Notes on Eventual Consistency

Francesc D. Mufioz-Escoi, José Ramén Gonzalez de Mendivil,
Juan Salvador Sendra-Roig, José-Ramén Garcia-Escrivd, José M. Bernabéu-Auban

Instituto Universitario Mixto Tecnolégico de Informatica
Universitat Politeécnica de Valéncia
46022 Valencia (SPAIN)

fmunyoz @iti.upv.es, mendivil @unavarra.es, {jsendra,rgarcia,josep} @iti.upv.es

Technical Report TR-IUMTI-SIDI-2016/002

TR-IUMTI-SIDI-2016/002

Notes on Eventual Consistency

Francesc D. Mufioz-Escofi et al.:

Notes on Eventual Consistency

Francesc D. Munoz-Escoi, José Ramén Gonzalez de Mendivil,
Juan Salvador Sendra-Roig, José-Ramoén Garcia-Escriva, José M. Bernabéu-Auban

Instituto Universitario Mixto Tecnoldgico de Informatica

Universitat Politecnica de Valencia
46022 Valencia (SPAIN)

Technical Report TR-IUMTI-SIDI-2016/002
e-mail: fmunyoz@iti.upv.es, mendivil @unavarra.es, {jsendra,rgarcia,josep } @iti.upv.es

October 11, 2016

Abstract

Eventual consistency is demanded nowadays in geo-replicated services that need to be highly scalable
and available. According to the CAP constraints, when network partitions may arise a distributed service
should choose between being strongly consistent or being highly available. Since scalable services should
be available, a relaxed consistency (while the network is partitioned) is the preferred choice. Eventual
consistency is not a common data-centric consistency model, but only a state convergence condition to
be added to a relaxed consistency model.

There are still two aspects of eventual consistency that have not been analysed in depth in previ-
ous works: which have been the oldest replication proposals providing eventual consistency, and which
data-centric consistency models are not convergent by default (and, thus, provide the basis for building
eventually consistent services). This paper provides some notes on these important topics.

KEYWORDS: Eventual consistency, Consistency model, CAP theorem, Data-centric consistency, Client-
centric consistency, Data replication

1 Introduction

Eventual consistency [70] has received a lot of attention in the last decade due to the emergence of elastic
distributed services. Elastic services [22, 33] need to be both scalable and adaptive, ensuring good levels of
functionality, performance and responsiveness (i.e., QoS) —combined with a low cost- to their users, and of
economical profit to their providers. In order to reach those levels of performance and responsiveness when
the incoming workload being supported is high, the consistency among server replicas might be relaxed
and this explains why eventual consistency has become so popular.

Elastic services are commonly deployed onto multiple datacentres and they may use thousands of com-
puters. In those environments network partitions may arise. According to the CAP theorem, that was first
stated by Fox and Brewer (1999) [26] and later proven by Gilbert and Lynch [29], when a network partition
happens, there is a tradeoff between strong consistency and service availability. Since elastic services must
guarantee availability in order to comply with their QoS requirements, consistency needs to be relaxed in
those situations. This is another reason for the success of eventually consistent services. However, as we
will see in Section 2, the compromises stated in the CAP theorem were already known 40 years ago.

There have been many recent research works about eventual consistency [60, 70, 50, 66, 2, 6, 8, 7, 15,
56] and some of them, e.g. [60, 6, 8, 15], present tutorials on this subject. In spite of this, some aspects
of this concept have not yet been discussed in depth. Therefore, in order to provide the missing pieces for
building a complete picture on this subject, our paper is focused on those other topics.

The first point of interest is a historical review. Although most recent research works cite a paper from
Werner Vogels [71] (or its former copy in ACM Queue [70]) as the most well-known reference explaining
this kind of consistency, there are many papers older than [70] that have either explained this same concept
or implemented this kind of consistency. Some of them are revised in Section 2.

Section 3 revises the specifications of some data-centric replica consistency models in order to set the
border between those models that are inherently convergent and those others that are too much relaxed to
be convergent per se. Since eventual consistency means that replica convergence is reached when no new
updates are received for a sufficiently long interval, this border identifies those relaxed models as the ones
that must be taken as a basis to develop eventually consistent services. Moreover, as it has been proven
in other papers [58], the inherently convergent replication models cannot be globally maintained when the
network is partitioned. Therefore, both reasons compel us to use those relaxed models (e.g., FIFO/PRAM
[48] or causal [1]) as the base for eventual consistency.

Section 4 provides some considerations about how to implement an eventually consistent replicated
service. Four complementary aspects are considered: (1) replication protocol, (2) ordering requirements
for service requests, (3) synchrony in agent interaction, and (4) state merging strategy for reaching conver-
gence. There are multiple alternatives in each aspect and, not surprisingly, the best combinations regarding
performance and convergence were already known long time ago.

Therefore, the principles that are needed to manage eventually consistent services had been already
proposed and used in several of the oldest distributed services. The challenges at that time were centred
in providing acceptable response times (and an acceptable consistency) using very limited computers and
networks. Nowadays, current hardware resources are much more powerful, but the services being provided
have also much more demanding requirements. They must be highly scalable and immediately adaptive.
So, although those old principles may guide our research efforts in this kind of dynamic consistency, new
other contributions are still required in this area.

2 Historical Review

Let us assume that we have listened something about eventual consistency and that, at the moment, only
have read reference [70] about this concept. Once paper [70] is known, and quoting its contents, we may
tell that eventual consistency is...

. a specific form of weak consistency; the storage system guarantees that if no new up-
dates are made to the object, eventually all accesses will return the last updated value. If
no failures occur, the maximum size of the inconsistency window can be determined based
on factors such as communication delays, the load on the system, and the number of replicas
involved in the replication scheme.

That definition is informal, but clear and concise. Indeed, as we will see in forthcoming sections,
eventual consistency cannot be defined in a formal way as a regular consistency condition, since it is a
liveness condition (eventual state convergence) that may be added to other consistency models. Besides
defining it, Vogels also mentions a widely known service that implements eventual consistency: the domain
name system [51, 52]. Because of this, the reader may realise that traditional scalable distributed services
have regularly been eventually consistent. Vogels provides another pointer to a former publication on this
subject: Lindsay et al (1979) [47]. Therefore, it seems that eventual consistency has been a classical
mechanism for achieving high performance in the distributed systems arena.

Taking a look at Section 1.4 from [47], the reader may observe that it describes a distributed relational
database system that may use different replication protocols (primary-backup or majority voting) where
two kinds of consistency may be managed. In the regular case, providing one-copy equivalence, transac-
tion updates are forwarded and applied to all database replicas before that transaction is ended. On the
other hand, with relaxed consistency (i.e., with eventual consistency), those updates may be forwarded
afterwards, in a lazy way. This reduces the degree of synchronisation being demanded by transactions,
allowing their fast completion. Thus, this is one of the first examples of consistency-performance tradeoff.

Assuming that the usage of relaxed consistency has been a regular solution for improving the scalability
of distributed services, it will be difficult to find the oldest research work that provided the first example of

service or replication protocol specifically intended for ensuring that kind of consistency. There had been
many old systems using replicated components and not all of them described their replication approaches
in detail. Any way, let us go on in this backward look for that possible first eventually consistent service.

To this end, we may start considering the first references on replication models. Two classical repli-
cation models exist: active or state-machine replication [63] and passive or primary-backup replication.
Primary-backup replication was proposed before, and its classical first reference is a paper from Alsberg
and Day [3]. In that paper, strong consistency is assumed. Both read and write requests are served by
the primary replica. Write operations, once processed, forward their updates to the first backup replica.
When this backup applies those updates, it sends the reply to the client process plus an acknowledgement
to the primary and an update forwarding message to the next backup replica. The consistency being per-
ceived when this algorithm is followed is strong (indeed, linearisable [34]). In spite of this, that paper
also outlines some variations of its basic algorithm. Thus, in page 569, it explains what can be done in
multi-master scenarios. The general rule is to reach a consensus on the requests service order among all
those master replicas before processing those incoming requests. But that general rule admits an exception
that is described in this way in [3]...

There may be specific applications where the nature of the service permits the out of order
processing of requests. An example is an inventory system where only increments and decre-
ments to data fields are permitted and where instantaneous consistency of the data base is not
a requirement.

...; 1.e., some applications may provide an updating interface consisting of multiple commutative oper-
ations (e.g., increments and decrements in this example). In that case, multiple master replicas are allowed,
serving their requests concurrently. Consistency is eventually achieved when every replica receives and
applies all the updates generated (in any order) in the remaining replicas. This is a valid sample of an
eventually consistent service and it was described in 1976; i.e., three years before the relaxed algorithm
found in [47].

Moreover, Alsberg and Day [3] cite two related papers to look for additional information [14, 36].
Bunch [14] describes a preliminary version of the primary-backup supporting algorithm discussed in [3].
In that version, backup replicas do not need to be linearly ordered and they do not propagate the updates
following a chain forwarding approach. Instead, updates are logically multicast to all backups, allowing
any kind of multicast implementation. Besides this first difference, there is another one: there are two
classes of read operations referred to as critical and noncritical. Critical reads are directly managed by the
primary replica. Noncritical read requests are forwarded to the cheapest replica (e.g., the one minimising
transmission delay). In spite of their name, both read classes are strongly consistent since write operations
do not return control to their client until all existing copies have been updated and have acknowledged the
update completion. Note that with this solution it is impossible that once a read request returned a value
V for a given element, any subsequent read request could return a different value older than V; i.e., there
cannot be any read old-new inversions [5]. However, these noncritical reads settled the basis for the relaxed
consistency algorithm described in [47], once the synchronous update propagation was replaced with a lazy
forwarding.

On the other hand, Johnson and Thomas [36] propose a replication algorithm that is more general
than that of [3]. It allows multi-master replication for a given kind of database (a key-value store that
maintains users data in a user authentication and accounting system [18]). Each database copy is held by
a database management process (DBMP). This paragraph is given for stating the consistency to achieve in
that system...

The extent to which the copies of the database can be kept “identical” must be examined.
Because of the inherent delay in communications between DBMPs, it is impossible to guaran-
tee that the data bases are identical at all times. Rather, our goal is to guarantee that the copies
are “consistent” with each other. By this we mean that given a cessation of update activity to
any entry, and enough time for each DBMP to communicate with all other DBMPs, then the
state of that entry (its existence and value) will be identical in all copies of the database.

The updates applied in a given master replica should be transferred to the remaining replicas. A list
of pending replicas is maintained. However, nothing is said about the degree of synchrony of those in-
teractions nor about at which time a reply is sent to the requesting client. In spite of this, the algorithm
being described tolerates lazy propagation. Therefore, this could be the first proposal of eventual consis-
tency, since the overall meaning of that paragraph is identical to that presented in [70]. Since multiple
writers may exist and they all may concurrently apply conflicting updates in different replicas, some rules
were needed to reach a convergent state once those updates were forwarded to the remaining replicas. To
this end, Johnson and Thomas designed a solution based on update timestamping. In order to define that
timestamping approach some local clock is used in every server, combined with node identifiers to break
ties, defining a total order on all system events. The authors assume that those clocks could be sufficiently
synchronised by default; otherwise, they suggest the usage of event counters in every node. Indeed, this
was a solution that inspired the definition of logical clocks [44], as Lamport acknowledges at the end of
his paper. This conflict resolution rule (i.e., “the last writer wins”’) was also applicable in case of network
partitions. In spite of this, Johnson and Thomas mention the following regarding service continuity in case
of network partitions...

For example, a completely general system must deal with the possibility of communication
failures which cause the network to become partitioned into two or more sub-networks. Any
solution which relies on locking an element of the database for synchronized modification
must cope with the possibility of processes in non-communicating sub-networks attempting to
lock the same element. Either they both must be allowed to do so (which violates the lock
discipline), or they both must wait till the partition ceases (which may take arbitrarily long),
or some form of centralized or hierarchical control must be used, with a resulting dependency
of some DBMPs on others for all modifications and perhaps accesses as well.

Thus, they already identified in 1975 that in case of network partitions there is a tradeoff between ser-
vice availability and service consistency (since locking was assumed in that paper as a means for ensuring
strong consistency); i.e., part of what is known nowadays as the CAP theorem [26, 12, 29]. However, it
is worth noting that the specific database being assumed in [36] provided an advantageous scenario for its
authors. Its data are seldom updated and value convergence only depends on the update time. No semantic
consistency constraints need to be considered and the database schema is very simple. As a result, the rules
to be followed to recover data convergence are almost trivial. This will not happen in many other cases.

In our humble opinion, the paper from Johnson and Thomas can be considered the first key reference
about eventual consistency. It was able to describe an efficient way to implement that kind of consistency
(combining lazy update propagation with a general rule to reach convergence in case of conflicting updates,
tolerating disconnected operation). Besides their data convergence rule, Johnson and Thomas defined
specific mechanisms for detecting and managing delete-update and delete-create conflicts that might be
hard to manage in a distributed deployment.

Let us now come back to our days, following a chronological order, to find additional contributions
from other relevant papers in this historical review.

A first example is the LOCUS [72] distributed file system partially described by Parker et al [55] in
1981. Its designers took care of handling network partitions, allowing progress in disconnected subgroups
of nodes. They also mentioned the tradeoff between strong consistency and service availability when net-
work partitions arise. In LOCUS, consistency was relaxed while disconnected nodes went on and version
vectors were proposed in order to detect state conflicts, applying reconciliation protocols at reconnection
time. Those reconciliation protocols, according to Parker et al, depend on the semantics of the operations
being applied to the replicated resources. Note that the maintenance of version vectors at each replica
implies that the updates being propagated comply with causal consistency.

A second example is the Grapevine system developed at Xerox by Birrell et al [9]. Grapevine was an
electronic mail service that also provided support for resource location, authentication and access control.
The communication mechanisms being managed by the Grapevine servers were asynchronous (i.e., the
sender was able to continue once the message was sent, without waiting for any kind of acknowledgement)
and persistent (i.e., the communication servers were able to maintain the messages until their intended re-
ceivers were ready to get them). Grapevine needed a registration database where it maintained data about

its users and its groups. A group maintained a collection of users addresses, thus allowing that a single
e-mail message could be delivered to a set of users specifying their group name. In the Grapevine deploy-
ment (1981) described in [9], this system was spread through the Xerox sites at USA, Canada and United
Kingdom. There were five registration (and message) servers and around 1500 users defining 500 user
groups. The registration database was fully replicated in those registration servers using a multi-master
approach. Database updates were forwarded in a lazy way through the asynchronous and persistent com-
munication channels regularly used for electronic mail propagation. The replication algorithms tolerated
network partitions, merging any conflicting updates using timestamps and the “last writer wins” principle
already described in [36].

Fischer and Michael [25] describe an evolution of the algorithms presented in [36] for managing a
distributed directory service. In this new solution, no explicit update operation is provided. Instead, the
programmer should apply first a delete operation followed by a new insert. Additionally, the system re-
members which objects have been inserted and which others have been deleted. With those sets, it is able
to find out whether a given object is still active or not. A criterion for purging removed elements from both
sets is also given. It is based on how many servers have already known that information. With all these
variations on the Johnson and Thomas algorithm, the result is much simpler (indeed, no delete-update nor
delete-create conflicts may arise) and it is still able to tolerate network partitions and unreliable communi-
cation, guaranteeing eventual consistency and high availability.

Davidson (1984) [19] provides some rules for allowing service continuity in case of network parti-
tions in a replicated database system. This means that the consistency among replicas is lost while the
network remains partitioned, but service availability is guaranteed. However, once the partitioned groups
rejoin, Davidson proposes several criteria for detecting serialisability violations and for choosing the set of
transactions to be rolled back in order to build a global history that respects all serialisability requirements.

Apers and Wiederhold [4] propose some extensions a bit later (1985). They also study the network
partition problem in replicated database systems. However, instead of focusing only on serialisable order,
they also consider semantic pre- and post-conditions on each kind of transaction. As a result of this, trans-
actions are classified as: (1) unconditionally committable (UC), when their execution cannot violate any
pre-condition of other transactions run in other partitions, (2) conditionally committable (CC), when their
acceptance cannot be guaranteed but their possible afterward rejection will not introduce other consistency
problems, and (3) non-committable (NC), when their possible afterward rejection leads to consistency
problems that will not be solvable. Only UC and CC transactions are accepted in case of a network parti-
tion. NC transactions are immediately rejected in that case. Algorithms are presented for merging partitions
and for rebuilding their serialisation graphs, applying compensating transactions onto previously accepted
CC transactions when needed. This is one of the first examples on managing semantic correctness criteria
at partition reconnection time and on using conditional criteria for accepting some classes of transactions
while the system is partitioned.

Other semantic criteria for managing state merging at partition reconnection time were proposed by
Sarin et al (1985) [61]. They base their solution in timestamping all operations that modify the application
or database state, defining in this way a total order for all those operations. However, no detail is given
on how such update propagation should be made nor on how those timestamps are globally generated,
allowing multiple kinds of implementations, even lazy propagation. When partitions rejoin, they forward
and receive any missed updates. Conceptually, when a missed update is received in this reconnection stage,
it leads to the roll back of all the operations that had been previously accepted and applied with a higher
timestamp, reapplying them later on, in their appropriate order. However, multiple semantic optimisations
are described for avoiding both the operation rollback and its reexecution once the missed update has been
applied. Some examples mentioned in [61] that do not need those compensating actions are: commutative
operations, conflicting operations applied on disjoint sets of data, ...

Demers et al (1987) describe the Clearinghouse system in [21]. In that system “the effect of every
update is eventually reflected in all replicas”. The system consists of several thousand nodes where a
multi-master replication strategy is used. Each update request may be received and processed by a dif-
ferent replica and its effects will be lazily propagated to the remaining sites. The paper proposes and
compares different lazy update propagation mechanisms in order to minimise network traffic: direct mail,
anti-entropy and rumor mongering. With the latter two approaches the resulting system becomes highly
scalable.

The first computer-supported cooperative work (CSCW) applications were developed in the middle
eighties. The Lotus/Iris Notes project (that later became the Lotus Notes product) was described by Kawell
et al in [37]. It was based on lazy update propagation and on the “last writer wins” policy for dealing with
concurrent updates. The database being managed was unconventional: it was a collection of documents
and a “transaction” consists in an update to one of those documents (multiple documents cannot be updated
using a single action). As a result of this, on each update a complete document should be transferred
among replicas. Fortunately, documents were small (usually 1 or 2 KB) in that preliminary version of
Notes. Those updates were transferred following a pull policy. Notes assumed that computers are not
continuously connected to the network. As a result of this, when a computer contacts others they exchange
their documents lists, with the versions and IDs for each document. When those lists were compared, the
computer that missed any update requested the other to transfer those updates. Following this strategy, all
Notes replicas became eventually consistent, but those replicas might had been inconsistent for quite long
intervals (e.g., Kawell et al [37] comment that in most cases those intervals exceeded 24 hours).

Kumar and Stonebraker (1988) [39] describe how to apply the escrow [54] method to replicated databases,
assigning complementary parts of the escrow to each replica; i.e., distributing the escrow. The original es-
crow mechanism allowed the management of concurrent transactions that use commutative operations to
update a given relation field even when the value of such field should respect some constraints (e.g., to be
positive or exceed some minimal threshold). Escrow distribution allows the management of some concur-
rent transactions without exchanging messages among replicas in some cases. This enhances performance
and increases the tolerable degree of concurrency. As a result of this, inter-replica consistency is relaxed
and transactions serialisability is lost, but transaction correctness is still preserved.

Ladin et al (1988) [41] proposed a directory (or map) service with gossip update propagation. Those
updates are only accepted when they comply with the “last writer wins” rule, but now using version vectors
instead of timestamps or Lamport clocks. Two years later, in the lazy replication approach [42] proposed
by the same authors, client requests are forwarded to a single replica that processes the operation and later
propagates its updates in a lazy way. The operations being processed may be ordered according to the ap-
plication semantics, selecting one of these approaches: client ordering, server ordering or global ordering.
In the client-order case, a client process may specify which previously initiated operations precede the op-
eration to be sent. To this end, each update operation returns an update identifier (uid) when it is completed
and both queries and updates may specify as their arguments a set of precedent uids. In the server-order
case, every server-ordered operation is totally ordered by the servers against every other server-ordered
operation. Finally, in the global-order case, each global-ordered operation must be totally ordered by the
servers against every other operation, independently on the type of the latter. This third type may be used
in case of system reconfigurations, defining a border for ensuring that when it is delivered all server repli-
cas must have delivered the same set of previous requests. Indeed, this is placing a convergence point for
eventually consistent replicated services.

The systems to be implemented using the lazy replication technique find several advantages when they
are compared to previous works. To begin with, they are basing their eventual consistency on an explicit
(instead of potential, as when a regular causal multicast mechanism is being used for propagating updates)
causal consistency. This reduces the amount of dependencies to be considered among the updates being
propagated, enhancing performance and reducing delivery delays. Those delays may arise, e.g., when a
precedent causal message is lost and is resent. A second advantage is the careful management of application
semantics for specifying how concurrent operations should be observed by every replica.

The Coda distributed file system [62] (1990) is an example of distributed environment allowing dis-
connected operation. In this case, consistency is relaxed among clients and servers. Clients get a cache
image of each demanded file and may operate on them even when no server may be reached. Using ver-
sion vectors and file update identifiers, servers may later identify and accept the updates applied by those
clients while they were disconnected. When clients remain connected to servers, they forward the updates
to every reachable server in a synchronous way. Therefore, relaxed (eventual) consistency only arises at
disconnection intervals and does not depend on the workload being supported. Note that other systems
relied on lazy propagation (and its resulting eventual consistency) in order to shorten regular operation
service time, but that was not the case in Coda. If a previously disconnected client introduces conflicting
updates at reconnection time, those state divergences are reported to the user and must be manually merged.
No automation is provided by default for managing these conflicts. In spite of this, subsequent releases of

Coda introduced an automated reconciliation process when the application update semantics allows this.
Kumar and Satyanarayanan describe an example of this kind applied to directory management [40].

In the scope of relational databases where one-copy serialisability is the regular consistency require-
ment when replication is used, Krishnakumar and Bernstein (1991) [38] propose a system with lazy writeset
propagation (but respecting causal order) where transactions may be accepted although up to N previous
transactions executed in other replicas may be missing in the local node. The resulting system is not serial-
isable, and the resulting correctness criterion is known as N-ignorance. This eventually consistent system
ensures enough guarantees for multiple distributed applications (e.g., a flight reservation system, making
N equal to the highest overbooking tolerated in that system) and improves concurrency and performance
up to N times when it is compared with strictly serialisable systems.

In the same field and year, Pu and Leff [59] propose the &-serialisability concept based on asyn-
chronous writeset propagation. The resulting executions may be one-copy serialisable for writes but only
e-serialisable for reads, being € a bound on data divergence. To this end, and due to the asynchrony in
write propagation, a query (i.e., read-only) transaction may tolerate to be overlapped with up to € conflict-
ing concurrent update transactions without becoming aborted. Since the value of € is configurable, this
technique ranges from strict one-copy serialisability to a very relaxed system with eventual replica consis-
tency. Four replication protocols are described in [59]: ORDUP (ordered updates, demanding a total order
of updates shared by all sites), COMMU (commutative updates), RITU (read-independent timestamped
updates, allowing order freedom in non-conflicting updates) and COMPE (optimistic service, looking later
for conflicts and using compensating transactions in order to reach convergence). Eventual replica consis-
tency might be implemented using, for instance, large values for € combined with a COMMU or COMPE
replication protocol. Note, however, that the ORDUP replication protocol does not allow any divergence
among the states of replicas. Therefore, ORDUP is inherently convergent.

Bayou (Terry et al 1994) [69] was a replicated storage system to be used in a mobile computing envi-
ronment where disconnections may frequently arise. It uses lazy propagation of updates providing eventual
consistency. However, Bayou introduced sessions in order to give a better consistency image to its users.
At the server domain the consistency is very relaxed and only eventually convergent, but on each user
session the consistency could be stronger depending on the properties being enforced. To this end, Bayou
proposed four user-centric consistency guarantees:

e Read your writes (RYW): read operations reflect previous writes from the same process.
e Monotonic reads (MR): successive reads see a non-decreasing collection of writes.
o Writes follow reads (WFR): writes are propagated after the reads they depend on.

e Monotonic writes (MW): writes are propagated after writes that precede them.

The combination of WFR and RYW ensures a consistency that is similar to the data-centric causal
model. When all these four guarantees are attained, the resulting image perceived by a user session is
equivalent to one-copy consistency, but the actual data-centric consistency might still be very relaxed. Note
that each operation being executed in a given session may be forwarded to a different server replica. Spe-
cific protocols based on version vectors were used in [69] for complying with the consistency guarantees
required in sessions.

Fekete et al (1996) [23] provide the first formal specification of an eventually consistent system we are
aware of. Their proposal formalises the algorithms described in [42]. To this end, I/O automata [49] are
used. Although the specification is tailored to [42], several of the principles that have guided other modern
specifications were given in [23]. Thus, it tolerates that operations were executed defining a partial order,
but that order progressively tends towards a total order that is needed for reaching state convergence; i.e.,
operations may be reordered once run. Once the total order is decided for a sequence of operations, those
operations are considered stable and the state in all replicas should have converged.

Yu and Vahdat (2000) [73] describe an implementation of the TACT middleware that is able to measure
the current level of divergence among service replicas and to specify replica consistency requirements con-
sidering several aspects. This allows a precise control of replica divergence, based on three complementary
dimensions: (1) numerical error (limits the total weight of writes applied across all replicas before being

propagated to a given replica), (2) order error (limits the amount of tentative writes, subject to reordering,
that may be pending at a replica), and (3) staleness (places a real-time bound on the delay of write prop-
agation). When all three dimensions have a zero bound, the system ensures linearisable consistency. On
the other hand, when no bound is set, eventual consistency is used. TACT may use several algorithms for
ensuring that the requested bounds are respected. This defines a continuous space of replica consistency
from which the user may choose the adequate level for each deployed replicated service. Indeed, different
replicas from the same service may have different bounds depending, for instance, on the characteristics of
the hosting computer or on the network bandwidth and delay.

Saito and Shapiro (2005) [60] provide a survey on optimistic replication; i.e., replication techniques that
relax their concurrency control and consistency in order to achieve greater efficiency and performance since
synchronisation is avoided or, at least, minimised. Section 5 of that survey discusses eventual consistency.
In that part, Saito and Shapiro provide one of the best definitions of this kind of consistency:

A replicated object is eventually consistent when it meets the following conditions, assum-
ing that all replicas start from the same initial state:

e At any moment, for each replica, there is a prefix of the schedule that is equivalent to
a prefix of the schedule of every other replica. We call this a committed prefix for the
replica.

e The committed prefix of each replica grows monotonically over time.
o All non-aborted operations in the committed prefix satisfy their preconditions.

e For every submitted operation Q, either @ or (& will eventually be included in the com-
mitted prefix.

It is not a mathematical or formal specification of such concept, but it encompasses all the scenarios
that we have depicted in this section. The equivalence of committed prefixes among replicas allows the
modelling of state convergence when no new updates are received. Their monotonical growth expresses that
such convergence is (and will be) reached multiple times but it is not continuously preserved. Precondition
accomplishment models the semantic correctness of these eventually consistent systems. Consideration of
£ means that in order to reach convergence and reconciliate from existing conflicts, some of the submitted
operations may be discarded, applying other compensating actions (i.e., £) that eliminate their effects.

Besides this, Saito and Shapiro classify eventually consistent systems depending on how they deal with
three relevant problems related to the operations to be executed: ordering, conflicts and commitment.

Ordering refers to the scheduling policy being used for ordering the updates that define the commit-
ted prefix at each replica. Additionaly, operations should be ordered in a way expected by users. Five
ordering alternatives exist: (i) syntactic ordering, i.e., all nodes should follow the same operation order
independently on the semantics of each operation (easy to implement but rises too many conflicts among
nodes), (ii) commutative operations, allowing any execution order (no conflict appears but it has a limited
applicability), (iii) canonical ordering (limited applicability), (iv) operational transformation, implying the
transformation of some operations in order to adapt their results for reaching convergence in a commit-
ted prefix (complex procedure that depends on the application semantics), and (v) semantic optimisation
(again, too complex).

Conflicts refer to how state conflicts are dealt with and resolved. Two alternatives: (i) syntactic (differ-
ences —either in the state values or in the operation order— are used for detecting conflicts and a deterministic
criterion is used for resolving them), and (ii) semantic (conflicts are resolved considering the semantics of
the involved operations; this is a complex and application-specific solution).

Finally, commitment refers to the protocols being used for deciding when an executed operation can
be considered stable (i.e., it has been accepted and belongs to a common committed prefix in all replicas)
or for reaching agreement on non-deterministic decisions. There are three alternatives: (i) implicit (no
operation is ever explicitly rejected; this may be supported using the “last writer wins” approach in case of
conflicts), (ii) background agreement (nodes send piggybacked information about their accepted updates
in their update propagation messages; e.g., using version vectors), and (iii) consensus (this is a complex
and potentially blocking solution, usually needed in strongly consistent systems but not recommended in
eventual ones).

Reference Contributions Year
Johnson and Algorithms for managing a highly-available directory service. 1975
Thomas [36] Multi-master replication as a way for implementing eventual consistency.
Description of a basis for logical clocks.
Mechanism for totally ordering the events in a system.
Network partition tolerance.
“Last writer wins” principle for reaching convergence.
Management of delete-update and delete-create conflicts.
Alsberg and Day Multi-master replication with commutable operations as a way for implementing 1976
[3] eventual consistency.
Lindsay et al [47] Identification of the level of update propagation synchrony as a key aspect for replica 1979
convergence: strong consistency with synchronous propagation and eventual consis-
tency with lazy propagation.
Parker et al [55] Version vectors for detecting inconsistencies in disconnected operation. 1981
Potential causal consistency as a base for implementing eventual consistency.
Need of semantic reconciliation protocols at reconnection time.
Birrell et al [9] Deployment of a WAN system supporting eventual consistency. 1982
Fischer and Avoidance of delete-update and delete-create conflicts in eventually consistent ser- 1982
Michael [25] vices using multi-master replication.
Davidson [19] Service continuity in partitioned databases with serialisable histories. 1984
Criteria for choosing which transactions to roll back at reconnection time.
Apers and Wieder- Service continuity in partitioned relational databases. 1985
hold [4] Consideration of correctness invariants (stated as pre- and post-conditions) at parti-
tion reconnection time.
Sarin et al [61] Service continuity in partitioned databases. 1985
Semantic criteria for reordering or avoiding compensating actions at partition recon-
nection time.
Demers et al [21] Analysis of three types of lazy update propagation. 1987
Kawell et al [37] Proposal of a CSCW application (Lotus Notes) with eventual consistency. 1988
Pull-based strategy for update propagation.
Document propagation for reaching convergence.
Kumar and Stone- Extension of the escrow method (management of commutative transactions respect- 1988
braker [39] ing value constraints) to replicated databases.
Serialisability is sacrificed and inter-replica consistency is relaxed, but transaction
correctness is maintained.
Satyanarayanan Support for client disconnected operation in distributed filesystems. 1990
et al [62] Manual multi-conflict resolution may be demanded at reconnection time.
Ladin et al [42] Specification of update ordering requirements, depending on application semantics. 1990
Explicit causal dependences (i.e., real causal consistency) as a base for building
eventual consistency.
Global order as a way for reaching convergence on the set of processed operations
in every replica.
Krishnakumar and N-ignorance as an eventually consistent example in replicated relational databases. 1991
Bernstein [38] Lazy writeset propagation with causal order.
Pu and Leff [59] e-serialisability (relaxed consistency for query transactions in relational databases). 1991
Proposal of four replication protocols using asynchronous writeset propagation.
Some protocols (COMMU and COMPE) may implement eventual consistency.
Terry et al [69] Specification of user-centric consistency conditions, instead of the traditional data- 1994
centric ones.
Sessions for providing user-centric consistency.
Users perceive a consistency that is stronger than that maintained by servers.
Fekete et al [23] Characterisation of eventual consistency based on stable operations (that force state 1996
convergence) and reorderable operations, using I/O automata.
First formal specification for eventual consistency.
Inspired in the replication protocols proposed in [42].
Yu and Vahdat [73] Evaluation of replica divergence. 2000
Selection of a per-replica level of consistency.
Specification of consistency based on three axes: (1) numerical error, (2) order error,
and (3) staleness.
Saito and Shapiro Survey on optimistic replication techniques, including eventual consistency. 2005
[60] Thorough classification of eventually consistent systems.
Bouajjani et al [11] Complete formal specification of eventual consistency. 2014

Definition of weak eventual consistency, centred only in convergence.
Consideration of local program correctness in its consistency specification.
Proposal of verification tools for eventually consistent systems.

Table 1: Contributions outlined in this historical review.

This historical review would end here. Its goal has been to show that some research work on eventual
consistency existed before Vogels’ paper [70] was written. A summary of the contributions found in this
review is given in Table 1. However, as it has been said in Section 1, there have been many recent papers
on this subject and there is still an aspect that had not been completely dealt with before 2008: the formal
specification of what is eventual consistency. There have been a few papers covering that goal [23, 10,
16, 11] and the paper from Bouajjani et al [11] deserves some comments since it has provided the best
contributions.

Bouajjani et al [11] criticises that almost all previous definitions of eventual consistency (excepting
[16]) had been only centred in state convergence at quiescence intervals. However, those definitions and
specifications did not state anything about traces where no quiescent interval exists. In those cases, appar-
ently, no state convergence effort is required. In spite of this, most eventually consistent services actually
consider and make those efforts. Therefore, the specification given in [11] considers both: (1) the cor-
rectness of the operations being executed by each process, and (2) the conditions to be satisfied when
the arrival of new updating requests never stops. Additionally, that paper qualifies quiescent convergence
as weak eventual consistency and proposes some verification tools for evaluating the correctness of (both
weak and non-weak) eventually consistent systems.

3 Eventual Data-centric Consistency Models

Distributed shared memory (DSM) consistency models [27, 53] regularly assume that multiple processors
share a given memory and that processes directly run in those processors. Thus, they are centred in what is
directly applied to the shared data by those server processes. Those classical memory consistency models
are known nowadays as data-centric or server-centric consistency models [68]. In this section, the term
consistency model will always refer to those data-centric models.

Some recent research works (e.g., [24, 56, 15]) consider that eventual consistency (i.e., state conver-
gence) is a liveness property. Because of this, the requirements stated in many definitions of eventual
consistency [60, 70] could be achieved adding a convergence property to a relaxed consistency model.
Unfortunately, there is no agreement on where to place the borderline between strong and relaxed con-
sistency models. Depending on the problem being considered, that frontier could identify different sets
of strong and relaxed models. For instance, the linearisable [34] and sequential [45] models are in the
strong set (while the remaining models are considered weak) when database one-copy equivalence with
serialisable isolation is being considered [32, 24]. On the other hand, Steinke and Nutt [67] qualify the
linearisable model as too strong to be specified as a composition of the consistency properties they identify
in their work, while the sequential model may be specified without problems (i.e., it is weak enough to be
specified). In a similar way, Attiya [5] states that only the linearisable model is strong enough to avoid
old-new inversions in read accesses onto shared variables. The sequential model does not avoid that kind
of inconsistency in its reads.

In the scope of eventual consistency characterisation, we believe that two frontiers may be defined,
separating these three sets of models:

e Strong models: A strong model is one where state convergence is guaranteed among replicas on
each write action. This means that write actions cannot overlap. As a result of this, no read old-new
inversion is possible. According to Attiya (2010) [5] the linearisable [34] (or atomic [46]) model is
in this strong group.

e Convergent models: We consider that a model is inherently convergent when it will be able to ensure
that once the effects of each write have been propagated to the remaining processes, if no new write
action is received in a sufficiently long interval, then the consistency model will ensure (without any
other external mechanism) that all replicas have the same state.

The sequential [45] consistency model is convergent but not strong. For instance, the following
execution complies with the requirements of the sequential model, but different readers have been
able to read different values between two consecutive writes:

W2(x)3,W1(x)2,R3(x)3,W1(y)5,R4(x)3,R4(x)2, R3(x)2, R4(y)5,R2(x)2,R2(y)5,R3(y)5 (1)

10

The first character in each action states the type of action (“R” for reads and “W” for writes), the
second character is the process identifier. The argument of the action is the variable on which the
action is applied. Finally, the last character expresses the value being written in a write action or
returned in a read action. So, W1(x)2 means that process P1 has written value 2 onto variable “x”.
Read actions express the instant at which a given process has received the effect of a previous write
action generated at another process.

The execution is sequentially consistent, since all processes have seen the same sequence of actions
(W(x)3, W(x)2 and W(y)5) and such sequence is consistent with the writing order on each writer
(in this case, P1 wrote value 2 on “x” before writing 5 on *“y”). However, each process has seen the
events of that sequence at different times. If we assume that the initial values of both variables are 0,
then after the sixth event of that execution, each process holds the following values:

- PI1: x=2, y=5.
- P2: x=3, y=0.
- P3: x=3, y=0.
- P4: x=2, y=0.

So, their states do not converge yet. Indeed, they do not converge until all the events in the execution
have been considered. At that moment, all processes have got x=2 and y=5.

Additionally, if we considered that P1, P2, P3 and P4 are replicas of a given service, it might happen
that a given client read (between the second and third actions) variable “x” from P1, receiving value 2
and later on (e.g., between the third and eighth actions) would read again “x” but from P2, obtaining
at that moment value 3, that is older than 2. So, sequential consistency allows read old-new inver-
sions. Therefore, this example shows that the sequential model is convergent but not strong (i.e., not

enough strong in the sense stated in this section).

Relaxed models: A model is relaxed if it does not ensure convergence when all its consistency re-
quirements are respected. PRAM (also known as FIFO) consistency is an example of relaxed model
since it only requires that the writes of each process are applied in writing order on the other replicas,
allowing any interleaving of the writes made by different processes. Because of this, different re-
ceivers may see different values on a given set of variables when they have applied all their incoming
updates.

For instance, this other FIFO-consistent execution considers the same three write actions and four
processes shown in execution 1. However, now the states of those four processes do not converge:

W2(x)3,W1(x)2,R3(x)3,W1(y)5,R4(x)2,R3(x)2,R4(y)5,R2(x)2,R2(y)5,R4(x)3,R1(x)3,R3(y)5 (2)

Note that the final state is x=2, y=5 in P2 and P3 but x=3, y=5 in P1 and P4.

Up to our knowledge, only Pascual-Miret [56, 57] has analysed where to place the frontier between
relaxed and convergent models. In order to set that borderline we need to revise the consistency properties
of all non-strong models. Steinke and Nutt [67] provide an appropriate composable specification of those
properties. They are informally summarised as follows:

GPDO (Global Process-Data Order): There is a global agreement on the order of writes at each pro-

cessor and on the same variable. Writes from different processors or by the same process but on
different variables may be freely interleaved by each reader.

GPO (Global Process Order): There is a global agreement on the order of writes at each processor.

Writes from different processors may be freely interleaved by each reader.

GDO (Global Data Order): There is global agreement on the order of writes on each variable.

GWO (Global Write-read-write Order): There is a global agreement on the order of potentially causal-

related writes; i.e., write A globally precedes write B when the value written in A had been read by
process p before it wrote B.

11

GPO+GWO+GAO

sequential

CONVERGENT MODE
GWO+GAO GPO+GAO
GPO+GWO GWO+GDO GAO GPO+GDO
causal processor
GPO GWO GDO
PRAM cache
RELAXED MODELS
GPDO

slow

Figure 1: Convergent and relaxed models.

GAO (Global Anti Order): There is a global agreement on the order of any two writes when a process
can prove that it read one before the other.

Steinke and Nutt prove [67] that: (1) GPDO defines slow [35] consistency, (2) GPO defines FIFO
(or PRAM) [48] consistency, (3) GDO defines cache [31] consistency, (4) GPO+GDO define a model
slightly stronger than processor [31] consistency, (5) GPO+GWO define causal [1] consistency, (6) GAO
is stronger than GDO; i.e. GAO+GDO is equivalent to GAO, and (7) GPO+GWO+GAO define sequential
[45] consistency.

At a glance, GDO is clearly convergent. It states that all processes agree on the order of writes onto
each variable. Therefore, when all the updates have been propagated to every replica, the same value on
each variable should be seen in all of the replicas. If GDO is convergent, then GAO is also convergent,
since GAO is stronger than GDO. Besides, all consistency models that combine GDO (or GAO) with other
consistency properties will be also convergent, since GDO implies convergence.

On the other hand, GPO is not convergent. Execution 2 has provided a counter-example for convergence
in FIFO executions and GPO is equivalent to FIFO consistency. Additionally, GWO is neither convergent.
Execution 2 trivially complies with GWO and it is not convergent. GPDO is not convergent, since it is
strictly more relaxed than GPO.

Therefore, GDO is the most relaxed condition that implies convergence. This means that non-strong
consistency models may be classified as follows:

e Convergent: sequential (GPO+GWO+GAO), processor (GPO+GDO) and cache (GDO).
e Relaxed: causal (GPO+GWO), FIFO (GPO) and slow (GPDO).

Figure 1 graphically shows this classification. Each box maintains a combination of properties. Those
properties are shown in the top half of the box, while the bottom half shows the name of the resulting
consistency model, if any. The basic properties are in the bottom of the figure. Combinations of properties
are shown in layers above those taken as their base. The topmost layer corresponds to the sequential
consistency model, which is the strongest one that may be built using those consistency properties.

12

With this, implementations of eventual consistency should choose between two alternatives: (1) to
implement a replication protocol supporting a convergent consistency model, or (2) to support a relaxed
model and extend its protocol with some data convergence mechanism when data divergences arise.

In the regular case, eventual consistency has been implemented using multi-master replication protocols
with lazy update propagation and, in most cases, eventually consistent services are able to tolerate network
partitions remaining available. With that kind of replication, convergent models cannot be supported. Note
that in a multi-master algorithm multiple processes may concurrently write different values on the same
variable (perhaps, in disjoint subgroups of a partition), propagating such values lazily to the other processes.
It is impossible to reach an agreement on a common order for the writes applied on each variable (as GDO
requires), since every process, besides writing, is also reading the values from other variables. In the
end, any possible agreed write order would have been violated by those concurrent reads. Therefore, it is
mandatory to take as a base a relaxed model, and complement it with some mechanism that fixes the data
divergences that might occur. Additionally, we should also consider that other papers [50, 58] have proved
that the causal model is the strongest one to be supported for sharing a general data resource in a consistent
and available way in a partitionable network.

Thus, depending on the regular consistency requirements of the service to be implemented following
an eventual convergence principle, two real alternatives exist for data-centric consistency: (1) to use slow
or PRAM replica consistency (or even no consistency at all) when optimal throughput is the main goal, or
(2) to use causal replica consistency when at least a causal behaviour at the client side is expected, partially
sacrificing performance in this case. Both approaches should rely on supplementary data convergence
mechanisms.

4 Implementation Approaches

The problem of guaranteeing state convergence only arises when a replicated service exists. The state
being managed by that service may use an optimistic replication technique [60]. In that case, service
replicas become eventually consistent.

In order to implement any replication strategy several aspects should be considered. Let us revise
them, focusing on their effect on performance and replica convergence. Note that in each aspect, several
implementation approaches are enumerated. After their name, in parentheses, we show an abbreviation in
order to refer to them later on:

e Replication protocol. The replication protocol rules the steps to be followed by the service replicas in
order to manage a given operation submitted by a client agent. Several types of replication protocols
may be found:

— Primary copy (PC): One of the server replicas is distinguished as the primary replica. All
update operations must be forwarded to the primary, who is the unique replica that may process
the updates. Once an operation has been processed by the primary, its effects are collected
and forwarded to the remaining replicas that will accept and apply those updates in order to
reach convergence with the state of that primary. Primary copy replication protocols follow the
primary-backup [13] replication model.

— Multi-master (MM): Each operation is processed by a single replica (also known as master for
that operation service) who later propagates the resulting updates (if any) to the remaining repli-
cas. However, in this case, each operation may be forwarded to any replica. No primary exists
in this type of protocol. Thus, concurrent operations may be served by different masters, in-
creasing in this way the degree of concurrency in the service of operations. This strategy might
generate inconsistencies if the operations being served by different masters are conflicting.

— Quorum-based (QB): Operations are classified as queries (i.e., read-only operations) or updates
(i.e., those operations that create, delete or modify at least one data element in their execution).
Queries need to be executed at as many replicas as stated in their read quorum (RQ) while
updates should reach at least a write quorum (WQ). Quorum-based protocols were originally
defined [28] for achieving strong consistency. To this end, assuming that there are n replicas

13

in the system and that each replica has one vote, write quorums should exceed n/2 votes and
the write quorum plus the read quorum should exceed n votes. In this way, it is guaranteed that
conflicting operations will have a non-empty intersection of replicas.

In case of a network partition, when the weight of the write quorum is minimised (i.e., it gets
a value of |n/2]| 4 1) [28], a quorum-based protocol is able to enforce strong consistency if a
major subgroup exists, forcing in this way the adoption of a primary partition [17] model. We
have not discussed quorum-based systems in Section 2 since they lead to service unavailabil-
ity in minor subgroups, preventing eventual consistency techniques from being used in those
situations. However, modern NoSQL scalable datastores (e.g., Cassandra [43]) admit multiple
quorum sizes. With this, they may adopt varying degrees of consistency.

In order to reach the highest throughput multi-master protocols are the best choice, since they allow
the highest concurrency. Non-intersecting quorums (e.g., IR-1W) are also a good choice. Primary
copy protocols might not be enough in case of heavy workloads in scalable systems. On the other
hand, regular quorum-based protocols (i.e., those with intersecting quora) provide low throughput,
and they have not been used in eventually consistent services.

e Operation ordering requirements. Eventually consistent services do not demand state convergence
after processing each operation. Instead of this, the state in different replicas diverges at some in-
tervals and will reach again convergence afterwards. This state convergence may depend on the
semantics of the operation being provided in the replicated service interface. In some cases, those
semantics allow that a given set of operations could be executed in any order at any replica, reaching
convergence when the same set has been executed at every replica. Let us analyse which alternatives
exist in this area (ordering requirements and operation semantics):

— None (NO). When all the operations in the public interface of a given service are commutative,

there is a complete freedom on the order of execution of the incoming requests. Once every
replica has executed the same set (i.e., unordered collection) of operations, all those replicas
will be convergent. This eliminates the need of inter-replica coordination (e.g., in multi-master
replication protocols), being the optimal solution for improving replication throughput.
CRDTs [64, 65, 66] have been proposed by Shapiro and Preguica in order to eliminate opera-
tion ordering requirements in replicated data types. They provide a useful guide for designing
data types with commutative operations and for avoiding conflicts when non-commutative op-
erations exist.
The timestamp-based conflict resolution protocol explained by Johnson and Thomas in [36]
also belongs to this class. It uses multi-master replication. Every replica maintains a local clock
that is used for building a two-part timestamp. The low-order part is the process identifier.
When an updating request is served by a master and the remaining replicas receive its state
updates, no ordering coordination is demanded by that protocol. Such propagated update is
accepted, or not, depending on a local comparison of the state timestamps.

— Partial order (PO). At a glance, non-commutative operations need to be executed in order to
ensure replica convergence. However, even in that case, update operations that might seem
conflicting may be executed in any order when they are updating disjoint parts of the shared
state. As a result, the global order to be considered becomes partial and this means that con-
current (and unordered) service is tolerated for a subset of the operation requests. In spite of
this, partial order means that the other subset of requests must respect a given order and this
implies that some degree of coordination among replicas will be needed, reducing the service
throughput.

— Total order (TO). In some cases all updating operations are conflicting and they should be exe-

cuted in a global total order by every replica. This is the regular behaviour in strong consistency
protocols and should be avoided if high performance is the main goal.

e Synchrony in agent interaction. Distributed services usually follow a client/server interaction pattern.
In a strongly consistent service, when a client agent requests an updating operation to a replicated
server, these interaction steps may be distinguished:

14

The client sends the request to a master replica.
The master replica processes the request.

The master replica sends the state updates to every slave replica.

L .

Slave replicas acknowledge the completion of the application of those updates on their local
copies.

5. The master replica replies to the client.

In that scenario, the client agent remains blocked until the reply is returned to it and the master replica
is also waiting for the acknowledgements sent by the slave replicas. This means that strongly syn-
chronous communication is needed in that case. The first primary-backup [3] replication protocols
followed that same pattern, ensuring linearisable consistency.

However, in eventually consistent services that level of synchrony is unneeded. For instance, query
requests only demand steps 1, 2 and 5, but they can be served by any replica (not necessarily a
master or the primary one) and pure updating requests (that return no result) may be completely
asynchronous for the client, who will be only involved in step 1. Additionally, in this latter case, a
master replica may only execute steps 2 and 3, without needing to wait for step 4 or to do step 5.

On the other hand, when clients expect a reply from their updates, eventual consistency admits
lazy update propagation. This means that the serving replica may execute steps 2 and 5 as soon as
possible, executing later step 3 in a lazy way (either followed by step 4 or not, depending on the
reliability of the communication channels).

Therefore, multiple degrees of agent interaction synchrony are possible in replicated systems. Since
query operations always demand a reply, let us centre our attention on how updating operations may
be processed. The following alternatives exist:

— Asynchronous (A): When updates do not need any reply and server state propagation is done in
a lazy way. This is the optimal solution regarding throughput.

— One synchronous interaction (1S): When either: (1) the update requires an answer and server
state propagation is done in a lazy way, or (2) the update does not need any answer but server
state propagation is synchronous.

— Two synchronous interactions (2S): When the five steps described above are done in a syn-
chronous way. This only happens in strongly consistent services.

State convergence strategy. The state of different replicas may become divergent from time to time.
In those cases, some strategy is needed in order to fix those divergences. That strategy should be
able to, first, identify the differences among multiple replicas and, later, decide how to merge those
diverging states into a convergent one. The following general alternatives exist to this end:

— Unneeded (UN). In some applications, state divergences only arise while an updating request
that has been processed at a replica is not yet known by the remaining replicas. Once the
other replicas receive and process that request, state convergence is restored. This happens, for
instance, when all service operations are commutative. Note that in that case, the replication
protocol being used should be based on “operation transfer” instead of “state transfer”.

In case of network partitions, each subgroup should remember the set of operations that they
have processed while the network was partitioned, in order to transfer that set to the remaining
subgroups when connectivity is restored. This allows that every operation executed at every
subgroup were considered and accepted in the resulting convergent state. However, that accep-
tance may depend on the existing semantic constraints in the distributed application.

For instance, let us assume a banking account that is replicated at multiple sites. Its current
balance is 1000$. At a given moment, a network partition occurs and three subgroups (i.e.,
partitions) of nodes exist. Each subgroup knows that the balance was 1000$. Therefore, all they
accept one withdrawal (e.g., of 500$ each). Now, each subgroup thinks that the current balance

15

is 500$. However, the actual global balance is -500$ and its correct value will be computed
when connectivity is recovered. In many cases, an application might have a constraint (e.g.,
negative balances are not allowed) that would not be respected by that resulting merged state.

This strategy does not need any divergence detection mechanism.

— Overwrite (OW). Some types of simple applications (e.g., directories, calendars, ...) may use
databases that hold entries that are seldom updated or that receive updates that need a minimal
computation effort and that do not depend on other database fields. In those cases, in case of
conflicts, the application is interested in the newest updating attempt. All previous ones may
be overwritten by that latest one.

These applications only need to tag the updating actions with a (logical) timestamp, as it was
suggested in [36]. In case of conflicts, the merged state will only hold the newest update. The
detection and resolution of conflicts may be easily automated with this strategy.

— Reordering (RO). When the updating operations applied in a concurrent way at different master
nodes or partitions depend on the previous state and are conflicting, only one of them might
be accepted according to the application semantics. In that scenario, those other conflicting
operations should be discarded (using backward recovery in the nodes where they had been
previously applied) and restarted. This implies an operation reordering. In some cases, that
reordering may be automated if there are deterministic criteria that rule those reordering deci-
sions.

— Manual convergence (MC). If the conflicting operations are discarded and need to be restarted
during the state merging procedure but there are no deterministic criteria to schedule those re-
jected operations, user intervention may be needed for deciding an appropriate schedule order.
Therefore a manual merging approach is needed in that case.

From the point of view of performance, the second alternative is the best one, since it only needs to
find the newest state and apply it to the remaining replicas. Additionally, the mechanisms needed in
that case may be simple (logical timestamps or version vectors). Unfortunately, that strategy is not
generally applicable.

Commutative operations also simplify the convergence approaches. Nothing special is needed, al-
though the still missing requests (that could be a large set in case of network partitions that have
lasted a long time) should be run in those nodes that had not seen them. This might take a long time
in some cases.

Considering only performance, the MM-NO-A-OW (multi-master, with no ordering requirements,
asynchronous interactions and overwrite-based merging) or MM-NO-A-UN combinations of strategies
seem to be the best ones. Up to our knowledge, no complete performance comparison, including all the
identified strategies, has been performed yet. In spite of this, some research papers have analysed and
compared some of the alternatives discussed in any of those aspects.

For instance, de Juan-Marin et al (2007) [20] presents a performance evaluation of different primary-
copy algorithms depending on their degree of communication synchrony. A completely asychronous inter-
action (i.e., using the A case) was able to complete an update operation in less than 2 ms (the processing
time at the server side was around 1 ms), while the same request demanded at least 25 ms in the 2S case.
Therefore, synchronous interactions may worsen communication time up to 20 times in the scenarios being
considered in [20].

Golab et al (2014) [30] propose the gamma client-centric metric for benchmarking consistency. To
this end, the Cassandra scalable datastore is used in [30]. It uses a QB replication protocol. In their
tested configurations with a “hotspot” distribution only a “read one-write one” quorum provided a higher
proportion of consistency anomalies (1.3%) than the regular strongly consistent quorums (e.g., “read all-
write all” or “read a majority-write a majority”), that only reached 0.6%. On the other hand, with its
“latest” distribution, the “read one-write one” quorum (1.3% of accesses with anomalies) and the “read
one-write a majority” (0.6%) provided more anomalies than regular strongly consistent quorums (0.1%).
This means that the most relaxed QB protocols (1R-1W), as expected, introduce more inconsistencies than

16

Repl. CAP mgmnt.
Paper prot. Order | Sync. | Converg. C A | Year
Johnson and Thomas [36] MM NO, PO | A, 1S ow FIFO Y 1975
Bunch [14] PC TO 28 N/A strong N 1975
Alsberg and Day [3] MM NO 1S UN relaxed | 'Y | 1976
Lindsay et al [47] PC, QB PO 25 2PC strong N | 1979
Parker et al [55] MM PO 1S MC causal Y 1981
Apers and Wiederhold [4] - PO 1S RO strong N | 1985
Ladin et al [41] MM PO, TO 1S UN causal Y 1988
Shapiro and Preguica [64] MM NO A UN relaxed | 'Y | 2007

Table 2: Implementation strategies used in several proposals.

the traditional strongly consistent QB protocols. Such difference is up to 13 times greater in the worst case,
but it is only twice greater in the common case.

With the aim of complementing our historical revision started in Section 2, Table 2 shows which papers
were the first to apply some of the combinations of implementation strategies discussed in this section. In
order to consider all possible combinations, some strongly consistent protocols are also in the table.

The table shows how each protocol deals with the CAP theorem when a network partition occurs. In
that case, each protocol needs to decide whether consistency is relaxed or availability is sacrificed. In the
A column, a Y (yes) means that availability is maintained in every replica, while an N (no) means that
some replicas remain unavailable. The C column shows which is the strongest consistency model being
supported by the available replicas while the network remains partitioned. The “relaxed” value means that
any of the relaxed models identified in Section 3, or even none at all, is enough in that proposal since it is
assuming commutative operations.

The entry for Alsberg and Day shows the information about the variant of its protocol that admits
multi-master management with commutative operations. The 2PC abbreviation represents the two phase
commit protocol explained in [47] in order to decide the fate of distributed transactions. That final protocol
introduces two synchronous communication stages at the end of each distributed transaction. Despite
tolerating lazy propagation, the algorithms described by Lindsay et al do not admit progress in all subgroups
when the network is partitioned.

S Summary

A discussion on several aspects of eventual consistency has been provided. In its weak form, eventual con-
sistency is basically a liveness property (data convergence) to be added to any relaxed memory consistency
model. Due to this, it cannot have a formal specification similar to other consistency conditions since none
of them considers time. However, Bouajjani et al [11] have recently proposed a formal specification that
carefully characterises safety (program correctness) and liveness (eventual state convergence, even when
there are no quiescent intervals in a trace) correctness conditions for eventually consistent services. In the
end, the correctness conditions to be achieved depend mainly on [60]: (1) the operation scheduling policy
(indeed, the rules of that policy also define the data-centric consistency model to be used: causal, PRAM,
slow...), (2) the conflict detection mechanisms, (3) the conflict resolution mechanisms, and (4) the operation
commitment procedures. Note that (3) and (4) are defining the state convergence strategy to be followed,
and both service network-partition tolerance and throughput will strongly depend on them.

Although eventual consistency has received a lot of attention when elastic and geo-replicated distributed
services have been developed, it was already suggested in several papers 40 years ago. Therefore, it is not
a new concept. A short historical review has been presented, describing some of the oldest works in this
subject.

Finally, using the consistency model specification framework provided by Steinke and Nutt [67], the
border between inherently convergent and relaxed models has been set. Those relaxed models (e.g., slow,

17

PRAM and causal) may be taken as a basis for implementing eventually consistent services. This shows
that eventual consistency is quite a relaxed condition.

References

(1]

(2]

(3]

(4]

(5]
(6]

(71

(8]

(9]

[10]

(11]

[12]

(13]

(14]

(15]

(16]

[17]

(18]

[19]

Ahamad M, Burns JE, Hutto PW, Neiger G (1991) Causal memory. In: 5th International Workshop on Distributed
Algorithms and Graphs (WDAG), Delphi, Greece, pp 9-30

Almeida S, Leitao J, Rodrigues LET (2013) ChainReaction: a causal+ consistent datastore based on chain repli-
cation. In: 8th EuroSys Conference, Prague, Czech Republic, pp 85-98

Alsberg P, Day JD (1976) A principle for resilient sharing of distributed resources. In: 2nd International Confer-
ence on Software Engineering (ICSE), San Francisco, CA, USA, pp 562-570

Apers PMG, Wiederhold G (1985) Transaction classification to survive a network partition. Tech. rep., STAN-
CS-85-1053, Dept of Comput Sc, Stanford Univ, Stanford, CA, USA

Attiya H (2010) Robust simulation of shared memory: 20 years after. Bull EATCS 100:99-113

Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Commun ACM
56(5):55-63

Baquero C, Almeida PS, Shoker A (2014) Making operation-based CRDTs operation-based. In: 14th IFIP Inter-
national Conference on Distributed Application and Interoperable Systems (DAIS), Berlin, Germany, pp 126-140

Bernstein PA, Das S (2013) Rethinking eventual consistency. In: ACM SIGMOD International Conference on
Management of Data (SIGMOD), New York, NY, USA, pp 923-928

Birrell A, Levin R, Needham RM, Schroeder MD (1982) Grapevine: An exercise in distributed computing.
Commun ACM 25(4):260-274

Bosneag A, Brockmeyer M (2002) A formal model for eventual consistency semantics. In: IASTED International
Conference on Parallel and Distributed Computing Systems (PDCS), Cambridge, USA, pp 204-209

Bouajjani A, Enea C, Hamza J (2014) Verifying eventual consistency of optimistic replication systems. In: 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), San Diego, CA, USA,
pp 285-296

Brewer EA (2000) Towards robust distributed systems. In: 19th ACM Symposium on Principles of Distributed
Computing (PODC), Portland, Oregon, USA, p 7

Budhiraja N, Marzullo K, Schneider FB, Toueg S (1992) Optimal primary-backup protocols. In: 6th International
Workshop on Distributed Algorithms and Graphs (WDAG), Haifa, Israel, pp 362-378

Bunch SR (1975) Automated backup. In: Alsberg P (ed) Research in Network Data Management and Resource
Sharing; Preliminary Research Study Report, CAC Document Number 162, University of Illinois at Urbana-
Champaign, USA, pp 71-106

Burckhardt S (2014) Principles of eventual consistency. Foundations and Trends in Programming Languages
1(1-2):1-150

Burckhardt S, Leijen D, Fiahndrich M, Sagiv M (2012) Eventually consistent transactions. In: 21st European
Symposium on Programming (ESOP), Tallinn, Estonia, pp 67-86

Chockler G, Keidar I, Vitenberg R (2001) Group communication specifications: a comprehensive study. ACM
Comput Surv 33(4):427-469

Cosell BS, Johnson PR, Malman JH, Schantz RE, Sussman J, Thomas RH, Walden DC (1975) An operational
system for computer resource sharing. In: 5th ACM Symposium on Operating System Principles (SOSP), The
University of Texas at Austin, Austin, Texas, USA, pp 75-81

Davidson SB (1984) Optimism and consistency in partitioned distributed database systems. ACM Trans Database
Syst 9(3):456-481

18

(20]

[21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

[39]

de Juan-Marin R, Decker H, Mufioz-Escoi FD (2007) Revisiting hot passive replication. In: 2nd International
Conference on Availability, Reliability and Security (ARES), Vienna, Austria, pp 93-102

Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry DB (1987)
Epidemic algorithms for replicated database maintenance. In: 6th ACM Symposium on Principles of Distributed
Computing (PODC), Vancouver, BC, Canada, pp 1-12

Dustdar S, Guo Y, Satzger B, Truong HL (2011) Principles of elastic processes. IEEE Internet Comput 15(5):66—
71

Fekete A, Gupta D, Luchangco V, Lynch NA, Shvartsman AA (1996) Eventually-serializable data services. In:
15th ACM Symposium on Principles of Distributed Computing (PODC), Philadelphia, PA, USA, pp 300-309

Fekete AD, Ramamritham K (2010) Consistency models for replicated data. In: Charron-Bost B, Pedone F,
Schiper A (eds) Replication: Theory and Practice, Lect Notes Comput Sc, vol 5959, Springer, chap 1, pp 1-17

Fischer MJ, Michael A (1982) Sacrificing serializability to attain high availability of data. In: ACM Symposium
on Principles of Database Systems (PODS), Los Angeles, CA, USA, pp 70-75

Fox A, Brewer EA (1999) Harvest, yield and scalable tolerant systems. In: 7th USENIX Workshop on Hot Topics
of Operating Systems, (HotOS), Rio Rico, Arizona, USA, pp 174-178

Gharachorloo K, Adve SV, Gupta A, Hennessy JL, Hill MD (1992) Programming for different memory consis-
tency models. J Parallel Distrib Comput 15(4):399-407

Gifford DK (1979) Weighted voting for replicated data. In: 7th ACM Symposium on Operating System Principles
(SOSP), Pacific Grove, CA, USA, pp 150-162

Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web
services. SIGACT News 33(2):51-59

Golab WM, Rahman MR, AuYoung A, Keeton K, Gupta I (2014) Client-centric benchmarking of eventual con-
sistency for cloud storage systems. In: 34th IEEE International Conference on Distributed Computing Systems
(ICDCS), Madrid, Spain, pp 493-502

Goodman JR (1989) Cache consistency and sequential consistency. Tech. rep., Number 61, IEEE Scalable Co-
herent Interface Working Group

Guerraoui R, Garbinato B, Mazouni K (1994) The GARF library of DSM consistency models. In: ACM SIGOPS
European Workshop, pp 51-56

Herbst NR, Kounev S, Reussner RH (2013) Elasticity in cloud computing: What it is, and what it is not. In: 10th
International Conference on Autonomic Computing (ICAC), San Jose, CA, USA, pp 23-27

Herlihy M, Wing JM (1990) Linearizability: A correctness condition for concurrent objects. ACM Trans Program
Lang Syst 12(3):463—492

Hutto PW, Ahamad M (1990) Slow memory: Weakening consistency to enchance concurrency in distributed
shared memories. In: 10th IEEE International Conference on Distributed Computing Systems (ICDCS), Paris,
France, pp 302-309

Johnson PR, Thomas RH (1975) The maintenance of duplicate databases. RFC 677, Network Working Group,
Internet Engineering Task Force

Kawell L Jr, Beckhardt S, Halvorsen T, Ozzie R, Greif I (1988) Replicated document management in a group
communication system. In: ACM Conference on Computer-Supported Cooperative Work (CSCW), Portland,
Oregon, USA, pp 395-

Krishnakumar N, Bernstein AJ (1991) Bounded ignorance in replicated systems. In: 10th ACM Symposium on
Principles of Database Systems (PODS), Denver, Colorado, USA, pp 63-74

Kumar A, Stonebraker M (1988) Semantics based transaction management techniques for replicated data. In:
ACM SIGMOD International Conference on Management of Data (SIGMOD), Chicago, Illinois, USA, pp 117—
125

19

[40]

[41]

[42]

[43]

[44]
[45]

[46]
[47]

(48]

[49]

(50]

[51]

[52]

(53]
[54]
[55]

(561

[57]

(58]

(591

[60]
[61]

[62]

[63]

Kumar P, Satyanarayanan M (1993) Log-based directory resolution in the Coda file system. In: 2nd International
Conference on Parallel and Distributed Information Systems (PDIS), San Diego, CA, USA, pp 202-213

Ladin R, Liskov B, Shrira L (1988) A technique for constructing highly available services. Algorithmica 3:393—
420

Ladin R, Liskov B, Shrira L (1990) Lazy replication: Exploiting the semantics of distributed services. In: 9th
ACM Symposium on Principles of Distributed Computing (PODC), Quebec City, Quebec, Canada, pp 43-57

Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. Operating Systems Review
44(2):35-40

Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM 21(7):558-565

Lamport L (1979) How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
T Comput 28(9):690-691

Lamport L (1986) On interprocess communication. Distrib Comput 1(2):77-101

Lindsay BG, Selinger PG, Galtieri CA, Gray JN, Lorie RA, Price TG, Putzolu F, Traiger IL, Wade BW (1979)
Notes on distributed databases. Tech. rep., RI2571(33471), IBM Research Laboratory, San Jose, CA, USA

Lipton RJ, Sandberg JS (1988) PRAM: A scalable shared memory. Tech. rep., CS-TR-180-88, Princeton Univer-
sity, USA

Lynch NA, Tuttle MR (1987) Hierarchical correctness proofs for distributed algorithms. In: 6th ACM Symposium
on Principles of Distributed Computing (PODC), Vancouver, Canada, pp 137-151

Mabhajan P, Alvisi L, Dahlin M (2011) Consistency, availability and convergence. Tech. rep., UTCS TR-11-22,
The University of Texas at Austin, USA

Mockapetris PV (1983) Domain names - concepts and facilities. RFC 882, Network Working Group, Internet
Engineering Task Force

Mockapetris PV (1983) Domain names - implementation and specification. RFC 883, Network Working Group,
Internet Engineering Task Force

Mosberger D (1993) Memory consistency models. Operat Syst Review 27(1):18-26
O’Neil PE (1986) The escrow transactional method. ACM Trans Database Syst 11(4):405-430

Parker DS, Popek GJ, Rudisin G, Stoughton A, Walker BJ, Walton E, Chow JM, Edwards DA, Kiser S, Kline CS
(1981) Detection of mutual inconsistency in distributed systems. In: Berkeley Workshop, pp 172-184

Pascual-Miret L (2014) Consistency models in modern distributed systems. An approach to eventual consistency.
Master’s thesis, Depto. de Sistemas Informaticos y Computacién, Univ. Politecnica de Valencia, Spain

Pascual-Miret L, Muifioz-Escoi FD (2016) Replica divergence in data-centric consistency models. In: XXIV
Jornadas de Concurrencia y Sistemas Distribuidos (JCSD), Granada, Spain

Pascual-Miret L, Gonzdlez de Mendivil JR, Bernabéu-Auban JM, Muiioz-Escoi FD (2015) Widening CAP con-
sistency. Tech. rep., IUMTI-SIDI-2015/003, Univ. Politécnica de Valéncia, Valencia, Spain

Pu C, Leff A (1991) Replica control in distributed systems: An asynchronous approach. In: ACM SIGMOD
International Conference on Management of Data (SIGMOD), Denver, Colorado, USA, pp 377-386

Saito Y, Shapiro M (2005) Optimistic replication. ACM Comput Surv 37(1):42-81

Sarin SK, Blaustein BT, Kaufman CW (1985) System architecture for partition-tolerant distributed databases.
IEEE Trans Computers 34(12):1158-1163

Satyanarayanan M, Kistler JJ, Kumar P, Okasaki ME, Siegel EH, Steere DC (1990) Coda: A highly available file
system for a distributed workstation environment. IEEE Trans Computers 39(4):447-459

Schneider FB (1990) Implementing fault-tolerant services using the state machine approach: A tutorial. ACM
Comput Surv 22(4):299-319

20

[64]

[65]

[66]

[67]
[68]
[69]

[70]
(71]

(72]

(73]

Shapiro M, Preguica NM (2007) Designing a commutative replicated data type. Tech. Rep. RR-6320, INRIA,
Rocquencourt, France

Shapiro M, Preguica NM, Baquero C, Zawirski M (2011) Conflict-free replicated data types. In: 13th Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Grenoble, France, pp
386-400

Shapiro M, Preguica NM, Baquero C, Zawirski M (2011) Convergent and commutative replicated data types.
Bull EATCS 104:67-88

Steinke RC, Nutt GJ (2004) A unified theory of shared memory consistency. J ACM 51(5):800-849
Tanenbaum AS, van Steen M (2007) Distributed Systems - Principles and Paradigms (2nd ed.). Pearson Education

Terry DB, Demers AJ, Petersen K, Spreitzer M, Theimer M, Welch BB (1994) Session guarantees for weakly
consistent replicated data. In: 3rd International Conference on Parallel and Distributed Information Systems
(PDIS), Austin, Texas, USA, pp 140-149

Vogels W (2008) Eventually consistent. ACM Queue 6(6):14—19
Vogels W (2009) Eventually consistent. Commun ACM 52(1):40-44

Walker BJ, Popek GJ, English R, Kline CS, Thiel G (1983) The LOCUS distributed operating system. In: 9th
ACM Symposium on Operating System Principles (SOSP), Bretton Woods, New Hampshire, USA, pp 49-70

Yu H, Vahdat A (2000) Design and evaluation of a continuous consistency model for replicated services. In: 4th
Symposium on Operating Systems Design and Implementation (OSDI), San Diego, CA, USA, pp 305-318

21

