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Francesc D. Muñoz-Escoı́1, Rubén de Juan-Marı́n1,
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Abstract

The CAP theorem states that only two of these properties can be simultaneously guaranteed in a
distributed service: (i) consistency, (ii) availability, and (iii) network partition tolerance. This theorem
was stated and proven assuming that “consistency” refers to atomic consistency. However, multiple
consistency models exist and atomic consistency is located at the strongest edge of that spectrum.

Many distributed services deployed in cloud platforms should be highly available and scalable. Net-
work partitions may arise in those deployments and should be tolerated. One way of dealing with CAP
constraints consists in relaxing consistency. Therefore, it is interesting to explore the set of consistency
models not supported in an available and partition-tolerant service (CAP-constrained models). Other
weaker consistency models could be maintained when scalable services are deployed in partitionable
systems (CAP-free models). Three contributions arise: (1) multiple other CAP-constrained models are
identified, (2) a borderline between CAP-constrained and CAP-free models is set, and (3) a hierarchy of
consistency models depending on their strength and convergence is built.

NOTE: This technical report has been extended and improved in a subsequent edition accepted for
its publication in The Computer Journal (Oxford University Press, United Kingdom). The DOI of that
published article is: 10.1093/comjnl/bxy142. The authors recommend that readers download and use
the published article version.

1 Introduction
Scalable distributed services try to maintain their service continuity in all situations. When they are geo-
replicated, a trade-off exists among three properties: replica consistency (C), service availability (A) and
network partition tolerance (P). Only two of those three properties can be simultaneously guaranteed. Such
trade-off was suggested long time ago (Davidson et al., 1985) [12], thoroughly explained by Fox and
Brewer [16] in 1999 and proved by Gilbert and Lynch [17] in 2002. However, the compromise between
strongly consistent actions, availability and tolerance to network partitions was already implicit in Johnson
and Thomas (1975) [22] and justified by Birman and Friedman [7] in 1996.
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Service availability and network partition tolerance are dichotomies. They are either respected or not.
Service availability means that every client request that reaches a service instance should be answered.
When a network partition arises, the instances of a service may be spread among multiple disjoint node
subgroups. Network partition tolerance means that every service instance subgroup goes on while the
network remains partitioned.

On the other hand, service replica consistency admits a gradation of consistency levels. In spite of this,
when we simply refer to “consistency” we understand that it means atomic consistency [27]; i.e., that all
instances are able to maintain the same values for each variable at the same time, providing a behaviour
equivalent to that of a single copy. This led to assume that kind of consistency in the original proofs of the
CAP theorem [17].

With the advent of cloud computing, it is easy to develop and deploy highly scalable distributed services
[34]. Those applications usually provide world-wide services: they are deployed in multiple datacentres
and this implies that network partition tolerance is a must for those services. Thus, those services regularly
prioritise availability when they should deal with the constraints of the CAP theorem, and consistency is the
property being sacrificed. However, that sacrifice should not be complete. Brewer [8] explains that network
partitions are rare, even for world-wide geo-replicated services. If services demand partition tolerance and
availability, their consistency may be still quite strong most of the time, relaxing it when any temporary
network partition arises.

Therefore, it seems interesting to explore which levels of consistency are strong enough to be directly
implied by the CAP constraints; i.e., those CAP-constrained models are not supported when the network
becomes partitioned. On the other hand, there are several relaxed models that remain available when a
network partition arises. They constitute the CAP-free set of models and there is a (not yet completely
known) frontier between CAP-free and CAP-constrained models. Two questions arise in this scope: (1)
Does CAP affect only to atomic consistency or are there any other “CAP-constrained” models? (2) If there
were any other models, what would the CAP-constrained vs. CAP-free frontier be? Although some partial
answers to these questions have been given in previous papers [32, 36, 4], let us provide a new and revised
answer to them in the following sections.

2 System Model
A distributed system S = (P,O) is assumed. The real-time domain is represented by set T . S is partially
synchronous and consists of: (1) a set of processes P connected by a network where processes communicate
through message passing, and (2) a set of objects O, with their states and methods. Processes in P may fail.
Scalable distributed services may be deployed in S. Those services consist of a set of objects O. Objects
are replicated in order to improve their availability. Their instances are deployed in P using a replication
protocol and respecting some replica consistency model.

Function Connect : P×P×T →{ f alse, true}, used as Connect(p1, p2, t), returns true when processes
p1 and p2 are connected at time t, and false otherwise. Communication may fail when a temporary network
partition occurs, defined as follows.

Definition 1 (Network partition). When a network partition NP= (S,K, it,et) occurs in a system S= (P,O)
from some initial time it ∈ T to an end time et ∈ T (it < et), S becomes partitioned in a set K of network
components, with | K |> 1, such that:

1.
⋃

i∈K Si ⊆ S, where Si = (Pi,O)

2.
⋃

i∈K Pi ⊆ P

3. ∀i, j ∈ K, i 6= j : Pi
⋂

Pj = /0

4. ∀i, j ∈ K, i 6= j,∀pm ∈ Pi,∀pn ∈ Pj,∀t ∈ T, it ≤ t ≤ et : Connect(pm, pn, t) = f alse

5. ∀i ∈ K,∀pm, pn ∈ Pi,∀t ∈ T, it ≤ t ≤ et : Connect(pm, pn, t) = true

Processes in different components cannot communicate with each other. Processes in the same compo-
nent intercommunicate without problems. A partitionable system model is assumed in regard to process
behaviour.
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Proposition 1 (Partitionable system). When a network partition NP = (S,K, it,et) occurs in S = (P,O),
every operation from every process pi ∈ P is able to start and/or finish in a regular way in the (it,et)
interval, independently on the connectivity of pi with each other process p j ∈ P.

According to Prop. 1, no operation gets indefinitely blocked while a network partition lasts in S. Con-
sidering the CAP constraints, availability and network partition tolerance are respected, while consistency
compliance may be sacrificed.

3 Basic Specification
Viotti and Vukolić propose a framework for specifying distributed (non-transactional) data consistency
models in [43], based on that presented in [10, 9]. Since the CAP theorem involves software services
deployed in distributed systems, it makes sense to consider those models in this scope. That framework
may be summarised as follows.

3.1 Specification Framework
Services consist of processes and objects. Object values belong to set V . Processes interact with objects
invoking their operations, whose types belong to set OT .

Tuples (proc,type,obj,ival,oval,st,rt) represent operations, where:

• proc ∈ P is the identifier of the process that invokes the operation.

• type ∈ OT is the operation type; e.g., wr for writes and rd for reads.

• obj ∈ O is the identifier of the invoked object.

• ival ∈V ∪{t} is the operation input value, or t in case of a read operation.

• oval ∈V ∪{t,∇,Θ} is the operation output value, or t in case of a write or ∇ if the operation does
not return or Θ when a write completes in proc but not in other subsets of P.

• st ∈ T is the operation invocation (i.e., start) time.

• rt ∈ T is the operation return time.

In a tuple T = (e1, . . . ,en), T.ei refers to element ei in that tuple.
A history H is a set of operations. A history contains all operations invoked in an execution E of S.

H |wr (respectively, H |rd) denotes the set of write (respectively, read) operations in a history H. Formally,
H |wr= {op ∈ H : op.type = wr}.

The following relations are needed: (1) rb (returns-before) is a partial order on H based on real-time
precedence: rb ≡ {(a,b) : a,b ∈ H ∧ a.rt < b.st}, (2) ss (same-session) is an equivalence relation on H
that groups the operations invoked by the same process: ss ≡ {(a,b) : a,b ∈ H ∧a.proc = b.proc}, (3) so
(session order) is a partial order defined as: so≡ rb∩ ss, (4) ob (same-object) is an equivalence relation on
H that groups the operations invoked on the same object: ob≡ {(a,b) : a,b ∈ H ∧a.ob j = b.ob j}, and (5)
concur is a symmetric binary relation that includes all pairs of real-time concurrent operations invoked on
the same object: concur ≡ ob\ rb.

Moreover, there are other specification aspects to be considered. To begin with, the concur relation is
complemented with a function Concur : H → 2H that denotes the set of write operations concurrent with
a given operation: Concur(a) ≡ {b ∈ H |wr: (a,b) ∈ concur}. A binary relation rel over A is a subset
rel ⊆ AxA. The projection rel |wr→rd identifies all pairs of operations in relation rel that consist of a write
and a read operation. H/ ≈rel denotes the set of equivalence classes determined by relation rel, rel−1

denotes the inverse relation of rel and rel(a) = {b ∈ A : (a,b) ∈ rel}. Note that rel(a) is a set, since there
may be many elements related transitively to a.

An execution is defined as E = (H,vis,ar) and is built on a history H, complemented with two relations
vis and ar on elements of H, where: (1) vis (visibility) is an acyclic partial order that accounts for the
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propagation of write operations; two write operations are invisible to each other when they are not ordered
by vis, and (2) ar (arbitration) is a total order on operations of the history that specifies how conflicts due
to invisible operations are resolved in E in order to respect its consistency models.

The happens-before (hb) partial order is defined as the transitive closure of the union of so and vis; i.e.,
hb≡ (so∪ vis)+.

Some extensions to [43] are needed in order to deal with partitionable networks. Those extensions are
specified hereafter.

E is the set of executions in S. EP is the subset of E that contains all executions in which the conditions
of Def. 1 are met, i.e., their network becomes temporarily partitioned. Besides, EC is the complementary
subset of EP in which no network partition has occurred. Thus, E = EP∪EC and EP∩EC = /0.

The context C of an operation op in execution E is defined as: Cop = cxt(E,op)≡ (E.vis−1(op),E.vis |Cop.H

, E.ar |Cop.H), i.e., a projection of E that only keeps in its history those operations in vis−1(op). For
each data type, function F specifies the set of intended return values of op in relation to its context:
F (op,cxt(E,op)). With F , the return value consistency is defined as: RVAL(F )≡ ∀op ∈ E.H : op.oval
∈ F (op,cxt(E,op)). In this scope, we use by default a register data type (Freg). Let us explain how
op.oval is chosen from Cop in Freg. From vis−1(op), only those op2 ∈Cop.H : op2.oval 6= ∇∧op2.ob j =
op.ob j are considered. Multiple candidates may arise. If so, only those operations without vis-successors
in Cop.H are assessed. From that subset, with operations invisible to each other, the read value is that of
the latest operation in ar order. If no candidate exists, then op.oval is a special value ⊥.

Table 1: Definition of basic consistency predicates.
Predicate Definition
RVAL(F ) ∀op ∈ H : op.oval ∈F (op,cxt(E,op))
PRAM so⊆ vis
SINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′×H)
LAZYSINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval ∈ {∇,Θ}} : vis = ar \ (H ′×H)
REALTIME rb⊆ ar
REALTIMEWRITES rb |wr→op⊆ ar
SEQRVAL(F ) ∀op ∈ H : Concur(op) = /0⇒ op.oval ∈F (op,cxt(E,op))
EVENTUALVISIBILITY ∀a ∈ H,∀[ f ] ∈ H/≈ss:| {b ∈ [ f ] : (a,b) ∈ rb∧ (a,b) 6∈ vis} |< ∞

NOCIRCULARCAUSALITY acyclic(hb)
STRONGCONVERGENCE ∀a,b ∈ H |rd : vis−1(a) |wr= vis−1(b) |wr⇒ a.oval = b.oval
CAUSALVISIBILITY hb⊆ vis
CAUSALARBITRATION hb⊆ ar
TIMEDVISIBILITY(∆) ∀a ∈ H |wr,∀b ∈ H,∀t ∈ T : a.rt = t ∧b.st = t +∆

⇒ (a,b) ∈ vis
REALTIMEWW rb |wr→wr⊆ ar
CONCURRVAL(F ) ∀op ∈ H : op.oval ∈F (op,cxt(E,op)∪Concur(op))
K-REALTIMEREADS(K) ∀a ∈ H |wr,∀b ∈ H |rd ,∀PW ⊆ H |wr,∀pw ∈ PW :| PW |< K∧

(a, pw) ∈ ar∧ (pw,b) ∈ rb∧ (a,b) ∈ rb⇒ (a,b) ∈ ar
NOJOIN ∀ai,bi,a j,b j ∈ H : ai 6≈ss a j ∧ (ai,a j) ∈ ar \ vis∧ai �so bi∧

a j �so b j⇒ (bi,b j),(b j,bi) 6∈ vis
ATMOSTONEJOIN ∀ai,a j ∈ H : ai 6≈ss a j ∧ (ai,a j) ∈ ar \ vis⇒| {bi ∈ H : ai �so bi∧

(∃b j ∈ H : a j �so b j ∧ (bi,b j) ∈ vis)} |≤ 1∧ | {b j ∈ H : a j �so b j
∧(∃bi ∈ H : ai �so bi∧ (b j,bi) ∈ vis)} |≤ 1

PEROBJECTPRAM (so∩ob)⊆ vis
PEROBJECTSINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis∩ob = ar∩ob\ (H ′×H)

Let us use an execution Ex for explaining the specification aspects presented in previous paragraphs. Let
S be ({p1, p2},{x}) and Ex =({o1 =(p1,wr,x,1,t,0,1), o2 =(p2,wr,x,2,t,0,1), o3 =(p1,rd,x,t,1,1,2),
o4 = (p2,rd,x,t,2,1,2), o5 = (p1,rd,x,t,2,3,4), o6 = (p2,rd,x,t,1,3,4)}, {(o1,o3), (o3,o5), (o2,o4),
(o4,o6), (o2,o5), (o1,o6)}, {(o4,o1),(o1,o6),(o6,o3),(o3,o2),(o2,o5)}). Local execution order intro-
duces (o1,o3), (o3,o5), (o2,o4) and (o4,o6) in vis. Values written in o1 and o2 are propagated to the
other process, so (o2,o5) and (o1,o6) are in vis. Since ar is a total order, it sets this ordering in Ex:
o4 < o1 < o6 < o3 < o2 < o5. There are four reads: o3,o4,o5 and o6, with these context histories:
Co3 .H = {o1}, Co4 .H = {o2}, Co5 .H = {o1,o3,o2}, Co6 .H = {o2,o4,o1}. In each Ci.H, the underlined
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operations are discarded when RVAL(F ) is applied, since they have subsequent operations in vis that are
also in Ci.H. From the remaining subsets, any potential conflict is resolved according to ar. This explains
the read values.

3.2 Distributed Consistency Models
Viotti and Vukolić [43] distinguish ten groups of consistency models: (1) linearisable and other strong
models, (2) weak and eventual consistency, (3) PRAM and sequential consistency, (4) session guarantees,
(5) causal models, (6) staleness-based models, (7) fork-based models, (8) composite and tunable models,
(9) per-object models, and (10) synchronised models. Synchronised models are described in [43] for
completeness; they make sense in multiprocessor computers but not in general distributed systems. The
models in the eighth group cannot be specified with the proposed consistency predicates. Therefore, no
relation with the models contained in other groups can be set for them. Those two groups are not considered
hereafter. Table 1 shows a set of consistency predicates. With those predicates, consistency models may be
specified as shown in Table 2.

Consistency models are also known as consistency conditions. Both terms are synonyms, but generate
two different kinds of names. Conditions use nouns (e.g., linearisability [20]) while models use adjectives
(e.g., atomic, regular and safe [27]). In order to be uniform, this paper uses models and adjectives in order
to refer to consistency in all cases.

An execution E satisfies a consistency model M built as a conjunction of multiple consistency predicates
(M ≡P1∧ . . .∧Pn) iff E satisfies all those predicates. Formally: E |= M⇔ E |= P1∧ . . .∧Pn.

In regard to the consistency models specified in Table 2, PREFIXSEQUENTIAL(F ) is derived from
the “prefix consistency” proposed in Bayou [40]. Bayou manages a partitionable system. To this end,
write operations have two states: tentative (Θ) and committed (t). That management is specified using
LAZYSINGLEORDER in Table 2. In Bayou, a write operation op returns control once it reaches a single
server pi. At that time, op is still tentative (i.e., op.oval = Θ). To be committed, pi propagates op to
a primary manager. The primary manager for op.ob j chooses a commit order (that conditions the ar
relation in that execution) for all new writes on that object and that chosen sequence is kept in a log and
lazily communicated to every other process. Disconnected nodes should eventually contact the primary
manager to learn that commit order. At that time, those previously disconnected processes communicate
their tentative writes to the primary (to be ordered on the next commit) and apply the already committed
writes on their local replicas. This means that tentative writes may be undone and reapplied in their correct
sequence position when they had been initially applied in a disconnected node. When a write op is applied
onto the replica of object op.ob j in a process p j in the commit order, op.oval becomes t in H |p j .

3.3 CAP-related Definitions
Let assume that the executions in system S are driven by a consistency model CM ≡P1 ∧ . . .∧Pn. All
executions in EC comply always with the definition of CM. However, that behaviour may vary when
network partitions arise. That fact originates the following definitions.

Definition 2 (CAP-free consistency model). CM is CAP-free if every execution E in EP respects all con-
sistency predicates that define CM.

Formally: ∀E ∈ EP : E |= P1∧ . . .∧Pn.

This means that a CAP-free model is respected when the network is partitioned. On the other hand, a
CAP-constrained model is not respected by every execution in case of network partitions:

Definition 3 (CAP-constrained consistency model). CM is CAP-constrained if there is an execution E in
EP that does not fulfil all consistency predicates that define CM.

Formally: ∃E ∈ EP : E 6|= P1∧ . . .∧Pn.

Def. 3 cannot consider every execution in EP since there may be executions in a partitioned system that
still comply with all CM predicates. For instance, let consider execution E1 ∈ EP with S = ({p1, p2},{x,y})
and a partition with P1 = {p1}, P2 = {p2}, it = 4 and et = 10: E1 = ({o1 = (p1,wr,x,2,t,0,1), o2 =

5



Table 2: Definition of basic consistency models.
Model Ref. Definition
1.- Linearisable and other strong models
LINEARISABLE(F ) [20] SINGLEORDER ∧ REALTIME ∧ RVAL(F )
REGULAR(F ) [27] SINGLEORDER ∧ REALTIMEWRITES ∧ RVAL(F )
SAFE(F ) [27] SINGLEORDER ∧ REALTIMEWRITES ∧ SEQRVAL(F )
2.- Weak and eventual consistency
WEAK No requirement
EVENTUAL(F ) [13] EVENTUALVISIBILITY ∧ NOCIRCULARCAUSALITY

∧ RVAL(F )
STRONGEVENTUAL(F ) [38] EVENTUAL(F ) ∧ STRONGCONVERGENCE

3.- PRAM and sequential consistency
PRAM(F ) [30] PRAM ∧ RVAL(F )
SEQUENTIAL(F ) [26] SINGLEORDER ∧ PRAM(F )
4.- Session guarantees
MONOTONICREADS [39] ∀a ∈ H,∀b,c ∈ H |rd : (a,b) ∈ vis∧ (b,c) ∈ so⇒

(a,c) ∈ vis
READYOURWRITES [39] ∀a ∈ H |wr,∀b ∈ H |rd : (a,b) ∈ so⇒ (a,b) ∈ vis
MONOTONICWRITES [39] ∀a,b ∈ H |wr: (a,b) ∈ so⇒ (a,b) ∈ ar
WRITESFOLLOWREADS [39] ∀a,c ∈ H |wr,∀b ∈ H |rd : (a,b) ∈ vis∧ (b,c) ∈ so

⇒ (a,c) ∈ ar
5.- Causal models
CAUSAL(F ) [1] CAUSALVISIBILITY ∧ CAUSALARBITRATION

∧ RVAL(F )
CAUSAL+(F ) [31] STRONGCONVERGENCE ∧ CAUSAL(F )
REALTIMECAUSAL(F ) [32] REALTIME ∧ CAUSAL(F )
6.- Staleness-based models
PREFIXSEQUENTIAL(F ) [40] LAZYSINGLEORDER ∧ MONOTONICWRITES

∧ RVAL(F )
TIMEDCAUSAL(F ,∆) [42] CAUSAL(F ) ∧ TIMEDVISIBILITY(∆)
TIMEDSERIAL(F ,∆) [41] SINGLEORDER ∧ TIMEDVISIBILITY(∆) ∧ RVAL(F )
K-LINEARISABLE(F ,K) [2] SINGLEORDER ∧ K-REALTIMEREADS(K)

∧ REALTIMEWW ∧ RVAL(F )
K-REGULAR(F ,K) [2] SINGLEORDER ∧ K-REALTIMEREADS(K)

∧ REALTIMEWW ∧ CONCURRVAL(F )
K-SAFE(F ,K) [2] SINGLEORDER ∧ K-REALTIMEREADS(K)

∧ REALTIMEWW ∧ SEQRVAL(F )
7.- Fork-based models
FORKLINEARISABLE(F ) [33] REALTIME ∧ NOJOIN ∧ PRAM(F )
FORKSEQUENTIAL(F ) [35] NOJOIN ∧ PRAM(F )
FORK∗(F ) [29] READYOURWRITES ∧ REALTIME ∧ RVAL(F )

∧ ATMOSTONEJOIN

8.- Per-object models
SLOW(F ) [21] PEROBJECTPRAM ∧ RVAL(F )
CACHE(F ) [19] PEROBJECTSINGLEORDER ∧ SLOW(F )
PROCESSOR(F ) [19] PEROBJECTSINGLEORDER ∧ PRAM(F )
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Linearisable

Timed causal

Figure 1: Strength-based partial ordering of consistency models.

(p2,rd,x,t,2,2,3), o3 = (p2,wr,x,3,t,3,4), o4 = (p1,wr,y,t,2,4,5), o5 = (p2,wr,x,6,t,5,6), o6 =
(p1,rd,y,t,2,7,8), o7 = (p1,rd,x,t,6,11,12), o8 = (p2,rd,y,t,2,13,14)}, {(o1,o2), (o2,o3), (o3,o4),
(o4,o5), (o5,o6), (o6,o7), (o7,o8)}, E1.vis).

Processes p1 and p2 have remained active in the partition interval (4,10). Availability is maintained. E1
complies with all predicates that define the LINEARISABLE(F ) model. As it will be stated in Theorem 1,
LINEARISABLE(F ) is CAP-constrained. This shows that there are executions of CAP-constrained models
in partitioned systems that still respect the predicates that define their consistency model.

In order to compare consistency models in S, let use E CM as the set of executions admitted in S by a
consistency model CM. This allows the following definition:

Definition 4 (Weaker than (→) relation on models). A model A≡PA,1∧ . . .∧PA,n is weaker than another
model B ≡PB,1 ∧ . . .∧PB,m, i.e., A→ B, when the set of executions admitted by B is a proper subset of
the set of executions admitted by A.

Formally: A→ B≡ E B ⊂ E A.
Alternatively: A→ B≡PB,1∧ . . .∧PB,m⇒PA,1∧ . . .∧PA,n.

When A→B, model B is stronger than A. Besides, when A 6→B∧B 6→A then A and B are incomparable.
Figure 1 depicts those relations. This initial model hierarchy is adapted from [43]. From Def. 4, combined
with Def. 2 and 3, the following propositions can be stated.

Proposition 2 (Freedom of weaker CAP-free models). Given two consistency models A ≡PA,1 ∧ . . .∧
PA,n and B≡PB,1∧ . . .∧PB,m, if A→ B and B is CAP-free, then A is also CAP-free.

Proof. By Def. 4: (1) PB,1∧ . . .∧PB,m⇒PA,1∧ . . .∧PA,n. Additionally, since B is CAP-free, according
to Def. 2: (2) ∀E ∈ E B

P : E |= PB,1∧ . . .∧PB,m.
Let assume that A was CAP-constrained. In that case, according to Def. 3: ∃E1 ∈ EP : E1 6|= PA,1 ∧

. . .∧PA,n. This would imply that PA,1 ∧ . . .∧PA,n is false in some executions when network partitions
arise. If so, due to (1), PB,1 ∧ . . .∧PB,m is neither generally true in case of partitions. So, an execution
E2 could be found such that E2 ∈ EP : E2 6|= PB,1∧ . . .∧PB,m and this implies that B is CAP-constrained.
This sets a contradiction with (2). Thus, A is CAP-free.

Proposition 3 (Constriction of stronger CAP-constrained models). Given two consistency models A ≡
PA,1 ∧ . . .∧PA,n and B ≡PB,1 ∧ . . .∧PB,m, if A→ B and A is CAP-constrained, then B is also CAP-
constrained.
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Proof. By Def. 4: (1) PB,1∧ . . .∧PB,m⇒PA,1∧ . . .∧PA,n. Additionally, since A is CAP-constrained,
according to Def. 3: (2) ∃E1 ∈ EP : E1 6|= PA,1∧ . . .∧PA,n.

Let assume that B was CAP-free. In that case, according to Def. 2: ∀E ∈ E B
P : E |= PB,1∧ . . .∧PB,m.

This would imply that PB,1 ∧ . . .∧PB,m is true when network partitions arise. If so, due to (1), PA,1 ∧
. . .∧PA,n is also true in case of partitions. Thus, ∀E ∈ E A

P : E |= PA,1 ∧ . . .∧PA,n and therefore A is
CAP-free. This sets a contradiction with (2). So, B is CAP-constrained.

4 Finding a Consistency Border
Let us take the specifications of all consistency models as a base for analysing which requires any agreement
that a network partition will break. Those models are CAP-constrained. Section 4.1 presents that analysis.
Section 4.2 goes on in this analysis looking for other conditions that are not related with consensus and
cannot be either attained in an available and partitioned system. Finally, Section 4.3 looks for convergence-
based inter-model relations.

Most predicates in Table 1 strengthen the definition of the consistency models that include them. How-
ever, there are several exceptions: K-REALTIMEREADS(K), NOJOIN, ATMOSTONEJOIN and SEQR-
VAL(F ). The first one breaks read determinism. Instead of returning the last received write, each process
may read any of the K latest writes. The second and third ones impose divergence among processes once
a failure happens. The last one is a weaker variant for RVAL(F ), since it drops the determinism of read
operations in case of concurrent writes. Because of this, all consistency models that include them should
be analysed with care.

4.1 Starting Point: The Linearisable Model
Gilbert and Lynch [17] proved the CAP theorem assuming linearisable [20] consistency. Let us start
revising its definition, given in Table 2, with the goal of identifying which predicates cannot be respected
in a partitioned and available system:

LINEARISABLE(F )≡ SINGLEORDER ∧ REALTIME ∧ RVAL(F )
RVAL(F ) defines the appropriateness of the return value in an operation based on its execution context.

Its compliance is assumed in the following discussions. The other predicates mean the following (Table 1):

• REALTIME: rb ⊆ ar. This predicate states that all operations ordered by the returns-before (rb)
relation are considered in the arbitration relation (ar). Since rb considers real time, it is able to
order the operations executed by different processes, even when they are placed in different network
components in a partition.

Relation ar totally orders the operations in a history H. Considered in isolation, REALTIME may be
respected in a partitioned system. However, it leads to contradictions when the vis relation assumed
in other predicates requires communication among isolated network components.

As a result, the inclusion of REALTIME in a consistency model may endanger the compliance with
other vis-related predicates, e.g., SINGLEORDER.

• SINGLEORDER: ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′×H). This predicate states that the
visibility relation (vis) coincides with the arbitration relation (ar), discarding incomplete operations.
Let us prove that SINGLEORDER cannot be respected while a temporary network partition lasts in a
system.

Lemma 1 (SINGLEORDER ∧ RVAL(F ) unattainability). In a system S = (P,O) that uses a con-
sistency model that includes SINGLEORDER, while a network partition NP arises, there is some
execution E ∈ EP in which SINGLEORDER ∧ RVAL(F ) is false.

Proof. Without loss of generality, let us assume the following two conditions:

1. ∃E ∈ EP: E |= SINGLEORDER ∧ RVAL(F ).
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2. Partition NP has happened in the interval (it,et) generating two different separate network
components P1 and P2; i.e., NP = (S,{1,2}, it,et). ∃p1, p2 ∈ P : p1 ∈ P1, p2 ∈ P2.

Process p1 has executed op1,1 = (p1,wr,x, v,t,st,st+1). Besides, p2 has also run op2,1 = (p2,wr,x,
v′,t,st ′,st ′+1) with both st,st ′ ∈ (it,et−1). Process p1 also runs op1,2 = (p1,rd,x,t,v,st ′′,st ′′+1)
with st ′′ ∈ (it,et−1) and st < st ′ < st ′′.

Since op1,1 and op1,2 have happened both in p1, they are trivially related by vis: (op1,1,op1,2) ∈ vis.
This justifies the read value in op1,2 according to RVAL(F ).

By definition, ar should order all the operations in E. Since RVAL(F ) is respected in E, the order
set by ar should allow that op1,2 reads value v. This may only happen when E.ar is either ar1 =
{(op2,1,op1,1),(op1,1,op1,2)} or ar2 = {(op1,1,op1,2),(op1,2,op2,1)}. Let us assume that E.ar =
ar1. Condition (1) above states that SINGLEORDER is true in E. Thus, E.vis = E.ar.

Condition (2), above, states that S remained partitioned while E was run. Because of condition 4
from Def. 1, p1 and p2 cannot exchange messages in (it,et). This means that (op1,∗,op2,1) 6∈ vis
∧ (op2,1,op1,∗) 6∈ vis; i.e., p1 and p2 operations cannot be directly or transitively related in vis. So,
E.vis 6= E.ar. Therefore, this sets a contradiction with our assumed condition (1); i.e., execution E
cannot respect SINGLEORDER ∧ RVAL(F ).

Lemma 1 assumes a single object x in its proof. So, this result applies to other predicates that
constrain the vis = ar equality to each object considered in isolation, e.g., to the PEROBJECTSIN-
GLEORDER predicate.

These predicates have been used in the definition of several consistency models. Models based on
SINGLEORDER or PEROBJECTSINGLEORDER will be CAP-constrained when no relaxing predicate is
used in their definition. On the other hand, those using SINGLEORDER and any relaxing predicate, and
those based on REALTIME should be further assessed. Let us revise which they are:

• SINGLEORDER with no relaxing predicate: linearisable, regular, sequential, processor, cache and
timed serial.

Let us refer to these models as strong-SINGLEORDER models. SSO is the set of those models. All
they are CAP-constrained, as stated in the following theorem.

Theorem 1 (Strong-SINGLEORDER models are CAP-constrained). The LINEARISABLE(F ), REGU-
LAR(F ), SEQUENTIAL(F ), PROCESSOR(F ), CACHE(F ) and TIMEDSERIAL(F ,∆) models are
CAP-constrained.

Proof. All models in SSO include the SINGLEORDER ∧ RVAL(F ) conjunction. They do not include
any other predicate that relaxes what is required in that conjunction. Formally: ∀M j ∈ SSO,M j ≡
P j,1∧ . . .∧P j,n j . ∃i,1≤ i≤ n j : P j,i = SINGLEORDER ∧ RVAL(F ).

Let us assume a system S with model M j. Then, predicate P j,i allows the application of Lemma 1.
As a result: ∃E ∈ EP,E 6|= P j,1∧ . . .∧P j,n j , since P j,i may be false in those executions. Thus, by
Def. 3, each M j is CAP-constrained.

• SINGLEORDER with relaxing predicates: safe, k-linearisable, k-regular and k-safe.

Let us start our analysis with the safe model. It relaxes SINGLEORDER with the conjunction of the
SEQRVAL(F ) predicate. The latter only requires determinism in a read operation opr when there
are no other concurrent write operations with opr. When there are concurrent write operations, opr
may return any value. Considering that behaviour, let us prove that the SAFE(F ) model is CAP-
constrained.

Theorem 2 (SAFE(F ) is CAP-constrained). The SAFE(F ) consistency model is CAP-constrained.
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Proof. Let us assume an execution Es ∈ EP with model SAFE(F ). Let us consider that there are two
network components P1 and P2 in Es, each one consisting of a single process, p0 and p1, respectively.
Let us imagine that in Es there are no read events in process pi concurrent with write events in process
p1−i. This may easily happen if the set of objects being managed by processes p0 and p1 is large,
since each time one process is writing on a given object ok the other process may be reading other
objects. In this scenario, SEQRVAL(F ) is equivalent to RVAL(F ). As a result, Es 6|=SAFE(F ),
since Lemma 1 may then be applied onto Es. Because of this, considering Def. 3, SAFE(F ) is
CAP-constrained.

The remaining models (k-linearisable, k-regular and k-safe) share K-REALTIMEREADS(K) as their
relaxing predicate. Let us refer to them as k-staleness models. Like SEQRVAL(F ), K-REALTIME-
READS(K) relaxes read determinism. In this case, each read operation may return any of the K latest
written values in S. Let us consider this predicate in the following lemma.

Lemma 2 (K-REALTIMEREADS(K) ∧ SINGLEORDER unattainability). In a system S = (P,O) that
uses a consistency model with K-REALTIMEREADS(K) ∧ SINGLEORDER, while a network parti-
tion NP arises in a time interval (it,et), there is some execution E ∈EP in which K-REALTIMEREADS(K)
∧ SINGLEORDER is false.

Proof. Let us assume that there are at least two network components in S, being P1 and P2 two
of those components, with at least one process in each component, p1 and p2, respectively. Ert is
an execution in EP. In Ert , process p1 has written K different values on object x after time it, in
operations op1,1 . . .op1,K , respectively. Later, p2 reads x in operation op2,1. Process p2 had not
written any value on x since time it. All those operations have happened before time et.

According to K-REALTIMEREADS(K), these K latest writes from p1 precede op2,1 in the ar relation.
Thus, conceptually, p2 reads any of those values in op2,1. However, SINGLEORDER requires that
all completed operations in ar are also in vis. This means that all effects from op1,1 . . .op1,K must
be already delivered to p2 when op2,1 is started. Since p1 and p2 remain disconnected in the (it,et)
interval, according to condition 4 from Def. 1, the values written by p1 are not visible to op2,1. So,
vis 6= ar in Ert , i.e., SINGLEORDER is not true in Ert .

Therefore, there are executions that do not comply with K-REALTIMEREADS(K) ∧ SINGLEORDER
in S.

With that result, the following theorem may be proven.

Theorem 3 (K-staleness models are CAP-constrained). K-REGULAR(F ,K), K-SAFE(F ,K) and
K-LINEARISABLE(F ,K) are CAP-constrained.

Proof. Immediate from Lemma 2 and Def. 3.

• REALTIME (or its variants REALTIMEWRITES, REALTIMEWW): linearisable, regular, safe, k-
linearisable, fork linearisable, and fork∗. From these models, fork linearisable and fork∗ have not
been considered yet in the analysis, since the others include SINGLEORDER in their predicates.
Besides, fork linearisable and fork∗ contain in their definitions, respectively, the NOJOIN and AT-
MOSTONEJOIN relaxing predicates that have not been assessed yet.

It is worth noting that fork-based models were proposed by Mazières and Shasha in [33] with the
aim of dealing with Byzantine failures in the management of networked file systems. When a failure
of that kind arises, some users may create a new version of a given file without considering the
latest version kept in the servers. This generates a new branch (i.e., a fork) of versions thereafter.
If multiple failures exist, the resulting set of versions defines a tree of divergent branches and those
branches cannot join again. The specification shown in Tables 1 and 2 is general and does not
consider specific failure models. Our discussion considers those generalised consistencies. In them,

10



Causal

PRAM (FIFO)

Slow memory Eventual

Weak

WFR MW MRRYW

Fork sequential

Fork*

CAP−free

Fork linearisable Real−time causal Timed causal

Linearisable

K−Linearisable

CCC

CAP−constrained

Models

Causal+

Strong eventualK−Safe

K−Regular

Cache

ProcessorPrefix sequential

Regular

Sequential

LEGEND

Safe

Timed serial

Figure 2: CAP-constrained and CAP-free consistency models considering SINGLEORDER and REALTIME.

a fork in the version tree might be caused by a network partition. That possibility was not explicitly
assumed in the original fork-based papers [33, 35, 29].

Let us assess both models.

Theorem 4 (FORKLINEARISABLE(F ) is CAP-free). The FORKLINEARISABLE(F ) consistency
model is CAP-free.

Proof. The fork linearisable model is the conjunction of PRAM, REALTIME, NOJOIN and RVAL(F ).
As it has been already explained, REALTIME requires the rb relation to be a subset of ar. Besides,
RVAL(F ) requires that the output values from operations be consistent with their context, i.e., the
values written in other processes may only be read if those two operations (write and read, respec-
tively) are related by vis. PRAM requires that local operations in a process (i.e., session order: so)
are eventually known by other processes in their execution order (so ⊂ vis). This may be ensured
using FIFO-ordered network channels, but PRAM does not compel immediate value propagation.
So, it can be easily enforced at reconnection time. Finally, NOJOIN states that if two operations have
been run by two different processes and they are related by ar but not by vis, then they can be the
origin of two subsequent divergent subhistories.

The NOJOIN predicate ensures that the other predicates in this consistency model remain true when a
network partition arises. If a network partition exists, then processes in different network components
cannot communicate. At that time, each component “forks” an isolated path in the global execution,
according to the NOJOIN predicate. Thus, REALTIME and RVAL(F ) remain true in each component.
Therefore, every predicate remains true in that partitioned scenario. According to Def. 2, this means
that FORKLINEARISABLE(F ) is a CAP-free model.

Corollary 1 (FORK∗(F ) is CAP-free). The FORK∗(F ) consistency model is CAP-free.

Proof. FORK∗(F ) is weaker than FORKLINEARISABLE(F ) and, according to Theorem 4, the latter
is CAP-free. Thus, due to Proposition 2, FORK∗(F ) is also CAP-free.

According to this first stage related with SINGLEORDER and REALTIME, a preliminary borderline
between CAP-constrained and CAP-free models could be set as depicted in Figure 2.
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4.2 Exploring the Frontier
Considering Figure 2, let us continue our analysis revising which are the predicates that define the set CCC
(CAP-constrained candidates) of strongest models that do not need the SINGLEORDER or REALTIME
conditions in their specifications. In this scope, “strongest” refers to those models that: (1) are not tagged
yet as CAP-constrained, (2) are directly related as “weaker than” a CAP-constrained model, and (3) do not
have any other CAP-free model stronger than them. According to Figure 2, these CCC models are: strong
eventual, causal+, timed causal, real-time causal and prefix sequential. The fork linearisable model also
complies with those three conditions, but Theorem 4 has already proven that it is CAP-free.

If any of these models was also CAP-constrained, we would continue our analysis with the new can-
didates generated by its inclusion in the CAP-constrained set. On the other hand, if no CCC model is
identified as CAP-constrained in this stage, other models more relaxed than those in CCC will be also
CAP-free, according to Prop. 2. In that case, our analysis should end there.

Part of these CCC models have been proven CAP-free either in the papers that proposed them or in
other recent works. That is the case of STRONGEVENTUAL(F ) [38], CAUSAL+(F ) [31], REALTIME-
CAUSAL(F ) [32] and PREFIXSEQUENTIAL(F ) [18]. Therefore, they are CAP-free by definition.

Let us consider now the other model: timed causal.

Theorem 5. The TIMEDCAUSAL(F ,∆) consistency model is CAP-constrained.

Proof. Let us assume an execution E ∈ EC : E |= TIMEDCAUSAL(F ,∆). Let a partition occur in S with
et − it > ∆. Let E ′ ∈ EP : E ′.H = E.H. There may be (a,b) pairs in E ′.vis generated at network re-
connection time with a.rt = it (i.e., t = it) and b.st > et. Since et − it > ∆, then b.st > t +∆. Thus, E ′

makes TIMEDVISIBILITY(∆) false and this means that E ′ 6|= TIMEDCAUSAL(F ,∆). Therefore, by Def.
3, TIMEDCAUSAL(F ,∆) is CAP-constrained.

This analysis has shown that the timed causal model is CAP-constrained. Figure 2 shows that timed
causal is directly stronger than causal and there is no other weaker model directly related with timed
causal. The causal model is weaker than causal+ and the latter is CAP-free. Thus, according to Prop. 2,
CAUSAL(F ) is CAP-free. This means that no other CAP-constrained model may be found. Therefore, the
borderline between CAP-constrained and CAP-free models is finally set as depicted in Figure 3.

4.3 Revising Inter-Model Relationships
Previous figures show some “weaker than” relations between models. However, there are some other inter-
model relations that have not been depicted yet. Those relations are explained hereafter. Section 4.3.1
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discusses configurable models. Later, Section 4.3.2 describes relations that deal with state convergence.

4.3.1 Configurable Models

The family of probabilistic bounded staleness (PBS) [6] models consists of three models: PBS k-staleness,
PBS t-visibility and PBS (k,t)-staleness. They are intended for quorum-based eventually consistent datas-
tores. The first describes a probabilistic model that restricts the staleness of read values. The second limits
probabilistically the time needed by written values to become visible. The third one combines the other
two. PBS k-staleness, depending on its parameter k, may be weaker than or equivalent to k-linearisable,
while PBS t-visibility is a probabilistic weakening of TIMEDVISIBILITY(∆). Their place around the CAP-
constrained vs CAP-free frontier depends on the values of their parameters, and this avoids their inclusion
in Figure 4. They are generally configured as eventually consistent models, and this implies CAP-free
models. However, PBS k-staleness when configured as non-stale becomes k-linearisable and, as such, is
CAP-constrained.

As Brewer states in [8] “because partitions are rare, there is little reason to forfeit C (consistency)
or A (availability) when the system is not partitioned”. This means that a strong model is needed while
the network shows no connectivity problem and such consistency should be only relaxed when a network
partition arises. Dynamically configurable models that may relax their consistency, as those proposed in
the PBS family, seem to be an adequate solution to this problem. There have been several other models
(e.g., [5, 25, 44, 24, 37, 28, 14]) of this kind, that are analysed by Viotti and Vukolić [43] in their eighth
group: composable and tunable models. We refer the reader to [43] for a short description and comparison
of them. Many of those models admit configurations in both parts of our identified frontier.

4.3.2 Convergence-based Relations

Eventual consistency was defined with the goal of breaking the constraints of the CAP theorem [4]. Even-
tual models that reach state convergence once their processes have seen the same set of write operations,
like STRONGEVENTUAL(F ) [38], may be weaker than most CAP-constrained models. Indeed, accord-
ing to Prop. 2, STRONGEVENTUAL(F ) cannot be stronger than any CAP-constrained model, since it is
CAP-free [38]. Let us proceed in this analysis comparing several families of protocols:

• CACHE(F ) and stronger models.

If STRONGEVENTUAL(F ) was weaker than CACHE(F ), then CACHE(F ) predicates would imply
those that define STRONGEVENTUAL(F ). Let us see whether that is true. Several lemmas are
needed to this end.

Lemma 3. PEROBJECTSINGLEORDER ∧ RVAL(F )⇒ EVENTUALVISIBILITY ∧ RVAL(F ).

Proof. Without loss of generality, let assume a system S = ({p1, p2},{x}) where all its executions
should respect PEROBJECTSINGLEORDER. Let us consider executions in which all operations have
returned. PEROBJECTSINGLEORDER implies: (1) ∀E ∈ E ,E.vis∩ob = E.ar∩ob.

Let us now assume that EVENTUALVISIBILITY did not hold in S. This means that: (2) ∀a ∈
E.H,∀[ f ] ∈ E.H/ ≈ss: b ∈ [ f ]∧ (a,b) ∈ rb ⇒ (a,b) 6∈ E.vis, i.e., all rb-ordered operations that
do not belong to the same process are not in vis. In that scenario, execution E3 would match
¬EVENTUALVISIBILITY in S: E3 = ({o1 = (p1,wr,x,3,t,1,2), o2 = (p2,wr,x,2,t,1,2), o3 =
(p1,rd,x,t,3,3,4), o4 = (p2,rd,x,t,2,4,5), o5 = (p1,wr,x,5,t,6,7), o6 = (p1,rd,x,t, 5, 8,9)},
{(o1,o3), (o2,o4), (o3,o5), (o5,o6)}, {(o1,o3), (o3,o5), (o5,o6), (o6,o2), (o2, o4)}). But now, E3
violates condition (1), since E3.vis 6= E3.ar. Thus, a contradiction is reached. So, EVENTUALVIS-
IBILITY must hold in S. Therefore: PEROBJECTSINGLEORDER ∧ RVAL(F )⇒ EVENTUALVISI-
BILITY ∧ RVAL(F ).

Lemma 4. The NOCIRCULARCAUSALITY predicate is true in message-based inter-process com-
munication systems.
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Proof. By definition, hb≡ (so∪vis)+, vis is acyclic, so≡ rb∩ ss and rb≡ {(a,b) : a,b ∈H∧a.rt <
b.st}. Because of rb, so is also acyclic, since the operations that compose the rb elements are ordered
by real time. Thus, to close a cycle, vis needs elements that transitively relate two write operations
in a reverse real-time order. This contradicts the vis definition, since vis represents value propagation
among processes. Section 2 has stated that such value propagation is message-based. Therefore,
when two operations are related by vis, their relation order is consistent with real time. As a result,
hb is acyclic.

According to Burckhardt, NOCIRCULARCAUSALITY was introduced in his specification of basic
eventual consistency in order to avoid the circular causality [9] (also known as thin air [10]) anomaly
that may be generated by some compiler optimisations for shared memory multiprocessors (since vis
is not acyclic in that context). However, in scenarios where those optimisations cannot be applied,
as it is assumed in our paper, such an anomaly cannot happen.

Lemma 5. PEROBJECTSINGLEORDER ∧ RVAL(F )⇒ STRONGCONVERGENCE ∧ RVAL(F ).

Proof. STRONGCONVERGENCE requires that when two read operations (∀a,b ∈ H |rd , on two dif-
ferent processes) have been preceded by the same set of write operations (vis−1(a) |wr= vis−1(b) |wr),
then both reads return the same value (a.oval = b.oval). PEROBJECTSINGLEORDER implies that
every process in S sees the same sequence of write operations on each object. Therefore, every pair
of processes that respect PEROBJECTSINGLEORDER have seen the same sequence of values. In that
case, when two different processes compare the output value of a read in each process preceded by
the same set of write operations, they will certainly obtain the same value. Thus, PEROBJECTSIN-
GLEORDER ∧ RVAL(F )⇒ STRONGCONVERGENCE ∧ RVAL(F ).

Theorem 6. STRONGEVENTUAL(F )→ CACHE(F ).

Proof. Lemmas 3, 4 and 5 imply that: PEROBJECTSINGLEORDER ∧ RVAL(F )⇒ STRONGCON-
VERGENCE ∧ EVENTUALVISIBILITY ∧ NOCIRCULARCAUSALITY ∧ RVAL(F ). PEROBJECT-
PRAM is not a relaxing predicate in this scope. Therefore, according to Def. 4, STRONGEVEN-
TUAL(F )→ CACHE(F ).

Corollary 2. STRONGEVENTUAL(F ) is weaker than PROCESSOR(F ), SEQUENTIAL(F ), TIMED-
SERIAL(F ) and LINEARISABLE(F ).

Proof. All mentioned models are stronger than CACHE(F ). Relation “weaker than”, according to
Def. 4, is transitive. So, because of Theorem 6, STRONGEVENTUAL(F ) is weaker than each one of
them.

• PREFIXSEQUENTIAL(F ) and stronger models.

PREFIXSEQUENTIAL(F ) ensures eventual convergence because it uses a primary manager per set of
objects that imposes a common commit write order among all processes. Therefore, STRONGEVEN-
TUAL(F ) is weaker than PREFIXSEQUENTIAL(F ), as stated in the following theorem.

Theorem 7. STRONGEVENTUAL(F )→ PREFIXSEQUENTIAL(F ).

Proof. In LAZYSINGLEORDER, each time a write op becomes committed in an execution E, op is
conceptually complete and it becomes visible to other processes. Then, it is included in both E.vis
and E.ar relations, in a way that ensures that E.vis = E.ar. Thus, LAZYSINGLEORDER⇒ PEROB-
JECTSINGLEORDER. Therefore, Lemmas 3, 4 and 5 imply that: LAZYSINGLEORDER ∧ RVAL(F )
⇒ STRONGCONVERGENCE ∧ EVENTUALVISIBILITY ∧ NOCIRCULARCAUSALITY ∧ RVAL(F ).
MONOTONICWRITES is not a relaxing predicate in this scope, since it constrains how to build the
ar total order in each accepted execution. Therefore, according to Def. 4, STRONGEVENTUAL(F )
→ PREFIXSEQUENTIAL(F ).

14



Corollary 3. STRONGEVENTUAL(F )→ REGULAR(F ).

Proof. REGULAR(F ) is stronger than PREFIXSEQUENTIAL(F ). Relation “weaker than”, accord-
ing to Def. 4, is transitive. So, because of Theorem 7, STRONGEVENTUAL(F ) is weaker than
REGULAR(F ).

• SAFE(F ).

In the SAFE(F ) model, a read operation or returns the value written in the latest write if there is no
write concurrent with or. If any concurrent write exists, or.oval may be any value. This provides the
base for the following theorem.

Theorem 8. STRONGEVENTUAL(F ) 6→ SAFE(F ).

Proof. Let us assume a system S = ({p1, p2, p3},{x}). In order to prove that a model A is not weaker
than another model B, we should find an execution Enw that complies with B and does not respect A,
since this implies that E B 6⊂ E A. So, E4 = ({o1 = (p1,wr,x,2,t,0,1), o2 = (p1,wr,x,1,t,2,5), o3 =
(p2,rd,x,t,15,3,6), o4 =(p3,rd,x,t,20,4,7)}, {(o1,o2),(o2,o3),(o3,o4)}, {(o1,o2), (o2,o3), (o3,
o4)}) satisfies those requirements. In that execution, p1 has written values 2 and 1 on x, in that order.
That means that value 2 was known (i.e., visible) to p1 when it wrote 1. The replication protocol
forwarded value 1 to process p2 while it was written, and p2 also propagated that value 1 to p3.
These actions explain the three pairs in the E4.vis relation.

E4 complies with all predicates that define SAFE(F ):

1. SINGLEORDER needs that E4.vis = E4.ar, and that is true,

2. REALTIMEWRITES (rb |wr→op⊆ ar) means that, in E4, (o1,o2), (o1,o3) and (o1,o4) must be
in ar. Transitively, those pairs of operations are in E4.ar.

3. SEQRVAL(F ) allows that both o3 and o4 return any value as a result of the read operation,
since o2 is a write concurrent with both of them.

However, E4 does not respect STRONGCONVERGENCE, since E4.vis−1(o3) |wr= E4.vis−1(o4) |wr=
{o1,o2}, but o3.oval 6= o4.oval.

Therefore, E Sa f e 6⊂E StrongEventual . Then, according to Def. 4, STRONGEVENTUAL(F ) 6→ SAFE(F ).

Let us find out which models are weaker than SAFE(F ) in order to adequately show as many weaker-
than relations as possible in Figure 4. To this end, we need to prove a property that was previously
conjectured:

Proposition 4. K-REALTIMEREADS(K) is a weakening predicate.

Proof. According to its definition, ∀a ∈ H |wr,∀b ∈ H |rd ,∀PW ⊆ H |wr,∀pw ∈ PW :| PW |< K∧
(a, pw) ∈ ar∧ (pw,b) ∈ rb∧ (a,b) ∈ rb⇒ (a,b) ∈ ar, when b is a read operation, it may get as its
result any of the latest K written values.

Let us consider a consistency model M that is built as the conjunction of a set of consistency pred-
icates: M ≡ P1 ∧ . . .∧Pn. We may build another consistency model M′ with this definition:
M′ ≡P1∧ . . .∧Pn∧K-REALTIMEREADS(K).

Let us assume a generic execution E ∈ E M that consists of at least K write operations (ow1 . . .owK ,
placed in that order in E.ar) and with or as its first read operation after the latest of those K writes.
According to the RVAL(F ) or SEQRVAL(F ) contained in M, or.oval = val.

K-REALTIMEREADS(K) introduces indeterminism in the output values of read operations. How-
ever, according to the definition of K-REALTIMEREADS(K), E still complies with all predicates that
define M′. Therefore, E M ⊆ E M′ . This implies that E ∈ E M′ .
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Let us check now whether E M is a strict subset of E M′ or both sets are equal. To this end, let us
replay E using M′ as the consistency model in S. Each one of those replays may generate a result
different to val for or.oval. Now or.oval is a value val′, with val′ taken from any of the owx.ival
(with 1 ≤ x ≤ K) values. All those replays of E with val′ 6= val will belong to E M′ , but will not be
acceptable in E M . Therefore, this shows that E M ⊂ E M′ and, according to Def. 4, this proves that
M′→M.

Then, the following corollary may be stated.

Corollary 4. K-SAFE(F ,K)→ SAFE(F )

K-REGULAR(F ,K)→ REGULAR(F )

K-LINEARISABLE(F ,K)→ LINEARISABLE(F )

Proof. Every statement in this corollary is a direct consequence of Prop. 4.

• K-REALTIMEREADS(K)-based models.

The following proposition is needed for proving that all models in this set are incomparable to
STRONGEVENTUAL(F ).

Proposition 5. K-REALTIMEREADS(K) 6⇒ STRONGCONVERGENCE.

Proof. According to the K-REALTIMEREADS(K) definition, ∀a ∈ H |wr,∀b ∈ H |rd ,∀PW ⊆ H |wr
,∀pw ∈ PW :| PW |< K∧ (a, pw) ∈ ar∧ (pw,b) ∈ rb∧ (a,b) ∈ rb⇒ (a,b) ∈ ar, when b is a read
operation, it may get as its result any of the latest K written values.

Let S be a system where no communication problem exists. Let E be an execution that consists of
K write operations (ow1 . . .owK , placed in that order in E.ar) each one writing a different value on
object x and with or1 and or2 as two read operations after the latest of those K writes. Since there
are no communication problems, vis−1(or1) = {ow1 . . .owK} and vis−1(or2) = vis−1(or1). However,
or1.oval 6= or2.oval, since or1.oval may be ow1.ival and or2.oval be owK .ival and those values are
different. By definition of STRONGCONVERGENCE, STRONGCONVERGENCE becomes false in E.

Corollary 5. STRONGEVENTUAL(F ) 6→ K-SAFE(F ,K).

Proof. By Prop. 5, ∃E ∈ E ,E |= K-SAFE(F ,K) ∧ E 6|= STRONGEVENTUAL (F ). Thus, by Def. 4,
STRONGEVENTUAL(F ) 6→ K-SAFE(F ,K).

Corollary 6. STRONGEVENTUAL(F ) 6→ K-REGULAR(F ,K).

Proof. By Prop. 5, ∃E ∈ E ,E |= K-REGULAR(F ,K) ∧ E 6|= STRONGEVENTUAL (F ). Thus, by
Def. 4, STRONGEVENTUAL(F ) 6→ K-REGULAR(F ,K).

Corollary 7. STRONGEVENTUAL(F ) 6→ K-LINEARISABLE(F ,K).

Proof. Due to Prop. 5, ∃E ∈ E ,E |= K-LINEARISABLE(F ,K) ∧ E 6|= STRONGEVENTUAL(F ).
Thus, because of Def. 4, STRONGEVENTUAL(F ) 6→ K-LINEARISABLE(F ,K).

• Other models.

A single CAP-constrained model remains unexplored in the CAP-constrained vs CAP-free frontier:
TIMEDCAUSAL(F ,∆). Let us assess it in this theorem.

Theorem 9. STRONGEVENTUAL(F ) 6→ TIMEDCAUSAL(F ,∆).
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Figure 4: Revised “weaker than” (→) relationships among models.

Proof. Let assume the following system and execution: S=({p1, p2},{x}), ∆= 2, ∃E6 ∈E TimedCausal

: E6 = ({o1 =(p1,wr,x,1,t,0,1), o2 =(p2,wr,x,2,t,0,1), o3 =(p1,rd,x,t,1,1,2), o4 =(p2,rd,x,
t,2,1,2), o5 = (p1,rd,x,t,2,3,4), o6 = (p2,rd,x,t,1,3,4)}, {(o1,o3),(o3,o5),(o2,o4),(o4,o6),
(o2,o5),(o1,o6)}, {(o4,o1),(o1,o6),(o6,o3),(o3,o2),(o2, o5)}).
E6 |= TIMEDCAUSAL(F ,2), and vis−1(o5) |wr= vis−1(o6) |wr= {o1,o2}. But, o5.oval 6= o6.oval.
Therefore, E6 6|= STRONGEVENTUAL(F ). This means that, E TimedCausal 6⊂ E StrongEventual . Thus,
according to Def. 4, STRONGEVENTUAL(F ) 6→ TIMEDCAUSAL(F ,∆).

The focus of this analysis has been set on CAP-constrained models, since their strength suggests that
many of them should be convergent. Some notes may be also given about CAP-free models. In that
area, Lloyd et al. [31] prove that CAUSAL+(F ) is stronger than STRONGEVENTUAL(F ) and Mahajan
et al. [32] prove that REALTIMECAUSAL(F ) also implies STRONGEVENTUAL(F ). It is also known
that CAUSAL(F ) is not convergent [31]. So, ∃E7 |= CAUSAL(F ) : E7 6|= STRONGEVENTUAL(F ), then
STRONGEVENTUAL(F ) 6→ CAUSAL(F ). By Def. 4, every model Mw weaker than CAUSAL(F ) will not
be stronger than STRONGEVENTUAL(F ), since E7 |= Mw and E7 6|= STRONGEVENTUAL(F ). Therefore,
the causal, PRAM, RYW, MW, MR and slow models are not stronger than strong eventual. This means
that they are not inherently convergent. Fork-based models do not comply either with the STRONGEVEN-
TUAL(F ) definition since their NOJOIN (or ATMOSTONEJOIN) prevents EVENTUALVISIBILITY from
becoming true.

Figure 4 shows the weaker than relations among STRONGEVENTUAL(F ) and other models. The bold
line depicts the frontier presented in Figure 2. Models placed above that frontier are CAP-constrained,
while the others are CAP-free. Inherently convergents models are shown in grey boxes, while the others
are in white boxes.

As shown in Figure 4, our analysis distributes consistency models in these classes regarding conver-
gence:

1. CAP-constrained and not necessarily convergent: TIMEDCAUSAL(F ,∆), K-LINEARISABLE(F ,K),
K-REGULAR(F ,K), SAFE(F ), K-SAFE(F ,K), ... These models lose availability when a network
partition arises and do not ensure convergence when no network partition has occurred. This set is
the worst one regarding state convergence and CAP freedom.

2. CAP-constrained and convergent: LINEARISABLE(F ), TIMEDSERIAL(F ,∆), SEQUENTIAL(F ),
PROCESSOR(F ), CACHE(F ),... These models lose availability when a network partition arises, but
they keep state convergence among processes when no network partition occurs.
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3. CAP-free and convergent: STRONGEVENTUAL(F ), CAUSAL+(F ), REALTIMECAUSAL(F ), PRE-
FIXSEQUENTIAL(F ),... These models keep availability when a network partition arises and they are
able to reach convergence among all processes when there is no connectivity problem or connectivity
is recovered. This is one of the most interesting sets, since these models are able to overcome all
CAP constraints without indefinitely losing state convergence.

4. CAP-free and not necessarily convergent: WEAK(F ), PRAM(F ), EVENTUAL(F ), CAUSAL(F ),
... These models keep availability in all processes when a network partition occurs, and this is a
good characteristic, but to this end they have renounced to state convergence. They are generally
considered too relaxed to implement and deploy scalable services.

5 Related Work
The identification of the set of consistency models affected by the CAP theorem has been implicitly under-
taken by several recent papers that have looked for the strongest consistency to be supported in available
and partition-tolerant systems [31, 32, 4]. Those papers have taken as a base causal consistency, adding
some conditions in order to strengthen it, generating in that way the causal+ [31], real-time causal [32]
and observable causal [4] models. Those models are incomparable to each other and they define part of
the strongest subset of models in the CAP-free set.

Another “classical” approach to implement available and partition-tolerant services is based on eventual
consistency. The term eventual consistency was probably first used in the Clearinghouse system [13] and in
the Lotus/Iris Notes project on computer-supported cooperative work [23], in 1987 and 1988, respectively.
However, such kind of consistency was already explained and used in other previous papers, being the
works from Johnson and Thomas [22, 11] (1975) and the commutative protocol variant of Alsberg and Day
[3] (1976) the first ones we are aware of.

Thus, both causal and eventual consistencies belong to the CAP-free set of models. Causal consistency
does not demand consensus on a common order of writes, while eventual consistency relaxes the recency
of the values being read since it uses lazy write propagation. Intuitively, this suggests that CAP-constrained
models are those requiring either consensus on a global write-order (impossible to attain in a partitionable
system due to the FLP impossibility result [15]) or a close to immediate recency on the read values (broken
when the latest values have been written in another network component while the network is partitioned).

A complete frontier is not easy to set. The consistency specification framework proposed by Burck-
hardt et al. [10, 9] provides an excellent basis for specifying consistency models. With it, it is easy to
specify both safety and liveness conditions. Viotti and Vukolić [43] have used that framework for survey-
ing distributed consistency models. Our work complements their survey looking for the CAP-constrained
to CAP-free frontier considering value-order consensus and read recency criteria. Thus, this article extends
other previous work focused on setting a partial frontier based on value-order consensus [36].

There are several composable and tunable consistency models [5, 25, 44, 24, 37, 6, 28, 14] whose
implementation protocols support both CAP-constrained and CAP-free consistencies. That seems to be
the best approach to overcome the limitations imposed by the CAP theorem on the consistency of highly
available distributed services. Services that use those models may relax consistency or easily determine
which service activities may remain blocked while partitions arise. Additionally, they provide quite a strong
consistency while the network remains connected.

6 Conclusions
We have revised which distributed consistency models, besides the linearisable one, are directly affected
by the CAP theorem constraints on consistency. This study has shown that there are many other models
(e.g., timed serial, regular, sequential, safe, timed causal, processor, cache, k-linearisable,...) that cannot
be ensured in available and partition-tolerant distributed services. Therefore, the strongest classical data-
centric consistency to be supported by those services in case of network partitions is the causal one that may
be complemented with other conditions in order to provide stronger semantics in a partitionable system,
building in this way the causal+, real-time causal and observable causal models. Many other CAP-free
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models have been also identified. Thus, a more precise frontier between CAP-constrained and CAP-free
models has been set, providing a good basis for classifying any newly proposed models from now on.
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