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Abstract

Many modern distributed services are deployed in dynamic systems. Cloud services are an example.
They should provide service to a potentially huge amount of users and may require a wide geographical
deployment in multiple data centres. Their amount of server processes should change in accordance to
the workload variations, showing an adaptive behaviour in order to minimise economical costs.

Dynamic distributed systems may be classified considering two axes: (a) the number of processes
that compose the system, and (b) the diameter of the networking graph that interconnects those processes.
Other important features of dynamic systems can be derived from these two characteristics, e.g., their
attainable synchrony. We analyse the level of synchrony that may be achieved in each dynamic system
class and revise the existing techniques for transforming an initially asynchronous large dynamic system
into another one with a higher synchrony level. With this, a larger set of problems may be handled in
dynamic distributed systems. This facilitates the implementation and provision of additional services in
those systems.
KEYWORDS: distributed system, dynamic system, system interconnection, synchrony, failure detector,
participant detector.

1 Introduction
Service continuity has traditionally been one of the objectives in many distributed applications. To this end,
processes and data should be replicated, but replication, concurrency and failures should be transparent to
users [34], since another goal of those distributed applications is to provide a single-system image, i.e., to
achieve distribution transparency. Unfortunately system components may fail. Failed components may
eventually recover and be re-integrated in the system. As a result, a first level of dynamism is introduced in
distributed algorithms when a recoverable system model is assumed, since the set of participating processes
may evolve along the algorithm execution.

Peer-to-peer collaborative applications [6], where nodes may join and leave the system at will, mobile
ad-hoc networks [33] in which the participating elements may temporarily be out of reach, elastic cloud
computing services [31] that manage variable and potentially huge workloads, and several kinds of IoT
services [23] (e.g., vehicular monitoring and reporting services for driving/routing assistance in smart traffic
systems) have shown that multiple types of distributed systems are dynamic. So, a definition for dynamic
distributed systems is needed.

Baldoni et al. [8] provide that definition with a complementary classification of those systems. Its
two key parameters (degree of concurrency and networking graph diameter) condition the characteristics
of each possible class of dynamic distributed system. We revise that classification considering in which
classes a synchronous or partially synchronous system model may be assumed. This identifies the set
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of classes where some distributed problems, like consensus, are solvable when the set of participating
processes may vary while those dynamic services run. In order to transform an initially asynchronous
dynamic system into another one with a higher level of synchrony, two approaches exist: (a) to identify a
stable subset of processes, or (b) to organise the system into a hierarchy of interconnectable subsystems.
Those approaches make possible the implementation of additional services in dynamic systems, since the
applications that provide those services may run in an apparently synchronous environment.

The rest of this paper is structured as follows. Section 2 summarises the existing definition and classi-
fication of dynamic distributed systems [8]. Section 3 refines that classification considering synchrony and
states some consequences of that study. Section 4 revises some related work. Finally, Section 5 concludes
the paper.

2 Classification of Dynamic Distributed Systems
According to Baldoni et al. [8], a dynamic distributed system is:

Definition 1 (Dynamic System). A continually running system in which an arbitrarily large number of
processes are part of the system during each interval of time and, at any time, any process can directly
interact with only an arbitrary small part of the system.

This definition provides a characterisation of dynamic distributed systems that is accompanied with a
classification of them. Several considerations arise from Definition 1:

C1: Applications developed for dynamic systems are unable to know the identity of all processes that
currently belong to their system.

C2: Because of C1, the communication topology in a system cannot be a fully connected graph. This
means that algorithms should use a multi-hop communication mechanism in order to reach all pro-
cesses when messages should be broadcast to all participants.

Since dynamism implies that processes may join and leave the system at will, the concepts of system
run, system graph and graph sequence are defined [8].

Definition 2 (System run). A system run is a total order on the join and leave events issued by processes
that respects their real time occurrence order.

Definition 3 (System graph). A distributed system can be represented by a graph G = (P,E), where P
is the set of processes that compose the system and E is a set of edges (pi, pj), representing bidirectional
reliable channels connecting processes pi and pj .

System graphs do not need to be fully connected, and the addition or removal of any node or edge
generates a different graph. So, these graph updates define a sequence of graphs in a given system run.

Definition 4 (Graph sequence). Let {Gn}run denote the sequence of graphs through which the system
passes in a given run. Each Gn ∈ {Gn}run is a connected graph whose diameter can be greater than one.

Based on these concepts, the classification given by Baldoni et al. [8] considers these two dimensions:

• Number of concurrent entities (P ). Assuming the infinite arrival model proposed in [29], these
variants can be distinguished:

– P b. The number of processes that concurrently belong to the system is bound by a constant b
in all system runs.

– Pn. The number of processes that concurrently belong to the system is bound in each system
run, but may be unbound when the union of all system runs is considered.

– P∞. The number of processes that concurrently belong to the system in a single run may grow
to infinity as time passes.
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Number of Network diameter
processes Db Dn D∞

P b M b,b – –
Pn Mn,b Mn,n –
P∞ M∞,b M∞,n M∞,∞

Figure 1: Dynamic models considering the P and D parameters.

• Diameter of the interconnecting graph (D). This parameter models the “geographical” dynamism
of the system. To this end, {Dn}run denotes the set of diameters of the graphs in {Gn}run. The
alternatives to be considered regarding the graph diameter are:

– Db, Bound and known diameter. The diameter is bound by b and that bounds value is known
by the algorithms, i.e.: ∀Dn ∈ {Dn}run, Dn ≤ b.

– Dn, Bound and unknown diameter. All diameters {Dn}run are finite in each run, but the union
of all Dn in {Dn}run may be unbound. Therefore, an algorithm has no information on the
diameter.

– D∞, Unbound diameter. The diameter may grow indefinitely in a run.

With those parameters, a composedMP,D set of models is defined. Both parameters can assume values
b, n and ∞ to indicate their three variants. From the nine possible models, M b,n, M b,∞ and Mn,∞ are
not possible since their diameter is in fact bound by the number of processes, being these bounds value
Dmax =| P | −1. Therefore, as a result, we have six different models that correspond to the following
combinations: M b,b, Mn,b, M∞,b, Mn,n, M∞,n and M∞,∞. Those models are depicted in Fig. 1.

3 Classification Refinement
Let us refine in Section 3.1 dimension P from the classification given at [8]. To this end, we present the
concurrency subclasses proposed in [1]. Section 3.2 analyses which level of synchrony may be achieved in
each class of dynamic distributed system. That analysis may be used for studying in which classes some
distributed system problems (e.g., consensus) may be solved. Section 3.3 describes which techniques may
increase that inherent level of synchrony in non-synchronous classes. Later on, Section 3.4 discusses what
is the place of static distributed systems in that classification.

3.1 Concurrency Refinement
Let S be a distributed system. Marcos K. Aguilera [1] identifies the following process models in distributed
systems that may consist of infinitely many processes:

• Mn
1 : S has a finite number (n) of processes. This model is called the n-arrival model. Algorithms

know the n value in this model.

• M2: S has infinitely many processes, but each run has only finitely many. This model is called the
finite arrival model. Algorithms do not know how many processes will participate in each run.

• M3: S has infinitely many processes, runs can have infinitely many processes, but in each finite time
interval only finitely many processes take steps. This model is known as the infinite arrival model
and contains two subsets:

– M b
3 : An M3 model where every run has a maximum concurrency bound by constant b (known

by algorithms). In this model, there may be infinitely many processes only when processes
depart at the same rate that new processes join S. It is known as the infinite arrival model with
b-bound concurrency. It is the P b model in [8].
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Figure 2: Relations among process system classes.

– Mfinite
3 : An M3 model in which every run has a maximum concurrency that is finite. It is

known as the infinite arrival model with bound concurrency. It is the Pn model in [8].

• M4: S has infinitely many processes, runs can have infinitely many processes, and a finite time
interval may have infinitely many processes. This is the infinite concurrency model. This is model
P∞ in [8].

Besides, regarding the sets of runs that comply with the conditions of each model, the following model
inclusion relationships are identified in [1] (They are depicted in Fig. 2):

• Mn
1 ⊂M2 ⊂Mfinite

3 ⊂M3 ⊂M4

• M b
3 ⊂M

finite
3

• M2 6⊂M b
3

• Mn
1 ⊂M b

3 , if n ≤ b.

These inclusion relations also arise in the P ∗ models identified in [8], since P b = M b
3 , Pn = Mfinite

3

and P∞ = M4. Therefore, in order to avoid ambiguity, when we refer in Section 3.2 to a model M∞,∗ it
should be understood as its set of allowed runs not included in Mn,∗. Similarly, model Mn,∗ refers to its
set of runs not included in M b,∗.

3.2 Achievable Synchrony
Several degrees of asynchrony may be distinguished. To this end, Dolev et al. [17] (based on [21]) identify
three possible axes of asynchrony in a distributed system:

1. Processor asynchrony allows a processor to remain in the same execution step for arbitrary long
finite intervals while other processors continue to run.

2. Communication asynchrony does not allow to limit message delivery time.

3. Message order asynchrony allows messages to be delivered in an order different from the order in
which they were sent.

It can be argued that the message order asynchrony is a consequence of the other two axes; i.e., when
both processors and communications are asynchronous it is impossible to order the delivery of messages
sent by different processors since there is no way to know their concrete sending order.
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From the other two remaining axes, communication asynchrony seems to be the principal one. It is
accepted that processor synchrony can be simulated with a reasonable effort in a system that uses logical
buffering [36]; i.e., an algorithm that assumes synchronous processes can be executed using asynchronous
processes if the algorithm steps are appropriately numbered in each processor and messages are buffered
until their receiver has reached the appropriate step. Communication may be asynchronous to this end.
Although there are also general synchronisers (i.e., algorithms that simulate both synchronous processors
and synchronous communications) they cannot be easily implemented in a real system (e.g., they require
unbound space). As a result, let us revise in the following sections all these dynamic models regarding
whether synchronous communication may be achieved in them, since this is a key property in order to
decide whether the studied system models could be synchronous or not. Besides, communication is con-
sidered partially synchronous when there are bounds on message transmission time but the bounds value is
unknown [18], and it is considered synchronous when the bounds value is known [17].

Let us assume that each point-to-point communication link is synchronous, and δ is its known bound
on message transmission time. This assumption provides the best scenario for ensuring that interprocess
communication is synchronous, but we will see that even in this ideal scenario most dynamic system models
are asynchronous.

According to consideration C2, if any algorithm step requires that a given process (for instance, a
coordinator) sends a message to every other process, such message propagation will need epidemic broad-
casting [24], i.e., each receiver forwards the message to every neighbour and remembers the message
identity. Later on, if the same message is received again, it is not resent. Eventually, those messages
become propagated to all system processes.

Let us analyse whether processes may assume bounds on message transmission time or not. To this end,
there are two dimensions to be considered: process concurrency and network diameter. The degree of pro-
cess concurrency is more restrictive than the network diameter in what regards communication synchrony.
Some P b models admit an infinite arrival of processes and such infinite arrival rate may delay without any
bounds the propagation of messages. On the other hand, the network diameter may only endanger a finite
and known message transmission time interval when the M∗,n or M∞,∞ models are considered, but in
those models a Pn or P∞ concurrency model should be used and both admit longer message propagation
delays than P b. Therefore, let us focus our attention on process concurrency models [1]:

• Mn
1 (n-arrival) model: There are n processes in the system, and n is known by the algorithms. In this

case, the communication paths between those n processes may be found using epidemic broadcasts.
Therefore, we may state the following theorem:

Theorem 1 (Mn
1 synchronous communication). Assuming a δ upper limit on message propagation

time through a link, the message transmission time between every pair of processes in a distributed
system S that follows the Mn

1 model with a bounds value b on the network diameter is bound and its
bounds value is known.

Proof. Immediate, given the bounds value on the network diameter (b), the known and bound size
of the process set (n) and the link transmission time (δ).

Note that if the network diameter is b, an epidemic broadcast will be able to reach all current system
processes in b steps. Since b and δ are known, the resulting bounds value on message transmission
time is also known. It is bδ in the general case, in which there is at least a stable path between p1 and
p2.

• M2 (finite arrival) model: In this model, algorithms do not know how many processes will participate
in each run, but it is guaranteed that there is a time t′ after which no new processes are started [1]. In
this concurrency model, communication is partially synchronous:

Theorem 2 (Partial synchronous M2). The message transmission time between every pair of pro-
cesses p1 and p2 in a distributed system S in model M2 is bound but that bounds value is unknown.

Proof. Let p1 and p2 be placed on two opposite edges of the interconnecting network. Let pi1 be the
initial process that holds a link between S − {p2} and p2.
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Without loss of generality, let pk be the single process that directly precedes pi1 in the communication
path between p1 and p2. (If there were many pi1 processes, what is described hereafter would apply
for each one of them, with the same overall result.) Process pk forwards m to pi1 at time t0. At time
t0 + δ1, with δ1 < δ, pi1 leaves the system. As a result of this, m is lost. At time t0 + δ2, with
0 < δ2 ≤ δ1 < δ, pi2 joins the system, defining a path (pk, pi2 , p2).

Eventually, pk detects that m has been lost and it retries at time t1 to forward m to pi2 . However, at
times t1 + δ1 and t1 + δ2, pi2 is replaced by pi3 and m is lost again. Indeed, those message sending
reattempts and process replacements may still occur multiple times from now on. In spite of this,
since the process arrival is finite in this model, there will be a time t′ after which no other process
arrival will happen. At that moment, the links between pk and p2 stabilise, and m is finally delivered
to p2. However, we cannot forecast how many reattempts will be done. Thus, the delivery time of m
to p2 is bound, but its bounds value cannot be known.

• M b
3 (infinite arrival with b-bound concurrency) model: Processes depart from the system at an infi-

nite rate and each time a process leaves the system, another new process replaces that leaving one.
Communication is asynchronous in that kind of model, as proven in this theorem:

Theorem 3 (M b
3 asynchronous communication). The message transmission time between processes

p1 and p2 has no bounds in a distributed system S that follows the M b
3 model.

Proof. Let us look for a case where the arrival of new processes extends in an unbound way the
communication time between p1 and p2. Without loss of generality, let us assume that p1 and p2 are
placed on two opposite edges of the interconnecting network and that a single communication link
connects p2 to the remaining processes in S. Let pi1 be the initial process that holds the unique link
between S − {p2} and p2. (If there were other processes directly linked to p2, the infinite arrival
model admits that what we describe in the following paragraphs for pi1 would be also applicable to
all other interconnecting processes when they are receiving m in order to forward it to p2.)

Let us imagine that another process pk in the communication path between p1 and p2 is forwarding
m to pi1 at time t0. At time t0 + δ1, with δ1 < δ, pi1 leaves the system. As a result of this, m is lost.
At time t0 + δ2, with 0 < δ2 ≤ δ1 < δ, pi2 joins the system in a way that it is able to receive the
messages sent by pk and propagate those messages to p2.

Eventually, pk detects that m has been lost and it retries at time t1 to forward m to pi2 . However, at
times t1 + δ1 and t1 + δ2, pi2 is replaced by pi3 and m is lost again. Indeed, those message sending
reattempts and process replacements may still occur infinitely often from now on (in general, ∀j > 0,
at times tj + δ1, tj + δ2, being pij+1 replaced by pij+2 ). Thus, the delivery of m to p2 is delayed
infinitely often. This means that message propagation time has no bounds in this scenario. So, the
resulting communication model is asynchronous.

• Mfinite
3 (infinite arrival with bound concurrency) model: Infinite arrival model in which each run

has a maximum concurrency that is finite. Its communication is also asynchronous, as proven in this
corollary:

Corollary 1 (Asynchronous Mfinite
3 ). The message transmission time between processes p1 and p2

has no bounds in a distributed system S that follows the Mfinite
3 model.

Proof. Immediate from Theorem 3. The scenario described in its proof is directly applicable in this
model, too, since M b

3 ⊂M
finite
3 .

• M4 (infinite concurrency) model: Infinite arrival model in which each run has no bounds on its
concurrency. Its communication is also asynchronous, as proven in this corollary:

Corollary 2 (Asynchronous M4). The message transmission time between processes p1 and p2 has
no bounds in a distributed system S that follows the M4 model.
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Proof. Immediate from Theorem 3. The scenario described in its proof is directly applicable in this
model, too, since M b

3 ⊂M4.

Once those concurrency models have been analysed, let us translate those results to the MP,D models
proposed in [8]. Section 3.1 has stated those needed translations. With them, the following corollaries state
which communication model can be achieved in each M∗,∗ model:

Corollary 3. The n-arrival M b,b model may assume synchronous communication.

Proof. Since an n-arrival M b,b system assumes an Mn
1 process model, then Theorem 1 directly implies

that n-arrival M b,b may assume synchronous communication.

Corollary 4. The finite arrival M b,b, finite arrival Mn,b and finite arrival Mn,n models may assume
partial synchronous communication.

Proof. Since all finite arrival systems assume an M2 process concurrency model, then Theorem 2 deter-
mines that all those models may assume partial synchronous communication. Note that Theorem 2 has
made no assumptions on the network diameter value. Therefore, its results may be applied in all those
models.

Corollary 5. The infinite arrival M b,b, infinite arrival Mn,b, M∞,b, infinite arrival Mn,n, M∞,n and
M∞,∞ models should assume asynchronous communication.

Proof. Since all cited systems assume either an M b
3 , Mfinite

3 or M4 process model, then Theorem 3 (or its
corollaries 1 or 2) is applicable in each system. All those cases generate the same result: the asynchronous
communication model should be assumed.

Note that Theorem 3 has made no assumptions on the network diameter value. Therefore, its results
may be applied in all those models.

Figure 3 shows graphically which level or levels of communication synchrony correspond to each
process concurrency class.

Figure 3: Maximum level of synchrony for each system class.
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3.3 Consequences
Our classification refinement implies that some classical problems that are not solvable [20] in traditional
asynchronous reliable distributed systems where processes may fail, will not be solvable in M∞,∞ or in
any infinite arrival M∗,n or M∗,b dynamic systems. This includes consensus [21] and many others [20].
On the other hand, problems solvable in (partially) synchronous systems require that the resulting dynamic
model becomes one of the finite arrival Mn,n, Mn,b or M b,b subclasses.

Therefore, we need a useful framework for structuring any general (and potentially unbound) dynamic
distributed system into a set of smaller and synchronous dynamic subsystems. In this way, traditional
algorithms that assume a known number of processes or that need some degree of synchrony could be used
in a large dynamic system. In this regard, several basic approaches may be found:

• The first one sets a hierarchical organisation of system processes, defining multiple subsystems and
interconnecting them using inter-subsystem channels. Each subsystem uses its own subnetwork and
connects with other subsystems using bridges. Therefore, the algorithms in each subsystem see a
fully connected network with a logical network graph diameter of length 1. On the other hand,
when a process sends a message to another process in a different subsystem, it needs at least one
forwarding step driven by some “bridge” process or a path along several bridges. Thus, the global
network graph diameter is greater than 1 in that scenario.

Rodrigues and Verı́ssimo used those principles in their causal separators [32] proposal. Causal sep-
arators are a scalability mechanism for causal message multicasting. With them, each subsystem
may use its own internal (and different) causal multicast algorithm. Each internally delivered mes-
sage is forwarded to other subsystems by a specialised bridge process that knows the addresses of
the remaining bridges. In order to reach a global causal ordering, such message inter-subsystem
forwarding needs FIFO order when there are only two subsystems [32] or causal order in other cases
[9]. This provides a first example about how to use a classical algorithm intended for a finite ar-
rival M b,1 system (those to be used in each subsystem) combined with another one of the same kind
(the interconnecting algorithm, that is also for finite arrival M b,1 systems) in order to manage an
Mn,b system, since the resulting global system has a large and potentially bound but unknown set
of processes. This first kind of hierarchical architectures was used in the context of interconnectable
message broadcast protocols [32, 9, 26, 15, 16] and interconnectable memory consistency models
[19]. A hierarchical organisation provides a solid basis for building large dynamic systems in order
to solve problems with a decomposable domain (e.g., support of fast consistency models [7] in case
of using replicated data elements, implementation of FIFO or causal message broadcast algorithms
[26]...).

In this first example, the resulting overall system belongs to the Mn,b class. Let us revise whether
any M∗,n system may be handled with this same strategy. To this end, each started process is
compelled to be integrated in any of the already existing subsystems. That was the principle that
drove partially centralised P2P systems [6]. In those systems, a supernode (or super-peer) is the
only process known by all processes in a given area. Supernodes index all resources in that system
subset and they forward the requests that cannot be answered in that subset to other supernodes
in order to get an answer. Thus, all system resources may be accessed by every process. The
population in each subset varies with time and there are no upper bounds on the global amount of
participating processes. In this second example, the resulting system belongs to theM∞,n class since
all supernodes do not know each other: each supernode only needs to know a few other supernodes
and their communication is driven by an epidemic broadcast. Besides, each supernode does not
need to know the addresses of all the nodes that may use its services. That set of user nodes varies
dynamically and cannot be bound nor known with precision. The supernode only knows which
resources have been published or downloaded by those processes, i.e., it only knows the addresses
of a subset of processes that use its services.

Another example of globalM∗,n system that may rely on simplerM∗,1 algorithms in each subsystem
is an interconnectable FIFO multicast algorithm [5]. FIFO multicasting has more relaxed require-
ments than causal multicasting. Thus, FIFO multicasting only needs FIFO propagation through the
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inter-bridge channels. If messages are tagged with their initial bridge forwarder identifier in order
to avoid repeated delivery, inter-bridge propagation can be achieved using an epidemic propagation.
In that case, the bounds on the amount of subsystems that compose the distributed system may be
unknown by the participating processes.

• The second approach was proposed by Mostéfaoui et al. [30]. It defines a stable subset of processes
able to ensure algorithm progress. This stable set should comply with some constraints: a minimal
number of processes (α) that remain in the system long enough (stability) –note that α simulates the
static-system requirement of maintaining at least n− f correct processes, where n is the initial num-
ber of system processes and f is the current number of failed processes–, and a strong cooperation
among those α processes (and this suggests that they assume a fully-interconnecting network among
them). Additionally, two complementary communication primitives are provided: a query-response
that broadcasts a query and waits for α answers, and a broadcast operation that is able to propagate
information to all system processes. At a glance, this implies that the stable subset conforms to the
finite arrival M b,b system model, whilst the overall system may assume even the M∞,∞ one. Algo-
rithms are executed in an M b,b subpart, propagating their advancements to the remaining processes
that may join the distinguished subset if they are sufficiently stable. To this end, they only need to
be one of the first α repliers to the query-response primitives being executed in the corresponding
algorithm.

Fortunately, not all problems demand a synchronous system in order to be solved. So, each problem
should be carefully studied to analyse in which kinds of dynamic system it is solvable. A sample of this
kind is already presented in [8] where the one-time query problem [10] is initially solved only in an M∗,b

system with the WildFire algorithm [10], but its specification is later slightly relaxed in order to build the
DepthSearch algorithm [8] that solves it also in any M∗,n model but not in an M∞,∞ one.

3.4 Static vs. Dynamic Frontier
Another question that arises from the properties outlined above is where to place the frontier between
static and dynamic systems. According to Definition 1, each process in a dynamic system is unable to
know the identity and location of all the remaining processes and that system may have a potentially very
large number of processes. Thus, a static system should break both conditions. This means that: (1) the
identity and address of all the remaining processes are known by each process, allowing in this way a
logically fully connected network among all system processes (i.e., a network graph diameter of length 1),
and (2) the amount of processes in the system is bound. This means that we may separate an n-arrivalM b,1

subclass in the M b,b class shown in Section 2. This new n-arrival M b,1 subset corresponds to traditional
static distributed systems, since the n-arrival concurrency model (i.e., model Mn

1 in [1]) guarantees that
processes know each other, and a value 1 for the network diameter matches the assumed logical fully
connected network.

Therefore, that hypothetical frontier cannot be drawn on a grid of distributed system classes as that
depicted in Fig. 1, since static distributed systems are only a subpart of the minimal set that can be defined
in the MP,D taxonomy. It is only the n-arrival subset of the M b,1 model that can be obtained when the
network diameter in class M b,b is set to value 1.

Note that such M b,1 model still admits an infinite arrival process concurrency model (i.e., M b
3 in [1]).

The dynamic system described in [35] is an example of that model. This shows that M b,1 is not entirely
static.

4 Related Work
As it has been explained in Consideration C1 and Definition 1, not all processes that belong to a dynamic
distributed system know each other. We have analysed the level of synchrony that can be guaranteed in
each class of dynamic system. Synchrony may be needed for solving some problems in a distributed system
and consensus is an example of those problems. There have been multiple previous papers that have solved
consensus with unknown participants. They also studied the needed level of synchrony, although in an
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implicit way, since the failure detectors [14] being used in each paper were different, and each one requires
a given level of synchrony in order to be implemented. For instance, according to Larrea et al. [28],W ,Q,
S and P detectors demand a synchronous model, while ♦W , ♦Q, ♦S and ♦P demand at least a partial
synchronous model when processes may fail.

To begin with, Jiménez et al. proved in [25] that none of the eight failure detector classes originally
proposed in [14] may be implemented in a system with unknown membership, but the Ω [13] failure detec-
tor can be implemented [2] there. In order to circumvent that impossibility, Cavin et al. [11] had previously
introduced the concept of participant detectors. In that scope, each process calls its local participant detec-
tor in order to obtain an approximation on the current set of participating processes. Participant detectors
have two properties:

• Information inclusion: The information returned by each detector is non-decreasing over time.

• Information accuracy: A detector never returns a process that does not belong to the system.

In the system assumed in [11] processes cannot fail. That paper proves that consensus may be solved
in that system with a one sink reducibility (OSR) participant detector. OSR is a participant detector that re-
quires that the detected network graph is connected and that its directed acyclic graph obtained by reducing
the original directed interconnection graph to its strongly connected components has only one sink.

In practice, this means that the interconnecting network should be stable and the set of processes re-
spects an Mn

1 model [1]. Since failures are not tolerated in that paper, nothing is mentioned about the
failure detector being needed for supporting consensus in that scenario or about the actual level of syn-
chrony required for implementing consensus in that system.

In a subsequent technical report [12], the same authors extend their results to a crash-prone model
and provide a solution for the consensus problem with unknown participants. In that case, they explicitly
recognise that the OSR participant detector should be complemented with a perfect (P) failure detector.
According to Larrea et al. [28], P may only be implemented in a synchronous system. This matches what
we have outlined in our previous sections, since the system being assumed in [12] is an example of an
n-arrival M b,b system and those systems may assume synchronous communication.

Later, Greve and Tixeuil [22] explicitly combine an Ω failure detector with a k-OSR participant detector
in order to solve consensus on an asynchronous system with unknown membership. In that case, a finite
process set is assumed and processes may fail by crashing. The k-OSR participant detector ensures a k-
connected network graph and the system tolerates up to f concurrent failures, with f < k. With our results,
this corresponds to a finite arrival M b,b model that admits up to a partial synchronous communication
model. The usage of an Ω failure detector matches that level of synchrony, according to [28, 25].

Recently, Alchieri et al. [4, 3] have addressed the problem of Byzantine consensus with unknown
participants for systems with n processes and up to f concurrent failures. The interconnecting network
is k-strongly connected, and the algorithm requires a k-OSR participant detector where f < k

2 < n and
the sink graph component should have at least 3f + 1 processes. When all those requirements are met,
Byzantine consensus may be solved like in any distributed system with known participants. This means that
any of the Byzantine-specific failure detectors proposed in [27] may be assumed. Those failure detectors
require a partial synchronous system in order to be implemented, according to [27].

5 Conclusions
Baldoni et al. [8] identify six different classes of dynamic systems (specified as MP,D), crossing two
axes: the degree of concurrency (P ) and the network diameter (D). The resulting classes are: M b,b, Mn,b,
M∞,b, Mn,n, M∞,n and M∞,∞. We have analysed the highest degree of system synchrony achievable in
each class.

Our analysis of the attainable degree of synchrony in every dynamic system class has shown that three
classes are inherently asynchronous, even when synchronous links are assumed: M∞,b,M∞,n andM∞,∞.
Besides, three other subclasses are also asynchronous when they assume an infinite arrival model for their
processes: M b,b, Mn,b and Mn,n. The algorithms that require at least a partially synchronous model can-
not be run in those classes, but there are some system structuring techniques that allow the transformation
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of asynchronous classes into others that admit a synchronous model. Those techniques are based on two
principles: (1) a division of the initial system in multiple interconnectable subsystems with a bound net-
work graph diameter and a global hierarchical structure, imposing a finite arrival model in each subsystem,
and (2) the definition of a stable group of processes that sets the needed level of synchrony for allow-
ing algorithm progress. With those techniques, a larger set of services may be implemented in dynamic
systems.

The degree of synchrony that may be attained in different classes of dynamic systems has been im-
plicitly studied in previous works focused on solving consensus with unknown participants. In that scope,
synchrony is embedded in the implementation requirements of the failure detectors being needed for solv-
ing consensus. Our results provide an alternative way of discussing on synchrony in these systems, being
more direct than that based on failure detectors.
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