
Design of a MidO2PL Database Replication
Protocol in the MADIS Middleware Architecture

J.E. Armendáriz∗, F.D. Muñoz-Escoı́ †, J.R. Garitagoitia∗ and J.R. González de Mendı́vil∗
∗ Universidad Pública de Navarra, Spain

{enrique.armendariz, joserra, mendivil}@unavarra.es
† Universidad Politécnica de Valencia, Spain

fmunyoz@iti.upv.es

(draft version)

Abstract— Middleware database replication techniques is a
way to increase performance and fault tolerance without mod-
ifying the Database Management System (DBMS) internals.
However, it introduces an additional overhead that may lead
to poor response times. In this paper, we present a modification
of the Optimistic Two Phase Locking (O2PL) protocol [1] that
orders transactions by way of a deadlock prevention schema,
instead of using the total order transaction delivery obtained
by Group Communication Systems (GCSs) techniques, and do
not need the 2 Phase Commit (2PC) rule [3]. We formalize its
definition as a state transition system [2] and show that it is
1-Copy-Serializable (1CS) [3].

I. INTRODUCTION

Database replication is a way to increase scalability and
fault-tolerance of a given system [3]. Although most commer-
cially available solutions and the large majority of deploy-
ments use asynchronous updates in a shared nothing architec-
ture, there is an increasing demand for additional guarantees.
This demand has been addressed by a set of proposals for
eager update replication [5]. Many research works manage the
eager update replication by alternative approaches to provide
data consistency: by way of distributed lock management
as in [3], [1], [6]; or, by means of group communication
systems (GCS) [7], [8], [9], [10], [4], [11], [12]. Database
replication ranges from middleware-based approaches [13],
[8], [9], [4], [11] where replication is controlled in a layer
between clients and database replicas, to integrated solutions
as in [3], [10], [12] which integrate replica control into the
kernel of a DBMS. The advantage of the latter approach
is that it is integrated in the same software as the central-
ized solution and it increases the throughput. On the other
hand, middleware-based replication simplifies and restrains
the development due to the fact that most database internals
remain inaccessible. Furthermore, middleware solutions can
be maintained independently of the DBMS and may be used
in heterogeneous systems. Middleware replication is useful
to integrate new replication functionalities (availability, fault-
tolerance, etc.) for applications dealing with database systems
that do not provide database replication [13], [8], [11]. In
addition, it needs additional support (metadata) for the replica
control management performed by the replication protocol;

e.g., in the writeset collection. Writeset extraction is a standard
mechanism in many commercial replication solutions imple-
mented via triggers. This introduces an additional overhead
in the system that affects the transaction response time.
Nevertheless, the main goal is to coordinate replica control
with concurrency control. Most of the recent solutions must
re-implement database features [11]. In a recent approach [4],
applications do not have to be modified, they maintain the
same interface, like JDBC. Concurrency control is taken at
two levels, the underlying database at a given node keeps the
transaction isolation level for all active transactions executing
on it [14], while the middleware is in charge of conflicts among
different replicas. Thus, giving a global transaction isolation
level.

In this paper, we present an eager update everywhere
replication protocol adapted to our architecture. the idea of
the atomic commitment protocol, more precisely the 2 Phase
Commit (2PC) protocol, and it is an adaptation of the O2PL
protocol proposed by Carey et al. [1]. It is a read-one-write-all-
available (ROWAA) [3] protocol, where a transaction is firstly
executed on a node and, afterwards, the updates are applied at
the rest of nodes, once they are applied they send a message
to the node where the transaction was originally executed
saying they are willing to commit, and then the transaction
is committed via a commit message. Hence, following a 2PC
policy. This protocol has been modified, since we do not need
to wait for applying the updates at all nodes to say a node is
willing to commit. The order imposed by the protocol and a
unique priority value assigned to each transaction determine
whether a transaction may be ready to commit or not once it
is delivered at a site. Underlying this idea, the current version
of our protocol assumes that unilateral aborts [15] may not
arise. Other extended versions of our protocol1 were able to
manage such kind of aborts. We need no lock management at
the middleware level since we rely on the serializable behavior
of the underlying DBMS. Besides, it uses basic features
present in common DBMS (e.g. triggers, procedures, etc.) to
generate the set of metadata needed to maintain each data

1Self-reference to be included in the camera-ready version of the paper.

item and conflict detection among transactions. This allows
the underlying database to perform more efficiently the task
needed to support the replication protocol, and simplifies its
implementation. The main contributions of this paper are the
following: (a) It provides a formal correctness proof of a
variation of the O2PL protocol [1]. (b) Our replication protocol
does not rely on strong group communication primitives,
provided by GCS [7], in order to determine the order in
which transactions are applied.(c) We present an example of
a lock-based replication protocol that delegates such a lock
management to the underlying DBMS, simplifying the devel-
opment of the replication protocol in the middleware layer.
(d) Some minimal modifications are presented in Section V
for providing a snapshot isolation level, instead of the default
serializable level assumed in the rest of this document. The
paper is organized as follows: Section II introduces the system
model, the communication and database module as well as
the transaction and execution model. A formal description of
this replication protocol, in a failure-free environment is given
in Section III. Its correctness proof is shown in Section IV.
Finally, conclusions end the paper.

II. SYSTEM MODEL AND DEFINITIONS

We assume a partially synchronous distributed system com-
posed by N sites (or nodes) which communicate among them
using reliable multicast featured by a group communication
system [7]. It is a fully replicated system. Each site contains
a copy of the entire database and executes transactions on its
data copies. A transaction is submitted for its execution over
its local DBMS via the middleware module. The replication
protocol coordinates the execution of transactions among dif-
ferent sites to ensure 1CS [3]. We do not consider failures in
this paper; a recovery subprotocol has already been described
in 2.

Database. Each site includes a DBMS storing a physical
copy of the replicated database. We assume that the DBMS
ensures ACID properties of transactions and satisfies the ANSI
SQL serializable isolation level [14]. The DBMS gives to
the middleware some common actions. DB.begin(t) begins
a transaction t. DB.submit(t, op), where op represents a set
of SQL statements, submits an operation in the context of the
given transaction. DB.notify(t, op) informs about the success
of an operation. It returns two possible values: run when the
submitted operation has been successfully completed; or abort
due to DBMS internals (e.g. enforcing serialization). Finally,
a transaction ends either by committing, DB.commit(t), or
rolling back, DB.abort(t). We have added two functions
which are not provided by DBMSs, but may easily be built
by database triggers, procedures and functions: DB.WS(t)
retrieves the set of objects written by t and the respective
SQL update statements. In the same way, the set of conflictive
transactions between a write set and current active transactions
(an active transaction in this context is a transaction that has
neither committed nor aborted) at a given site is provided

2Self-reference to be provided in camera-ready version, if accepted.

by getConflicts(WS(t)) = {t′ ∈ T : (WS(t′) ∪ RS(t′)) ∩
WS(t) 6= ∅}, where T is the set of transactions being executed
in that site.

Transactions. Users access the system through their closest
site to perform transactions by way of several actions. Each
transaction identifier includes the information about the site
where it was first created (t.site), called its transaction master
site. It allows the protocol to know if it is a local or a re-
mote transaction. Each transaction has a unique priority value
(t.priority) based on transaction information, that is used to
prevent distributed deadlocks. A transaction t created at site i
(t.site = i) follows a sequence initiated by create(t) and con-
tinued by multiple begin operation(t, op), end operation(t,
op) action pairs in a normal behavior. The begin commit(t)
action makes the replication protocol start to manage the
commit of t at the rest of replicas. The end commit(t) notifies
about the successful completion of the transaction on the
replicated databases. However, an abort(t) action may be
generated by the local DBMS or by a replication protocol
decision. For simplicity, we do not consider an application
abort.

III. REPLICATION PROTOCOL DESCRIPTION

Our protocol is a minimal variation of the O2PL proto-
col described in [1] and its actions are shown in Figure
1. The local execution of a transaction is shown by a se-
quence of the following events: create · (begin operation ·
end operation)+ · begin commit. The latter event mul-
ticasts the writeset of the transaction, that is received
in the receive remote event, and applied later in the
execute remote event. In the original O2PL some distributed
lock management was needed in order to decide whether con-
flicts arise between transactions. In our case, the local DBMS
provides support for detecting conflicts using the getConflicts
function and an answer can be sent to the transaction master
site. This answer may only be a positive acknowledgment
(READY message), since in case of conflict detection no
reply message is needed. If the answer is sent, the master
site will transit to the receive ready event. Take into account
that if some node does not provide its READY answer, the
transaction will be aborted by its master site once it receives
the writeset of some conflicting transaction. To this end, it will
multicast an ABORT message in its receive remote event,
that leads all other replicas to the receive abort event. If this
does not happen, the master site will eventually receive all
READY answers and will transit then to the end commit
event, multicasting a COMMIT message that leads all other
replicas to the receive commit event, committing thus the
transaction in all sites.

IV. CORRECTNESS PROOF

This section contains the proofs (atomicity, in Lemmas 1
and 2, and 1CS, in Theorem 1) of the basic replication protocol
(BRP automaton), introduced in Figure 1, in a failure free
environment. We only give an outline of some of them due to
lack of space.

Signature:
{∀ i ∈ N, t ∈ T, m ∈ M, op ∈ OP : createi(t),begin operation

i
(t, op), end operation

i
(t, op),begin commit

i
(t), end commiti(t, m),

local aborti(t), receive remotei(t, m), receive ready
i
(t, m), receive commiti(t, m), receive aborti(t, m), execute remotei,

discardi(t, m)}.
States:
∀ i ∈ N,∀ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, aborted, committed},

initially (node(t) = i⇒ statusi(t) = start) ∧ (node(t) 6= i ⇒ statusi(t) = idle).
∀ i ∈ N,∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : queuei ⊆ {〈t, WS〉 : t ∈ T, WS ∈ OP}, initially queuei = ∅.
∀ i ∈ N : removei : boolean, initially removei = false.
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initially Vi = 〈0, N〉.

Transitions:
createi(t) // node(t) = i //
pre ≡ statusi(t) = start.
eff ≡ DBi.begin(t); statusi(t)← active.

begin operation
i
(t, op) // node(t) = i //

pre ≡ statusi(t) = active.
eff ≡ DBi.submit(t, op); statusi(t)← blocked.

end operation
i
(t, op)

pre ≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff ≡ if node(t) = i then statusi(t)← active

else statusi(t)← pre commit.

begin commit
i
(t) // node(t) = i //

pre ≡ statusi(t) = active.
eff ≡ statusi(t)← pre commit;

participantsi(t)← Vi.availableNodes \ {i};
sendRMulticast(〈remote, t, DBi.WS(t)〉, participantsi(t)).

end commiti(t, m) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = {source}∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

participantsi(t)← participantsi(t) \ {source};
sendRMulticast(〈commit, t〉,Vi.availableNodes \ {i});
DBi.commit(t); statusi(t)← committed;
if ¬empty(queuei) then removei ← true.

receive ready
i
(t, m) // t ∈ T ∧ node(t) = i //

pre ≡ statusi(t) = pre commit ∧ ‖participantsi(t)‖ > 1∧
m = 〈ready, t, source〉 ∈ channeli.

eff ≡ receivei(m); participantsi(t)← participantsi(t) \ {source}.

local aborti(t)
pre ≡ statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff ≡ statusi(t)← aborted; DBi.abort(t); removei ← true.

receive commiti(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡ statusi(t) = pre commit ∧m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m); DBi.commit(t); statusi(t)← committed;

if ¬empty(queuei) then removei ← true.

discardi(t, m) // t ∈ T //
pre ≡ statusi(t) = aborted ∧m ∈ channeli .
eff ≡ receivei(m).

receive remotei(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡ statusi(t) = idle ∧ m = 〈remote, t, WS〉 ∈ channeli .
eff ≡ receivei(m); conflictSet ← DBi.getConflicts(WS);

if ∃ t′ ∈ conflictSet : ¬higher priority(t, t′) then
insert with priority(queuei , 〈t, WS〉);

else
∀ t′ ∈ conflictSet :

if statusi(t
′) = pre commit ∧ node(t′) = i then

sendRMulticast(〈abort, t′〉,Vi.availableNodes \ {i});
DBi.abort(t′); statusi(t

′)← aborted;
sendRUnicast(〈ready, t, i〉) to node(t);
DBi.begin(t); DBi.submit(t, WS); statusi(t)← blocked.

execute remotei

pre ≡¬empty(queuei) ∧ removei .
eff ≡ aux queue ← ∅;

while ¬empty(queuei) do
〈t, WS〉 ← first(queuei); queuei ← remainder(queuei);
conflictSet← DBi.getConflicts(WS);
if ∃ t′ ∈ conflictSet : ¬higher priority(t, t′) then

insert with priority(aux queue, 〈t, WS〉);
else
∀ t′ ∈ conflictSet :

if statusi(t
′) = pre commit ∧ node(t′) = i then

sendRMulticast(〈abort, t′〉,Vi.availableNodes \ {i});
DBi.abort(t′); statusi(t

′)← aborted;
sendRUnicast(〈ready, t, i〉) to node(t);
DBi.begin(t); DBi.submit(t, WS); statusi(t)← blocked;

queuei ← aux queue; removei ← false.

receive aborti(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡ statusi(t) /∈ {aborted, committed} ∧ m = 〈abort, t〉 ∈ channeli.
eff ≡ receivei(m); statusi(t)← aborted;

if 〈t,⊥〉 ∈ queuei then queuei ← queuei \ {〈t,⊥〉}
else DBi.abort(t); if ¬empty(queuei) then removei ← true.

� functionhigher priority(t, t′) ≡ node(t) = j 6= i ∧ (a ∨ b)
(a) node(t′) = i ∧ statusi(t

′) ∈ {active, blocked}
(b) node(t′) = i ∧ statusi(t

′) = pre commit ∧ t.priority > t′.priority

Fig. 1. State transition system for the Basic Replication Protocol (BRP) enhanced to optimize the 2PC and allowing remote transactions to wait.

In this Section we use the following notation and defini-
tions [2]. For each action in the BRP automaton it is defined an
enabled condition (precondition, pre in Figure 1), a predicate
over the state variables. An action is enabled if its predicate
is evaluated to true on the current state. For each action, π,
the enabling condition defines a set of state transitions, that is:
{(p, q), p, q are states; p satisfies pre(π); and q is the result
of executing (eff (π)) in p}. An execution, α, is a sequence
of the form s0π1s1 . . . πzsz . . . where sz is a state, πz is an
action and every (sz−1, sz) is a transition of πz , also denoted
(sz−1, πz , sz). An execution may be finite, if it ends in a state,
or infinite. Every finite prefix of an infinite execution is a
finite execution. A state is reachable if it is the end of a finite
execution. All possible executions are sufficient for defining

safety properties. Progress properties require the notion of fair
execution. We assume that each BRP action requires weak
fairness. Informally, a fair execution satisfies weak fairness
for π if π is continuously enabled then it will be eventually
executed.

The following property formalizes the status transition
of transactions. It indicates that some status transitions are
unreachable, i.e., if sk.statusj(t) = pre commit and sk′ .sta-
tusj(t) = committed with k′ > k. There is no action in α
such that sk′′ .statusj(t) = aborted with k′ > k′′ > k.

Property 1: Let α = soπ1s1 . . . πzsz . . . be an arbi-
trary execution of the BRP automaton and t ∈ T . Let
β = s0.statusj(t) s1′ .statusj(t) . . . sz′ .statusj(t) be the
sequence of status transitions of t at site j ∈ N , obtained

from α by removing the consecutive repetitions of the same
statusj(t) value and maintaining the same order apparition in
α. The following property holds:

1) If node(t) = j then β is a finite prefix of
the regular expression: start · active · (blocked ·
active)∗ · pre commit · (committed|aborted)|start ·
(active.blocked)+ · aborted.

2) If node(t) 6= j then β is a finite prefix of the regular
expression idle · blocked · pre commit · (committed|a-
borted)|idle · (blocked|ε) ·aborted; where ε denotes the
empty string.

The property is simply proved by induction over the length
of α following the preconditions and effects of the BRP
actions in Figure 1. A status transition for a t transaction
in Property 1 is associated with an operation on the DB
module where the transaction was created, i.e. pre commit
to committed involves the DB.commit(t) operation. These
aspects are straightforward from the BRP automaton inspec-
tion in Figure 1 and the status transition of transactions. The
following technical property is needed to prove Lemma 1.

Property 2: Let α = s0π1s1 . . . πzsz . . . be an arbitrary
execution of the BRP automaton and t ∈ T , with node(t) = i.

1) If ∃ j ∈ N \ {i} : sz.statusj(t) = committed then
sz.statusi(t) = committed.

2) If sz.statusi(t) = committed then ∀ j ∈ N : ∃ z′ < z :
s′z.statusj(t) = pre commit.

3) If ∃ z′ < z : sz′ .statusj(t) = sz.statusj(t) =
pre commit for any j ∈ N then ∀ z′ < z′′ ≤ z : πz′′ /∈
{receive commitj(t, m), receive abortj(t, m)}.

4) If ∃ z′ < z : sz′ .statusj(t) = sz.statusj(t) = blocked
for any j ∈ N then ∀ z′ < z′′ ≤ z : πz′′ /∈ {receive -
abortj(t, m), end operationj(t, op)}.

5) If sz .statusi(t) = committed then ∀ j ∈ N \ {i} :
sz.statusj(t) ∈ {blocked,pre commit, committed}.

Proof: This property is shown by induction over the
length of α. We only show the last one in order to highlight its
importance. If sz .statusi(t) = committed, by Property 1.1 we
have that ∀ sz′ ∈ α : sz′ .statusi(t) 6= aborted ∧ 〈abort, t〉 /∈
sz′ .channelj for all j ∈ N . Thus, the receive abortj(t,
m) action is disabled at any state of α. By Property 2.2,
we have that ∃ z′ < z : sz′ .statusj(t) = pre commit for all
j ∈ N . By Property 2.3, either sz.statusj(t) = pre commit
or ∃ z′ < z′′ < z : πz′′ = receive commitj(t). In the latter
case, sz′′ .status(t) = committed and by Property 1.2 its
associated status never changes. Therefore, sz.statusj(t) ∈
{pre commit, committed}.

If sz.statusi(t) = committed, by Property 1.1 we have
that ∀ sz′ ∈ α : sz′ .statusi(t) 6= aborted ∧ 〈abort, t〉 /∈
sz′ .channelj for all j ∈ N . Thus, the receive abortj(t,
m) action is disabled at any state of α. By Property 2.2,
we have that ∃ z′ < z : sz′ .statusj(t) = pre commit for all
j ∈ N . By Property 2.3, either sz.statusj(t) = pre commit
or ∃ z′ < z′′ < z : πz′′ = receive commitj(t). In the
latter case, sz′′ .statusj(t) = committed and by Property 1.2
its associated status never changes. By Property 2.4, ei-
ther sz.statusj(t) = blocked or the end operationj(t, op)

action, by weak fairness of actions, will be eventually ex-
ecuted. This causes that statusj(t) = pre commit and as
〈commit, t〉 ∈ channelj , the receive commitj(t, m) will be
executed. Therefore, sz .statusj(t) ∈ {blocked, pre commit,
committed}.

However, the invariant of Properties 2.3 and 2.4 establish
one abortion point for remote transactions which is the trans-
action master site. Our modification establishes that only at
the transaction master site is decided whether a transaction
aborts or not. The following lemma, liveness property, states
the atomicity of committed transactions.

Lemma 1: Let α = s0π1s1 . . . πzsz . . . be a fair execu-
tion of the BRP automaton and t ∈ T with node(t) =
i. If ∃ j ∈ N : sz.statusj(t) = committed then ∃ z′ >
z : sz′ .statusj(t) = committed for all j ∈ N .

Proof: If j 6= i by Property 2.1 (or j = i)
sz.statusi(t) = committed. By Property 2.5, ∀ j ∈ N \
{i} : sz.status(t) ∈ {pre commit, committed}. Without loss
of generality, assume that sz is the first state where
sz.statusi = committed and sz.statusj(t) = pre commit.
By the effects of πz = end commiti(t, m), we have
that 〈commit, t〉 ∈ sz.channelj . By Property 2.5 invari-
ance either sz.statusj(t) = committed or sz.statusj(t) =
pre commit ∧ 〈commit, t〉 ∈ sz.channelj . In the latter
case the receive commit(t, m) action is enabled. By weak
fairness assumption, it will be eventually delivered, thus
∃ z′ > z : πz′ = receive commitj(t, m). By its effects,
sz′ .statusj(t) = committed.

We may formally verify that if a transaction is aborted then
it will be aborted at all nodes in a similar way. This is stated
in the following Lemma.

Lemma 2: Let α = s0π1s1 . . . πzsz . . . be a fair execution
of the BRP automaton and t ∈ T with node(t) = i. If
sz.statusi(t) = aborted then ∃ z′ ≥ z : sz′ .status = idle
for all j ∈ N \ {i} ∨ sz′ .statusj(t) = aborted for all j ∈ N .

Before continuing with the correctness proof we have
to add a definition dealing with causality (happens-before
relations [16]) between actions. Some set of actions may
only be viewed as causally related to another action in any
execution α. We denote this fact by πi ≺α πj . For example,
with node(t) = i 6= j, end operationj(t, WS(t)) ≺α

receive readyi(t, m). This is clearly seen by the effects of
the end operationj(t, WS(t)) action, it sends a 〈ready, t, j〉
to i. This message will be eventually received by the transac-
tion master site that enables the receive readyi(t, m) action,
since statusi(t) = pre commit, and, by weak fairness of
actions, it will be eventually executed. The following Lemma
indicates that a transaction is committed if it has received
every ready message from its remote transaction ones. These
remote transactions have been created as a consequence of the
receive remotej(t, m) action execution.

Lemma 3: Let α = s0π1s1 . . . πzsz . . . be an arbitrary
execution of the BRP automaton and t ∈ T be a commit-
ted transaction, node(t) = i, then the following happens-
before relations hold for the appropriate parameters: ∀j ∈
N \ {i} : begin commiti(t) ≺α receive remotej(t, m) ≺α

end operationj(t, op) ≺α end commiti(t, m) ≺α receive -
commitj(t, m).

In order to define the correctness of our replication pro-
tocol we have to study the global history (H) of committed
transactions(C(H)) [3]. We may easily adapt this concept to
our BRP automaton. Therefore, a new auxiliary state variable,
Hi, is defined in order to keep track of all the DBi operations
performed on the local DBMS at the i site. For a given α
execution of the BRP automaton, Hi(α) plays a similar role
as the local history at site i, Hi, as introduced in [3] for the
DBMS. In the following, only committed transactions are part
of the history, deleting all operations that do not belong to
transactions committed in Hi(α). The serialization graph for
Hi(α), SG(Hi(α)), is defined as in [3]. An arc and a path in
SG(Hi(α)) are denoted as t → t′ and t

∗
−→ t′ respectively. Our

local DBMS produces ANSI serializable histories [14]. Thus,
SG(Hi(α)) is acyclic and the history is strict. The correctness
criterion for replicated data is 1CS, which stands for a serial
execution over the logical data unit (although there are several
copies of this data among all sites) [3]. Thus, for any execution
resulting in local histories H1(α), H2(α), . . . , HN (α) at all
sites its serialization graph, ∪k SG(Hk(α)), must be acyclic
so that conflicting transactions are equally ordered in all local
histories.

Before showing the correctness proof, we need an additional
property relating transaction isolation level of the underlying
DB modules to the automaton execution event ordering. Let
us see first this with an example, assume we have a strict-
2PL scheduler as the underlying DBi, hence a transaction
must acquire all its locks before committing. In our case,
if we have two conflictive transactions, t, t′ ∈ T , such
that t → t′ then the statusi(t

′) = pre commit will be
subsequent to statusi(t) = committed in the execution. The
following property and corollary establish a property about
local executions of committed transactions.

Property 3: Let α = s0π1s1 . . . πzsz . . . be a fair
execution of the BRP automaton and i ∈ N . If there exist two
transactions t, t′ ∈ T such that t

∗
−→ t′ in SG(Hi(α)) then

∃ z1 < z2 < z3 < z4 : sz1
.statusi(t) = pre commit ∧

sz2
.statusi(t) = committed ∧ sz3

.statusi(t
′) =

pre commit ∧ sz4
.statusi(t

′) = committed.
Proof: We firstly consider t → t′. ∃ opt < op′t′ and opt

conflicts with op′t′ . Hence, by construction of Hi(α) : DBi.no-
tify(t, op) = run < DBi.notify(t′, op′) = run. This
fact makes true opt < op′t′ . However, we have assumed
that the DBi is serializable and satisfies ANSI serializable
transaction isolation [14]. In such a case, Hi(α) is strict
serializable for write and read operations. Therefore, it is
required that DBi.notify(t, op) = run < DBi.commit(t) <
DBi.notify(t′, op′) = run. The DBi.commit(t) operation
is associated with statusi(t) = committed. Considering t′,
DBi.notify(t′, op′) = run is associated with statusi(t) ∈
{active, pre commit}. Therefore, ∃ z2 < z′3 in α such that
sz2

.statusi(t) = committed and sz′

3
.statusi(t

′) ∈ {active,
pre commit}. By Property 1 and by the fact that both tran-
sactions commit, ∃ z1 < z2 < z′3 ≤ z3 < z4 in α such that

sz1
.statusi(t) = pre commit ∧ sz2

.statusi(t) = committed ∧
sz3

.statusi(t
′) = pre commit ∧ sz4

.statusi(t
′) = committed.

Thus, the property holds for t → t′. The case t
∗
−→ t′ is proved

by transitivity.
The latter property reflects the happens-before relationship

between the different status of conflictive transactions. The
same order must hold for the actions generating the mentioned
status. The next corollary expresses this property.

Corollary 1: Let α = s0π1s1 . . . πzsz . . . be a fair execu-
tion of the BRP automaton and i ∈ N . If there exist two
transactions t, t′ ∈ T such that t

∗
−→ t′ in SG(Hi(α)) then

the following happens-before relations, with the appropriate
parameters, hold:

1) node(t) = node(t′) = i : begin commiti(t) ≺α

end commiti(t, m) ≺α begin commiti(t
′) ≺α

end commiti(t
′, m′).

2) node(t) = i ∧ node(t′) 6= i : begin commiti(t) ≺α

end commiti(t, m) ≺α end operationi(t
′, WS′)

≺α receive commiti(t
′, m′).

3) node(t) 6= i ∧ node(t′) = i : end operationi(t, WS)
≺α receive commiti(t, m) ≺α begin commiti(t

′) ≺α

end commiti(t
′, m′).

4) node(t) 6= i ∧ node(t′) 6= i : end opera-
tioni(t, WS) ≺α receive commiti(t, m) ≺α end ope-
rationi(t

′, WS′) ≺α receive commiti(t
′, m′).

Proof: By Property 3, ∃ z1 < z2 < z3 < z4 :
sz1

.statusi(t) = pre commit ∧ sz2
.statusi(t) = committed ∧

sz3
.statusi(t

′) = pre commit ∧ sz4
.status = committed.

Depending on node(t) and node(t′) values the unique actions
whose effects modify their associated status are the ones
indicated in the Property 3.

In the following, we prove that the BRP protocol provides
1CS [3].

Theorem 1: Let α = s0π1s1 . . . πzsz . . . be a fair execu-
tion of the BRP automaton. The graph ∪k∈NSG(Hk(α)) is
acyclic.

Proof: By contradiction. Assume there exists a cycle in
∪k∈NSG(Hk(α)). There are at least two different transactions
t, t′ ∈ T and two different sites x, y ∈ N , x 6= y, such that
those transactions are executed in different order at x and y.
Thus, we consider (a) t

∗
−→ t′ in SG(Hx(α)) and (b) t′

∗
−→ t

in SG(Hy(α)); being node(t) = i and node(t′) = j. There
are four cases under study: (I) i = j = x; (II) i = x ∧
j = y; (III) i = j ∧ i 6= x ∧ i 6= y; and, (IV) i 6= j ∧
i 6= x ∧ i 6= y ∧ j 6= x ∧ j 6= y. In the following, we
simplify the notation. The action names are shortened, i.e.
begin commitx(t) by bcx(t); end commitx(t, m) by ecx(t);
receive remotex(t, m) by rrx(t); end operationx(t, op) by
eox(t); and receive commitx(t, m) by rcx(t).

CASE (I). By Corollary 1.1 for (a): bcx(t) ≺α ecx(t) ≺α

bcx(t′) ≺α ecx(t′) (i). By Corollary 1.4 for (b): eoy(t
′) ≺α

rcy(t′) ≺α eoy(t) ≺α rcy(t) (ii). By Lemma 3 for t:
bcx(t) ≺α rry(t) ≺α eoy(t) ≺α ecx(t) followed by (i)
≺α (via Lemma 3) bcx(t′) ≺α rry(t′) ≺α eoy(t

′). Thus,
eoy(t) ≺α eoy(t′) in contradiction with (ii).

CASE (II) By Corollary 1.2 for (a): bcx(t) ≺α ecx(t) ≺α

eox(t′) ≺α rcx(t′) (i). By Corollary 1.2 for (b): bcy(t′) ≺α

ecy(t
′) ≺α eoy(t) ≺α rcy(t) (ii). By Lemma 3 for t:

bcx(t) ≺α rry(t) ≺α eoy(t) ≺α ecx(t); by (i) ≺α eox(t′),
and by Lemma 3 for t′, ≺α ecy(t′). Thus eoy(t) ≺α ecy(t

′)
in contradiction with (ii).

CASE (III) As x and y are different sites from the
transaction master site, only one of them will be executed in
the same order as in the master site. If we take into account
the different one with the master site then we will be under
assumptions considered in CASE (I).

CASE (IV) By Corollary 1.4 for (a): eox(t) ≺α rcx(t) ≺α

eox(t′) ≺α rcx(t′) (i). By Corollary 1.4 for (b): eoy(t′) ≺α

rcy(t′) ≺α eoy(t) ≺α rcy(t) (ii). By Lemma 3 for t at
site y: bci(t) ≺α rry(t) ≺α eoy(t) ≺α eci(t) ≺α rcy(t).
Applying Lemma 3 for t at x: bci(t) ≺α rrx(t) ≺α eox(t) ≺α

eci(t) ≺α rcx(t). Therefore, we have that eoy(t) ≺α rcx(t).
Let us apply Lemma 3 for t′ at y: bcj(t

′) ≺α rry(t′) ≺α

eoy(t′) ≺α ecj(t
′) ≺α rcy(t′) and for site x: bcj(t

′) ≺α

rrx(t′) ≺α eox(t′) ≺α ecj(t
′) ≺α rcx(t′). Thus, we have

eox(t′) ≺α rcy(t′). Taking into account Lemma 3 for t we
have: eoy(t) ≺α rcx(t) (via (i)) ≺α eox(t′) (via Lemma 3 for
t′) ≺α rcy(t′), in contradiction with (ii).

V. SNAPSHOT ISOLATION

Right now, we have only considered that the underlying
DBMS provides ANSI serializable transaction isolation. How-
ever, Snapshot Isolation (SI) [14] is a very popular solution
used by many DBMS vendors. There has been some recent
research about this fact for database replication in order to
provide something similar to 1CS [3] for SI. This approach is
introduced in [4] where the 1CSI is presented.This transaction
isolation level does not block read operations, so we only have
to worry for write operations instead. Hence, we may use a
DB module providing SI. We may achieve this functionality
in our replication protocol. All we have to do is to perform
the getConflicts(WS) function over write sets exclusively.

Lemma 3 states that the protocol behavior is not influenced
by the underlying database. On the other hand, Property 3
asserts that the execution depends on the transaction isolation
level that imposes a determined order. Let t, t′ ∈ T be two
conflictive committed transactions as WS(t) ∩ WS(t′) 6= ∅
the Property 3 holds. It can be shown that with Lemma 3 and
Property 3 all writesets are applied at all sites following the
same order.

VI. CONCLUSIONS

In this paper, we present a Basic Replication Protocol (BRP)
for the SampleOne middleware architecture, which provides a
JDBC interface but enhanced to support replication by way
of different replication protocols. This replication protocol
is 1CS, given that the underlying DBMSs feature ANSI
serializable transaction isolation. We have formally described
and verified its correctness using a formal transition system.
This replication protocol has the advantage that no specific
DBMS tasks have to be re-implemented (e.g. lock tables,

“a priori” transaction knowledge). The underlying DBMS
performs its own concurrency control and the replication
protocol compliments this task with replica control.

The BRP is an eager update everywhere replication pro-
tocol, based on the ideas introduced in [1]. All transaction
operations are firstly performed on its master site, more
precisely on its underlying DBMS, and then all updates are
grouped and sent to the rest of sites using a reliable multicast.
However, our algorithm is liable to suffer distributed deadlock.
We have defined a deadlock prevention schema, based on the
transaction state and a given priority; besides, the information
needed by the deadlock prevention schema is entirely local, i.e.
no additional communication is needed among nodes. We have
followed an optimistic approach, since we automatically abort
transactions with lower priority because we suppose that we
are working in a low conflict environment. Finally, we propose
several modifications to this basic version so as to improve its
response time and abortion rate.

REFERENCES

[1] M. J. Carey and M. Livny, “Conflict detection tradeoffs for replicated
data.,” ACM Trans. Database Syst., vol. 16, no. 4, pp. 703–746, 1991.

[2] A. U. Shankar, “An introduction to assertional reasoning for concurrent
systems.,” ACM Comput. Surv., vol. 25, no. 3, pp. 225–262, 1993.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems, Addison Wesley, 1987.

[4] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R Jiménez-Peris, “Middle-
ware based data replication providing snapshot isolation.,” in SIGMOD
Conference, 2005.

[5] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha, “The dangers of
replication and a solution.,” in SIGMOD Conference, H. V. Jagadish
and I. S. Mumick, Eds. 1996, pp. 173–182, ACM Press.

[6] J. Holliday, R. C. Steinke, D. Agrawal, and A. El Abbadi, “Epidemic
algorithms for replicated databases.,” IEEE Trans. Knowl. Data Eng.,
vol. 15, no. 5, pp. 1218–1238, 2003.

[7] G. Chockler, I. Keidar, and R. Vitenberg, “Group communication
specifications: a comprehensive study.,” ACM Comput. Surv., vol. 33,
no. 4, pp. 427–469, 2001.

[8] J. Esparza-Peidro, F.D. Muñoz-Escoı́, L. Irún-Briz, and J.M. Bernabéu-
Aubán, “RJDBC: a simple database replication engine,” in Proc. of the
6th Int’l Conf. Enterprise Information Systems (ICEIS’04), 2004.

[9] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso,
“Improving the scalability of fault-tolerant database clusters.,” in ICDCS,
2002, pp. 477–484.

[10] B. Kemme and G. Alonso, “A new approach to developing and imple-
menting eager database replication protocols.,” ACM Trans. Database
Syst., vol. 25, no. 3, pp. 333–379, 2000.

[11] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso,
“Scalable replication in database clusters.,” in DISC, M. Herlihy, Ed.
2000, vol. 1914 of Lecture Notes in Computer Science, pp. 315–329,
Springer.

[12] S. Wu and B. Kemme, “Postgres-R(SI): Combining replica control with
concurrency control based on snapshot isolation.,” in ICDE. 2005, pp.
422–433, IEEE Computer Society.

[13] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “C-JDBC: Flexible
database clustering middleware.,” in USENIX Annual Technical Con-
ference, FREENIX Track. 2004, pp. 9–18, USENIX.

[14] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and
P. E. O’Neil, “A critique of ANSI SQL isolation levels.,” in SIGMOD
Conference, M. J. Carey and D. A. Schneider, Eds. 1995, pp. 1–10,
ACM Press.

[15] F. Pedone, The database state machine and group communication issues
(Thèse N. 2090), Ph.D. thesis, École Polytecnique Fédérale de Lausanne,
Lausanne, Switzerland, 1999.

[16] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

