : sz′ .status j(t) = pre commit. Let πz = end commiti(t), be the action making

sz.statusi(t) = committed from sz−1.statusi(t) = pre commit. By its effects, sz.partici-

pantsi(t) = ∅. By Property 1.1, ∃ z′′ < z : πz′′ = begin commiti(t), hence sz′′ .partici-

pantsi(t) = N \ {i}. Thus, j ∈ sz′′ .participantsi(t) ∧ j < sz.participantsi(t). The only

action that remove j is πz′′′ = receive readyi(t, 〈ready, t, j〉) where z′′ < z′′′ < z. The

πz′ = end operation j(t,WS .ops) action is the only one that generates such a message. By

its effects sz′ .status j(t) = pre commit and z′ < z′′′. Thus, by contradiction, the Property

holds.

3. The effects of the receive commit j(t, 〈commit, t〉) and receive abort j(t, 〈abort, t〉) actions

make status j(t) to be committed or aborted respectively. In order to prove the Property we

need to show that if sz′ .status j(t) = pre commit and (sz′ , πz′+1, sz′+1) is a transition then πz′+1

∈ {receive commit j(t, 〈commit, t〉), receive abort j(t, 〈abort, t〉)} will be the unique actions

that change the pre commit value of status j(t). By inspection of the actions at j we have

the following candidates:

- πz′+1 = local abort j(t). This action, modeling a deadlock resolution or a unilateral

abort by the DB j module, is disabled at sz′ because sz′ .status j(t) = pre commit and is

committable by DB j module at any time.

- πz′+1 = receive rem abort j(t, 〈rem abort, t〉). This action is not enabled because t is

remote at j. The 〈rem abort, t〉 message is only received at the transaction master site

of t, node(t) = i.

- πz′+1 = receive remote j(t′, 〈remote, t′,WS ′), with t′ ∈ T ∧ node(t′) , j. If t ∈
DBi.getCon f licts(WS ′.ops) then t will be aborted in case of higher priority(t′, t)

is true. However, higher priority(t′, t) is false due to the fact that sz′ .status j(t) =

pre commit, being node(t) , j. Therefore, sz′+1.status j(t) = pre commit. A new

remote transaction at j may not abort a remote transaction in the pre commit state at

j.

3.3. BRP Correctness Proof 35

4. If sz.statusi(t) = committed, by Property 1.1 we have that ∀ sz′ ∈ α : sz′ .statusi(t) ,

aborted ∧ 〈abort, t〉 < sz′ .channel j for all j ∈ N . Thus, the receive abort j(t, 〈abort, t〉)
action is disabled at any state of α. By Property 2.2, we have that ∃ z′ < z : sz′ .status j(t) =

pre commit for all j ∈ N . By Property 2.3, either sz.status j(t) = pre commit or ∃ z′ <

z′′ < z : πz′′ = receive commit j(t). In the latter case, sz′′ .status j(t) = committed and by

Property 1.2 its associated status never changes. Therefore, sz.status j(t) ∈ {pre commit,

committed}. �

The following Lemma, a liveness property, states the atomicity of committed transactions.

Lemma 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the BRP automaton and t ∈ T with

node(t) = i. If ∃ j ∈ N : sz.status j(t) = committed then ∃ z′ > z : sz′ .status j(t) = committed for all

j ∈ N .

Proof. If j , i by Property 2.1 (or j = i) sz.statusi(t) = committed. By Property 2.4, ∀ j ∈
N \ {i} : sz.status j(t) ∈ {pre commit, committed}. Without loss of generality, assume that sz is

the first state where sz.statusi(t) = committed and sz.status j(t) = pre commit. By the effects

of πz = end commiti(t), we have that 〈commit, t〉 ∈ sz.channel j. By Property 2.4 invariance ei-

ther sz.status j(t) = committed or sz.status j(t) = pre commit and 〈commit, t〉 ∈ sz.channel j. In

the latter case the receive commit(t, 〈commit, t〉) action is enabled. By weak fairness assump-

tion, it will be eventually delivered, thus ∃ z′ > z : πz′ = receive commit j(t,m). By its effects,

sz′ .status j(t) = committed. �

We may formally verify that if a transaction is aborted then it will be aborted at all nodes in a

similar way. This is stated in the following Lemma.

Lemma 2. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the BRP automaton and t ∈ T with

node(t) = i. If sz.statusi(t) = aborted then ∃ z′ ≥ z : sz′ .status j(t) = idle for all j ∈ N \ {i} ∨
sz′ .status j(t) = aborted for all j ∈ N .

Proof. We have the following cases:

(I) If sz.statusk(t) = aborted, k = i, and it has reached this state due to a πz = local abortk(t)

action, then sz−1.statusi(t) = blocked , pre commit (Property 1.1). Thus, ∀ j ∈ N \
{i} : sz.status j(t) = idle. It is simple to show that this situation is permanent as the transac-

tion has not sent yet its updates to the rest of sites.

36 Chapter 3. Middleware Replication Protocols

(II) If sz.statusk(t) = aborted, k = i, and it has reached this state due to a πz = receive rem -

abortk(t, 〈rem abort, t〉) action, then by its effects an 〈abort, t〉 message is multicast to all

nodes except for i. It enables ∀ j ∈ N \ {i} : receive abort j(t, 〈abort, t〉) or status j(t) =

aborted (statusi(t) , committed by Lemma 1). Eventually ∃ z′ > z : πz′ = receive abort j(t,

〈abort, t〉) for any j ∈ N \ {i}.

(III) If sz.statusk(t) = aborted, k , i, and it has reached this state due to πz = local abortk(t) ac-

tion, then it sends a 〈rem abort, t〉 message to the transaction master site (node(t) = i). The

receive rem aborti(t, 〈rem abort, t〉) action is enabled or statusi(t) = aborted (status j(t) ,

committed by Lemma 1). The execution of πz′ = receive rem aborti(t,m), z′ > z, yields to

case (II).

(IV) If sz.statusk(t) = aborted, k , i, and it has reached this state due to πz = receive re-

motek(t, 〈remote, t,WS 〉) action, then it sends a 〈rem abort, t〉 message to the transaction

master site (node(t) = i). The rest is similar to case (III).

(V) If sz.statusk(t) = aborted, k = i, and it has reached this state due to a πz = receive re-

motek(t′, 〈remote, t′,WS ′〉) action, then an 〈abort, t〉 message is multicast to all nodes ex-

cluding i. The rest of the process is the one depicted in (II).

(VI) If sz.statusk(t) = aborted, k , i, and it has reached this state due to a πz = receive abortk(t,

〈abort, t〉) action, then for case (II) and (V) concludes. The 〈abort, t〉 message is received

by the rest of nodes. �

Figure 3.4: Happens-before relationship for the BRP of a given transaction t between its execution at the master site and
the rest of nodes

3.3. BRP Correctness Proof 37

Before continuing with the correctness proof we have to add a definition dealing with causal-

ity (happens-before relations [Lam78]) between actions. Some set of actions may only be viewed

as causally related to another action in any execution α. We denote this fact by πi ≺α π j. For

example, as it can be seen in Figure 3.4, with node(t) = i , j, end operation j(t,WS .ops) ≺α
receive readyi(t, 〈ready, t, j〉). This is clearly seen by the effects of the end operation j(t,WS .ops)

action as it sends a 〈ready, t, j〉 message to i. This message will be eventually received by the

transaction master site that enables the receive readyi(t, 〈ready, t, j〉) action, since statusi(t) =

pre commit, and, by weak fairness of actions, it will be eventually executed. The following

Lemma indicates that a transaction is committed if it has received every ready message from its

remote transaction ones. Moreover, these remote transactions have been created as a consequence

of the receive remote j(t, 〈remote, t, WS 〉) action execution.

Lemma 3. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the BRP automaton and t ∈ T
be a committed transaction, node(t) = i, then the following happens-before relations hold for the

appropriate parameters: ∀ j ∈ N\{i} : begin commiti(t) ≺α receive remote j(t, 〈remote, t,WS 〉) ≺α
end operation j(t,WS .ops) ≺α end commiti(t) ≺α receive commit j(t, 〈commit, t〉).

Proof. Let t ∈ T , node(t) = i, be a committed transaction. By Property 1.1, it has previously been

with statusi(t) = active. As statusi(t) = pre commit has been also achieved, the begin commiti(t)

action has been executed. It multicasts to the rest of nodes the 〈remote, t,DBi.WS (t)〉 message.

∀ j ∈ N , j , i the message is in channel j and the receive remote j(t, 〈remote, t,WS 〉) action will be

invoked. As an effect, the operation will be submitted to the DB j. As t is a committed transaction,

it will not be aborted neither by protocol itself or the DB j (Lemma 1). Therefore, once the oper-

ation is done the end operation j(t, op) will be the only action enabled for t at j. This last action

will send the 〈ready, t, j〉 message to i. The reception of these messages (reliable channels) will

successively call for the receive readyi(t, 〈ready, t, k〉) action with k ∈ N \ {i, j}. At that moment,

the only enabled action for t at site i will be the end commiti(t) action. This action will commit

the transaction at i and multicast the 〈commit, t〉 message to the rest of nodes. The only action

enabled for t at j (being j ∈ N , j , i) is the receive commit j(t, 〈commit, t〉) action that commits

the transaction at that site. Hence, ∀ j ∈ N \ {i}, the Lemma holds following the previous causal

chain. �

In order to define the correctness of our replication protocol we have to study the global history,

38 Chapter 3. Middleware Replication Protocols

H, of committed transactions, C(H) [BHG87]. We may easily adapt this concept to our BRP

automaton. Therefore, a new auxiliary state variable, Hi, is defined in order to keep track of all

the DBi operations performed on the local DBMS at the i site. For a given execution α of the BRP

automaton, Hi(α) plays a similar role to the local history Hi at site i as introduced in [BHG87]

for the DBMS. In the following, only committed transactions are part of the history, deleting all

operations that do not belong to transactions committed in Hi(α). The serialization graph for

Hi(α), S G(Hi(α)), is defined as in [BHG87]. An arc and a path in S G(Hi(α)) are denoted as t → t′

and t
∗−→ t′ respectively. Our local DBMS produces ANSI serializable histories [BBG+95]. Thus,

S G(Hi(α)) is acyclic and the history is strict. The correctness criterion for replicated databases

is 1CS, which stands for a serial execution over the logical data unit (although there are several

copies of this data among all sites) [BHG87]. Thus, for any execution resulting in local histories

H1(α),H2(α), . . . ,HN (α) at all sites its serialization graph, ∪k S G(Hk(α)), must be acyclic so that

conflicting transactions are equally ordered in all local histories.

Before showing the correctness proof, we need an additional Property relating transaction iso-

lation level of the underlying DB modules to the automaton execution event ordering. Let us see

first this with an example assuming a strict-2PL scheduler as the underlying DBi. A transaction

must acquire all its locks before committing. If there are two conflicting transactions, t, t′ ∈ T ,

such that t → t′ then t’ will acquire its locks after t has released them (which occurs at com-

mit time). Therefore, in our case we have taht statusi(t′) = pre commit will be subsequent to

statusi(t) = committed in the execution.

The following Property and Corollary establish a property about local executions of committed

transactions.

Property 3. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the BRP automaton and i ∈ N .

If there exist two transactions t, t′ ∈ T such that t
∗−→ t′ in S G(Hi(α)) then ∃ z1 < z2 < z3 <

z4 : sz1 .statusi(t) = pre commit ∧ sz2 .statusi(t) = committed ∧ sz3 .statusi(t′) = pre commit ∧
sz4 .statusi(t′) = committed.

Proof. We firstly consider t → t′. Thus, exists an operation op, issued by t, and another op-

eration op′, issued by t′, such that op conflicts with op′ and op executes before op′. Hence,

by Hi(α) construction we have that DBi.noti f y(t, op) = run is prior to DBi.noti f y(t′, op′) =

run. However, we have assumed that the DBi is serializable as shown in [BBG+95]. In such

a case, Hi(α) is strict serializable for write and read operations. Therefore, it is required that

3.3. BRP Correctness Proof 39

DBi.noti f y(t, op) = run must occur before DBi.commit(t) and that the latter must be prior to

DBi.noti f y(t′, op′) = run. The DBi.commit(t) operation is associated with statusi(t) = committed.

Considering t′, DBi.noti f y(t′, op′) = run is associated with statusi(t) ∈ {active, pre commit}.
Therefore, ∃ z2 < z′3 in α such that sz2 .statusi(t) = committed and sz′3 .statusi(t′) ∈ {active,

pre commit}. By Property 1 and by the fact that both transactions commit, ∃ z1 < z2 < z′3 ≤ z3 < z4

in α such that sz1 .statusi(t) = pre commit ∧ sz2 .statusi(t) = committed ∧ sz3 .statusi(t′) =

pre commit ∧ sz4 .statusi(t′) = committed. Thus, the Property holds for t → t′. The case t
∗−→ t′ is

proved by transitivity. �

The latter Property reflects the happens-before relationship between the different status of

conflictive transactions. The same order must hold for the actions generating the mentioned status.

The next Corollary expresses this property.

Corollary 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the BRP automaton and i ∈ N . If

there exist two transactions t, t′ ∈ T such that t
∗−→ t′ in S G(Hi(α)) then the following happens-

before relations, with the appropriate parameters, hold:

1. node(t) = node(t′) = i : begin commiti(t) ≺α end commiti(t) ≺α begin commiti(t′) ≺α
end commiti(t′).

2. node(t) = i ∧ node(t′) , i : begin commiti(t) ≺α end commiti(t) ≺α end operationi(t′,

WS ′.ops) ≺α receive commiti(t′, 〈commit, t′〉).

3. node(t) , i∧ node(t′) = i : end operationi(t,WS .ops) ≺α receive commiti(t, 〈commit, t〉) ≺α
begin commiti(t′) ≺α end commiti(t′).

4. node(t) , i∧ node(t′) , i : end operationi(t,WS .ops) ≺α receive commiti(t, 〈commit, t〉) ≺α
end operationi(t′,WS ′.ops) ≺α receive commiti(t′, 〈commit, t′〉).

Proof. By Property 3, ∃ z1 < z2 < z3 < z4 : sz1 .statusi(t) = pre commit ∧ sz2 .statusi(t) =

committed ∧ sz3 .statusi(t′) = pre commit ∧ sz4 .status(t′) = committed. Depending on node(t)

and node(t′) values the unique actions whose effects modify their associated status are the ones

indicated in this Corollary. �

In the following, we prove that the BRP provides 1CS. Lemma 3 states the causal relationship

between a remote transaction and its execution at the master site. Corollary 1 points out the

40 Chapter 3. Middleware Replication Protocols

relationship between conflicting transactions. We try to show that it is not possible to obtain a

different order at distinct sites where the conflicting transactions are executed. In other words,

every conflictive transaction is executed in the same order at all available sites.

Theorem 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the BRP automaton. The graph

∪k∈NS G(Hk(α)) is acyclic.

Proof. By contradiction. Assume there exists a cycle in ∪k∈NS G(Hk(α)). There are at least two

different transactions t, t′ ∈ T and two different sites x, y ∈ N , x , y, such that those transactions

are executed in different order at x and y. Thus, we consider (a) t
∗−→ t′ in S G(Hx(α)) and (b) t′

∗−→ t

in S G(Hy(α)); being node(t) = i and node(t′) = j. There are four cases under study:

(I) i = j = x.

(II) i = x ∧ j = y.

(III) i = j ∧ i , x ∧ i , y.

(IV) i , j ∧ i , x ∧ i , y ∧ j , x ∧ j , y.

In the following, we simplify the notation. The action names are shortened, i.e. begin com-

mitx(t) by bcx(t); end commitx(t) by ecx(t); receive remotex(t, 〈remote, t,WS 〉) by rrx(t); end oper-

ationx(t,WS .ops) by eox(t); and receive commitx(t, 〈commit, t〉) by rcx(t). Besides, for all cases

we graphically show a proof of its contradiction in Figures 3.5-3.7.

CASE (I) By Corollary 1.1 for (a): bcx(t) ≺α ecx(t) ≺α bcx(t′) ≺α ecx(t′). (i)

By Corollary 1.4 for (b): eoy(t′) ≺α rcy(t′) ≺α eoy(t) ≺α rcy(t). (ii)

By Lemma 3 for t: bcx(t) ≺α rry(t) ≺α eoy(t) ≺α ecx(t) followed by (i) ≺α (via Lemma 3)

bcx(t′) ≺α rry(t′) ≺α eoy(t′). Thus, eoy(t) ≺α eoy(t′) in contradiction with (ii), as it can be

seen in Figure 3.5.

CASE (II) By Corollary 1.2 for (a): bcx(t) ≺α ecx(t) ≺α eox(t′) ≺α rcx(t′). (i)

By Corollary 1.2 for (b): bcy(t′) ≺α ecy(t′) ≺α eoy(t) ≺α rcy(t). (ii)

By Lemma 3 for t: bcx(t) ≺α rry(t) ≺α eoy(t) ≺α ecx(t); by (i) ≺α eox(t′), and by Lemma 3

for t′, ≺α ecy(t′). Thus eoy(t) ≺α ecy(t′) in contradiction with (ii) which it is shown in

Figure 3.6.

3.3. BRP Correctness Proof 41

Figure 3.5: CASE (I): node(t) = node(t′) = x

Figure 3.6: CASE (II): node(t) = x and node(t′) = y

CASE (III) As x and y are different sites from the transaction master site, only one of them will be

executed in the same order as in the master site. If we take into account the different one

with the master site then we will be under assumptions considered in CASE (I).

CASE (IV) By Corollary 1.4 for (a): eox(t) ≺α rcx(t) ≺α eox(t′) ≺α rcx(t′). (i)

By Corollary 1.4 for (b): eoy(t′) ≺α rcy(t′) ≺α eoy(t) ≺α rcy(t). (ii)

By Lemma 3 for t at site y: bci(t) ≺α rry(t) ≺α eoy(t) ≺α eci(t) ≺α rcy(t). Applying

Lemma 3 for t at x: bci(t) ≺α rrx(t) ≺α eox(t) ≺α eci(t) ≺α rcx(t). Therefore, we have that

eoy(t) ≺α rcx(t). Let us apply Lemma 3 for t′ at y: bc j(t′) ≺α rry(t′) ≺α eoy(t′) ≺α ec j(t′) ≺α
rcy(t′) and for site x: bc j(t′) ≺α rrx(t′) ≺α eox(t′) ≺α ec j(t′) ≺α rcx(t′). Thus, we have

eox(t′) ≺α rcy(t′). Taking into account Lemma 3 for t we have: eoy(t) ≺α rcx(t) (via (i))

≺α eox(t′) (via Lemma 3 for t′) ≺α rcy(t′), in contradiction with (ii), see Figure 3.7.

42 Chapter 3. Middleware Replication Protocols

Figure 3.7: CASE (IV): node(t) = i and node(t′) = j
�

3.4 Enhanced Replication Protocol

This Section deals with variations of BRP so as to increase its performance. The comprehen-

sion of the correctness proof allows us to study and consider several variations while keeping the

correctness (or the consistency level intended by the replication protocol).

The first modification consists in changing the behavior of remote transactions since they do

not have to wait for sending the ready message until the end of the updates execution. Hence, we

reduce the transaction response time. Another modification deals with the abortion rate reduction.

As BRP does not impose any message ordering, remote messages of conflicting transactions may

be received at different sites in distinct order, as a result both transaction will be aborted and none

will proceed. To solve this inconvenience a prioritized queue is added. This queue allows delivered

remote transactions to wait when there are currently executing transactions in the database whose

priority is higher than them. When the remote transactions contained in the queue reach the proper

priority to be submitted to the DBMS, or their master sites decide to rollback the transaction, they

leave the queue. Thus, remote transaction abortions may be decreased, since BRP does not allow

remote transactions to wait. These modifications lead to the definition of the ERP state transition

system which is shown in Figure 3.8.

3.4. Enhanced Replication Protocol 43

Signature:
{∀ i ∈ N , t ∈ T ,m ∈ M, op ⊆ OP : createi(t),begin operationi(t, op), end operationi(t, op),begin commiti(t),

end commiti(t), local aborti(t), receive remotei(t,m), receive readyi(t,m), receive commiti(t,m), receive aborti(t,m),
execute remotei,discardi(t,m)}.

States:
∀ i ∈ N ,∀ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, committable, aborted, committed},

initially (node(t) = i⇒ statusi(t) = start) ∧ (node(t) , i⇒ statusi(t) = idle).
∀ i ∈ N ,∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : queuei ⊆ {〈t,WS 〉 : t ∈ T ,WS ⊆ {〈oids, ops〉 : oids ⊆ OID, ops ⊆ OP}}, initially queuei = ∅.
∀ i ∈ N : removei : boolean, initially removei = false.
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initiallyVi = 〈0,N〉.

Transitions:

createi(t) // node(t) = i //
pre ≡ statusi(t) = start.
eff ≡ DBi.begin(t);

statusi(t)← active.

begin operationi(t, op) // node(t) = i //
pre ≡ statusi(t) = active.
eff ≡ DBi.submit(t, op);

statusi(t)← blocked.

end operationi(t, op)
pre ≡statusi(t) = blocked ∧ DBi.noti f y(t, op) = run.
eff ≡ if node(t) = i then statusi(t)← active

else statusi(t)← pre commit.

begin commiti(t) // node(t) = i //
pre ≡ statusi(t) = active.
eff ≡ statusi(t)← pre commit;

participantsi(t)←Vi.availableNodes \ {i};
sendRMulticast(〈remote, t,DBi.WS (t)〉, participantsi(t)).

end commiti(t) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = ∅.
eff ≡ sendRMulticast(〈commit, t〉,Vi.availableNodes \ {i});

DBi.commit(t);
statusi(t)← committed;
if ¬empty(queuei) then removei ← true.

receive readyi(t,m) // t ∈ T ∧ node(t) = i //
pre ≡ statusi(t) = pre commit ∧ participantsi(t) , ∅∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m);

participantsi(t)← participantsi(t) \ {source}.

local aborti(t)
pre ≡ statusi(t) = blocked ∧ DBi.noti f y(t, op) = abort.
eff ≡ statusi(t)← aborted;

DBi.abort(t);
removei ← true.

discardi(t,m) // t ∈ T //
pre ≡ statusi(t) = aborted ∧ m ∈ channeli.
eff ≡ receivei(m).

receive commiti(t,m) // t ∈ T ∧ node(t) , i //
pre ≡ statusi(t) = pre commit ∧ m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m);

DBi.commit(t);
statusi(t)← committed;
if ¬empty(queuei) then removei ← true.

receive remotei(t,m) // t ∈ T ∧ node(t) , i //
pre ≡ statusi(t) = idle ∧ m = 〈remote, t,WS 〉 ∈ channeli.
eff ≡ receivei(m);

insert with priority(queuei, 〈t,WS 〉); removei ← true.

execute remotei
pre ≡¬empty(queuei) ∧ removei.
eff ≡ aux queue← ∅;

while ¬empty(queuei) do
〈t,WS 〉 ← f irst(queuei);
queuei ← remainder(queuei);
con f lictS et ← DBi.getCon f licts(WS);
if ∃ t′ ∈ con f lictS et : ¬higher priority(t, t′) then

insert with priority(aux queue, 〈t,WS 〉);
else
∀ t′ ∈ con f lictS et :

if statusi(t′) = pre commit ∧ node(t′) = i then
sendRMulticast(〈abort, t′〉,Vi.availableNodes \ {i});

DBi.abort(t′);
statusi(t′)← aborted;

sendRUnicast(〈ready, t, i〉, t.site);
DBi.begin(t);
DBi.submit(t,WS .ops);
statusi(t)← blocked;

queuei ← aux queue;
removei ← false.

receive aborti(t,m) // t ∈ T ∧ node(t) , i //
pre ≡ statusi(t) < {aborted, committed} ∧ m = 〈abort, t〉 ∈ channeli.
eff ≡ receivei(m);

statusi(t)← aborted;
if 〈t,⊥〉 ∈ queuei then queuei ← queuei \ {〈t,⊥〉}
else DBi.abort(t);
if ¬empty(queuei) then removei ← true.

� function higher priority(t, t′) ≡ node(t) = j , i ∧ (a ∨ b)
(a) node(t′) = i ∧ statusi(t′) ∈ {active, blocked}
(b) node(t′) = i ∧ statusi(t′) = pre commit∧

t.priority > t′.priority

Figure 3.8: State transition system for the Enhanced Replication Protocol (ERP) automaton

3.4.1 Performance

The response time, θr(t), of a transaction t (node(t) = i) in our system is determined by the sum of

the following times: the transaction processing at the master site, θDBi(t); multicasting the remote

44 Chapter 3. Middleware Replication Protocols

message to the rest of sites, θMC(t); transaction updates processing at the rest of available sites

θDB j(t), with j ∈ N \ {i}; and, finally, each remote site sending the ready message back to the

master site, θUC j(t). Therefore, we have θr(t) ≈ θDBi(t) + θMC(t) + max j (θDB j(t)) + max j (θUC j(t)).

This response time is a consequence of the 2PC origin of the O2PL [CL91]. The response time is

limited by the slowest remote transaction execution, since it must wait for applying the updates at

all sites before committing the transaction. On the other hand, database unilateral aborts are coped

using this approach. Hence, there exists a trade-off between safety and performance.

If we take a look at the proof of Theorem 1, it does not require or establish the time when the

ready message must be sent by remote transactions. It only establishes that receive remote j(t, 〈rem-

ote, t,WS) ≺α end operation j(t,WS .ops), so the ready message may be sent at any time during

this two actions execution. Thus, if we send the ready message back once the transaction has

overcome the higher priority(t, t′) function and before it has been submitted to the database, we

approximately reduce the transaction response time to the following : θr(t) ≈ θDBi(t) + θMC(t) +

max j (θUC j(t)). The transaction response time is decreased because it does not need to wait for

the execution of the remote transactions, therefore we get rid of max j (θDB j(t)). Nevertheless, the

transaction atomicity is compromised as the local aborti(t) action must never be invoked for a

remote transaction. It implies that there must not be unilateral aborts for already submitted remote

transactions. In other words, once a remote transaction is submitted to the database, as there are

no conflicts, it successfully ends. The BRP submits a remote transaction to the database after

all conflicting transactions have been aborted. Therefore, it will never enter in a local deadlock.

However, this is not enough to prevent that a database submitted remote transaction is aborted by a

new delivered remote transaction. Hence, the higher priority(t, t′) function must also be modified

so that a remote transaction must never be aborted by a new incoming remote transaction.

3.4.2 Decreasing Abortion Rate

Our BRP lacks of fairness due to the fact that we do not allow to wait a remote transaction. The

worst case occurs whenever two conflicting transactions arrive at distinct order at two different

sites and both reached the pre commit state at their respective first-delivered sites. When the

second remote message arrives, it will send a rem abort message (see Figure 3.2) to its transaction

master site. Hence, both transactions will be rolled back and neither one will commit. This

problem may be solved by the use of queues storing remote transactions pending to apply.

3.4. Enhanced Replication Protocol 45

Each time a transaction t is delivered at a site. It is firstly enqueued (arranged by t.priority) and

then checked to see whether its priority is greater than any other conflicting transaction executing

at that site. If its priority is less it will remain enqueued. Otherwise, it will be submitted to

the database. Moreover, each time a transaction commits or rolls back at a given site, the queue is

checked again so that awaiting transactions must proceed or not in the DBMS. The main difference

with the BRP is that only the transaction master site will decide if the transaction will be committed

or rolled back.

The modifications we have just introduced allows us to send the ready message just when

the transaction is submitted to the underlying database. We have avoided the rem abort message

usage and deadlock among transactions executing at different sites is prevented due to the priority

associated for each transaction. This will be outlined in the following. We must show that the

ERP proposal is still correct. Hence, if we appropriately modify Properties and Lemmas of the

correctness proof for the BRP automaton, then we will see that our new solution is correct too.

3.4.3 The ERP Automaton

We introduce the modifications of the BRP into the new ERP automaton. The receive remotei(t,

〈remote, t,WS 〉) message inserts the delivered remote transaction into a queue, queuei. Its inser-

tion position depends on the t.priority field. The key action of the new replication protocol is the

execute remotei one. This action is invoked at least each time a transaction t is delivered, due to

the fact that is enabled also by the new bolean state variable removei. Furthermore, this action

will be invoked several times (as it is called after a commit, abort or a remote delivery of another

transaction) until t is submitted to the DBi.

The remote updates for a given WS (t) will only be applied if there is no conflicting transaction

at node i having a higher priority than the received one. The higher priority(t, t′) function has

been modified from its BRP counterpart. It still depends on the state of the transaction (statusi(t))

and its priority, but a submitted conflicting remote transaction has always higher priority than

any new incoming remote transaction. Therefore, a new incoming conflicting remote transaction

whose priority is lower than any other executing transaction will be inserted again in queuei.

The correctness of our solution is not compromised by the queue usage, since only the trans-

action master site decides whether a transaction aborts or not. Finally, if the remote transaction is

the one with the highest priority among all at i, then it will send the ready message to the mas-

46 Chapter 3. Middleware Replication Protocols

ter site at the same time it is submitted to the DBi module. Before its submission to the DBi,

it will abort every local conflictive transaction and submit t to DBi. Hence, we eliminate any

possibility of local deadlocks. Aborted local transactions in pre commit state with lower priority

will multicast an abort message to the rest of sites. The finalization of the remote transaction

(end operationi(t,WS .ops)) changes its status j(t) = pre commit, j , node(t). It has to wait for

the reception of the commit message from the master site (as it has received all ready messages),

or straightly commit if the message has arrived. The reception of this message commits the trans-

action at the remainder sites (receive commiti(t, 〈commit, t〉)). Recall that each time a transaction

commits or rolls back, the queuei is inspected in order to wake up waiting remote transactions.

Again, transactions in the pre commit state are committable at any point from the DBMS point of

view.

Finally, it is important to note that with our assumption that unilateral aborts do not occur for

remote transactions, the ERP will not invoke the local aborti(t) for a transaction t with node(t) , i.

It follows, for the same reasoning and the queue usage, that the receive rem aborti(t, 〈rem abort, t〉)
action of the BRP has been suppressed in the ERP automaton.

3.5 ERP Correctness Proof

This Section contains the proofs (atomicity and 1CS) of the ERP state transition system (intro-

duced in Figure 3.8) in a failure free environment.

Let us start showing that the ERP is deadlock free, assuming that deadlocks involving exclu-

sively local transactions at a given site are directly resolved by the underlying local DBMS execut-

ing the local aborti(t) action. In case of remote transactions, we assume that as the execute remotei

action aborts all local conflicting transactions whose priority is lower than t, then the remote trans-

action will never be aborted by the DBMS during its execution. Besides, we have modified the

higher priority(t, t′) function so that any remote transaction executing at a given site will never

be rolled back. If a delivered remote transaction has lower priority than any other transaction exe-

cuting at its delivered site, then it will be inserted in queuei (sorted by t.priority). Hence, this is a

potential deadlock source, as the protocol permits remote transactions to wait. However, as chan-

nels are reliable, all remote messages of enqueued transactions will reach the transaction master

sites of all of them. The abortion decision is performed only at the enqueued transaction master

3.5. ERP Correctness Proof 47

site. If a transaction is finally aborted then all sites will receive the abort message, as channels are

reliable, and execute the receive aborti(t, 〈abort, t〉).
The ERP must guarantee the atomicity of a transaction; that is, the transaction is either

committed at all available sites or aborted at all sites. One can note that priority rules (see the

higher priority(t, t′) function in Figure 3.8) ensure that a remote transaction is never aborted by

a local transaction nor a remote one, provided that there are no unilateral aborts; therefore, it will

eventually reach the pre commit state, given that it does not receive an abort message from its

master site.

In the following, we will continue with the same correctness proof philosophy as we did in

Section 3.3. Hence, we only introduce those new proofs that will be affected by the modifications

introduced to the ERP.

Property 4. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the ERP automaton and

t ∈ T . Let β = s0.status j(t) s1.status j(t) . . . sz′ .status j(t) be the sequence of status values of t at

site j ∈ N , obtained from α by removing the consecutive repetitions of the same status j(t) value

and maintaining the same order apparition in α. The following Property holds:

1. If node(t) = j then β is a prefix of the regular expression:

• start · active · (blocked · active)∗ · pre commit · committed

• start · active · (blocked · active)∗ · pre commit · aborted

• start · (active · blocked)+ · aborted

2. If node(t) , j then β is a prefix of the regular expression:

• idle

• idle · blocked · pre commit · committed

• idle · blocked · pre commit · aborted

• idle · blocked · aborted

• idle · aborted

A status transition for a t transaction in Property 4 is associated with an operation on the DB

module where the transaction was created, i.e. pre commit to committed involves the DB.commit(t)

operation. These aspects are straightforward from the ERP automaton inspection in Figure 3.8.

48 Chapter 3. Middleware Replication Protocols

The following Property is needed to prove Lemma 4. This Property states the invariant prop-

erties of the ERP. If a transaction t with node(t) = i is committed at j , i, it is because it was

already committed at its master site. A remote transaction currently being executed at its DB j

module (status j(t) = blocked) may only change its status if its execution is completed or by an

abort message coming from its master site. In other words, it will never be aborted by the DB j

module. In the same way, a remote transaction in the pre commit state may only change its status

if it receives a commit or an abort message. Finally, if a transaction is committed at its master site

then at the rest of available sites it will be either committed (it has already received the commit

message), pre commit (it is waiting to receive the commit message) or blocked (it is still applying

the updates at that site).

Property 5. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the ERP automaton and t ∈ T ,

with node(t) = i.

1. If ∃ j ∈ N \ {i} : sz.status j(t) = committed then sz.statusi(t) = committed.

2. If ∃ z′ < z : sz′ .status j(t) = sz.status j(t) = blocked for any j ∈ N \ {i} then ∀ z′′ : z′ < z′′ ≤
z : πz′′ < {receive abort j(t, 〈abort, t〉), end operation j(t,WS .ops)}.

3. If ∃ z′ < z : sz′ .status j(t) = sz.status j(t) = pre commit for any j ∈ N \ {i} then ∀ z′′ : z′ <

z′′ ≤ z : πz′′ < {receive commit j(t, 〈commit, t〉), receive abort j(t, 〈abort, t〉)}.

4. If sz.statusi(t) = committed then ∀ j ∈ N : sz.status j(t) ∈ {blocked, pre commit, com-

mitted}.

Proof.

1. The Proof is the same as in Property 2.1.

2. We proof this Property by contradiction. If we assume that πz′′ = receive abort j(t, 〈abort,

t〉) action, then by its effects sz′′ .status j(t) = aborted and by Property 4.2 its status never

changes in contradiction with our initial assumption. If we suppose that πz′′ = end oper-

ation j(t,WS .ops) action is executed then, by its effects, sz′′ .status j(t) = pre commit. By

Property 4.2 it never goes to blocked again in contradiction with our assumption.

3. We proof this by contradiction. If we assume that πz′′ = receive commit j(t, 〈commit, t〉) by

this action effects sz′′ .status j(t) = committed and by Property 4.2 its status never changes it

3.5. ERP Correctness Proof 49

contradiction with our initial assumption. Besides, if we assume that the executed action is

πz′′ = receive abort j(t, 〈abort, t〉) then sz′′ .status j(t) = aborted and again, by Property 4.2,

its status never changes in contradiction with our assumption.

4. If sz.statusi(t) = committed, by Property 4.1 we have for all z′ that sz′ .statusi(t) , aborted

and 〈abort, t〉 < sz′ .channel j for all j ∈ N . Thus, the receive abort j(t, m) action is dis-

abled at any state of α. As sz.statusi(t) = committed then all j ∈ N \ {i} has sent the

ready message to i which implies, by the execute remote j action effects, that status j(t) =

blocked and that it has been submitted to the DB j module or status j(t) = pre commit if the

end operation j(t,WS .ops) has been already executed. Thus by Property 4.2, sz.status j(t) ∈
{blocked, pre commit, committed, aborted}. We must show that status j(t) = aborted will

never be achieved. This is easy to proof since it will need an abort message coming from

the transaction master site, and this is not possible since for all z′ we have that 〈abort, t〉 <
sz′ .channel j. On the other hand, as we assume that the DB j module does not abort a sub-

mitted remote transaction, once execute remote j is executed for t, then it will never execute

the local abort j(t,WS .ops) and status j(t) = aborted will never be possible. Hence, the

Property holds. �

The following Lemma states the atomicity of committed transactions.

Lemma 4. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and t ∈ T with

node(t) = i. If ∃ j ∈ N : sz.status j(t) = committed then ∃ z′ > z : sz′ .status j(t) = committed for all

j ∈ N .

Proof. If j , i by Property 5.1 (or j = i) sz.statusi(t) = committed. By Property 5.4, ∀ j ∈ N \
{i} : sz.status j(t) ∈ {blocked, pre commit, committed}. Without loss of generality, assume that sz

is the first state where sz.statusi(t) = committed and sz.status j(t) = pre commit (if sz.status j(t) =

blocked it is because of its submission to the DB j module, due to the execute remote j for t. By

weak fairness of action execution, the end operation j(t,WS .ops) will be eventually invoked and

sz.status j(t) = pre commit). By the effects of πz = end commiti(t), we have that 〈commit, t〉 ∈
sz.channel j. By Property 5.4 invariance either sz.status j(t) = committed or sz.status j(t) = pre com-

mit and 〈commit, t〉 ∈ sz.channel j. In the latter case the receive commit j(t, 〈commit, t〉) action

is enabled. By weak fairness assumption, it will be eventually delivered, thus ∃ z′ > z : πz′ =

receive commit j(t, 〈commit, t〉). By its effects, sz′ .status j(t) = committed. �

50 Chapter 3. Middleware Replication Protocols

In a similar way, if a transaction is aborted, it will be aborted at all sites. This is stated in the

following Lemma. The proof is very simple by inspection of the ERP action shown in Figure 3.8.

Lemma 5. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and t ∈ T with

node(t) = i. If sz.statusi(t) = aborted then ∃ z′ ≥ z : sz′ .status j(t) = idle for all j ∈ N \ {i} or

sz′ .status j(t) = aborted for all j ∈ N .

Figure 3.9: Happens-before relationship for a given transaction t between its execution at the master site and the rest of
nodes

The ERP has some set of actions that happens-before other actions, i.e. they are causally

related. For example, assuming t is a committed transaction with node(t) = i , j, the follow-

ing happens-before relationship begin commiti(t) ≺α receive remote j(t, 〈remote, t,WS 〉) is held,

see Figure 3.9. This is clearly seen by the effects of the begin commiti(t) action: it sends a

〈remote, t,DBi.WS (t)〉 to all j ∈ N \ {i}. This message will be eventually received by j that en-

ables the receive remote j(t, 〈remote, t,WS 〉) action, since status j(t) = idle, and, by weak fairness

of actions, it will be eventually executed. However, this fact is delegated to the execute remote j

action. The following Lemma indicates that a transaction is committed if it has received every

ready message from its remote transaction ones. These remote transactions have been executed as

a consequence of the execute remote j action execution.

For the sake of clearness and understanding, we are going to add t as a parameter to the

execute remote j action, provided that t is one of the submitted transactions to the DB j module by

its execution (execute remote j(t)). This may be done without loss of generality as transactions we

consider in the following proofs correspond to committed transactions.

Lemma 6. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and t ∈ T be

a committed transaction, node(t) = i, then the following happens-before relations hold: ∀ j ∈

3.5. ERP Correctness Proof 51

N \ {i} : begin commiti(t) ≺α receive remote j(t, 〈remote, t,WS 〉) ≺α execute remote j(t) ≺α rece-

ive readyi(t, 〈ready, j〉) ≺α end commiti(t) ≺α receive commit j(t, 〈commit, t〉).

Proof. Let t ∈ T , node(t) = i, be a committed transaction. By Property 4.1, it has previously been

with statusi(t) = active. As statusi(t) = pre commit has been also achieved, the begin commiti(t)

action has been executed. It multicasts to the rest of nodes the 〈remote, t,DBi.WS (t)〉 message.

∀ j ∈ N , j , i the message is in channel j and the receive remote j(t, 〈remote, t,WS)〉 action will

be invoked, what inserts the delivered transaction in queue j. When t becomes the transaction with

the highest priority among all in queue j, the execute remote j action (this action will be enabled

each time a transaction is committed or rolled back, or a remote transaction is delivered) will be

invoked for t (execute remote j(t)). Then, by its effects it will send the ready message to i and the

operation will be submitted to the DB j module. By channel reliability it will eventually invoke

the receive readyi(t, 〈ready, j〉) action at the transaction master site. Respectively, the only action

enabled at site i (when participantsi(t) = ∅) will be the end commiti(t) action. This action will

commit the transaction at i and multicast the 〈commit, t〉 message to the rest of nodes that leads to

transaction commitment at the rest of sites. The only actions enabled for t at j (being j ∈ N , j , i)

are the end operation j(t,WS .ops) or receive commit j(t, 〈commit, t〉) actions depending whether

status j(t) = pre commit or status j(t) = blocked, respectively. If the transaction is still blocked,

assuming weak fairness for action execution and due to the fact that there are no unilateral aborts,

the end operation j(t,WS .ops) will be eventually enabled. By its effects, status j(t) = pre commit.

As the 〈commit, t〉 ∈ channel j then the receive commit j(t, 〈commit, t〉) action, by weak fairness of

actions, will be eventually executed. Hence, ∀ j ∈ N \ {i}, the Lemma holds following the causal

chain. �

The following Lemma emphasizes the happens-before relationship for remote transactions. It

is based on Property 4.2 which establishes the relationship between status transitions for remote

transactions to their respective algorithm actions. This will serve in order to set up the relationship

for a transaction t, node(t) = i , j between the execute remote j, that submits t to the DB j mod-

ule, and the pair end operation j(t,WS .ops) and receive commit j(t, 〈commit, t〉) actions. This is

needed due to the fact that with the previous Lemma there is no point where this causal relationship

may be put in.

Lemma 7. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and t ∈ T be a

52 Chapter 3. Middleware Replication Protocols

committed transaction, node(t) = i, then the following happens-before relations hold: ∀ j ∈ N \
{i} : receive remote j(t, 〈remote, t,WS 〉) ≺α execute remote j(t) ≺α end operation j(t,WS .ops) ≺α
receive commit j(t, 〈commit, t〉).

Proof. As t is a committed transaction. By Property 4.1, it has previously been with statusi(t) =

active. As statusi(t) = pre commit has been also achieved, the begin commiti(t) action has been

executed. It multicasts to the rest of nodes the 〈remote, t,WS 〉message. The reception of this mes-

sage will invoke the receive remote j(t, 〈remote, t,WS 〉) that inserts t into queue j. When t reaches

the highest priority among all delivered transactions at j, it will be submitted to DB j and the ready

message will be sent to i. The collection of all ready messages at i will invoke the end commiti(t)

action that multicasts the 〈commit, t〉message to all nodes excluding i. The remote transaction will

eventually finish (DB j.noti f y(t,WS .ops) = run), either before or after the end commiti(t) action

that executes the end operation j(t,WS .ops) action. By its effects, status j(t) = pre commit and

by weak fairness action execution, the receive commit j(t, 〈commit, t〉), as 〈commit, t〉 ∈ channel j,

will be executed. Then this Lemma holds for all remote transactions that finally commit. �

The following Property and Corollary establish a property about local executions of committed

transactions. They are the same as in Section 3.3.

Property 6. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the ERP automaton and

i ∈ N . If there exist two transactions t, t′ ∈ T such that t
∗−→ t′ in S G(Hi(α)) then ∃ z1 < z2 < z3 <

z4 : sz1 .statusi(t) = pre commit ∧ sz2 .statusi(t) = committed ∧ sz3 .statusi(t′) = pre commit ∧
sz4 .statusi(t′) = committed.

The latter Property reflects the happens-before relationship between the different status of

conflictive transactions. The same order must hold for the actions generating the mentioned status.

The next Corollary expresses this property.

Corollary 2. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and i ∈ N . If

there exist two transactions t, t′ ∈ T such that t
∗−→ t′ in S G(Hi(α)) then the following happens-

before relations, with the appropriate parameters, hold:

1. node(t) = node(t′) = i : begin commiti(t) ≺α end commiti(t) ≺α begin commiti(t′) ≺α
end commiti(t′, 〈commit, t′〉).

3.5. ERP Correctness Proof 53

2. node(t) = i ∧ node(t′) , i : begin commiti(t) ≺α end commiti(t) ≺α end operationi(t′,

WS ′.ops) ≺α receive commiti(t′, 〈commit, t′〉).

3. node(t) , i∧node(t′) = i : end operationi(t,WS .ops) ≺α receive commiti(t, 〈commit, t〉) ≺α
begin commiti(t′) ≺α end commiti(t′).

4. node(t) , i ∧ node(t′) , i : end operationi(t,WS .ops) ≺α receive commiti(t, 〈commit,

t′〉) ≺α end operationi(t′,WS ′.ops) ≺α receive commiti(t′, 〈commit, t′〉).

If we have two conflicting transactions, t, t′ ∈ T with node(t) , i and node(t′) , i, such that

t → t′ in S G(Hi(α), then the execute remotei(t′) action that submits t′ to the database must be ex-

ecuted after the commitment of t, via the receive commiti(t, 〈commit, t〉) action. The next Lemma

states how the happens-before relationship affects to two committed transactions executing at a

remote node.

Lemma 8. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and i ∈ N . If

there exist two committed transactions t, t′ ∈ T with node(t) = j , i and node(t′) = k , i such that

t
∗−→ t′ in S G(Hi(α)) then the following happens-before relations hold: ∀ i ∈ N\{k, j} : execute re-

motei(t) ≺α receive commiti(t, 〈commit, t〉) ≺α execute remotei(t′) ≺α receive commiti(t′, 〈com-

mit, t′〉).

Proof. Let t ∈ T be a committed transaction, with node(t) , i. By Property 4.2, it has previously

been statusi(t) = blocked which has been caused by the execute remotei action. Although this ac-

tion may have been called several times, we consider the one that was successfully completed for

t (execute remotei(t)). This action submits the transaction to the DBi module and sends the ready

message to the transaction master site. Provided that t is a remote transaction, all local conflicting

transactions have been rolled back earlier. Moreover, this remote transaction will never be aborted

by the underlying database (recall that we do not consider unilateral aborts for remote transaction),

only the protocol itself may consider whether to abort or not a remote transaction. As t has been

committed, the end operation(t,WS .ops) had been invoked and finally, with the commit message

coming from the master site, the receive commit(t, 〈commit, t〉) action would have been invoked.

Let us assume another committed transaction t′ ∈ T , with node(t′) , i, such that t
∗−→ t′. This

implies that t′ committed after t. By Corollary 2.4, end operationi(t,WS .ops) ≺α receive com-

miti(t, 〈commit, t〉) ≺α end operationi(t′,WS ′.ops) ≺α receive commiti(t′, 〈commit, t′〉). Now

54 Chapter 3. Middleware Replication Protocols

we have to set up the happens-before relationship between the execute remotei(t′) and the re-

ceive commiti(t, 〈commit, t〉). If t′ is delivered to i after t has committed, via the receive re-

motei(t′, 〈remote, t′〉) action, the Lemma will trivially hold for this case. Otherwise, the message

is delivered after the receive remotei(t, 〈remote, t〉) and before the receive commiti(t, 〈commit, t〉)
actions execution, and so more cases will be taken into account. The receive remotei(t′, 〈re-

mote, t′〉) action will insert into queuei the delivered transaction t′. By the effects of this action,

the execute remotei action will be invoked. This action will check all the set of conflicting trans-

actions currently executing at DBi. There will be at least one, t, that conflicts with t′. By the

invocation of the higher priority function for t and t′, it results that t has higher priority than

t′. This fact will not change, even though several invocations of the execute remotei action will

take place, as long as t does not perform the commit, or, in other words, until the execution of

the receive commiti(t, 〈commit, t〉) action takes place. This can be derived by inspection of the

higher priority function that returns false if the compared transaction is a non-committed remote

transaction currently being executed at the DBi module. Hence, the Lemma holds. �

The same may be applied to two conflicting transactions, t, t′ ∈ T with node(t) = i and

node(t′) , i, such that t → t′ in S G(Hi(α)). The execute remotei action that submits t′ to the

database must be executed after the commitment of t, via the end commiti(t) action. The next

Lemma states how the happens-before relationship affects to a committed transaction executing at

a remote node.

Lemma 9. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and i ∈ N . If there

exist two transactions t, t′ ∈ T with node(t) = i and node(t′) , i such that t
∗−→ t′ in S G(Hi(α)) then

the following happens-before relations hold: ∀ i ∈ N : begin commiti(t) ≺α end commiti(t) ≺α
execute remotei(t′) ≺α end operationi(t′,WS ′.ops) ≺α receive commiti(t′, 〈commit, t′〉).

Proof. Let us assume two committed transactions t, t′ ∈ T with node(t) = i , node(t′) such

that t
∗−→ t′. By Corollary 2.2 we have: begin commiti(t) ≺α end commiti(t) ≺α end oper-

ationi(t′,WS ′.ops) ≺α receive commiti(t′, 〈commit, t′〉). As t′ is a committed remote transaction

at i, via Lemma 7, it has executed the following actions: receive remotei(t′, 〈remote, t′,WS ′〉) ≺α
execute remotei(t′) ≺α end operationi(t′,WS ′.ops) ≺α receive commiti(t′, 〈commit, t′〉). Thus,

we have to establish the happens-before relation between the execute remotei(t′) and the end com-

miti(t) actions. Again, we have two options: if the receive remotei(t′, 〈remote, t′,WS t′〉) action

3.5. ERP Correctness Proof 55

is executed after the end commiti(t) action then the Lemma holds. The remainder case is when

the receive remotei(t′, 〈remote, t′,WS ′〉) and the successful completion of the execute remotei ac-

tion for t′ happen between the begin commiti(t) and the end commiti(t) actions. The successful

completion of execute remotei for t′ will never happen under this interval. This is easily shown

by inspection of the execute remotei action. As t
∗−→ t′, we have that the getCon f licts function

will return at least t as a conflicting transaction. However, t has statusi(t) = pre commit and by

hypothesis it has been executed before t′. This means that t.priority > t′.priority for read-write

conflicts and that it must wait enqueued. �

In the following, we prove that the ERP protocol provides 1CS [BHG87].

Theorem 2. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton. The graph

∪k∈NS G(Hk(α)) is acyclic.

Proof. By contradiction. Assume there exists a cycle in ∪k∈NS G(Hk(α)). There are at least two

different transactions t, t′ ∈ T and two different sites x, y ∈ N , x , y, such that those transactions

are executed in different order at x and y. Thus, we consider (a) t
∗−→ t′ in S G(Hx(α)) and (b) t′

∗−→ t

in S G(Hy(α)); being node(t) = i and node(t′) = j. There are four cases under study:

(I) i = j = x.

(II) i = x ∧ j = y.

(III) i = j ∧ i , x ∧ i , y.

(IV) i , j ∧ i , x ∧ i , y ∧ j , x ∧ j , y.

In the following, we simplify the notation. The action names are shortened, i.e. begin com-

mitx(t) by bcx(t); end commitx(t) by ecx(t); as each invocation of the execute remotex action may

execute a set of transactions,K ⊆ T , we denote it by erx(k), with k ∈ K ; receive readyx(t, 〈ready, t,

l〉), with l ∈ N , by rrx(t, l); end operationx(t, op) by eox(t); and, receive commitx(t, 〈commit, t〉)
by rcx(t).

CASE (I) By Corollary 2.1 for (a): bcx(t) ≺α ecx(t) ≺α bcx(t′) ≺α ecx(t′). (i)

By Corollary 2.4 for (b): eoy(t′) ≺α rcy(t′) ≺α eoy(t) ≺α rcy(t). Applying Lemmas 7 and 8

for t and t′: ery(t′) ≺α eoy(t′) ≺α rcy(t′) ≺α ery(t) ≺α eoy(t) ≺α rcy(t). (ii)

56 Chapter 3. Middleware Replication Protocols

For (i), via Lemma 6 for t, we have the following: bcx(t) ≺α ery(t) ≺α rrx(t, y) ≺α ecx(t) ≺α
bcx(t′) ≺α ecx(t′). Taking into account Lemma 6 for t′ and Lemma 8 for t and t′: bcx(t) ≺α
ery(t) ≺α rrx(t, y) ≺α ecx(t) ≺α bcx(t′) ≺α ery(t′) ≺α rrx(t′, y) ≺α ecx(t′) ≺α rcy(t′).

Therefore, we have that ery(t) ≺α rcy(t′) in contradiction with (ii) as it can be seen in

Figure 3.10.

Figure 3.10: CASE (I): node(t) = node(t′) = x

CASE (II) By Corollary 2.2 for (a): bcx(t) ≺α ecx(t) ≺α eox(t′) ≺α rcx(t′). By Lemma 9 for

t and t′: bcx(t) ≺α ecx(t) ≺α erx(t′) ≺α rcx(t′). (i)

By Corollary 2.2 for (b): bcy(t′) ≺α ecy(t′) ≺α eoy(t) ≺α rcy(t). Applying Lemma 9 for t′

and t: bcy(t′) ≺α ecy(t′) ≺α ery(t) ≺α eoy(t) ≺α rcy(t). (ii)

By Lemma 6 for t: bcx(t) ≺α ery(t) ≺α rrx(t, y) ≺α ecx(t), via (i), ≺α erx(t′) ≺α rry(t′, x) ≺α
ecy(t′) ≺α rcx(t′). Thus ery(t) ≺α ecy(t′) in contradiction with (ii), see Figure 3.11.

Figure 3.11: CASE (II): node(t) = x and node(t′) = y

3.6. The TORPE Replication Protocol 57

CASE (III) As x and y are different sites from the transaction master site, only one of them

will be executed in the same order as in the master site. If we take into account the different

one with the master site we will be under assumptions considered in CASE (I).

CASE (IV) By Corollary 2.4 for (a): eox(t) ≺α rcx(t) ≺α eox(t′) ≺α rcx(t′). Applying

Lemmas 7 and 8 for t and t′ at x: erx(t) ≺α eox(t) ≺α rcx(t) ≺α erx(t′) ≺α eox(t′) ≺α rcx(t′).

(i)

By Corollary 2.4 for (b): eoy(t′) ≺α rcy(t′) ≺α eoy(t) ≺α rcy(t). If we apply Lemmas 7 and 8

for t′ and t at y: ery(t′) ≺α eoy(t′) ≺α rcy(t′) ≺α ery(t) ≺α eoy(t) ≺α rcy(t). (ii)

Figure 3.12: CASE (IV): node(t) = i and node(t′) = j

By Lemma 6 for t at x and y: bci(t) ≺α ery(t) ≺α rri(t, y) ≺α eci(t) ≺α rcx(t). Via Corol-

lary 2.4 for (a): bci(t) ≺α ery(t) ≺α rri(t, y) ≺α eci(t) ≺α rcx(t) ≺α erx(t′) ≺α rr j(t′, x) ≺α
ec j(t′) ≺α rcy(t′). Therefore, we have that ery(t) ≺α rcy(t′) in contradiction with (ii), as it is

depicted in Figure 3.12. �

3.6 The TORPE Replication Protocol

In this Section we introduce a modification of the previous protocols called TORPE. It uses the

total order multicast primitive provided by the GCS to order transactions executed in the system.

Hence, distributed deadlocks are avoided. However, additional verifications have to be done when-

ever a remote message is delivered at a site in order to detect deadlocks between executing local

58 Chapter 3. Middleware Replication Protocols

transactions and the write set of the transaction delivered. TORPE is described in this Section

because it is the natural comparison with BRP and ERP protocols; it uses GCS facilities to order

transactions instead of transaction priorities. We will formalize the TORPE as a state transition

system [Sha93], although we are not going to introduce its correctness proof. In Figure 3.13 the

TORPE state transition system [Sha93] is introduced.

Transactions are globally ordered by the total order delivery guarantee provided by the GCS.

However, it is still necessary to maintain an update queue (queuei) where delivered transactions

must wait until all conflicting transactions, only those already delivered by the GCS, finish. Oth-

erwise, they may become involved in a local deadlock with local and remote transactions whose

resolution depends on the DB module, who does not know anything about local nor remote trans-

actions.

TORPE is a ROWAA algorithm whose behavior is very similar to the BRP. Transactions are

initially executed at their master site. The remaining sites enter in the context of this transaction

when the client wishes to commit the given transaction. TORPE multicasts the remote message

to all available sites using the total order multicast primitive. When the transaction master site

receives the remote message, it checks if there is another write set contained in the update queue.

In such a case, it aborts and multicasts, with the reliable multicast, an abort message to the rest of

sites; otherwise, it commits the transaction and multicasts, using the reliable multicast, a commit

message to the rest of sites. If the message arrives at another site it will check if its write set

is in conflict with another already stored transaction in the update queue then it will be inserted

into the last position of the queue. In any other case, it checks if there is another conflicting

transaction, local or remote that has been previously delivered by the GCS, currently executing

in the corresponding DB module, in such a case it will be inserted into the queue, otherwise it

will be submitted to the DB module. Meanwhile, the transaction master site may have multicast

the commit message. Hence, we still need another set to store the set of committable transactions

(committablei), those that have been delivered but has not finished applying the updates on a

given replica. Respectively, an abort message may have been generated by the master site which

removes the transaction from the queue or rollbacks its changes from the underlying database. In

both cases, the update queue is checked if there are pending transaction to be applied in the node.

It is important to note that once a remote transaction is submitted to the DB module it will not be

aborted by the DB, in other words, TORPE does not support unilateral aborts [Ped99]; recall that

3.6. The TORPE Replication Protocol 59

Signature:
{∀ i ∈ N , t ∈ T ,m ∈ M, op ∈ OP : createi(t),begin operationi(t, op), end operationi(t, op),begin commiti(t),

end commiti(t,m), local aborti(t), receive remotei(t,m), execute remotei, receive commiti(t,m),
receive aborti(t,m),discardi(t,m), commiti(t)}.

States:
∀ i ∈ N ∧ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, committable, committed, aborted},

initially (node(t) = i⇒ statusi(t) = start) ∧ (node(t) , i⇒ statusi(t) = idle).
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N ∧ t ∈ T : committablei ⊆ T , initially committablei = ∅.
∀ i ∈ N : queuei ⊆ {〈t,WS 〉 : t ∈ T ,WS ⊆ {〈oids, ops〉 : oids ⊆ OID, ops ⊆ OP}}, initially queuei = ∅. // Ordered Set //
∀ i ∈ N : removei : boolean, initially removei = false.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z ∧ availableNodes ⊆ N}, initiallyVi = 〈0,N〉.

Transitions:

createi(t) // node(t) = i //
pre ≡statusi(t) = start.
eff ≡ DBi.begin(t); statusi(t)← active.

begin operationi(t, op) // node(t) = i //
pre ≡statusi(t) = active.
eff ≡ DBi.submit(t, op); statusi(t)← blocked.

end operationi(t, op)
pre ≡statusi(t) = blocked ∧ DBi.noti f y(t, op) = run.
eff ≡ if node(t) = i then statusi(t)← active

else statusi(t)← pre commit.

begin commiti(t) // node(t) = i //
pre ≡statusi(t) = active.
eff ≡ statusi(t)← pre commit;

sendTORMulticast(〈remote, t,DBi.WS (t)〉,
Vi.availableNodes).

end commiti(t,m) // node(t) = i //
pre≡ statusi(t) = committable∧ .

m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.commit(t); statusi(t)← committed.

local aborti(t) // node(t) = i //
pre ≡statusi(t) = blocked ∧ DBi.noti f y(t, op) = abort.
eff ≡ DBi.abort(t); statusi(t)← aborted.

discardi(t,m)
pre ≡ statusi(t) = aborted ∧ m = 〈∗, t, ∗〉 ∈ channeli.
eff ≡ receivei(m).

receive commiti(t,m) // node(t) , i //
pre ≡m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m); committablei ← committablei ∪ {t}.

commiti(t)
pre ≡ statusi(t) = pre commit ∧ t ∈ committablei.
eff ≡ committablei ← committablei \ {t};

DBi.commit(t); statusi(t)← committed;
removei ← true.

receive aborti(t,m)
pre ≡ statusi(t) < {aborted, committed}∧

m = 〈abort, t〉 ∈ channeli.
eff ≡ receivei(m); statusi(t)← aborted;

if 〈t,⊥〉 ∈ queuei then queuei ← queuei \ {〈t,⊥〉}
else DBi.abort(t); removei ← true.

receive remotei(t,m)
pre ≡ statusi(t) ∈ {idle, pre commit} ∧ m = 〈remote, t,WS 〉 ∈ channeli.
eff ≡ receivei(m);

if queue con f licts(t,WS) then
if node(t) = i then

DBi.abort(t);
sendRMulticast(〈abort, t〉,Vi.availableNodes \ {i});
statusi(t)← aborted;

else queuei ← queuei ∪ {〈t,WS 〉}
else

if node(t) = i then
statusi(t)← committable;
sendRMulticast(〈commit, t〉,Vi.availableNodes)

else // Remote transaction with no queue conflict //
con f lictS et ← DBi.getCon f licts(WS);
if (∃ t′ ∈ con f lictS et : (node(t′) = i∧

statusi(t′) = committable) ∨ node(t′) , i) then
queuei ← queuei ∪ {〈t,WS 〉}

else
∀ t′ ∈ con f lictS et :

if node(t′) = i ∧ statusi(t′) , committable then
if statusi(t′) = pre commit then

sendRMulticast(〈abort, t′〉,Vi.availableNodes \ {i});
DBi.abort(t′); statusi(t′)← aborted

DBi.begin(t);
DBi.submit(t,WS);
statusi(t)← blocked.

� function queue con f licts(t,WS) ≡ ∃ 〈t′,WS ′〉 ∈ queuei :
WS ′.oids ∩WS .oids , ∅

execute remotei
pre ≡¬empty(queuei) ∧ removei.
eff ≡ aux queue← ∅;

while ¬empty(queuei) do
〈t,WS 〉 ← f irst(queuei); queuei ← remainder(queuei);
con f lictS et ← DBi.getCon f licts(WS);
if ∃ t′ ∈ con f lictS et : (node(t′) = i∧

statusi(t′) = committable) ∨ node(t′) , i then
aux queue← aux queue ∪ {〈t,WS 〉}

else
∀ t′ ∈ con f lictS et :

if node(t′) = i ∧ statusi(t′) , committable then
if statusi(t′) = pre commit then

sendRMulticast(〈abort, t′〉,Vi.availableNodes \ {i});
DBi.abort(t′); statusi(t′)← aborted

DBi.begin(t);
DBi.submit(t,WS);
statusi(t)← blocked;

queuei ← aux queue; removei ← false.

Figure 3.13: State transition system for TORPE, where updates are propagated using the total order group communication
primitives provided by the GCS

60 Chapter 3. Middleware Replication Protocols

this is something that we also assume for the ERP.

The state variables used by TORPE are very similar to the ones introduced in the BRP or ERP,

the new ones and its behavior have been already introduced. The status variable with its new valid

transitions is shown in Figure 3.14. The same can be applied to the actions used in TORPE, most

of them are the same as the BRP excepting those that govern the update queue (execute remotei)

and the transaction commitment in the DB module (commiti(t)).

Figure 3.14: Valid transitions for a given statusi(t) of a transaction t ∈ T

3.7 Discussion

We have started with the BRP, its main disadvantage is that it must wait for applying the updates

at all available sites before committing the transaction. On the other hand, the BRP is able to

manage unilateral aborts. The BRP does not assume any message ordering delivery for any kind

of messages. Therefore, distributed deadlock may appear between sites. The BRP has avoided this

defining a dynamic deadlock prevention function. This function depends on both the transaction

priority itself and its state, and does not allow incoming conflicting transactions to wait. Hence no

distributed deadlock occur and, as there is no message ordering, this will provoke more abortions

than those strictly necessary.

It has been shown that the BRP proposal is correct. We have proved that it satisfies the

strongest correctness criteria for replicated databases, 1CS [BHG87]. This correctness proof al-

lowed us to find the spots where the BRP can be modified to improve its performance. At this

point, it is important to highlight that the deadlock prevention function establishes the order in

which the transactions are executed in the system. This function is invoked each time a transaction

is submitted to the DBMS, while all conflicting transactions have been aborted (i.e. no unilateral

3.7. Discussion 61

aborts may occur), as it is shown in Figure 3.2. Hence, the ready message may be sent before

the database submission of the remote transaction. Therefore, we reduce the transaction response

time. Nevertheless, the priority function must be modified so that any remote transaction currently

being executed at the DBMS will have greater priority than any other conflicting transaction. This

modification does not directly reduce the transaction abortion rate, but if we allow remote trans-

actions to wait and its abortion or commitment is left to its master site, we reduce the transaction

abortion rate.

The ERP introduces all those key points in its behavior, as it is depicted in Figure 3.8. The

ERP introduces a new execute remote action that manages the queue where remote transactions

are stored until they become the highest priority ones or there are no conflicts at all. The queue

management shown in Figure 3.8 is not the best one but we have left it that way for a better

understanding of its behavior. Finally, it has been shown that the ERP proposal is correct too.

Finally, we have presented the TORPE protocol. This replication protocol is the alternative

approach used in database replication and it has been introduced so as to be compared with BRP

and ERP in MADIS [IBDdJM+05]; hence, no correctness proof is given. It orders transactions

using the total order delivery guarantee featured by the GCS. However, it needs additional checks

with current transactions executing at the site where it has been delivered as the delivered transac-

tion may be involved in a local deadlock and the DB module will abort it. In other words, TORPE

does not support unilateral aborts.

As we have mentioned before, the 1CS is the strongest correctness criteria for replicated data-

bases. However, this is almost impossible to reach with current commercial databases, as most

of them provide SI [BBG+95], like PostgreSQL. SI is the result of a certain type of MultiVersion

Concurrency Control (MVCC). It extends the multiversion mixed method described in [BHG87],

which allowed snapshot reads by readonly transactions. In which a transaction reads data from

a snapshot of the (committed) data as of the time the transaction started, Start-Timestamp. This

time may be any time before the transaction performs its first read. A transaction running in SI

is never blocked attempting a read as long as the snapshot data from its Start-Timestamp can be

maintained. Write operations performed by the transaction will also be reflected in this snapshot,

to be read again if the transaction accesses the data a second time. Updates by other transactions

active after the transaction Start-Timestamp are invisible to the transaction. As read operations

do not block, the 1CS cannot be reached with DBMSs providing SI. When the transaction T1 is

62 Chapter 3. Middleware Replication Protocols

ready to commit, it gets a Commit-Timestamp, which is larger than any existing Start-Timestamp

or Commit-Timestamp. The transaction successfully commits only if no other transaction T2 with a

Commit-Timestamp in the execution interval of T1: [Start- Timestamp, Commit-Timestamp] wrote

data that T1 also wrote. Otherwise, T1 will abort. This feature, called first-committer-wins, pre-

vents lost updates. When T1 commits, its changes become visible to all transactions whose Start-

Timestamps are larger than the Commit-Timestamp of T1.

There are some recent research works [LKPMJP05, EPZ05] trying to establish a correctness

criteria for replicated databases providing SI. In [LKPMJP05] a correctness criteria very similar

to 1CS, called 1CSI, is shown. 1CSI establishes an SI-schedule S produced by a centralized

scheduler over the set T of committed transactions. Each local SI-scheduler Si must be somehow

equivalent to this global schedule. Let us denote as Ti the execution of the set T at site i. As T and

Ti share the same write sets, each local SI-scheduler Si should set up the same order as S to all

conflicting write sets. As only local transactions at site i have nonempty read sets they must have

the same reads-from relationship [BHG87] as in S. The Start-Timestamp for remote transactions

is irrelevant since they have empty readsets. The same can be applied for the Commit-Timestamp

of read-only transactions as their write set is empty. Another correctness criteria is GSI [EPZ05].

This criteria allows the use of older snapshots, instead of the latest one, in order to facilitate its

implementation. Two conflicting transactions whose write set intersection is nonempty follow the

first-committer-wins rule. A read operation performed by a transaction only reads a committed

snapshot of the database. This snapshot could be any snapshot that has been taken before the

transaction starts.

The BRP and ERP proposals may be easily ported to a replicated database system with DBMS

with SI-schedulers in order to guarantee GSI [EPZ05]. As read operations never get blocked, we

have to change the getConlicts(WS) function definition, more precisely: getCon f licts(WS) =

{t′ ∈ T : WS (t′).oids ∩WS (t).oids , ∅}. Hence, each time a new remote transaction is received

in the BRP (see Figure 3.2) or the execute remote action in the ERP submits a remote transaction

to the DBMS (see Figure 3.8) its write set must be checked with this new function.

By inspection of the correctness proof for the BRP, Lemma 3 (Lemma 6 for the ERP) states

that the protocol behavior is not influenced by the underlying database. On the other hand, Prop-

erty 3 (Property 6 for the ERP) asserts that the execution depends on the transaction isolation

level that imposes a determined order. Let t, t′ ∈ T be two conflictive committed transactions as

3.7. Discussion 63

WS (t).oids ∩ WS (t′).oids , ∅. Then the Property 3 (Property 6 for the ERP) holds. It can be

shown that with Lemma 3 and Property 3 (Lemma 6 and Property 6 for the ERP) all write sets are

applied at all sites following the same order. This fact does not assure, due to network latency, that

a read or write transaction may obtain a different snapshot from the current snapshot; this leads to

a similar behavior to GSI.

3.7.1 Comparison with Related Works

The protocols included in this Chapter are based on the O2PL protocol [CL91], which is a 2PC

protocol. It is one of the first optimistic replication protocols proposed that uses the ROWAA

technique. It only needs to multicast the write set of a transaction to the rest of sites in order

to commit the transaction. Nevertheless, it presents some drawbacks that we have coped with

our BRP and ERP proposals: (a) It is never stated the transaction isolation level achieved with

the O2PL; (b) it does not show its correctness proof; (c) it does not introduce how to handle the

unilateral aborts [Ped99]; and, (d) it does not establish the communication protocols needed to

accomplish the replication. The ERP has slightly modified the 2PC rule, since it does not wait for

applying the updates at the rest of nodes before committing the transaction.

As the mechanism of group communication primitives was being improved, it has been shown

that total order based replication protocols show a good behavior [AT02, EPZ05, JPPMKA02,

Kem00, KA00b, KPA+03, LKPMJP05, Ped99, PMJPKA00, PMJPKA05, RMA+02, WK05].

In [Kem00, KA00b] the SER-D and SER-CS are introduced. All transactions are firstly per-

formed on their closest site (Local Read Phase). Read operations are executed immediately, while

write operations are treated differently depending on the protocol considered; the SER-D defers

them until the end of the transaction whilst SER-CS performs them on a shadow copy. When the

user wishes to commit a transaction (Send Phase), if it is read-only it will directly commit, other-

wise, write operations will be multicast to the rest of sites using the total order service. All write

operations are atomically performed at this moment (Lock Phase), aborting all conflicting trans-

actions in the local read phase and those that have entered in the send phase, or will be enqueued

if a conflicting transaction has previously reached the lock phase. If the message is delivered at

the transaction master site, and it has not been aborted yet, it commits the transaction in the local

database and multicasts a commit message to the rest of sites using a reliable multicast.

This total order replication protocol presents some good advantages, since the master site

64 Chapter 3. Middleware Replication Protocols

does not have to wait for applying the updates at the rest of nodes. The total order delivery sets

up the order in which transactions are going to be executed in the system, avoiding distributed

deadlocks (however, additional verifications with local transactions have to be done once a write

set is delivered at a site). As the write set is collected from the redo log of the RDBMS it is faster

to apply than local user transactions. On the other hand, it does not deal with unilateral aborts as

the BRP does. As there is no way to provide a semantic about transactions to the GCS, i.e. in

case of a distributed application that may generate concurrent transactions, the application cannot

establish a total order based on transaction information [Kem00, Sec. 10.2]. Comparatively, the

BRP and ERP have associated priorities to transactions and these priorities may be selected by

the user applications. So we are able to add some semantic information to the transaction order.

Moreover, non-conflicting transactions must be total order delivered whilst using the BRP and ERP

will be concurrently executed. Finally, it was implemented modifying the DBMS internals which

has problems of portability even to new version releases of the same DBMS [WK05]; we have

implemented our protocols using the middleware approach that ensures DBMS portability but this

introduces additional overhead that causes a decrease on its performance. An optimization of this

protocol using the optimistic atomic broadcast primitive [Ped99] was introduced in [KPA+03].

Another approach for achieving database replication in a middleware architecture based on the

optimistic atomic broadcast ideas introduced in [PGS98] for WAN is presented in [RMA+02].

A more aggressive version of the optimistic atomic broadcast in a middleware architecture is

presented in [JPPMKA02, PMJPKA05]. Database stored procedures are executed as transactions

defining a conflict class. Transactions issued by users are delivered using the optimistic atomic

broadcast to all sites but the outcome of transactions is only decided at the master site of the

respective conflict class. Hence, remote sites do not even have to wait for the definitive total order

to execute a transaction. It additionally provides good scalability results. The BRP and ERP may

accept any SQL statement, hence they are more flexible; however, ours present a higher overhead

since they propagate the SQL statements and we do not try to balance the workload.

Another way for achieving database replication is by means of epidemic algorithms as intro-

duced in [HSAA03]. They propose three different replication protocols over 2PL DBMSs which

are intended to be used on WANs or the Internet, where the number of replicas is small to mod-

erate and all replicas can execute update operations. All protocols follow the ROWAA policy, all

operations are firstly performed at a given site and when the user wishes to commit, the transac-

3.7. Discussion 65

tion enters in the pre-commit state and updates are inserted into a log, maintaining the write locks.

Replicas exchange their respective logs to keep each other informed about the operations that have

occurred on their sites by way of epidemic propagation. Epidemic algorithms are generally imple-

mented using vector clocks [Lam78] to ensure this property. When a replica receives a log record

containing a transaction t, it checks in its copy of the log if there exist a concurrent non-committed

transaction t′ whose read set and write set intersection with the write set of t is nonempty. In such a

case, t and t′ are aborted and both aborts are inserted in the copy of its log. Otherwise, write locks

are acquired on behalf of t and updates are applied, reaching the pre-commit state too. As epi-

demic messages exchange continues, the master site will know if all sites have completely applied

the updates done by t and will commit the transaction and then inserts a commit in the copy of its

log. The same can be applied to the rollback of a transaction. The second protocol is a more opti-

mistic approach as transactions commit as soon as they terminate locally and inconsistencies are

detected later. The reconciliation process is left to the application. The last protocol use quorums

to resolve conflicts avoiding that both conflicting transactions abort. The first solution presents the

same problem as the BRP, it must wait for the application of the updates at all available nodes.

They have solved this problem by the use of quorums which overloads the protocol, instead of the

priority function defined by us that led to the definition of the ERP. We are not concerned with the

optimistic approach as it is a lazy replication protocol.

We have introduced a modification to our protocols so as to support SI DBMSs and pro-

vide GSI [EPZ05]. However, it is not our goal to compare our proposal with solutions proposed

in [EPZ05, LKPMJP05, WK05]. We have simplified ours in order to achieve the desired consis-

tency but this does not achieve the same performance as them, because we still need two message

rounds to commit a transaction. They are a good approach since most of commercial DBMSs offer

this isolation level. They only need one total order message per transaction. They do not transfer

the read set and it is enough to have a version counter on each node. The certification phase is

very easy. The only drawback is how to handle its associated write set queue, but this may also be

kept so as to implement a simple recovery protocol.

Chapter 4

MADIS: A Slim Middleware for

Database Replication

This Chapter describes the middleware architecture used in the MADIS project for maintaining the

consistency of replicated databases. In the proposed architecture, most of the effort is spent using

basic resources provided by conventional database systems (e.g. triggers, views, etc). This allows

the underlying database to perform more efficiently many tasks needed to support any replication

protocol, and simplifies the implementation of such protocols. The system design allows the

database to maintain simultaneously the metadata needed for making several replication protocols

work as pluggable modules.

4.1 Introduction

MADIS has been designed with the aim of isolating the Consistency Manager (CM) from the

underlying DBMS particularities. It takes advantage of database resources to perform efficiently

part of the tasks needed to complete the consistency management in a replicated database. The

CM provides an interface where a wide range of replication protocols, like the ones depicted in

Chapter 3, may be plugged in.

Our architecture, puts an emphasis on its database support for replication and consistency.

MADIS provides a flexible middleware designed as a two-layer service conceived to enhance the

availability and performance of networked databases. The lower layer consists of an extension

of the original schema of an existing database. The defined extension only uses standard SQL

67

68 Chapter 4. MADIS: A Slim Middleware for Database Replication

features, such as triggers, rules and functions, providing to the upper layer (i.e. the middleware that

includes all consistency management) the information needed to carry out its tasks, minimizing

the overhead of such collection. For instance the metadata management, such as the set of records

read, written, created or deleted in each transaction is automatically stored in one of the tables of

this database extension. When needed, the replication protocol retrieves that information avoiding

the use of complex routines to do so. As a result, the mechanisms of the middleware to manage

the collection, retrieval and removal of such meta-data have been simplified, when compared to

those needed in other middleware-based systems, such as COPLA [IMDBA03].

Of course, the performance of a middleware-based database replication system will be worse

than that of a core-based one, as Postgres-R [Kem00, KA00a], but its advantage is to be easily

portable to different DBMSs. Moreover, the upper layer of our middleware can be implemented

in any programming language, since the support it needs is directly installed in the DBMS using

standard SQL.

Our MADIS middleware supports pluggable protocols that ensure the consistency of trans-

actions involving replicas. MADIS may support different kinds of pluggable protocols, whose

paradigms range from eager [AAES97, KA00b] to lazy update propagation [FMZ94], from op-

timistic [Sch81] concurrency control to pessimistic [BK91], from primary copy to update every-

where [WSP+00], etc. In particular, its API allows to switch from one replication protocol to

another, as needed. We emphasize that this switch can be performed without the need of recalcu-

lating the required metadata for the newly plugged-in protocol. This ensures that the process of

switching protocols is seamless and fast. Additionally, it enhances the modularity and openness

of the system.

This Chapter provides some contributions: (a) A detailed description of the schema modifica-

tions needed to provide support for the CM. (b) All such modifications only need SQL standard

features. Hence, we have automatized most consistency management tasks. (c) A very simplified

architecture for consistency management as MADIS serves as a benchmark for different replica-

tion protocols. (d) A study of the overhead introduced by MADIS and its comparison with other

similar approaches. (e) The BRP and ERP have been implemented in MADIS and we present some

experimental results where it can be shown the enhancements introduced by the ERP in relation

to BRP. (f) We have implemented TORPE in MADIS so as to compare a total order replication

protocol with our BRP and ERP proposals.

4.2. The MADIS Architecture 69

The rest of this Chapter is structured as follows. Section 4.2 describes the structure and func-

tionality of MADIS. Section 4.3 describes the schema modification that MADIS proposes to aid

a local CM. Section 4.4 outlines a Java implementation of the CM, in the form of a standard

JDBC driver. The interface between the CM and a generic replication protocol that may be imple-

mented in this architecture is introduced in Section 4.5. In Section 4.6 a performance analysis is

included, it presents several experimental results: The overhead introduced by MADIS compared

with PostgreSQL and other middleware architectures; and, the evaluation of the implementation

of BRP, ERP and TORPE in MADIS. Finally, some discussions about MADIS and a review of

recent works are included in Section 4.7.

4.2 The MADIS Architecture

The MADIS architecture is composed by two main layers. Figure 4.1 shows the overall layout

of the MADIS architecture. The bottom one generates some extensions to the relational database

schema, adding fields to some relations and also tables to maintain the collected write sets and

(optionally) read sets of each transaction, also known as the transaction report. The modifications

done in the transaction report tables are managed inside the same transactional context as the

transaction which these modifications refer to. These columns and tables are automatically filled

by triggers and stored procedures that must be installed. Thus, the application layer will see no

difference between the MADIS JDBC driver and the native JDBC driver.

The upper layer of the MADIS architecture is positioned between the client applications and

the database. It acts as a database mediator. The top layer of the MADIS architecture is the CM,

which is positioned between the client applications and the database. Its implementation can be

done regardless of the underlying database.

A database replication and recovery protocol has to be plugged into this CM. A replication pro-

tocol has to provide a ConsistencyProtocol interface to the CM. Besides, it may implement

some Listener interfaces in order to be notified about several events related to the execution of

a given transaction. This functionality will be described in Section 4.4. Take into account that the

replication protocol can also gain access to the incremented schema of the underlying database to

obtain information about transactions, thus performing the actions needed to provide the required

consistency guarantees. The replication protocol can also manipulate the incremented schema,

70 Chapter 4. MADIS: A Slim Middleware for Database Replication

Figure 4.1: The MADIS Architecture

making use of the provided database procedures when needed. Finally, the replication protocol is

also responsible of managing the communication among the database replicas. To this end, it has

to use a GCS that provides at least the set of communication primitives depicted in Chapter 2, as

well as others, such as total or causal order [CKV01].

The CM is composed by a set of Java classes that provide a JDBC-compliant interface. These

classes implement the following JDBC interfaces: Driver, Connection, Statement, Call-

ableStatement, ResultSet, and ResultSetMetaData. They are used to intercept all

invocations that could be relevant for a database replication protocol. The invocations made on

other interfaces or operations are directly forwarded to the native JDBC driver (the PostgreSQL

one, in our case). Besides these classes there exists a CM class (or RepositoryMgr) that is also

able to provide a skeleton for this layer that maintains the rest of classes and gives also support for

parsing the SQL sentences in order to modify them in some cases.

In the rest of this Chapter, we describe a Java implementation, designed to be used by the

client applications as a common JDBC driver and how to plug a replication protocol to this archi-

tecture. This driver functionality introduces a consistency control over a replicated database that

is provided in a transparent way to user applications.

4.3 Schema Modification

The lower layer of the MADIS architecture consists of a modification in the schema of the existing

database. The process for distributing an existing centralized database starts with the execution of

4.3. Schema Modification 71

a program that performs a schema migration at each replicated node. This migration consists of the

inclusion of tables, views, triggers and database procedures designed to maintain, automatically, a

number of reports about the activity performed during the lifetime of a transaction. That way, the

schema modification allows the database to automatically perform:

• Collection and management of the information pertaining to the write operations performed

by any local transaction. In other words, collection of write sets.

• Management of the metadata pertaining to the different records in the database. Differ-

ent metadata are needed by the different replication protocols the upper layer may man-

age [MEIBG+01, RMA+02]. Therefore, each site must store this kind of information.

• Optionally, collection and management of the information relating to any read operation

performed by any local transaction. That is, collection of extensive read set (including the

information read to perform queries). If this information is not generated, a replication

protocol requiring the set of obtained objects must perform some additional work to obtain

this information from the upper layer.

The operations needed by the replication protocols can be performed through a number of

added database procedures, thus enabling an ad-hoc management (not always required) of the

information automatically maintained in the database.

4.3.1 Modified and Added Tables

Modified Tables

For each existing table Ti in the original database schema, MADIS defines a number of mo-

difications, relating field additions, view definitions, and others. Therefore, a new field is added

for metadata purposes so as to identify a record on Ti, this new field is called LOCAL Ti OID. To

this end, a field is added, defining a link to the metadata associated with each record in the table Ti.

The reason for this nomenclature can be found in the possibility for the initial schema to include

JOIN clauses, using the form “SELECT * FROM T1 LEFT JOIN T2”, where the fields used

to perform the matching are those with the same name in both tables.

The LOCAL Ti OID holds the local object identifier for the record that is local to a particular

node in the system. Thus, it is possible for an object (identified by a unique GLOBAL OID) to have

72 Chapter 4. MADIS: A Slim Middleware for Database Replication

different LOCAL Ti OID’s within the system. A GLOBAL OID is required for the different nodes

in the system, to agree in the identity of each record, regardless the local identification (sensible

to local information).

Added Tables

In addition, MADIS creates for each table in the original schema (T j) an extra table (named MA-

DIS META T j), containing the metadata needed for any protocol pluggable in the consistency

manager. When a protocol is activated, MADIS executes a start-up process, to initialize each

“META” table in the database. The primary key of the table consists of a unique object identifier.

A typical “META” table is described as:

• LOCAL OID. (primary key) The local identifier for the object.

• GLOBAL OID. A global object identifier. Unique in the entire system. This identifier is

composed of the object’s creator node identifier and the local object identifier in that node.

• VERSION. The version number for the object.

• TRANSACTION ID. The identifier for the last transaction that updated the object.

• TIMESTAMP. The most recent time the object was locally updated.

These MADIS META T j tables contain part of the information needed by a wide range of

replication protocols, at least those that were implemented in COPLA [AGME05, MEIBG+01,

RMA+02]. Hence, as all the fields are automatically maintained by the database manager, any of

such protocols is suitable to be activated at will. It is important to note that a particular protocol

will only make use of a reduced set of metadata. However, the database manager must always

maintain all metadata so that switching from one protocol to another may be done at any time.

In addition to these metadata tables, MADIS defines a table MADIS TR REPORT containing

a log including the activity of each transaction of the database. The table is as follows:

• TRID (part of the primary key). Transaction identifier.

• GLOBAL OID (part of the primary key). The global object identifier.

• FIELD ID (optionally) (part of the primary key). The identifier for the accessed field.

4.3. Schema Modification 73

• MODE. The mode the object was accessed (read/insert/delete/modify).

For each transaction, only one record per field-of-object is maintained in the MADIS TR REPORT

table. In addition, once the transaction is terminated, the CM eliminates from this table any record

relating the concluded transaction. Note that several MVCC-based DBMSs do not use locks with

record granularity, but locks that block access to entire pages or even tables. Such systems must

use multiple “per transaction” temporary TrReport tables, including the transaction in the table

name (i.e., these tables have a <TRID> TR REPORT name).

4.3.2 Triggers

As mentioned, MADIS introduces a set of new triggers in the database schema definition. These

triggers can be classified in three main groups:

• Write set managers. They are responsible for the collection of the information relating the

objects written by the executing transactions.

• Read set managers. Collect the information related to the objects read by executing trans-

actions. Their inclusion in the schema is optional, and when included, it is requested to be

implemented by creating views.

• Metadata automation. These triggers are executed when the metadata stored in the MADIS

extension tables must be updated. The collection and maintenance of such information is

performed automatically by the triggers.

Write Set Collection

The write set collection is performed defining three triggers for each table Ti in the original

schema. They insert in the MADIS TR REPORT table the information related to any write-access

to the table performed by the executing transactions.

The write set collector (WSC) triggers are named WSC I Ti, WSC D Ti, and WSC U Ti, and

their definition allows to intercept any write access (insert, delete or update respectively) to the Ti

table, recording the event in the transaction report table (MADIS TR REPORT).

CREATE TRIGGER WSC I MY TABLE BEFORE INSERT ON MY TABLE FOR EACH ROW

EXECUTE PROCEDURE TR INSERT(MY TABLE, GET TRID(), NEW.L MY TABLE OID);

74 Chapter 4. MADIS: A Slim Middleware for Database Replication

The example shown above defines a basic WSC trigger that is related to the insertion of a new object.

Note that the trigger executes the procedure GET TRID() to obtain the current transaction identifier that

corresponds to the transaction identifier assigned by PostgreSQL to the transaction. Respectively, the field

L MY TABLE OID contains the identifier of this record in the database. The example inserts a single row

in the MADIS TR REPORT table for each insertion in the table MY TABLE. The execution of the invoked

procedure causes the DBMS to insert into the MADIS TR REPORT table the adequate rows, in order to

keep track of the transaction activities.

Deletions and updates must also be intercepted by means of analogous triggers. However, as described

above, the accessed fields can be optionally included in the transaction report (depending on the config-

uration of the MADIS middleware). To this end, a WSC trigger managing the updates should be split

into a number of triggers, one for each field contained in the managed table (WSC U MY TABLE FIELD1,

. . .WSC U MY TABLE FIELDN). Here is an example of update and delete triggers:

CREATE TRIGGER WSC U MY TABLE FIELD1 BEFORE INSERT ON MY TABLE FOR EACH

ROW WHEN OLD.FIELD1<>NEW.FIELD1 EXECUTE PROCEDURE TR UPDATE(

’MY TABLE’, ’FIELD1’, GET TRID(), NEW.L MY TABLE OID);

CREATE TRIGGER WSC U MY TABLE FIELD2 BEFORE INSERT ON MY TABLE FOR EACH

ROW WHEN OLD.FIELD2<>NEW.FIELD2 EXECUTE PROCEDURE TR UPDATE(

’MY TABLE’, ’FIELD2’, GET TRID(), NEW.L MYTABLE OID);

...

CREATE TRIGGER WSC D MY TABLE FIELD1 AFTER DELETE ON MY TABLE FOR EACH

ROW EXECUTE PROCEDURE TR DELETE MY TABLE()’’;

CREATE TRIGGER WSC D MY TABLE FIELD2 AFTER DELETE ON MY TABLE FOR EACH

ROW EXECUTE PROCEDURE TR DELETE MY TABLE()’’;

Read Set Collection

The second group of triggers is responsible for the read set collection of transactions. As already mentioned,

this collection is optional, due to its high cost, and the fact that some replication protocols can be accom-

plished without using read sets. To implement this collection, a view must be included for each table in

order to compensate the lack of TRIGGER ... BEFORE SELECT in the SQL-99 standard. The original

table must be renamed and replaced by the new view. The following example shows the view inserted for a

table MY TABLE, in order to collect any read access performed on it:

CREATE VIEW MY TABLE (FIELD1, FIELD2, L MY TABLE OID) AS SELECT

TR SELECT(’MY TABLE’, ’FIELD1’, GET TRID(), L MY TABLE OID),

4.3. Schema Modification 75

TR SELECT(’MY TABLE’,’FIELD2’, GET TRID(), L MY TABLE OID),

L MY TABLE OID FROM MY TABLE;

As views cannot be updated in several DBMSs, it becomes also necessary for the WSC triggers to

be modified, in order to redirect the write accesses to the renamed original table. This can be done by

implementing the WSC triggers as ’INSTEAD OF EVENT’ triggers, (in contrast to the basic BEFORE

EVENT detailed above). Finally, the TR INSERT, TR UPDATE and TR DELETE procedures should be

modified, in order to include the required redirection.

Metadata Management

The last group of triggers added by MADIS is that responsible for the metadata management. In fact,

this management can be disseminated in the WSC triggers detailed in this Section. However, we describe

here the metadata management implementation as independent triggers, in order to simplify the discussion.

Whenever a new record is inserted, the DBMS must automatically insert the corresponding row in the meta-

data table. To this end, MADIS includes, for each table Ti, a trigger that inserts a row in the corresponding

MADIS META Ti table. As the GLOBAL OID is established based on the creator node identifier (i.e. the

node where the object was created), and the local object identifier in the creator node, all fields contained

in the MADIS META Ti table can be filled without intervention of any replication protocol.

Following the life-cycle of a row, when a row is accessed in write mode, the DBMS must intercept

the access, and the metadata (e.g. version, timestamp and so on) of such object must be updated. To this

end, a specialized metadata maintainer (MM) trigger is included for each table. The MM trigger updates

the version, the transaction identifier, and timestamp of the record in the given metadata

table. As an example, the following shows the implementation of a basic MM trigger for MY TABLE:

CREATE TRIGGER MM MY TABLE BEFORE UPDATE ON MY TABLE FOR EACH ROW

EXECUTE PROCEDURE META UPDATE(’MY TABLE’, GET TRID(),

NEW.L MY TABLE OID)

Finally, when an object is deleted, the corresponding metadata row must be also deleted. To this end,

an additional trigger is also included for each table in the original schema.

Summarizing the tasks performed by the described triggers, it is easy to see that, for each table, only

three triggers must be included: BEFORE INSERT, BEFORE UPDATE, BEFORE DELETE. Their im-

plementation includes both the transaction report management, and the metadata maintenance. If the read

set management is a requirement, it is necessary to replace the definition of the triggers, implementing

76 Chapter 4. MADIS: A Slim Middleware for Database Replication

INSTEAD OF triggers, in contrast to BEFORE triggers. This allows the DBMS to redirect any write access

to the adequate table, as well as to perform the metadata maintenance and the transaction management.

Database Procedures

As it has been depicted, data management of the MADIS TR REPORT table as well as the respective

MADIS META T j tables are carried out by database functions. Their purpose is multiple; they vary from

obtaining the transaction identifier to a row insertion in a given metadata table. These functions are im-

plemented using the PL/pgSQL procedural language provided by PostgreSQL. It permits to add control

structures to the SQL language. Therefore, it will be easier to automatize the filling of different metadata

tables. The PL/pgSQL is easy to use since it is very intuitive to programmers.

These functions are specially designed to be performed as long as a transaction is performing opera-

tions. However, the aim of the MADIS TR REPORT table is to collect the objects written and read by a

given transaction. MADIS has defined a set of functions that perform this task. They can be implemented

using the PL/pgSQL language but the response time of this implementation will be unacceptable in certain

cases. Thus, we have defined the functions that return the objects read and written by a transaction as native

functions implemented in C.

Detecting Conflicting Transactions

In many database replication protocols we may need to apply the updates propagated by a remote transac-

tion. If several local transactions are accessing the same data items that this remote update, such remote

update will remain blocked until those local transactions terminate. Moreover, if the underlying DBMS

uses a MVCC combined with a SI level [BBG+95], such a remote update is commonly aborted, and it

has to be reattempted until no conflicts arise with any local transaction. Additionally, in most cases, the

replication protocol will end aborting also such conflicting local transactions once they try to commit. As

a result of this, it seems appropriate to design a mechanism that notifies to the replication protocol about

conflicts among transactions, at least when the replication protocol requires so. Once notified, the replica-

tion protocol will be able to decide which of the conflicting transactions must be aborted and, once again, a

mechanism has to be provided to make possible such abortion.

To this end, we have included in the underlying database some support for detecting transaction con-

flicts that have produced a transaction blocking. It consists of a stored procedure, provided that the un-

derlying DBMS is PostgreSQL [Pos05], named GET BLOCKED() that looks for blocked transactions in

the view PG LOCKS placed in the PostgreSQL system catalog. It returns a set of pairs composed by the

identifier of a blocked transaction and the identifier of the transaction that has caused such a block.

4.4. Consistency Manager 77

Transaction Termination

A replication protocol may abort an ongoing transaction canceling all its statements. This implicitly roll-

backs such a transaction, and may be requested using standard JDBC operations. If the transaction is

currently executing a statement, it may be aborted using another thread to request such a cancelation. Re-

spectively, the replication protocol may decide to commit a transaction. This procedure closely follows the

commit procedure used with standard JDBC operations, i.e. there will not be any ongoing statement in the

DBMS belonging to the transaction.

4.4 Consistency Manager

The architecture proposed by MADIS makes use of the database as the manager for most information related

to consistency management. Moreover, the DBMS also provides the collected information to the CM with

standardized structures. Thus, the consistency management can be ported from a platform to another with a

minimal effort. The rest of this Section shows a Java implementation of a CM making use of the described

schema modification.

Our Java implementation of the CM allows a generic replication protocol to intercept any access to the

underlying database, in order to coordinate both local accesses, and update propagation of local transactions

(and, respectively, the local application of remote transactions).

In our basic implementation of MADIS, we implement a JDBC driver that encapsulates an existing

PostgreSQL driver, intercepting the requests performed by the user applications. The requests are trans-

formed, and a new request is elaborated in order to obtain additional information (as metadata). The user

perception of the result produced by the requests is also manipulated, in order to hide to the user applica-

tions the additionally recovered information. This mechanism allows the plugged replication protocol to

be notified about any access performed by the application to the database, including query execution, row

recovery, transaction termination requests (i.e. commit/rollback), etc. Therefore, the protocol has a chance

to take specific actions during the transaction execution so as to accomplish its tasks.

4.4.1 Connection Establishment

The JDBC standard recommends the use of the DriverManager class to obtain connections in order

to be used by an application. The implementation of DriverManager selects the particular JDBC

Driver to be invoked in base to the URL specified by the user application to determine the target data-

base. Thus, the URL “jdbc:postgresql://myserver.mydomain/mydatabase” indicates the

DriverManager to use the PostgreSQL Driver to obtain the connection. The DriverManager performs

the selection invoking each registered JDBC Driver in the system. As we want to provide a JDBC in-

terface in our MADIS architecture, the user requests a MADISConnection by way of an appropriate

78 Chapter 4. MADIS: A Slim Middleware for Database Replication

URL (e.g. “jdbc:madis:postgresql://myserver.mydomain/mydatabase”) in order to se-

lect the MADIS Driver, as well as the underlying JDBC Driver to be used by the middleware to access

the underlying database.

More About Detecting Conflicting Transactions

An execution thread is associated per transaction. It is used each time its associated transaction begins any

operation. It may become blocked due to the concurrency control policy of the underlying DBMS. Take

into account that in MVCC DBMSs the read-only operations cannot be blocked.

Thus, once a database connection is created, a thread is also created and associated to it. Each time

the current transaction in a given connection initiates an updating operation, its associated thread is tem-

porarily suspended, with a given timeout. If such an updating operation terminates before that timeout

has expired, the thread is awakened and nothing else needs to be done. On the other hand, if the timeout

is exhausted and the operation has not been concluded, the thread is reactivated and then makes a call to

the GET BLOCKED() procedure. As a result, the replication protocol is able to know if the transaction

associated to this thread is actually blocked and which other transaction has caused its stop.

This mechanism can be combined with the transaction priority scheme defined for the BRP and ERP

protocols. Two priority classes are defined, with values 0 and 1. Class 0 is assigned to local transactions that

have not started their commit phase. Class 1 is for local transactions that have started their commit phase

and for those transactions associated to delivered write sets that have to be locally applied. Once a conflict

is detected, if the transactions have different priorities, then the one with the lowest priority will be aborted.

Otherwise, i.e., when both transactions have the same priority, the higher priority function is applied for

transactions at level 1, but nothing is done with transactions belonging to level 0. Similar approaches may

be followed in other replication protocols that belong to the update everywhere with constant interaction

class [WPS+00].

4.4.2 Common Query Execution

Query executions are also intercepted by MADIS encapsulating the Statement class. As response of user

invocation to createStatement() or prepareStatement() the MADIS Connection generates

Statements that manage user queries execution. When the user application requests a query execution,

the request is sent to the CM class, which calls the processStatement() operation of the plugged

replication protocol.

Once this is done, the replication protocol may modify the statement, adding to it the patches needed

to retrieve some metadata, or collect additional information into the transaction report. However, this

statement modification is only needed by a few replication protocols, which also have the opportunity to

retrieve these metadata using additional sentences (on the “report-tables”) once the original query has been

4.4. Consistency Manager 79

Figure 4.2: Query execution

completed. Optimistic replication protocols do not need such metadata (like current object versions, or the

latest update timestamps for each accessed object) until the transaction has requested its commit operation.

So, they do not need these statement modifications on each query. The process for queries is depicted in

Figure 4.2 whilst Figure 4.3 describes the update control flow. It is important to note that the ResultSet

should be also encapsulated in order to hide such included metadata.

We recommend to access the metadata using a separate query. Otherwise, the following additional steps

are needed:

1. The resulting SQL statement is executed, performing a common invocation to the encapsulated JDBC

Statement instance, and a ResultSet is obtained as a response. The obtained ResultSet is also

encapsulated by MADIS, returning to the user application an instance of a MADIS ResultSet. It

contains the ResultSet returned by the JDBC Statement.

2. When the application tries to obtain a new record from the ResultSet, MADIS intercepts the

request. It notifies about the new obtained object to the replication protocol. Consequently, in order

to keep the required guarantees, the protocol may modify the database, the state of the MADIS

80 Chapter 4. MADIS: A Slim Middleware for Database Replication

madis.Statement

mS

postgressql.
Statement

pS

madis.Core

executeUpdate(sql)
parseUpdate(trid, sql)

numrows

madis.Protocol

processUpdate(trid, sql_tree)

sql_tree’

sql’

executeUpdate(sql’)

numrows

executeQuery(sql2)

postgressql.
Connection

pC

ResultSet: oids[]

Figure 4.3: Update Execution

ResultSet, or even abort the current transaction. In addition, the MADIS ResultSet tasks also

hide the metadata (included in the query) when the application requests the different fields of the

current row.

4.4.3 Commit/Rollback Requests

The termination of a transaction is also requested by the user application. Either when the application

requests a commit or when a rollback is invoked, MADIS must intercept the invocation, and take additional

actions.

When the user application requests a commit operation (see Figure 4.4), the MADIS Connection

redirects the request to the CM instance. Then, the plugged protocol is notified, having then the chance to

perform any action involving other nodes, access to the local database, etc.

If the protocol concludes this activity with a positive result, then the transaction is suitable to commit

in the local database, and the CM responds affirmatively to the MADIS Connection request. Finally, the

MADIS Connection completes locally the commit, and returns the completion to the user application

after the notification to the CM using the doneCommit() operation defined in its interface. On the other

hand, a negative result obtained from the protocol activity will be notified directly to the application, after

the abortion of the local transaction.

Take into account that the doneCommit() method is also able to notify a unilateral abort, generated

by the underlying database, and that this may allow that the plugged protocols were able to manage such

unilateral aborts, too. This is the case of the BRP protocol described in Chapter 3. Finally, rollback()

requests received from the user application must be also intercepted, redirected to the CM, and notified to

4.5. Protocol Interface 81

the plugged protocol.

madis.
Connection

mC

madis.Protocolmadis.Corepostgresql.
Connection

pC
commit()

commit()

toCommit(mC)

okok

ok/aborted

toCommit(trid)

ok/aborted

commit()

rollback()

toCommit(mC)

abort
abort

toCommit(trid)

aborted

doneCommit(trid, result)
doneCommit(trid, result)

Figure 4.4: Commit suceeded vs aborted

4.5 Protocol Interface

The interaction between our consistency manager and the plugged replication protocol is ruled by an inter-

face with operations to complete the following tasks:

• Protocol registration. The protocol has to be plugged into the CM using a registration method. In

this registration procedure it has to specify with a parameter the set of events it is interested in. Some

of these events depend on the information that has been put into the MADIS TR REPORT table that

was described in Section 4.3. The available events are:

1. RECOVERED: Some objects have been recovered in a ResultSet. The protocol will receive

an extended ResultSet that also contains the OIDs of the objects being recovered, and may

use this information for building the transaction read set, if needed.

82 Chapter 4. MADIS: A Slim Middleware for Database Replication

2. UPDATED: This event is similar to the previous one, but reports the objects that have been

updated.

3. UPDATE PRE: The protocol will be notified when the current transaction is going to initiate

an updating operation on the database. Thus, the protocol may modify the update sentence at

will, if needed.

4. UPDATE POST: The protocol will be notified after an update sentence has been executed.

Thus, it may read the current transaction report for obtaining the set of updated objects. This

is an alternative way of doing the same as in the event number 2 described above.

5. QUERY PRE: The protocol will be notified before a SELECT statement is initiated in the data-

base. It may modify the query, if needed.

6. QUERY POST: The protocol will be notified once a query has been completed. It may access

then the transaction report, if needed.

7. ACCESSED: The protocol will get all the objects accessed by the latest SQL statement, instead

of the objects being recovered in its associated ResultSet. This set is normally different

from the set of recovered objects and usually the latter is a subset of the former. Some protocols

may need the set of objects accessed, instead of the recovered ones, as the strictly serializable

ones.

8. TREE: The protocol requests that the CM builds a parsing tree for each sentence being exe-

cuted. Later, the protocol may ask for such a tree, modifying it when needed.

• Event requesting. There are also a set of explicit operations that the protocol may use for requesting

those events that were not set at protocol registration time.

• Event cancelation. A set of operations for eliminating the notification of a given event to the cur-

rently plugged-in protocol.

• Access to transaction write set and metadata. A set of operations that allow the full or partial

recovery of the current write set or metadata for a given transaction. Most of the protocols will need

the transaction write set only at commit time in its master node, for its propagation to the rest of

replicas, but others may need such data before and these operations allow this earlier recovery, too.

This interface is general enough to implement most of the replication protocols currently developed for

databases.

4.5.1 Connection Establishment

Figure 4.5 shows a UML diagram sequence for a connection establishment. The sequence starts with a

request to the DriverManager, and the selection of the MADIS JDBC Driver. Then, the MADIS

4.6. Experimental Results 83

DriverManager madis.Driver postgressql.Drivermadis.Connection postgresql.Connection

createConnection(url)

createConnection(url)
«create»

«create»
createConnection(url’)

«destroy»

«destroy»

pC

mC

mC
pC

madis.Core

newConnection(mC)

removeConnection(mC)

Figure 4.5: Connection Establishment

Driver invokes the MADIS Connection to be built, indicating the underlying PostgreSQL connection

URL to be used. The constructor of the MADIS Connection builds a PostgreSQL Connection, and

includes it as an attribute. Finally, the MADIS Driver returns the new MADIS Connection. During the

construction of the MADIS Connection, the middleware is notified. Then, specific actions can be done

by the middleware. For instance, the replication protocol is notified, in order to annotate a new transactional

context in the system.

4.6 Experimental Results

The important question to be discussed in this Section is the cost to be paid by the system from drifting

to the DBMS the generation and maintenance of the information needed by a generic replication protocol

to accomplish the tasks of consistency maintenance, concurrency control and update propagation. This

question, for our architecture, corresponds with the degree of performance degradation of the underlying

database manager due to the overload introduced by the schema modification (i.e. triggers, procedures,

added tables, etc) in the database.

4.6.1 Overhead Description

In spatial terms, the overhead introduced by the schema modification is easy to be determined. Considering

the trigger and procedure definitions as irrelevant, the main overload in space is produced by each MA-

DIS META T j table. These tables contain at least two identifiers (local and global object identifier) and

84 Chapter 4. MADIS: A Slim Middleware for Database Replication

the rest of fields are used by each one of the pluggable protocols. We consider that most of protocols can

be implemented with the support of a transaction identifier, a timestamp, and a sequential version number.

Finally, the transaction report maintains the information regarding to the executing transactions just during

the lifetime of such transactions. Thus, in global terms, this does not constitute a spatial overhead itself.

With regard to computational overhead, our architecture introduces a number of additional SQL sen-

tences and calculations for each access to the database.

This overhead can be classified into four main categories:

• INSERT. The overhead is mainly caused by the insertion of a row into the MADIS TR REPORT table

for registering such insertion. An additional row is also inserted in the MADIS META T j. Thus, for

each row inserted in the original schema, two additional rows are inserted by the schema extension.

• UPDATE. When updating a row of the original schema, there will be also inserted an additional row

in the MADIS TR REPORT table. However, in this case there will not be needed to insert into the

MADIS META T j table any row, but just an update is needed.

• DELETE. In this case, an additional row must be inserted in the MADIS TR REPORT table to register

the deletion, and the deletion of the corresponding row in MADIS META T j should be also deleted

(although in a deferred mode).

• SELECT. When selecting a row from the original schema, there is no need to alter the MADIS ME-

TA T j table at all. In addition, depending on the particular replication protocol plugged in the sys-

tem. It can also be avoided any insertion in the MADIS TR REPORT table, provided that replication

protocols just based on the write set will not need records about the objects read by a transaction.

Summarizing, INSERT, UPDATE and DELETE operations need additional insertions on the MADIS TR RE-

PORT table, and other operations with the corresponding MADIS META T j table. In contrast the SELECT

overhead varies depending on the plugged protocol. The read set collection may be performed in most

of the cases by the middleware, just including the LOCAL T j OID in the SQL sentences executed in the

database. Thus, this inexpensive OID inclusion is often the overhead introduced in the SELECT statements.

In this Section, we discuss the overhead introduced in INSERT, UPDATE and DELETE operations, due to

the relevance of the overhead in these operations. We are using a dummy replication protocol, in order to

calculate just the overhead introduced by the architecture.

4.6.2 Overhead in the MADIS Architecture

The experiments consisted of the execution of a Java program, performing database accesses via JDBC. The

schema used by the program contains four tables and are shown in Figure 4.6. A program execution starts

with the database connection, and schema creation. Afterwards, a number of “training” transactions are

executed, ensuring that any Java required class is loaded. Then, three measurements are performed. Each

4.6. Experimental Results 85

• CUSTOMER:(ID: INTEGER, NAME: VARCHAR(30), ADDR:
VARCHAR(30))

– Primary Key: ID
• SUPPLIER:(ID: INTEGER, NAME: VARCHAR(30), ADDR:
VARCHAR(30))

– Primary Key: ID
• ARTICLE:(ID: INTEGER, DESCR: VARCHAR(30), PRICE:
DOUBLE, ID SUP:VARCHAR(30))

– Primary Key: ID

– Foreign Key:ID SUP→ SUPPLIER
• ORDER:(ID: INTEGER, ID CUS: INTEGER, ID ART: INTEGER,
QUANT: INTEGER)

– Primary Key: ID

– Foreign Keys: ID CUS→ CUSTOMER ID ART→ ARTICLE

Figure 4.6: Database tables description of the experiment

measurement calculates the time taken by numtr sequential transactions (performing a number of INSERT,

UPDATE or DELETE operations depending on the required measurement).

• Transactions for the first measurement: they consist of numrows insertions of rows into CUSTOMER,

SUPPLIER, and ARTICLE tables (referencing the new SUPPLIER), and ten additional insertions

into the ORDER table, referencing the rows inserted in this transaction.

• Transactions for the second measurement: they consist of numrows updates of such rows introduced

by the previous transactions, using four different SQL sentences.

• Transactions for the third measurement: they consist of numrows deletions of such rows introduced

by the previous transactions, using four different SQL sentences.

For each measurement, the experiment provides three values: the total cost of the numtr transactions of type

I, U and D respectively, each one acting with numrows rows per table. The experiments were performed

in an Intel(R) Pentium(R) IV, at 2.80 GHz, 1GB of RAM, of a Fedora Core 2, Linux 2.4.22 kernel. The

DBMS was PostgreSQL 7.4.1.

We observed that deletions are the most costly operations in our core implementation. For a more

accurate description of the overhead we calculated the time cost per transaction (Figures 4.7 and 4.8).

The results stabilized with a few number of transactions, which indicates that the system does not suffer

appreciable performance degradation along the time. In addition, it is shown in Figure 4.7 that the overhead

per transaction is always lower than 80 ms in our experiments. Besides, Figure 4.8 shows that the sensitivity

for numrows is inappreciable (the system scales well in relation to managed rows) for any of the transaction

types (I, U, and D respectively).

We concluded that our implementation of the MADIS database core introduces bounded overheads for

Insertion and Update operations. However, Delete operations cause the schema modification to produce a

86 Chapter 4. MADIS: A Slim Middleware for Database Replication

overhead (in ms)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

-20

 0

 20

 40

 60

 80

 100

 120

 140

ms

Figure 4.7: MADIS absolute overhead (in ms)

dangerous, although logarithmic degradation of the performance (600% for 6000 rows deleted).

overhead (in %)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 0

 100

 200

 300

 400

 500

 600

 700

%

Figure 4.8: Relative MADIS/JDBC overhead (in %)

4.6. Experimental Results 87

4.6.3 Comparison of Overheads with Other Architectures

In GlobData [RMA+02, IMDBA03, AGME05], a middleware was developed to be used as a research tool

in the field of replication protocols. In fact, several protocols were designed, developed, and implemented

using this middleware. However, the architecture used in Globdata (COPLA) did not be conceived to

provide low overheads in order to provide the required metadata to the plugged protocols. We include

a comparison with COPLA. In the same conditions as the ones depicted in the previous Subsections, we

executed an equivalent test using COPLA. The conclusions, depicted in Figure 4.9, were that COPLA has a

poor scalability for Update and Delete operations (50 and 200 times more costly than the standard schema).

overhead (in %)

COPLA I
COPLA U
COPLA D

 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 0

 5000

 10000

 15000

 20000

 25000

 30000

%

Figure 4.9: Relative COPLA/JDBC overhead

Finally, the MADIS architecture was compared with RJDBC [EPMEIBBA04] as a lower bound of

the achievable results. In RJDBC, there is no metadata maintained in the system. In contrast, all the

requests to the database are just broadcast to any node in the system. When there is a unique node (as in our

experiments), the system introduces a minimal overhead, consisting in the management of the requests. The

experiments show (Figure 4.10) that the system overhead remains stable proportionally to the number of

rows processed. However, it is also shown that the overhead introduced for I and U operations is comparable

to the one introduced by MADIS. Thus, as the RJDBC architecture only allows a unique eager, pessimistic,

and linear replication protocol, it will not scale well with regard to the number of connected nodes.

88 Chapter 4. MADIS: A Slim Middleware for Database Replication

overhead (in %)

RJDBC I
RJDBC U
RJDBC D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

%

Figure 4.10: Relative RJDBC/JDBC overhead

4.6.4 Experimental Results of the Replication Protocols Implementation in MADIS

The BRP and ERP protocols, introduced in Chapter 3, have been also implemented in MADIS. Right now,

we have theoretically shown that: both protocols are correct, and the ERP presents lower response times

and abortion rates than the BRP. These assertions are going to be tested by their implementation in MADIS.

This set of experiments tries to provide a representative performance analysis of both protocols in MADIS.

Besides, the TORPE protocol has also been implemented in MADIS. As seen before, the BRP and ERP

protocols do not rely on strong group communication primitives, but on a deadlock prevention schema based

on transaction priorities that prevents from distributed deadlocking. However, total order based replication

protocols, like TORPE, manage replica consistency by the total order message delivery featured by GCSs.

Therefore, we are very interested in comparing our replication proposals with, so as to see how they behave.

Database Schema and Transaction Types. In all the experiments, the database consists of 30 tables each

containing 1000 tuples. Each table contains the same schema: two integers, one being the primary key

(TABLE ID) and the other one denoted as (ATTR). Update transactions consist of a number of operations

of the type:

UPDATE TABLE NAME SET ATTR = ATTR + 1 WHERE TABLE ID = Y;

Where TABLE NAME is a randomly chosen table between the 30 tables composing the database and Y

is another randomly chosen number between 1 and 1000.

Clients. Transactions are submitted by clients that are evenly distributed among the servers. PostgreSQL is

very inefficient from the client management point of view, as it creates a new process and sockets for each

4.6. Experimental Results 89

new client connection. Hence, we have decided to maintain client connections once they are connected to

their master site and submit transactions until the end of the given test.

Workload. The interarrival time between the submission of two consecutive transactions is uniformly

distributed. The submission rate (also referred to as workload) varies through the experiments and is deter-

mined by the number of clients and the mean interarrival rate for each client. The workload is denoted by

the number of transactions submitted per second (TPS). Except for a few experiments, in which resources

were completely saturated, the system throughput is equal to the submission rate.

Hardware Configuration. For the experiments, we used a cluster of 8 workstations (Fedora Core 1, Pen-

tium IV 2.8GHz, 1GB main memory, 80GB IDE disk) connected by a full duplex Fast Ethernet network.

PostgreSQL 7.4 was used as the underlying DBMS. Finally, Spread 3.17.3 was in charge of the group com-

munication for TORPE. Besides, we have implemented a basic reliable multicast using TCP in order to

feature the reliable broadcast communication primitives needed by BRP and ERP, since we have not found

an efficient GCS implementation that performs a reliable multicast.

PostgreSQL Configuration. We have modified the fsync option. By default this option is enabled and

the PostgreSQL server will use the fsync() system call in several places to make sure that updates are

physically written to disk. This insures that the database will recover to a consistent state after an operating

system or hardware crash. However, using fsync() results in a performance penalty: when a transaction

is committed, PostgreSQL must wait for the operating system to flush the write-ahead log to disk. When

fsync() is disabled, the operating system is allowed to do its best in buffering, ordering, and delaying

writes. This can result in significantly improved performance. However, if the system crashes, the results

of the last few committed transactions may be lost in part or whole. In the worst case, unrecoverable

data corruption may occur. Hence, violating the ACID properties of transactions [BHG87]. Our sole

concern is to compare replication protocols. Regarding this comparison, there is no need to incorporate

the fsync() option in the DBMS. Since the current implementation of MADIS is not optimized and

the overhead included by the physical writes in the DBMS is the same for the three replication protocols,

the response time will be higher. Hence, if we get rid of a common factor for all the protocols, then the

experiments will run faster without loosing each of the protocol intrinsic characteristics that are placed at

the middleware level.

Set up of the Test Runs. Table 4.1 gives an overview of the parameters used to carry out the different

proposed experiments. We analyze the interval time between a client transaction submission and the commit

reception of the client application. Each experiment shows the update time of a transaction at a single

node, referred as UPDATE TIME. All tests were run until 2000 transactions were executed. As it uses a

multiversion system, data access time continuously grows since the primary index contains more and more

entries for each tuple and all version of the tuple have to be checked in order to find the valid version. Each

time we executed a new test suite, we executed the vacuumdb command for the given database to perform

90 Chapter 4. MADIS: A Slim Middleware for Database Replication

Experiments WL1 WL2 WL3 Conflicts

Database Size 30 tables of 1000 tuples each

Tuple Size appr. 100 bytes

Number of Servers 5 2-8 5 5

Number of Updates Operations 5 10 5-25 5

Number of Clients 1-20 2-8 5 5

Submission Rate in TPS 10-35 10 10 20

Hot Spot Size 0% 0% 0% varying

Table 4.1: Parameters of experiments

a full vacuuming of it in order to obtain comparable results.

Set up of the Replication Protocols The BRP was fully implemented in MADIS. However, ERP and

TORPE were implemented without their associated queues as most of the test benchmarks present no con-

flict at all. Hence, the conflict analysis was only done with BRP and ERP where abortions may be handled

in an easier way even without queue management.

Workload Analysis 1 (WL1): Response Time of the Protocols Varying The System Load and

the Number of Clients

In this experiment, we try to see how the three replication protocols are able to cope with increasing work-

loads and increasing number of users. These tests were carried out in a configuration of 5 servers. Trans-

actions consist of 5 update operations. Workload was increased steadily from 10 to 35 TPS and, for each

workload, several tests were executed varying the number of clients from 1 to 20 in the whole system. This

means, the more clients exist the less transactions each client submits to achieve a specific workload.

Figures 4.11 - 4.13 show the response time for the BRP, ERP and TORPE protocols in this experiment

respectively. Generally, the maximum throughput is limited when working with a small number of clients

since a client can only submit one transaction at a time, and hence, the submission rate per client is limited

by the response time. For instance, one client would have to submit a transaction each 40 ms to achieve a

throughput of 25 TPS. With one client TORPE and ERP response times are below 25 and 28 ms respectively,

but BRP ones are close to 50 ms and it is not possible to achieve the desired throughput. In general,

the response times obtained were normally shorter than the required interarrival time to achieve a given

throughput, except for a few tests where the system was saturated that we considered to be valid since the

difference between the submission rate and the achieved throughput was not significant.

BRP presents the worst behavior of the presented protocols. The reason for this is that the master site of

a transaction has to wait for the update execution of the slowest site, since remote sites have to execute the

received transaction before sending the ready message, as the commitment process determines. However,

ERP and TORPE do not have to wait so long: in the first one the remote sites sends the ready message once

4.6. Experimental Results 91

Figure 4.11: BRP response time in a 5-server system varying the submission rate and the number of clients

Figure 4.12: ERP response time in a 5-server system varying the submission rate and the number of clients

conflicts and priority rules are checked before executing the updates and in the second one the master site

does not wait any response from remote sites, only waits for the delivery of the messages in total order. This

fact implies that, in the BRP protocol, a transaction remains longer at its master site, thus increasing the

92 Chapter 4. MADIS: A Slim Middleware for Database Replication

Figure 4.13: TORPE response time in a 5-server system varying the submission rate and the number of clients

administration overhead for the operating system. As a concluding remark, increasing the workload and the

multiprogramming level only results in higher response times, due to the higher administration overhead

(process switches, communication to/from the client) and contention at specific resources.

ERP is also somehow limited by the CPU, but not up to the level that BRP is. The master site must

wait for the ready message coming from the remote sites at commitment time, so that, when the resources

of the available remote sites become saturated at high workloads and multiprogramming levels, these have

no enough time to process all the delivered messages and the response times becomes greater. As it has

been pointed out before for the ERP protocol, remote sites do not wait for the update execution before

sending the ready message, what results in a shorter transaction execution time in the respective transaction

master sites. Due to this fact, not only shorter response times are achieved but also the system remains

less saturated in general terms, allowing a better performance than the one obtained with BRP. As seen in

Figure 4.12, response times keep between 20 and 70 ms for a given number of clients with workloads up

to 25 TPS. Beyond this workload, and specially with a high multiprogramming level, response times grow

quickly as a consequence of the increasing saturation of the sites, as said before.

In the TORPE protocol, the master site only waits for the local delivery of a total order message to

complete the commitment process. This means that TORPE is not so limited by the CPU as BRP and ERP

are, as can be seen in Figure 4.13. For that reason, TORPE response times do not increase so much as in the

other protocols at high workloads and multiprogramming levels. Working with intermediate loads, response

times remain between 20 ms with 1 client and 125 ms with 20 clients. As shown in Figure 4.13, increasing

4.6. Experimental Results 93

the system workload for a given number of clients does not involve longer response times. However, the

system response times increase as the number of clients grows. Having more clients in the system means

more messages to be exchanged between the sites. As a result of this increase in the number of messages,

the GCS takes more time to establish the total order in the message delivery to the available sites.

Finally, Figure 4.14 presents a direct comparison between the implemented protocols for a cluster

of 5 servers with 5 clients issuing nonconflicting transactions. These transactions contain each 5 update

operations. Figure 4.14 highlights what we have discussed in Chapter 3: ERP has a lower response time

than BRP as it does not have to wait for applying the changes to the rest of nodes before committing the

transaction and TORPE is less dependent on the CPU saturation than ERP and BRP are. Hence, TORPE

is able to cope perfectly with workloads of 35 TPS with the lowest response times (106 ms). On the

other hand, with a workload of 30 TPS, the BRP protocol is completely saturated (165 ms) and the system

throughput can hardly keep up with the submission rate. ERP behaves in a similar way, but with around 50

ms lower response times, what allows this protocol to saturate (162 ms) at a higher workload(35 TPS).

To summarize, BRP is the worst solution for database replication, the 2PC rule highly penalized its

behavior in all possible scenarios. ERP presents a better approach to achieve database replication, thanks

to its modification of the 2PC rule. The experiments corroborate what their formal analysis, introduced in

Chapter 3, have shown. The last replication protocol is the best option in general for achieving database

replication. It does not present problems of scalability nor increased workloads. However, the overhead

introduced by the GCS turns the ERP into a valuable option in low loaded scenarios.

Figure 4.14: Response time of the replication protocols in a 5-server system varying the submission rate

94 Chapter 4. MADIS: A Slim Middleware for Database Replication

Workload Analysis (WL2): Response Time Varying The Number of Servers

This second experiment tries to test the scalability of the implemented protocols. The analysis shown

in [GHOS96] demonstrates that conventional replication protocols do not cope very well with increasing

the system size. We have evaluated their performance varying the number of servers from 2 to 8 and

performing the same test suites in each configuration. One client is allocated in each server and the load

introduced into the system remains constant to 10 TPS in all the performed tests.

As shown in Figure 4.15, the response time increases as the system size grows. As expected, ERP

shows a better response time than BRP, they basically differ in the time spent before sending the ready

message and the communication overhead due to the presence of new sites. The gap between the BRP and

ERP protocol remains around 50 ms which is twice the UPDATE TIME of the transaction at a single node.

On the other hand, TORPE behaves better than BRP but worse than ERP, since total order message delivery

time increases also as the number of sites grows.

Figure 4.15: Response time of the replication protocols for a submission rate of 10 TPS varying the number of servers

Workload Analysis (WL3): Response Time Varying The Transaction Length

The aim of this experiment is showing how the transaction length affects the response time of the system.

We expect that as we add more operations to the transaction its response time will be incremented in the

implemented protocols. Figure 4.16 shows the results obtained in a system composed by 5 servers with 5

clients submitting a workload of 10 TPS with no conflicts varying the number of operations executed by

transactions from 5 to 25 updates.

As we have previously mentioned, as PostgreSQL is a MVCC-based DBMS, the database size grows

continuously. As the number of transactions increases, and also the number of operations associated to

4.6. Experimental Results 95

each one, there are more versions of the data items that have to be checked. This update time presents

a non-linear increment in a centralized system, as it is shown in Figure 4.16 with the line LOCAL, as we

augment the number of operations in the transaction. Hence, the non-linear increase in the response time of

all protocols is also reflected in Figure 4.16. We can also observe that BRP again shows a worse behavior

than ERP and TORPE, since it has to wait for the ready message coming from the slowest node in the

system before committing the transaction. Thus, as the number of operations is increased, the difference

in response time between BRP and the other protocols becomes greater, since the execution time of remote

transactions is longer. Besides, the longer response times when increasing the transaction length, the greater

saturation of the site resources since transactions take more time to finish and consequently to release the

reserved resources previously taken. For this reason, with longer transactions BRP response times grows

much faster than ERP or TORPE does.

Figure 4.16: Response time of the replication protocols in a 5-server system for a submission rate of 10 TPS varying the
transaction length

Conflict Rate for the BRP and ERP protocols

Usually, database access is not equally distributed among all data but there exist hot-spot areas that are

accessed by most transactions leading to high conflict rates. In the previous experiments, conflict rates

were rather small because we modeled a uniform data access distribution, so that the probability of conflict

between two transactions was low. Therefore, considering that databases contain usually hot-spot areas that

are accessed by most transactions, a hot-spot area of 1000 tuples was defined in the database and then we

run a suite of test varying the access distribution pattern to that area.

The access distribution is determined by the probability of operations accessing to the hot-spot area

(from 50% to 90%) and the percentage of tuples that will be accessed from the defined hot-spot area (from

96 Chapter 4. MADIS: A Slim Middleware for Database Replication

50% to 5%). Table 4.2 depicts the tested configurations. The tests were performed with a 5 server con-

figuration and 5 concurrent clients submitting 20 TPS to the system. Each transaction consists of 5 update

operations.

Data Configuration I II III IV V VI

Hot-spot access frequency in % 50 60 80 80 90 90

Hot-spot data size in % 50 20 20 10 10 5

Hot-spot data size in total # tuples - 6000 6000 3000 3000 1500

Table 4.2: Conflict Rate: Data access distribution to achieve different conflict rates

As it was expected, the higher the access frequency and the smaller the data area, the higher is the

conflict rate, since there is a higher probability that two o more transactions tries to access to a same

tuple. Figure 4.17 shows that ERP has a lower abort rate than BRP when system is stressed. The main

reason for this behavior is again the higher response times of the BRP protocol. Transactions remain

longer in the master site waiting for the reply of the available sites, which must execute the updates of

the transaction before sending the ready message to the master site. Due to this fact, it is more probable

that other transactions can conflict with the existing one. Hence, when conflict probability increases, ERP

behaves better than BRP. It is due to the fact that for ERP transactions executed in its master site take shorter

time to finish, thus reducing the probability of conflict between transactions.

Taking into account that the implementation of ERP used in these experiments does not include the

queue mechanism explained in Chapter 3, the obtained abort rates for the ERP protocol could be reduced

slightly in the full implementation. In that case, only the master site of a transaction would be in charge of

its abortion and therefore unnecessary aborts would be avoided in certain situations.

Figure 4.17: Conflict Rate: Abort rate for BRP and ERP in a 5-server system for a submission rate of 20 TPS

4.7. Discussion 97

4.7 Discussion

In this Chapter a new MADIS is a middleware-based database replication architecture. MADIS imple-

mentation allows user applications to access in a standard way a replicated database without needing to

include changes in their code. This is a very important matter that we learnt from our experience in

COPLA [IMDBA03, MEIBG+01] where users see a full object oriented architecture even though objects

were stored in RDBMSs. As most of enterprise data is stored following the relational model, it was hard to

change their application to a proprietary object oriented definition language. MADIS avoids this difficulty

by allowing user applications to be unmodified as it provides a standard JDBC interface.

MADIS is designed to give support to a wide range of replication protocols, using a minimal database

schema extension with triggers, functions and rules in order to collect the metadata needed by such proto-

cols; hence, it is a control-table based replication architecture according to [Pee02]. The CM makes use

of the automatically collected information in the database, notifying such accesses to a plugged replication

protocol. Therefore, replication protocols can be developed and implemented much more efficiently than

in comparable middleware packages, where the meta data management for maintaining the consistency of

replicated data either is opaquely intertwined in the protocol’s code or, worse, is hidden in the application

code. Moreover, the structure of the protocol becomes much more elegant and concise when the meta data

management is largely delegated to the underlying DBMS. These conceptual advantages have been verified

by experimental measurements. It is possible to include a wide range of protocols in the system, each one

providing different guarantees and behaviors to the user applications. The implementation of the CM is

simple enough to be ported from one platform to another with a minimal cost.

Finally, an implementation of the replication protocols formalized in Chapter 3 has been done in

MADIS. The experiments performed verify what it has been formally proved for the BRP and ERP which

is the 2PC penalization for BRP and the decrease of the abortion rate in ERP. Their comparison against

TORPE shows that total order replication protocols are the best alternative for database replication. How-

ever, the overhead introduced by the GCS in low workload environments makes ERP a better solution under

that circumstances.

4.7.1 Comparison with Related Works

There are other approaches to develop a middleware architecture for replicated databases. The first archi-

tecture we are going to consider is COPLA, it is a full object oriented replicated architecture that provides

object state persistence and it is introduced in [IMDBA03]. This architecture was our previous experi-

ence in the design and implementation of a middleware database replication architecture. This architec-

ture provided several levels of consistency and may be managed by different replication protocols such

as [MEIBG+01, RMA+02, AGME05]. Each one of these protocols has different metadata needs and they

98 Chapter 4. MADIS: A Slim Middleware for Database Replication

cannot be easily switched if the user wants to use a different replication protocol for the same application.

Besides, replication protocols have to re-implement several features that are included in a standard DBMS,

such as a lock table or a version system. User applications are defined using a proprietary object definition

language GODL [AACV03]. This presents some difficulties as existing user applications have to be mod-

ified and, furthermore, as the underlying DBMS is a relational one an object-relational mapping has to be

done. Client applications access the system by way of transactions using two different levels of consistency:

plain, no consistency at all; and, checkout, serializable transaction isolation level. Objects may be fetched

in the context of a transaction by way of a proprietary object query language GOQL [AACV03]. In MADIS

we provide a standard JDBC interface where applications do not need to be modified and we have isolated

the replica control from the concurrency control provided by the underlying DBMS. All, of this reduces the

overhead introduced in the system compared with COPLA, as it has been previously shown.

Recent middleware-based database replication architectures provide a JDBC interface to interact with

user applications. The first one we are going to introduce is Clustered JDBC (C-JDBC) [CMZ04] which

is an open-source middleware solution for database clustering on a shared-nothing architecture built with

commodity hardware. C-JDBC uses the ROWAA approach, the routing of queries to different backends can

be done following several number of strategies or by a user-defined policy. It supports query caching and

fault tolerance. This architecture offers a C-JDBC driver to user application that replaces the specific JDBC

driver. The C-JBDC controller is a Java program that acts as a proxy between the C-JDBC driver and the

database backend. The scheduling of transaction is as follows: the beginning, commitment or abortion of

a transaction are sent to all backends. Reads are sent to a single backend. Updates are sent to all backends

where the affected tables are located. All operations are synchronous with respect to the client. The C-

JDBC waits until it has received responses from all backends involved in the operation before it returns a

response to the client. It is important to note that at any given time only a single update, commit or abort is

in progress on a particular database schema. Multiple reads from different transactions can be going on at

the same time. Updates, commits and aborts are sent to all backends in the same order. Dealing with fault-

tolerance issues they propose a recovery protocol that uses checkpoints and database logs. A very similar

approach to the previous one is Replicated JDBC (RJDBC) [EPMEIBBA04] which stands for a simple, easy

to install middleware, placed between the application and the DBMS, intercepting all database operations

and forwarding them among all replicas of the system using a total order multicast. As in the previous case

a RJDBC driver is provided to the user application. This RJDBC driver wraps all JDBC invocations and

forward them to the RJDBC core. Not all operations are required to be multicast but only those affecting

the database state. When an RJDBC node receives a new operation from the communications protocol, it

is enqueued for subsequent processing that along with the total order delivery maintains data consistency.

Both approaches share a lot of similarities, MADIS overcome both since it provides a JDBC interface where

different replication and recovery protocols may be implemented in order to maintain consistency. Hence,

4.7. Discussion 99

user applications will not have to wait for the response coming from all nodes each time they issue an

update operation inside a transaction. However, the overhead introduced by these architectures is less than

in MADIS.

In Postgres-R and Postgres-R(SI) [Kem00, WK05], a DBMS core is modified to support distribution.

This approach strongly depends on the underlying DBMS thus being not portable, and must be reviewed

for each new DBMS release. However, its performance is generally better than a middleware architecture.

Recently, these systems have been ported to a middleware architecture [LKPMJP05], introducing a minimal

support in the DBMS core in order to access its internal redo-logs for obtaining (or applying) the writesets

of the currently executing transactions (or those of the remote transactions that have been locally delivered,

respectively). This core support also simplifies a lot the work to be done in the middleware, reducing the

overall costs needed for such a management, at least when compared to our MADIS approach that uses

triggers to this end. As a result, this Postgres-R evolution has better performance than MADIS, but MADIS

only uses standard SQL features and is easier to port to other DBMSs.

Progress DataXtend RE (formerly known as PeerDirect) [Pee02] is a commercial tool that proposes a

solution suited for enterprise data distribution. PeerDirect uses a technique based on triggers and procedures

to replicate a database. It is transparent to the application and DBMS, there is no need to change the

application code nor the structure of existing database tables. Furthermore, this solution must be DBMS

heterogeneous and not operate differently if we switch from one DBMS vendor to another. It monitors

all possible changes of the database state, not only those coming from interactive SQL statements issued

by the application. It does not need a lot of the intervention of the database administrator. However, the

system only includes one replication protocol well fitted for managing real-time event stream data such as

algorithmic trading. Additionally, the new editions of this software have migrated their focus to mobile

environments, being able to provide different levels of consistency among the set of replicas of a given

piece of data.

Finally, ORION Integrator [Ori05] is another commercial tool that also provides support for data repli-

cation and integration. However, its aim is not exactly the same as that of the previously discussed research

projects or commercial products. It is similar to them, since it also provides support for replication, but it

needs that each replicated item has a source replica and one or many target replicas, configured as such.

On the other hand, this product is able to achieve an easy integration of different DBMSs, i.e., different

replicas may use different underlying DBMSs. Its core engine is able to translate the data when it is being

propagated in order to store it in the appropriate format for its target DBMS.

Chapter 5

About Failures and the Recovery

Process

Up to now we have considered that our system is free of failures, i.e., we have not taken into account

any recovery issue for our replication protocol proposal. Dealing with site failures is not an easy task,

nevertheless the recovery facility increases system availability and its fault-tolerant guarantees. There exists

a tradeoff between recovery issues and system performance, since there are additional tasks to be done

throughout the lifetime of a transaction to ensure recoverability. As it will be depicted in this Chapter, it is

necessary to strength the delivery guarantees, as well as additional metadata information in the database.

Hereafter, we change the assumption of a failure free model to a partial amnesia crash [Cri91] failure

model which is needed to perform the recovery of a failed site. This model assumes that after a site fails,

some part of its components will maintain its state while other parts will completely loss their associated

state. In our case, we consider that the DB module maintains its state but the state variables associated with

the state transition system considered (BRP or ERP) are completely lost.

The system will try to continue executing as long as it involves a primary partition [Bar04, CKV01]. If

we take this into consideration, we will have to give a rough outline of a possible recovery process for this

algorithm; the recovery process is based on ideas depicted in [AGME05]. The key idea is the definition of

dynamic recovery partitions associated to recovering nodes.

If we consider failures, then GCS must provide a uniform reliable multicast [Bar04, CKV01, HT94].

The GCS will group messages delivered in views. These views have a global unique identifier which allows

every site to determine the view when a given site joined the group, since they are fired each time a site

joins or crashes. A view serves as a synchronization point to set up updates missed by crashed nodes; as a

matter of fact we group crashed nodes and missed updates by views in this recovery proposal.

As a rough outline of our recovery proposal, once a site joins the system after a failure, a recoverer

101

102 Chapter 5. About Failures and the Recovery Process

site is elected among the previously available nodes. This recoverer “tells” the joining node the updated

objects missed during its failure. This establishes a recovery partition of the database in the recovering and

the recoverer nodes. The recoverer node will hold the partition as long as the data transfer of that partition

is taking place. Previously alive sites will access objects belonging to the partition, whereas the recovering

node will get blocked and the recoverer will only block for update operations. As a final remark, local

transactions may start in a recovering node after its associated recovery partitions have been established.

The recovery protocol introduced in this Chapter is based on the ERP protocol. Therefore, we will

introduce the specific recovery actions and modifications for the ERP state transition system.

5.1 Replication Protocol Modifications

Our ERP proposal has to be modified in order to support failures. The protocol must be able to wait for

the delivery of the commit message (even at the transaction master site) before committing the transaction.

Otherwise, if a crash occurs during the delivery of the commit message to any node (see Figure 3.8) then an

inconsistency among nodes will occur. The failed node has committed a transaction the rest of nodes has

not, as it is shown in Figure 5.1.

Figure 5.1: In a failure free environment, the transaction master site directly commits. This is not a correct approach in
the presence of failures. A site may commit a transaction that the rest of sites do not commit (left). The solution is to use
the uniform reliable multicast and the delivery of the message to the master site (right)

Therefore, a new transaction state committable has been introduced in the ERP state transition system.

This new state reflects that a local transaction, i.e., a transaction executing at its transaction master site, has

5.2. Recovery Protocol Outline 103

received all the ready messages coming from the available nodes at a given view but it has not received the

commit message yet. Up to now (failure free environment), the local transaction t was committed once the

end commiti(t), being node(t) = i, action was executed; in other words, when all available nodes had sent

the ready message to the transaction master and participantsi(t) = ∅. As it has been pointed out before,

this is not enough to prevent inconsistencies, since the transaction master site may fail before delivering

the commit message to any other site. This problem is solved by the usage of a uniform reliable multicast

facility provided by the GCS [HT94] for all multicast messages sent by the replication protocol.

We have changed the end commiti(t) and receive commiti(t, 〈commit, t〉) actions. These slight modi-

fications are shown in Figure 5.2. The end commiti(t) action multicasts, using the sendURMulticast(m,

group) primitive from Chapter 2, the 〈commit, t〉 message to all available nodes (including itself). Besides,

it sets statusi(t) = committable. As a direct consequence, the receive commiti(t, 〈commit, t〉) action will be

enabled at i, as well as the rest of available nodes. The precondition has been modified so as to be activated

for remote transactions in the pre commit state and local transactions in the committable state.

Up to now, we were only considering problems dealing with the GCS. However, we have to consider

data needed for the recovery of failed nodes. As far as there are crashed nodes, the ERP must store the

data items updated by committed transactions. Therefore, each time a transaction commits, it must store

the items that have been modified by a given transaction. Afterwards, when a node recovers from a failure,

the recovery protocol must determine the updated items missed by the recovering node and transfer their

current states to it. All these tasks will be described in detail on the sequel.

5.2 Recovery Protocol Outline

Our goal is to try to harm the fewer number of user transactions during the recovery process. We want

to maintain the system availability even though there are nodes being recovered in our system. We have

accomplished this by the definition of dynamic recovery partitions on the database. Besides, we also want

user transactions to be performed on the recovering node as soon as the site joins the system, even though

it has not been recovered yet.

The GCS groups messages delivered in views [CKV01]. The uniform reliable multicast facility [HT94]

ensures that if a multicast message is delivered by a site (faulty or not) then it will be delivered to all

available sites in that view. All these characteristics permit us to know which objects are updated in the

context of an installed view. This information will be stored in the database of available sites as recovery

metadata information. Hence, each time a transaction commits, provided that there are failed nodes, all data

items identifiers updated by it will be stored in the database. If a failed node rejoins the system, it will be

easy to determine the partitions of missed objects, as we know the view where it failed and the one when it

rejoined the group. All these aspects are outlined in Figure 5.3.

104 Chapter 5. About Failures and the Recovery Process

Signature:
{∀ i ∈ N , t ∈ T ,m ∈ M, op ⊆ OP : createi(t),begin operationi(t, op), end operationi(t, op),begin commiti(t),

end commiti(t), local aborti(t), receive remotei(t,m), receive readyi(t,m), receive commiti(t,m), receive aborti(t,m),
execute remotei,discardi(t,m)}.

States:
∀ i ∈ N ,∀ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, committable, aborted, committed},

initially (node(t) = i⇒ statusi(t) = start) ∧ (node(t) , i⇒ statusi(t) = idle).
∀ i ∈ N ,∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : queuei ⊆ {〈t,WS 〉 : t ∈ T ,WS ⊆ {〈oids, ops〉 : oids ⊆ OID, ops ⊆ OP}}, initially queuei = ∅.
∀ i ∈ N : removei : boolean, initially removei = false.
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initiallyVi = 〈0,N〉.

Transitions:
createi(t) // node(t) = i //
pre ≡ statusi(t) = start.
eff ≡ DBi.begin(t);

statusi(t)← active.

begin operationi(t, op) // node(t) = i //
pre ≡ statusi(t) = active.
eff ≡ DBi.submit(t, op);

statusi(t)← blocked.

end operationi(t, op)
pre ≡statusi(t) = blocked ∧ DBi.noti f y(t, op) = run.
eff ≡ if node(t) = i then statusi(t)← active

else statusi(t)← pre commit.

begin commiti(t) // node(t) = i //
pre ≡ statusi(t) = active.
eff ≡ statusi(t)← pre commit;

participantsi(t)←Vi.availableNodes \ {i};
sendURMulticast(〈remote, t,DBi.WS (t)〉,

participantsi(t)).

end commiti(t) // node(t) = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = ∅
eff ≡ statusi(t)← committable;

sendURMulticast(〈commit, t〉,Vi.availableNodes).

receive readyi(t,m) // node(t) = i //
pre ≡ statusi(t) = pre commit ∧ participantsi(t) , ∅∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m);

participantsi(t)← participantsi(t) \ {source}.

local aborti(t)
pre ≡ statusi(t) = blocked ∧ DBi.noti f y(t, op) = abort.
eff ≡ statusi(t)← aborted;

DBi.abort(t);
removei ← true.

discardi(t,m)
pre ≡ statusi(t) ∈ {aborted, committed} ∧ m ∈ channeli.
eff ≡ receivei(m).

receive remotei(t,m) // t ∈ T ∧ node(t) , i //
pre ≡ statusi(t) = idle ∧ m = 〈remote, t,WS 〉 ∈ channeli.
eff ≡ receivei(m);

insert with priority(queuei, 〈t,WS 〉); removei ← true.

receive commiti(t,m)
pre ≡ statusi(t) ∈ {pre commit, committable} ∧

m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m);

DBi.commit(t);
statusi(t)← committed;
if ¬empty(queuei) then removei ← true.

execute remotei
pre ≡¬empty(queuei) ∧ removei.
eff ≡ aux queue← ∅;

while ¬empty(queuei) do
〈t,WS 〉 ← f irst(queuei);
queuei ← remainder(queuei);
con f lictS et ← DBi.getCon f licts(WS);
if ∃ t′ ∈ con f lictS et : ¬higher priority(t, t′) then

insert with priority(aux queue, 〈t,WS 〉);
else
∀ t′ ∈ con f lictS et :

if statusi(t′) = pre commit ∧ node(t′) = i then
sendURMulticast(〈abort, t′〉,Vi.availableNodes \ {i});

DBi.abort(t′);
statusi(t′)← aborted;

sendRUnicast(〈ready, t, i〉, node(t));
DBi.begin(t);
DBi.submit(t,WS .ops);
statusi(t)← blocked;

queuei ← aux queue;
removei ← false.

receive aborti(t,m) // t ∈ T ∧ node(t) , i //
pre ≡ statusi(t) < {aborted, committed} ∧ m = 〈abort, t〉 ∈ channeli.
eff ≡ receivei(m);

statusi(t)← aborted;
if 〈t,⊥〉 ∈ queuei then queuei ← queuei \ {〈t,⊥〉}
else DBi.abort(t);
if ¬empty(queuei) then removei ← true.

� function higher priority(t, t′) ≡ node(t) = j , i ∧ (a ∨ b)
(a) node(t′) = i ∧ statusi(t′) ∈ {active, blocked}
(b) node(t′) = i ∧ statusi(t′) = pre commit∧

t.priority > t′.priority

Figure 5.2: State transition system for the ERP so as to avoid data inconsistencies due to a site failure

These recovery partitions are grouped by the site identifier of the recovering site and the missed view

identifier; this ensures a unique identifier throughout the whole system. Partitions are created at all sites by

special transactions called recovery transactions that are started at the delivery of the recovery metainfor-

5.2. Recovery Protocol Outline 105

Figure 5.3: The rest of nodes store objects modified while a site is crashed. In this case, node j has failed and partitions
(i.e. set of data items) P1 and P2 have been modified during view id′. When it rejoins the system, the recovery metadata
is transferred to node j and the recovery protocol itself at node j can determine the partitions to be recovered

mation by a unique recoverer node. These transactions behave as normal transactions excepting that they

have an additional field called t.view id; this field will be equal to ⊥ for local and remote user transactions.

This last field is used to define, along with the t.node field, the recovery partition associated to a given

recovery transaction.

Once a partition has been set up by its associated recovery transaction at the recoverer node, it sends the

missed updates of that partition to the respective recovering site. Currently update transactions executing

on the recoverer node will be rolled back if they conflict with the recovery partition as the partition is set up

in the recoverer node. Afterwards, if a transaction executed at the recoverer attempts to modify a data item

belonging to the partition then it will get blocked; in other words, read-only access is permitted in these

106 Chapter 5. About Failures and the Recovery Process

partitions at the recoverer node. Respectively, the recovery protocol will block the access to a partition for

user transactions issued in its associated recovering node. Therefore, user transactions at recovering sites

will even commit as long as they do not interfere with their own recovery partitions. Besides, local user

transactions on recovering sites may start as soon as they reach the recovering state. This state is reached

at a recovering node when all its associated recovery partitions have been set. When the partition is set

at the recoverer node, it sends the state of the data items contained in the partition. Once they are sent,

the partition is released at the recoverer site even though the recovering node has not finished its recovery

process.

Figure 5.4: Object state transfer between the recoverer node i and a recovering node j. User transactions may perform
their operations with no restrictions unless they try to access the recovery partitions. Partitions are released once changes
are applied

5.3. Recovery Protocol Description 107

As missed updates are applied in the underlying DBMS, the recovering node multicasts a message that

notifies the recovery of a given view. The process continues until all missed changes are applied in the

recovering node. During this recovery process a node may also fail. If it is a recovering site, then all its

associated recovery partitions will be released on the recoverer node. In case of a failure of a recoverer

site, the new oldest alive node will continue with the recovery process. A rough outline of the object state

transfer and the finalization of the recovery process is shown in Figure 5.4.

Signature:
{∀ i ∈ N , t ∈ T ,m ∈ M, op ∈ OP,W ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N} : createi(t, op),

begin operationi(t, op), end operationi(t, op), begin commiti(t), end commiti(t), local aborti(t),
receive remotei(t,m), receive readyi(t,m), receive commiti(t,m), receive aborti(t,m), execute remotei,
execute remotei, discardi(t,m), joini(W), leavei(W), receive recovery starti(m), receive view recoveredi(t,m),
receive missedi(t,m)}.

States:
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initiallyVi = 〈0,N〉.
∀ i, j ∈ N : sitesi(j) ∈ {〈state, age, to recover, to schedule〉 : state ∈ {alive, crashed, pending metadata, joining, recoverer,

recovering}, age ∈ Z, to recover ⊂ T , to schedule ⊂ T }, initially sitesi(j) = 〈alive, 0, ∅, ∅〉.
∀ i ∈ N ,∀ id ∈ Z : missedi(id) ∈ {〈sites, oids〉 : sites ⊂ N , oids ⊂ OID}, initially missedi(id) = ∅.

Figure 5.5: Signature and states for the ERP recovery protocol

5.3 Recovery Protocol Description

We have to consider different actions each time a view change event is fired by the GCS [CKV01] (due to

a site joini(W) or leavei(W) action). These view change events are managed by the membership mon-

itor [CKV01], which in our recovery protocol is represented by MMi. We have defined another state

transition system dealing with the ERP protocol recovery issues. It is introduced in Figures 5.5-5.7. Fig-

ure 5.5 shows the signature and states of this new state transition system. Specific recovery actions and

modifications of the replication protocol actions are respectively given in Figures 5.6 and 5.7.

We must add an extra metadata table on the database in order to store all the information needed to

recover nodes after their failure. This table, named MISSED, contains three fields: VIEW ID, NODES and

OIDS. VIEW ID contains the view identifier which acts as an index to select the nodes crashed (or not

recovered yet). NODES contains all sites that are still crashed or have not recovered yet the given view.

Finally, OIDS contains the set of objects updated in that view. As we have depicted in Chapter 2 this

metadata table is managed by the proper stored procedures.

Each time a node crashes (leavei(W)) a new entry is added to this table. It fills the first two fields

of this new row that is done via a database stored procedure (DBi.leave(view id, nodes)). Whenever

a transaction commits, it appends its write set into the row corresponding to the current view via the

DBi.missed updates(view id, oids) action. One can realize that this new table may indefinitely grow, how-

ever we have automatized its cleaning. Thus, at the end of a node missed view recovery process it is

deleted from the respective entry via the DBi.recovered view(view id, node). If at the recovered view there

108 Chapter 5. About Failures and the Recovery Process

joini(W) //W ∈ {〈id, availableNodes〉 : id ∈ Z ∧ nodes ⊆ N} //
pre ≡MMi.view change =W∧

W.availableNodes \ Vi.availableNodes , ∅.
eff ≡ nodes←W.availableNodes \ Vi.availableNodes;

if i ∈ Vi.availableNodes then
∀ t ∈ T :

if statusi(t) ∈ {pre commit, committable}∧
node(t) = i then

sendURMulticast(〈remote, t,DBi.WS (t)〉, nodes);
participantsi(t)← participantsi(t) ∪ nodes;

ifW.availableNodes , N then
missedi(W.id)← 〈N \W.availableNodes, ∅〉;
∀ j ∈ nodes : sitesi(j)← 〈pending metadata,W.id, ∅, ∅〉;
oldest alive← min age(sitesi(·),Vi,W);
if i = oldest alive then

sendURMulticast(〈recovery start, i, nodes,
sitesi(·),minimum missed(nodes)〉,
W.availableNodes);

Vi ←W.

� function min age(sites(·),V,W) ≡
j ∈ N : j ∈ V.availableNodes ∩W.availableNodes∧

(sites(j).state = recoverer ∨ (sites(j).state = alive∧
(∀ k ∈ V.availableNodes ∩W.availableNodes, k , j :

sites(k).state = alive ∧ (sites(j).age < sites(k).age∨
sites(j).age = sites(k).age ∧ j < k))))

� function minimum missed(nodes) ≡
send in f o ⊆ {〈s, o〉 : s ⊂ N ∧ o ⊆ OID} : send in f o← ∅
∀ k ∈ [0,Vi.id] :

if ∃ j ∈ nodes : j ∈ missedi(k).sites then
∀ l ∈ [k,Vi.id] : send in f o← send in f o ∪ missedi(l)
break

receive recovery starti(m)
pre ≡ sitesi(i).state , crashed ∧ m = 〈recovery start,

recov id, nodes,m sites(·),m missed(·)〉 ∈ channeli.
eff ≡ receivei(m);

sitesi(·)← m sites(·);
if i ∈ nodes then missedi ← missedi ∪ m missed(·);
sitesi(recov id).state← recoverer;
∀ j ∈ nodes :

sitesi(j).state← joining;
if sitesi(i).state ∈ {joining, recoverer} then
∀ t′ ∈ generate rec trans(j,missedi(·)) :

sitesi(j).to recover ← sitesi(j).to recover ∪ {t′};
DBi.begin(t′); ob js← missedi(t′.view id).oids;
if j , i then DBi.recover other(t′, ob js)
else

DBi.recover me(t′, ob js);
sitesi(i).to schedule← sitesi(i).to schedule ∪ {t′};

statusi(t′)← blocked;
// This updates obsolete recovery metadata info
∀ k ∈ Vi.availableNodes \ nodes∧

sitesi(k).state ∈ {alive, recoverer} :
∀ l ∈ {0,Vi.id ∧ k ∈ missedi(l).sites :

missedi(l).sites← missedi(l).sites \ {k}.

� function generate rec trans(j,missed(·)) ≡
txns ⊆ T : txns← ∅
∀ k ∈ [0,Vi.id) :

if j ∈ missedi(k).sites then // t = 〈node, view〉 //
txns← txns ∪ {recov transaction(j, k)}

receive missedi(t,m)
pre ≡ sitesi(i).state ∈ {joining, recovering} ∧ statusi(t) =

active ∧ m = 〈missed, t, op〉 ∈ channeli.
eff ≡ receivei(m); DBi.submit(t, op); statusi(t)← blocked.

receive view recoveredi(m)
pre ≡ sitesi(i).state , crashed∧

m = 〈view recovered, view id, id〉 ∈ channeli.
eff ≡ receivei(m);

missedi(view id).sites← missedi(t.view id).sites \ {id}.
if (∀ z ∈ {0,Vi.id} : id < missedi(z).sites then

sitesi(id).state← 〈alive,Vi.id, ∅〉;
if (∀ j ∈ Vi.availableNodes : sitesi(j).state ∈
{alive, recoverer}) then
∀ j ∈ Vi.availableNodes : sitesi(j).state← alive.

leavei(W) //W ∈ {〈id, nodes〉 : id ∈ Z, nodes ⊆ N} //
pre ≡MMi.view change =W∧

Vi.availableNodes \W.availableNodes , ∅.
eff ≡ nodes←Vi.availableNodes \W.availableNodes;

∀ t ∈ T :
if node(t) ∈ nodes then DBi.abort(t); statusi(t)← aborted
else if node(t) = i ∧ statusi(t) = pre commit then

participantsi(t)← participantsi(t) \ nodes;
else if t ∈ {t′ : t′ ∈ missedi(k).to recover, k ∈ nodes} then

DBi.abort(t); statusi(t)← aborted;
∀ k ∈ nodes, sitesi(k).state ∈ {joining, recovering, alive} :

sitesi(k)← 〈crashed,V.id, ∅〉
if ∃ k ∈ nodes : sitesi(k).state = recoverer then

sitesi(k)← 〈crashed, {V.id, ∅}〉;
oldest alive← min age(sitesi(·));
sitesi(oldest alive).state← recoverer;
if i = oldest alive then
∀ j ∈ {n ∈ N : sitesi(n).state ∈ {joining, recovering}} :
∀ t′ ∈ generate rec trans(j,missedi(·)) :

sitesi(j).to recover ← sitesi(j).to recover ∪ {t′};
DBi.begin(t′);
ob js← missedi(t′.view id).oids;
DBi.recover other(t′, ob js);
statusi(t′)← blocked;

∀ j ∈ { j ∈ W.availableNodes :
sitesi(n).state = pending metadata} then

nodes← { j ∈ N : sitesi(j).state = pending metadata};
sendURMulticast(〈recovery start, i, nodes,

sitesi(·),minimum missed(nodes)〉,
W.availableNodes);

Vi ←W.

Figure 5.6: Specific recovery state transition system for ERP

are no nodes left, then the row will be erased. As an implementation detail, it is important to note that

the insertion of a new object identifier will check if that data item is included in previous views whose

nodes are a subset of nodes included in the current view. This fact avoids to recover several times the

same object in different views. We have included the DBi.get missed updates(nodes) database procedure

5.3. Recovery Protocol Description 109

createi(t) // node(t) = i //
pre ≡ sitesi(i).state < {crashed, pending metadata, joining} ∧

statusi(t) = start.

begin operationi(t, op) // node(t) = i //
pre ≡ sitesi(i).state , crashed ∧ statusi(t) = active.

end operationi(t, op)
pre ≡ sitesi(i).state , crashed ∧ statusi(t) = blocked∧

DBi.noti f y(t, op) = run.
eff ≡ if t ∈ sitesi(node(t)).to recover then

if sitesi(i).state = recoverer then
sendRUnicast(〈missed, t, op〉, node(t));
sitesi(i).to recover ← sitesi(i).to recover \ {t};
statusi(t)← committed;
DBi.commit(t);
if ¬empty(queuei) then removei ← true

else // sitesi(i).state ∈ {joining, recovering} //
if op =⊥ then

statusi(t)← active;
sitesi(i).to schedule← sitesi(i).to schedule \ {t};
if sitesi(i).to schedule = ∅ then

sitesi(i).state← recovering;
else

sitesi(i).to recover ← sitesi(i).to recover \ {t};
statusi(t)← committed;
DBi.commit(t);
if ¬empty(queuei) then removei ← true;
sendURMulticast(〈view recovered, t.view id, i〉,

Vi.availableNodes)
else

if node(t) = i then statusi(t)← active
else statusi(t)← pre commit.

begin commiti(t) // node(t) = i //
pre ≡ sitesi(i).state , crashed ∧ statusi(t) = active.

local aborti(t)
pre ≡ sitesi(i).state , crashed ∧ statusi(t) = blocked∧

DBi.noti f y(t, op) = abort.

receive readyi(t,m) // node(t) = i //
pre ≡ sitesi(i).state , crashed ∧ statusi(t) = pre commit∧

participantsi(t) , ∅ ∧ m = 〈ready, t, source〉 ∈ channeli.

end commiti(t) // node(t) = i //
pre≡ sitesi(i).state , crashed ∧ statusi(t) = pre commit∧

participantsi(t) = ∅.

receive commiti(t,m)
pre ≡ sitesi(i).state , crashed ∧ statusi(t) ∈ {pre commit,

committable} ∧ m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m);

DBi.commit(t);
statusi(t)← committed;
ifVi.availableNodes , N then

missedi(Vi.id).oids←
missedi(Vi.id).oids ∪ DBi.WS (t).oids.

receive remotei(t,m)
pre ≡ sitesi(i).state , crashed∧

statusi(t) , aborted ∧ m = 〈remote, t,WS 〉 ∈ channeli.

execute remotei
pre ≡ sitesi(i).state < {crashed, pending metadata, joining} ∧

¬empty(queuei) ∧ removei.

receive aborti(t,m)
pre ≡ sitesi(i).state , crashed ∧ statusi(t) , aborted∧

m = 〈abort, t〉 ∈ channeli.

discardi(t,m)
pre ≡ sitesi(i).state , crashed ∧ statusi(t) = aborted∧

m ∈ channeli.

� function higher priority(t, t′) ≡ node(t) = j , i ∧ (a ∨ b ∨ c)
(a) node(t′) = i ∧ statusi(t′) ∈ {active, blocked}
(b) node(t′) = i ∧ statusi(t′) = pre commit∧

t.priority > t′.priority
(c) @ k ∈ N : t′ ∈ sitesi(k).to recover

Figure 5.7: Add-ons on the state transition system of ERP so as to support recovery features

that will be executed by the recoverer node so as to determine the metadata missed by the nodes that

have just rejoint the system in order to send this information to them. Respectively, rejoining nodes will

invoke DBi.set missed updates(view id, nodes, oids) for each row contained in the metadata information

transferred by the recoverer node to them.

As we are in a middleware architecture, we have added two database stored procedures for blocking

or aborting transactions at the recovery startup time: recover me and recover other. The first one per-

forms a “SELECT FOR UPDATE” SQL statement over the objects to be recovered in a given view by

the recovering node. The second procedure is invoked at the recoverer node, it will rollback all previous

transactions that were trying to update an object before performing the “SELECT FOR UPDATE” SQL

statement over the given partition. This prevents local transactions from modifying the rows inside the

partition. Afterwards, as we have mentioned before, transactions trying to update objects belonging to the

partition will get blocked whereas read access is permitted.

110 Chapter 5. About Failures and the Recovery Process

Figure 5.8: Valid transitions for a given sitesi(j).state of a node j ∈ N at node i

To continue with the recovery protocol, two new state variables, sitesi(j) and missedi(id) have been

added, at each site i. The first one stores the state of each node j ∈ N (whether it is pending updates,

joinining, crashed, recovering, recoverer or alive; its possible transitions are shown in Figure 5.8), its

respective age (the view identifier, Vi.id, when it joined the system) and the recovering transactions as-

sociated to that node, as long as it is in the recovering state (to recover). An additional field to schedule

monitors the execution of recovery transactions in a recovering node that will be described in detail after-

wards. The second variable missedi represents the MISSED metadata table of the DBMS. For each view, it

contains the set of nodes crashed (or not recovered yet) and the set of objects modified in the given view. In

this protocol outline we have defined it as an array indexed by the view identifier whose associated values

are the set of nodes crashed, or not recovered yet, and their respective missed updates for that view. Opera-

tions performed over the missedi(·) state variable shown in Figure 5.6 may be easily ported to the respective

database stored procedures as we have previously outlined and thoroughly explained in Chapter 2.

5.3.1 Site Failure

Initially all sites are up and alive. Afterwards, some site (or several with no loss of generality) may fail

(MMi.view change). At this point, our recovery protocol starts running with the execution of the leavei(W)

action, see Figure 5.6. All nodes change the state associated to that node to crashed; besides, a new entry

in the MISSED table is added for this new view identifier containing (as it was mentioned before): the

new view identifier and the failed node. User transactions will continue working as usual, nevertheless

the respective transaction master sites will only wait for the ready message coming from these new set of

available nodes (ROWAA). When a transaction commits, each available site inserts updated objects into the

5.3. Recovery Protocol Description 111

entry associated with the current installed view contained in the MISSED metadata table.

Actions to be done when a node failure happens (leavei(W)) involve several tasks in the recovery

protocol executing at an available node, apart from the ones dealing with the variables and metadata man-

agement that we have mentioned before. It will rollback all remote transactions coming from the crashed

node. Local transactions executing at an available node i with statusi(t) = pre commit must remove from

their participantsi(t) all crashed nodes. This process may imply a multicast of a commit message to all

available nodes as all available nodes have previously answered they were ready to commit, this is shown

in Figure 5.9. Besides, if the crashed site was recovering, all its associated recovery transactions in the

recoverer node will be aborted too. If the failed node was the recoverer, then the protocol must choose

another alive node to be the new recoverer. This new recoverer site will create the partitions pending to be

transferred and then it will perform the object transfer to recovering and joining sites. If there exists any

node whose state is pending metadata it will start the recovery process for this node. This is depicted in

Figure 5.10 and the whole recovery process will be described on the sequel.

Figure 5.9: Actions to be done by the recovery protocol when a remote node (left) or a transaction master site (right) fails

5.3.2 Site Recovery

The membership monitor will enable the joini(W) action to notify that a node has rejoined the system (see

Figure 5.6). These new nodes must firstly update their recovery metadata information. Hence, they are in the

pending metadata state, and may not start executing local transactions until they reach the recovering state.

112 Chapter 5. About Failures and the Recovery Process

The recovery protocol will choose one site as the recoverer by the function min age shown in Figure 5.6,

in our case, the oldest one. Once a site is elected, it multicasts its sitesi state variable and the missed part

of the variable missedi that corresponds to the oldest crashed node that has joint in this new installed view.

One can note that there is no object state transfer at this stage, only recovery metadata information that is

also outdated in these nodes.

Figure 5.10: Actions to be done by the recovery protocol when a recovering node (left) or the recoverer node (right) fails

More actions have to be done while dealing with the join of new sites. Current local transactions of

previously available sites in the pre commit or committable states must multicast the remote message to

all pending metadata nodes which appropriately increase their associated participantsi(t) variable. Other-

wise, as these transactions are waiting for the ready message coming from previously available nodes, all

new available nodes will receive a commit message from a remote transaction they did not know about its

existence. This may be best viewed with the example shown in Figure 5.11. Let us consider a site that is

only waiting for the ready message coming from a node available at the previous view that has not crashed

in this new view. Assume that the ready message is delivered in this new installed view, then the transaction

master site will multicast a commit message to all available nodes. This includes all new joining nodes that

will never treat this message since its associated remote transaction has never been executed on their sites.

5.3. Recovery Protocol Description 113

Figure 5.11: A new joining node may commit a transaction whose existence does not know (left). Its modification (right)
allows joining nodes to execute that transaction, even though they have not recovered yet

The Beginning of the Recovery Process

The recovery start message delivery, as its own name states, starts the recovery process which is performed

by recovery transactions. First of all, those pending metadadata nodes change their state to joining, as

shown in Figure 5.8. The joining nodes update their metadata recovery information. As soon as the

metadata information is updated the recovery protocol will set up the recovery partitions on joining nodes.

Let us focus on its own associated recovery transactions inserted in the respective to recover and

to schedule fields. Each recovery transaction will submit two operations to the database. The first time, it

will invoke the recover me database stored procedure (recall that this procedure blocks any kind of access

to the objects that comprise the partition) and the protocol will eliminate the respective recovery transaction

entry from to schedule. As all of them are removed, the joining node will change its state to recovering.

Hence, user transactions will be able to start working on the recovering node, even though it has not ended

its recovery process. The second operation will be executed during the missed updates transfer, as we will

see next.

Meanwhile, the recoverer node generates the partitions by the invocation of another specific recovery

database procedure called recover other. This procedure aborts, during the partition set up time, all trans-

actions already trying to update objects; afterwards, transactions trying to update data items belonging to a

partition will get blocked. The recovery transaction performs two operations in the recoverer node, it sets

up the partition and retrieves the missed updates that the recovery protocol transfers to the recovering, or

114 Chapter 5. About Failures and the Recovery Process

still joining, node. At this time, the recovery partition will be released (the recovery transaction committed)

at the recoverer node. The rest of nodes will continue working as usual. If they execute transactions that

update data items belonging to a recovery partition, they will be blocked in the recoverer and the recovering

node, i.e. they will not receive the ready message from these nodes. This approach of implementing the

recover other procedure is intended for DBMS using locks as the concurrency control. However, if we use

a MVCC DBMS there is no need to abort transactions at the recoverer site during the recovery partition set

up, since the recovery transaction may read the values belonging to the partition while transactions updating

items contained in the partition may propagate the changes at the same time. The recovery protocol will

enqueue the remote message coming from these partitions until the recovery process is done. As a final

remark, there is no need to abort any user transaction if we use a MVCC DBMS for carrying out the re-

covery process. Even more, transactions may update items belonging to recovery partitions, however their

transaction master sites will not receive the ready message until the recovery process is done.

Transferring Missed Updates to the Recovering Node

This step of the recovery process is englobed inside the receive missedi(t, 〈missed, t, op〉) and its respective

end operationi(t, op) action, since updates are submitted to the DBi module. The op field contains the

updates missed by i during t.view. This process will be repeatedly invoked if there are more than one

missed view by the recovering node, as each execution of this pair of actions only involves a single view

missed data transfer.

The receive missedi(t, 〈missed, t, op〉) action will be enabled once its associated transaction has blocked

the partition of the recovering, or still joining, node. The missed updates will be applied in the context of

this recovery transaction. This operation is submitted to the DBi module and we have to wait for its ending.

As this transaction will not be aborted by the underlying database, it will eventually execute its associated

end operationi(t, op) action. This action will multicast a view recovered message to all available sites.

Finalization of the Recovery Process

Once all missed updates are successfully applied, the recovery process finishes. In the following we will

describe how the recovery process deals with the end of the recovery process of a given node. As we

have said during the data transfer, all missed updates are grouped by views where the recovering node was

crashed. Hence, each time it finishes the update, it will notify the rest of nodes about the completion of the

view recovery.

The execution of the receive view recoveredi(t, 〈view recovered, view id, j〉), with j as the node iden-

tifier being recovered and view id as the recovered view identifier, is enabled once the message has been

delivered by the GCS. This action updates the variable missedi as it removes the recovering node from the

entry view id. It also updates the state field of the sitesi if it is the last recovery partition of the recovering

5.4. Discussion 115

node setting it to alive. Besides, if there are no more partitions to be recovered by the recoverer node it is

also set to alive.

Figure 5.12: Description of the ERP recovery protocol. It recovers node k that has been crashed just for one view, id′.
Data items {p, x, y} have been updated in that installed view

All we have described till now is shown in Figure 5.12. Node k is crashed and it recovers at V.id =

id′ + 1. During its failure, three different data items p, x and y have been updated. Once it rejoins the

system, the recoverer site sends the recovery metadata to all nodes. This provokes the definition of a

partition composed by the three data items. The recoverer sends the missed updates to the recovering site,

which at the same time of its recovery may accept user transactions. When the recovery transaction of the

recovering site finishes applying its updates, it sends a message saying that a view has been recovered. This

message frees the associated partition and returns the state of k to alive. Respectively, as there are no more

recovering nodes the site i returns to alive too.

5.4 Discussion

In this Chapter we have coped with site failures and recovery for the ERP replication protocol proposed in

Chapter 3. We have considered the features provided by a GCS such as the view synchrony and the uniform

116 Chapter 5. About Failures and the Recovery Process

reliable multicast that facilitates tasks to be done when a site fails or recovers from a failure. Hence, we have

modified the database schema so as to add recovery metadata information, mainly we have stored for each

view: the set of nodes that have crashed (reported by the GCS when a new view is installed) and objects

updated (filled by the replication protocol each time a transaction commits). We assume a partial amnesia

crash failure for nodes belonging to our middleware architecture. Modifications of the ERP replication

protocol and the recovery protocol itself are introduced as state transition systems. There is a wide range

of possible failure and recovery scenarios to check, hence we have only considered a few with some figures

that are intended to clarify the recovery protocol behavior. However, we have not provided its correctness

proof.

We do not provide an explicit state transition system of the recovery protocol for the BRP replication

protocol since it will consist in the same set of actions with slight modifications. It will have a queue where

update transaction will be stored as long as there are recovery partitions on the recovering node. Once the

partitions are totally released it will behave as the BRP. Nevertheless, specific recovery actions will remain

the same.

We have based our recovery support idea in the view synchrony provided by the GCS. Each time a node

fails or recovers from a failure, a new view change event is fired by the GCS notifying the current set of

available nodes. Besides, the GCS features another set of interesting properties that are of great value from

the recovery protocol point of view, as the uniform reliable multicast, which ensures that if a message has

been delivered by a faulty node, then all node will eventually deliver the same message.

The GCS facilities also provide an easy way to feature site recovery as it is possible to group the updates

missed by a faulty node by the installed view where they happened. We have stored the missed updates in

the database by the definition of the proper additional metadata tables and functions. This data grouping

serves as the definition of the basic recovery data unit for our replication protocol. Once a site recovers

from a failure, it is established a set of partitions at all available sites (as many as views missed by the

recovering node). Thus, those available nodes that are neither recoverer nor recovering nodes will access

these partitions as usual. However they will get blocked when they propagate their updates and they conflict

with a recovery partition at the recovering or the recoverer nodes. The recovering node will not be able

to access these objects. The recovering node may start accepting user transactions as soon as the partitions

are set up on it, even though it is not up to date.

As it can be seen from all above, there is a price to pay for dealing with recovery issues such as: more

latencies on message deliveries (due to the uniform reliable multicast); data storage of missed updates at

the DBMS; and, by blocking or, at worst, rolling back user transactions. All of this introduces additional

overhead to the normal user transaction behavior that provokes a decrease in transaction response time

although we are increasing our system robustness.

The recovery protocol depicted in this Chapter works well in environments where failures are not too

5.4. Discussion 117

long or updates as long as a node is crashed are rare. Therefore, we may modify this recovery protocol

in order to support a significatively large amount of updated objects. This modification, that is the most

intuitive one, will consist of blocking the data repository and transfer the whole database to the recovering

node. This solution penalizes system availability but it is the most effective one in such a case. As a final

remark, we may set up a threshold in order to switch between the recovery idea outlined in this Chapter and

the whole data transfer.

5.4.1 Comparison with Related Works

There are several works in the literature that propose several alternatives to accomplish database recovery.

In [KBB01] several solutions to online reconfiguration in replicated databases are proposed. It discusses

various alternatives for data transfer to joining sites, all of them allowing concurrent transaction processing,

using the view synchrony provided by the GCS. It pursues solutions that admit cascaded reconfigurations

during the data transfer itself; hence, a clear separation between the tasks of the GCS and the tasks of the

database system must be done.

The different recovery options introduced in [KBB01] are commented in the following. The first pro-

posal is the data transfer within the GCS; some GCSs are able to perform data transfer during the view

change [BCJ+93]. However, this presents some drawbacks, as the GCS does not know the objects changed,

it must transfer the whole database and during that transfer the system must remain in the same state. This

blocks the whole system and violates the requirement of high availability. Therefore, the data transfer

should be performed by the database system using the appropriate database techniques. This constitutes the

second approach. The GCS should only provide the appropriate semantics to coordinate the data transfer.

The data transfer is done via TCP and the updates performed after the view change are enqueued until

data is transferred to the recovering node. There are two approaches for doing this: transferring the whole

database, which is appropriate if the database is small or a great number of objects have been modified; or,

checking the whole database and transferring items that have been modified (via version numbers). Another

approach is to define a record table storing for each object modified the latest transaction identifier that has

modified it. Once a site joins again, a read lock is set in the whole database that waits until all writing

operation finishes. Then it will set read locks only on those objects contained in the record table that will

be released once the data transfer has been finished. Another approach is the use of multiversion databases

in order to avoid setting read locks for a long time. The last and the most interesting recovering idea is

to decouple the view change as the synchronization point for data transfer. This last approach is referred

as lazy data transfer. The recoverer node initially discards all incoming write sets until a given threshold

is passed (such as given number of transactions or rounds). The recoverer transfers data to the recovering

node belonging firstly to missed changes and then to pending updates executed in the given view until the

threshold is passed. At that time, the recovering node is considered to be active and may start processing

118 Chapter 5. About Failures and the Recovery Process

transactions. It also explains steps to be done when a failure occurs during the data transfer. Our recovery

proposal permits to start running transactions on the recovering node as soon as the recovery partition is set

in the database.

In [Hol01], several recovery protocols have been also proposed using the virtual synchrony properties.

The replication protocols used in the system are the ones introduced in [AAES97, KA00a]. The idea

underlying each of these protocols is that since the communication subsystem guarantees totally ordered

broadcasts, operations can be processed at every site in the same order. These protocols execute read

operations locally and multicast only write operations. The first of the three recovery protocols proposed

in [Hol01] is the single broadcast recovery, where some sites are defined as Loggers. A Logger is a site

that stores log messages such as a view change, transaction commits and update messages. If a new view

is installed in the system, no update transaction messages are delivered to any site until the new site has

exchanged messages with a Logger and the Logger has signalled that the recovery process is finished. The

Logger sees a view change message followed by a request from the recovering node to be brought up-to-

date. The Logger looks up the last view of which the recovering site was a member and all the transactions

which committed since the last view of which the recovering site was a member are sent to the recovering

node in the order in which they committed. When the recovering node successfully completes global

recovery, it acknowledges this to the Logger who then tells all sites to begin normal operations. The second

approach is called log update where Loggers must check if there are on-going transactions at non-failed

sites during a view change since the commit message is contained in the next view. Hence, when the node

recovers again, data must be transferred from the first remote message missed. The drawback to this method

is that the Loggers must keep the logs of previous views whether or not a site was missing from the group.

The last method is the augmented broadcast, it shifts additional processing to the transaction master sites

and requires a change to the recovery lock management algorithm. If there is an on-going transaction when

a new view is installed, it modifies the protocol for committing transactions so that the write requests are

included in the commit request for all transactions that broadcast their writes in an earlier view. In this

method, write requests may be sent out of the original order to a recovering site. Therefore, during global

recovery, the lock manager must be able to undo the writes of a not yet committed transaction if necessary

to free the locks and perform the actions specified in the special commit message and then redo the effects

of the first transaction. In our approach, we do not stop sending updates while a node is recovering as in

the single broadcast recovery and we do not use logs to maintain the information to be transferred to the

recovering node.

Another work that presents a recovery protocol is [JPPMA02]. The database is split into partitions

where each site is the owner of one or several partitions. When a node joins the group, the partition master

chooses one site as the recoverer of that partition which transfers the log of missed updates to the recovering

node. The recoverer sends a message, using causal multicast, once it has finished transferring the missed

5.4. Discussion 119

updates. The partition master site answers to that message with a causal multicast message containing the

transaction identifier of the last committed transaction. This message causes that the recoverer node enters

in the forwarding state. It sends all updates performed in the current view until the transaction identifier

contained in the previous message. Besides, transactions are delivered at the recovering node that will

not be applied until all the information transferred in the forwarding state have not being applied in the

recovering node. At that time, the recovering node is considered to be active.

Transactions executed on active nodes are not blocked while a node is being recovered. As it has been

pointed out, the node will start executing transactions as soon as the messages in the forwarding phase have

been applied. This recovery approach is better than ours since there is no inactivity phase in any node.

However, it presents other problems as transactions may only be executed on its partition master site. As it

uses logs, when failures periods are considerably long, the information to be transferred will be large, while

ours only transfer the latest version of data items.

Another recovery protocol that uses total order primitives from the GCS to perform recoveries is in-

troduced in [RMA+02]. It presents the advantage that active nodes may continue working even though the

recovery data transfer is being done, since the recovering node enqueues all write sets total order delivered

until all missed updates have been applied. It does not admit transactions on the recovering node until all

messages contained in the queue are applied. Our recovery protocol does not present that problem. We

have a queue that stores conflicting write sets but some other write sets may be applied during the recovery

process on the recovering node.

Finally, another recovery protocol proposed in the literature is the FOBr [CCIBGNME05]. The repli-

cation protocol used there is based in the object ownership concept in an object oriented architecture. Its

performance is lower than the ERP. However, its recovery is more efficient as it is not necessary to block

transactions on active nodes, even in the recovering one.

Chapter 6

Conclusions

6.1 Summary

This Thesis has proposed several research goals that include, among others, the development of correct

new eager update everywhere replication protocols adapted to the MADIS middleware architecture. These

protocols do not depend on strong group communication primitives. Besides, a recovery proposal for failed

nodes has been included. In the following, the main research contributions of the Thesis are summarized in

a more detailed manner:

• The MADIS Middleware Architecture. As it has been previously pointed out, we have collaborated in

the design, development and implementation of the MADIS architecture. MADIS is a middleware architec-

ture providing database replication, where availability and performance are increased due to the existence

of multiple physical copies of a unique logical data item. We have focused in providing a standard interface

for user applications, such as JDBC, while data consistency is intended to be managed by a wide range

of replication protocols. We have defined a generic protocol interface so that protocols may listen to the

events they are interested in, e.g. before performing an update, after a deletion operation and so on. This

is achieved using database standard features, such as functions, stored procedures, triggers and tables that

enhance the original database schema in order to facilitate the replication tasks to the protocols. We do

not have modified any DBMS internals to ensure replication or to improve performance goals. Hence, the

portability of this solution to different DBMSs will not be a very difficult task. Besides, due to the wide

range of supported replication protocols, the price to pay is the amount of metadata needed for each trans-

action update. The MADIS version presented in this Thesis is its first release. Its optimization must be

carefully analyzed, however this is not the main issue of this thesis. Although MADIS is not aimed for any

concrete DBMS vendor, we have implemented it using PostgreSQL, as it is a free DBMS.

• A Middleware Database Replication Protocol and its Enhanced Version. Once our middleware ar-

chitecture is designed and implemented, we may implement several database replication protocols. We

121

122 Chapter 6. Conclusions

were particularly interested in developing eager update everywhere replication protocols, following the

ROWAA [GHOS96] policy, that ensures 1CS [BHG87]. There are recent approaches [JPPMKA02, Kem00,

KA00b, KPA+03, PMJPKA00, PMJPKA05] that ensure this correctness criteria by way of the total order

delivery guarantees provided by the GCS [CKV01]. This is an interesting approach since transactions do

not have to wait for applying the updates at the rest of sites in order to commit a transaction, as the 2PC

rule states [BHG87]. Following this approach, the system performance is increased. However, we thought

that relying on this strong group communication primitives, whose latencies and extra message rounds in

environments where conflicts are rare, is a high price to pay [KPA+03]. Besides, the order of committed

transactions is imposed by a “black-box” with an algorithm that does not have any information about trans-

actions (such as number of objects read, written or number of restarts) that may cause several transaction

patterns to be penalized by the total order based replication protocol.

The first replication protocol proposal, named BRP, is based on the O2PL [CL91] protocol which is the

first approach done to develop a ROWAA [GHOS96] protocol. In order to avoid distributed deadlock, we

have defined a dynamic deadlock prevention schema based on priorities: a global priority number associated

to each transaction and the state of the transaction in the system. In this way, we may modify the transaction

priority assignment and then change the order on which transactions may commit. The O2PL is a 2PC

replication protocol, however, while developing its correctness proof, we realized how to circumvent the

problem of waiting for applying the updates at the rest of nodes before committing the transaction. This

is achieved thanks to the dynamic deadlock prevention schema we have defined. Up to our knowledge, no

similar protocols have been described in the literature. This led us to the definition of the second replication

protocol, named ERP. The ERP protocol may be considered as an intermediate between 2PC protocols

and those based on total order. Finally, this ERP has been adapted to the MADIS architecture and some

experimental results of its behavior are shown.

• Correctness Proof. The correctness proof associated to a middleware database replication protocol must

consider all the components involved in our middleware architecture. In our case, it consists in the database

module, the user transaction interface, the GCS and the interactions of the replication protocol itself with

other instances of it running at different sites. We have formalized the definition of our replication and

recovery protocols using a state transition system similar to the one proposed in [Sha93]. This approach

may be viewed as the I/O automata [Lyn96] composition of all its components. This way of introducing the

protocols, besides of its clearness, implies an easier way to define properties, that facilitates the correctness

proof of our replication protocol proposal. Up to our knowledge, this is something that has not been done

regarding the O2PL [CL91]. Moreover, as pointed out before, at the same time we were developing the

correctness proof of the O2PL we realized how to optimize its behavior and modify its 2PC philosophy.

• Experimental results of database replication protocols implementation in MADIS. We have imple-

mented the BRP and ERP protocols in MADIS. This implementation may serve to check what it has been

6.1. Summary 123

predicted by the correctness proof of both protocols. Besides, we were very interested in their comparison

with total order replication protocols, a widely used approach in the literature [AT02, EPZ05, JPPMKA02,

Kem00, KA00b, KPA+03, LKPMJP05, Ped99, PMJPKA00, PMJPKA05, RMA+02, WK05]. Hence we

have designed and implemented a new replication protocol, called TORPE, that is an adaptation of the pre-

vious protocols but using the total order multicast primitive provided by the GCS. We also introduce this

protocol as a state transition system [Sha93]; therefore this way of presenting protocols is not exclusive of

the O2PL as we have done it with a total order replication protocol. The comparison between our proposals

and TORPE brings out the best performance of total order based replication protocols. However, under our

experimental settings, ERP shows a better behavior for low workloaded environments, due to the overhead

introduced by the GCS to TORPE.

• The Recovery Protocol. Database replication may not be considered complete until we do not cope

with site failures and its recovery. We have studied the recovery proposals for systems providing database

replication. We have proposed a recovery protocol based on setting up database dynamic recovery partitions

by way of standard procedures, such as SQL statements. This permits current active transactions to continue

working in the rest of available sites and the execution of user transactions in the recovering node even

though it is still being recovered. This recovery process is based on facilities provided by the GCS, such

as view synchrony [CKV01] and uniform delivery of multicast messages [HT94]. This permits to group

updates done in the repository by views which will lead to the definition of dynamic recovery partitions

over the database during the recovery process of a site.

Once a node fails, the rest of nodes store objects being modified (grouped by views) while the given site

is down. When the site joins again, the recoverer node exclusively imposes partitions in the recoverer and

recovering nodes (those defined by the updated objects missed in each view). Current executing transactions

at the recoverer site may be rolled back, at worst, if they are modifying a data item involved in a recovery

partition while it is being set. Afterwards, like the rest of user transactions coming from previously available

sites, it will get blocked while trying to modify an item belonging to the recovery partition. Once partitions

are established in the joining node, it can accept user local transactions. Recovery partitions at the recoverer

node will be released as soon as they transfer the data items contained in the partition to the joining node.

Whenever a view is recovered, the recovering node notifies this fact to the rest of nodes and frees its

associated partition.

The modifications proposed in the recovery process introduce an additional overhead that penalizes the

system performance but increases its availability. Therefore, there is a tradeoff between availability and

performance. The propagation of multicast messages must be uniformly performed that leads to a latency

increase of message delivery.

124 Chapter 6. Conclusions

6.2 Future Lines

This Thesis has revisited and adapted a well-known algorithm such as O2PL to provide database replication

in a middleware architecture, that has brough out new questions that will serve as the guideline for future

research.

ERP vs. TORPE Comparison and Their Implementation. The implementation of all the replication

protocols have been something that it has been done at the same time MADIS was implemented. We have

taken a stable version of MADIS and the replication protocols have been implemented on that version.

Since that time, several enhancements have been done in MADIS that were not reflected in the experiments

shown here. However, the implementation of ERP and TORPE is not finished as we only intended to show

a pattern of their behavior in the system. Of course, it is necessary to adapt ERP and TORPE to the new

MADIS, finish their implementations and compare again. Another interesting comparison between ERP

and TORPE would be through the standard database benchmark TPC-W [TW05].

Adaptability of MADIS and Mobility. As different applications require different kinds of replication

management, an adequate choice of appropriate protocols is due. Hence, MADIS is a middleware which

provides flexible support for choosing, plugging in, operating and exchanging suitable protocols for user

applications. It would be interesting that a global administrator will monitor the performance of the ap-

plication (such as the response time, the network latency or the abortion rate among others) to adaptively

change from one protocol to another.

The ease of developing new protocols in this architecture and the increase usage of mobile computers

lead us to an extension of MADIS for mobile users. Adapting MADIS to mobile environments is an

interesting topic to study. Changes to be done in MADIS may imply a totally different version of the

architecture. It has to offer better group communication support for partitionable environments [CKV01,

BG05] and nodes capacities will be much limited than those belonging to a fixed network environment.

Developing New Replication Protocols. Protocols presented in this Thesis are 1CS. However, it is required

that the underlying DBMSs provide serializable transaction isolation level, as in [BBG+95]. As it has been

pointed out in Chapter 3, most of commercial DBMSs provide SI [BBG+95] it would be interesting to

develop new replication protocols taking into account this fact. [EPZ05, LKPMJP05] are a good starting

point for developing new protocols.

It would also be interesting to develop new replication protocols for mobile environments. This topic

is closely related to the previous one. As derived from [GHOS96], lazy replications are the best option for

replicated databases in mobile environments. However, we would like to study the implementation of epi-

demic replication protocols. All of them have to cope with more unstable networks, narrower bandwidths,

greater heterogeneity of platforms and devices, etc.

BIBLIOGRAPHY 125

Bibliography
[AACV03] José Enrique Armendáriz, José Javier Astrain, Alberto Córdoba, and Jesús Villadangos.

Implementation of an object oriented query language compiler for replicated architec-
tures. In Ernesto Pimentel, Nieves R. Brisaboa, and Jaime Gómez, editors, JISBD, pages
441–450, 2003.

[AAES97] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic broadcast in
replicated databases. LNCS, 1300:496–503, 1997.

[ACZ03] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. Distributed versioning: Consistent
replication for scaling back-end databases of dynamic content web sites. In Markus
Endler and Douglas C. Schmidt, editors, Middleware, volume 2672 of Lecture Notes in
Computer Science, pages 282–304. Springer, 2003.

[AGME05] J.E. Armendáriz, J.R. González de Mendı́vil, and F.D. Muñoz-Escoı́. A lock-based algo-
rithm for concurrency control and recovery in a middleware replication software archi-
tecture. In HICSS, page 291a. IEEE Computer Science, 2005.

[AT02] Yair Amir and Ciprian Tutu. From total order to database replication. In ICDCS, pages
494–503, 2002.

[Bar04] Alberto Bartoli. Implementing a replicated service with group communication. Journal
of Systems Architecture, 50(8):493–519, 2004.

[BBD96] Özalp Babaoğlu, Alberto Bartoli, and Gianluca Dini. On programming with view syn-
chrony. In ICDCS, pages 3–10, 1996.

[BBG+95] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and
Patrick E. O’Neil. A critique of ansi sql isolation levels. In Michael J. Carey and Dono-
van A. Schneider, editors, SIGMOD Conference, pages 1–10. ACM Press, 1995.

[BCJ+93] K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane, F. Schmuck,
and M. Wood. The ISIS - system manual, Version 2.1. Epfl-tech-rep, Dept. of Computer
Science, Cornell University, Sep 1993.

[BG05] M.C. Bañuls and P. Galdámez. On-demand membership service for energy-aware net-
works. In DEXA Workshops, pages 315–319. IEEE Computer Society, 2005.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison Wesley, 1987.

[BK91] N. S. Barghouti and G. E. Kaiser. Concurrency control in advanced database applica-
tions. ACM Computing Surveys, 23(3):269–317, September 1991.

[CCIBGNME05] Francisco Castro-Company, Luis Irún-Briz, Félix Garcı́a-Neiva, and Francesc D. Muñoz-
Escoı́. FOBr: A version-based recovery protocol for replicated databases. In PDP, pages
306–313. IEEE Computer Society, 2005.

[CKV01] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifica-
tions: a comprehensive study. ACM Comput. Surv., 33(4):427–469, 2001.

[CL91] Michael J. Carey and Miron Livny. Conflict detection tradeoffs for replicated data. ACM
Trans. Database Syst., 16(4):703–746, 1991.

[CMZ04] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. C-jdbc: Flexible data-
base clustering middleware. In USENIX Annual Technical Conference, FREENIX Track,
pages 9–18. USENIX, 2004.

[Cri91] Flaviu Cristian. Understanding fault-tolerant distributed systems. Commun. ACM,
34(2):56–78, 1991.

126 BIBLIOGRAPHY

[CT91] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for asynchronous
systems (preliminary version). In PODC, pages 325–340, 1991.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distrib-
uted systems. J. ACM, 43(2):225–267, 1996.

[DSU04] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, 2004.

[EPMEIBBA04] J. Esparza-Peidro, F.D. Muñoz-Escoı́, L. Irún-Briz, and J.M. Bernabéu-Aubán. Rjdbc: a
simple database replication engine. In Proc. of the 6th Int’l Conf. Enterprise Information
Systems (ICEIS’04), 2004.

[EPZ05] Sameh Elnikety, Fernando Pedone, and Willy Zwaenopoel. Database replication using
generalized snapshot isolation. In SRDS. IEEE Computer Society, 2005.

[FLO+05] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha.
Making snapshot isolation serializable. ACM Trans. Database Syst., 30(2):492–528,
2005.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distrib-
uted consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[FMZ94] F. Ferrandina, T. Meyer, and R. Zicari. Implementing lazy database updates for an object
database system. In Proceedings of the Twentieth International Conference on Very
Large Databases, pages 261–272, Santiago, Chile, 1994.

[GHOS96] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers of replica-
tion and a solution. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD
Conference, pages 173–182. ACM Press, 1996.

[Hol01] JoAnne Holliday. Replicated database recovery using multicast communication. In NCA,
pages 104–107. IEEE Computer Society, 2001.

[HSAA03] JoAnne Holliday, Robert C. Steinke, Divyakant Agrawal, and Amr El Abbadi. Epidemic
algorithms for replicated databases. IEEE Trans. Knowl. Data Eng., 15(5):1218–1238,
2003.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report TR94-1425, Dep. of Computer Science, Cornell
University, Ithaca, New York (USA), May 1994.

[HT98] K. Hasegawa and M. Takizawa. Object-based locking protocol for replicated objects. In
13th International Conference on Information Networking (ICOIN ’98), pages 398–402.
IEEE Computer Society, Jun 1998.

[IBDdJM+05] Luis Irún-Briz, Hendrik Decker, Rubén de Juan-Marı́n, Francisco Castro-Company,
Jose E. Armendáriz-Iñigo, and Francesc D. Muñoz-Escoı́. MADIS: A slim middleware
for database replication. In José C. Cunha and Pedro D. Medeiros, editors, Euro-Par,
volume 3648 of Lecture Notes in Computer Science, pages 349–359. Springer, 2005.

[IMDBA03] L. Irún, F. Muñoz, H. Decker, and J. M. Bernabéu-Aubán. COPLA: A platform for eager
and lazy replication in networked databases. In 5th Int. Conf. Enterprise Information
Systems (ICEIS’03), volume 1, pages 273–278, April 2003.

[JBE95] J. Jing, O. Bukhres, and A. Elmagarmid. Distributed lock management for mobile
transactions. In 15th International Conference on Distributed Computing Systems
(ICDCS’95), pages 118–126. IEEE Computer Society, Jun 1995.

[JPPMA02] Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, and Gustavo Alonso. Non-intrusive, par-
allel recovery of replicated data. In SRDS, pages 150–159. IEEE Computer Society,
2002.

BIBLIOGRAPHY 127

[JPPMKA02] Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, Bettina Kemme, and Gustavo Alonso.
Improving the scalability of fault-tolerant database clusters. In ICDCS, pages 477–484,
2002.

[KA00a] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-r, a
new way to implement database replication. In Amr El Abbadi, Michael L. Brodie,
Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-
Young Whang, editors, VLDB, pages 134–143. Morgan Kaufmann, 2000.

[KA00b] Bettina Kemme and Gustavo Alonso. A new approach to developing and implementing
eager database replication protocols. ACM Trans. Database Syst., 25(3):333–379, 2000.

[KBB01] Bettina Kemme, Alberto Bartoli, and Özalp Babaoglu. Online reconfiguration in repli-
cated databases based on group communication. In DSN, pages 117–130. IEEE Com-
puter Society, 2001.

[Kem00] B. Kemme. Database Replication for Clusters of Workstations (ETH Nr. 13864). PhD
thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, 2000.

[KPA+03] Bettina Kemme, Fernando Pedone, Gustavo Alonso, André Schiper, and Matthias Wies-
mann. Using optimistic atomic broadcast in transaction processing systems. IEEE Trans.
Knowl. Data Eng., 15(4):1018–1032, 2003.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM, 21(7):558–565, 1978.

[LKPMJP05] Yi Lin, Bettina Kemme, Marta Patiño-Martı́nez, and Ricardo Jiménez-Peris. Middleware
based data replication providing snapshot isolation. In SIGMOD Conference, 2005.

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In PODC, pages 137–151, 1987.

[Lyn96] Nancy A. Lynch. Distributed Systems. Morgan Kaufmann Publishers, 1996.

[MEIBG+01] F.D. Muñoz-Escoı́, L. Irún-Briz, P. Galdámez, J.M. Bernabéu-Aubán, J. Bataller, and
M.C. Bañuls. GlobData: Consistency protocols for replicated databases. In YU-
FORIC’2001, pages 97–104. IEEE Computer Society, 2001.

[Ora97] Oracle. Oracle8(tm) server replication, concepts manual. Technical report, 1997.

[Ori05] Orion. Vision solutions: Orion integrator. Accessible in URL: http://www.
orionintegrator.com, 2005.

[PA04] Christian Plattner and Gustavo Alonso. Ganymed: Scalable replication for transactional
web applications. In Hans-Arno Jacobsen, editor, Middleware, volume 3231 of Lecture
Notes in Computer Science, pages 155–174. Springer, 2004.

[Ped99] F. Pedone. The database state machine and group communication issues (Thèse N. 2090).
PhD thesis, École Polytecnique Fédérale de Lausanne, Lausanne, Switzerland, 1999.

[Pee02] PeerDirect. Overview & comparison of data replication architectures (white paper), No-
vember 2002.

[PGS98] Fernando Pedone, Rachid Guerraoui, and André Schiper. Exlpoiting atomic broadcast in
replicated databases. In Euro-Par, 1998.

[PMJPKA00] Marta Patiño-Martı́nez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso.
Scalable replication in database clusters. In Maurice Herlihy, editor, DISC, volume 1914
of Lecture Notes in Computer Science, pages 315–329. Springer, 2000.

128 BIBLIOGRAPHY

[PMJPKA05] Marta Patiño-Martı́nez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso.
Consistent database replication at the middleware level. ACM Transactions on Comput-
ers, 2005. In Print.

[Pos05] PostgreSQL. The world’s most advance open source database web site. Accessible in
URL: http://www.postgresql.org, 2005.

[PST+97] Karin Petersen, Mike Spreitzer, Douglas B. Terry, Marvin Theimer, and Alan J. Demers.
Flexible update propagation for weakly consistent replication. In SOSP, pages 288–301,
1997.

[RBSS02] Uwe Röhm, Klemens Böhm, Hans-Jörg Schek, and Heiko Schuldt. Fas - a freshness-
sensitive coordination middleware for a cluster of olap components. In VLDB, pages
754–765, 2002.

[RMA+02] Luı́s Rodrigues, Hugo Miranda, Ricardo Almeida, João Martins, and Pedro Vicente. The
globdata fault-tolerant replicated distributed object database. In Hassan Shafazand and
A. Min Tjoa, editors, EurAsia-ICT, volume 2510 of Lecture Notes in Computer Science,
pages 426–433. Springer, 2002.

[RSB93] Aleta Ricciardi, André Schiper, and Kenneth P. Birman. Understanding partitions and the
“no partition” assumption. In Fourth Workshop on Future Trends of Distributed Systems.
IEEE Computer Society, Sep 1993.

[SAS+96] Jeff Sidell, Paul M. Aoki, Adam Sah, Carl Staelin, Michael Stonebraker, and Andrew
Yu. Data replication in mariposa. In Stanley Y. W. Su, editor, ICDE, pages 485–494.
IEEE Computer Society, 1996.

[Sch81] G. Schlageter. Optimistic methods for concurrency control in distributed database sys-
tems. In Very Large Data Bases, 7th International Conference, September 9-11, 1981,
Cannes, France, Proceedings, pages 125–130. IEEE Computer Society, 1981.

[Sha93] A. Udaya Shankar. An introduction to assertional reasoning for concurrent systems.
ACM Comput. Surv., 25(3):225–262, 1993.

[Sto79] Michael Stonebraker. Concurrency control and consistency of multiple copies of data in
distributed ingres. IEEE Trans. Software Eng., 5(3):188–194, 1979.

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[TW05] TPC-W. Transaction processing performance council. Accessible in URL: http://
www.tpc.org, 2005.

[WK05] Shuqing Wu and Bettina Kemme. Postgres-R(SI): Combining replica control with con-
currency control based on snapshot isolation. In ICDE, pages 422–433. IEEE Computer
Society, 2005.

[WPS+00] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme, and Gustavo
Alonso. Understanding replication in databases and distributed systems. In ICDCS,
pages 464–474, 2000.

[WSP+00] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. Alonso. Database replication
techniques: A three parameter classification. In Proc. of the 19th IEEE Symposium on
Reliable Distributed Systems (SRDS’00), pages 206–217, October 2000.

[XRHS99] M. Xiong, K. Ramamritham, J. Haritsa, and J.A. Stankovic. MIRROR: A state-conscious
concurrency control protocol for replicated real-time databases. In 5th IEEE Real-Time
Technology and Applications Symposium, pages 100–110. IEEE Computer Society, Jun
1999.

