
Software Adaptation through Dynamic Updating

Emili Miedes, Josep M. Bernabéu-Aubán, Francesc D. Muñoz-Escoı́

Instituto Universitario Mixto Tecnológico de Informática
Universitat Politècnica de València

Campus de Vera s/n, 46022 Valencia (Spain)

emiedes@iti.upv.es, bernabeu@upvnet.upv.es, fmunyoz@iti.upv.es

Technical Report ITI-SIDI-2012/010

E
m

ili
M

ie
de

s
et

al
.:

So
ftw

ar
e

A
da

pt
at

io
n

th
ro

ug
h

D
yn

am
ic

U
pd

at
in

g
IT

I-
SI

D
I-

20
12

/0
10





Software Adaptation through Dynamic Updating

Emili Miedes, Josep M. Bernabéu-Aubán, Francesc D. Muñoz-Escoı́

Instituto Universitario Mixto Tecnológico de Informática
Universitat Politècnica de València

Campus de Vera s/n, 46022 Valencia (Spain)

Technical Report ITI-SIDI-2012/010

e-mail: emiedes@iti.upv.es, bernabeu@upvnet.upv.es, fmunyoz@iti.upv.es

September 28, 2012

Abstract

Software systems evolve continuously. They need to be updated to fix bugs, to improve their perfor-
mance or to adapt their functionality to new user requirements. In their first approaches, these updating
techniques required that the corresponding program was not in use, substituting it with its new version
and using such new version thereafter. This is still a valid procedure for single-user programs being run
in personal computers. However, there are other kinds of software that should be always available, de-
manding a dynamic (i.e., at run-time) software update. This paper surveys the regular goals and currently
existing mechanisms able to drive a dynamic software updating procedure.

1 Introduction
Software systems are continuously evolving. Some typical examples of software updates consist in chang-
ing the implementation of a given component, adding a new component, removing an existing one or fixing
a bug or a security vulnerability.

When the software system being considered is a single application in a personal computer, there is
no problem in updating that software. This only demands uninstalling the current application version and
installing later a new one. Those actions should be done while the user is not interested in such software;
i.e., while the application is not running. Such mechanism is also known as “stop-and-restart”. This is not
a constraint since those personal applications are not continuously in use. As a result, this kind of software
update is “static”; i.e., the software being updated remains stopped while the update is done.

However, updates are not trivial when the software system is a service available to a potentially large set
of users. In that case, stopping the service is not a valid option in the general case, and the software update
should be “dynamic”; i.e., the update should be applied while the software system is still running with the
aim of ensuring service availability. Note also that when a service update occurs, a logical contract among
the service provider and its interested clients exists and should be maintained. Thus, the software non-
functional requirements are commonly collected in a service-level agreement (SLA) [8] and the dynamic
updating mechanisms should consider and respect those requirements.

Dynamic update mechanisms are useful for many types of software systems and applications. First,
they are useful for upgrading the operating systems themselves [32]; i.e., to apply both the regular updates
that fix bugs or include minor changes and the major upgrades that include a large number of changes,
without forcing the user to restart the system. In a wider scale context, dynamic mechanisms are useful
to update any type of web service or application that offers a continuous service to a large set of users.
Without a dynamic update mechanism, to update such an application, a stop-and-restart model would be
used. In that case, the ongoing user requests must be aborted, thus causing a significant nuisance to the
connected users. Moreover, the application must be kept inactive during the time needed to perform the

1



upgrade and the corresponding testing, thus yielding it unavailable, which has a negative impact on the
holder entity.

Another example in which a dynamic update mechanism is highly desirable is the cloud computing
ecosystem as a general example of an on-line 24/7 high-scale environment. Indeed, one of the major fea-
tures promised by any cloud computing provider is a high level of availability of the applications deployed
in the cloud. Nevertheless, all the cloud providers run a software infrastructure or platform that sooner or
later has to be updated and upgraded. As in the previous examples, a dynamic software update mecha-
nism allows the cloud providers to update their systems while keeping the highest levels of availability and
transparency from the point of view of the user.

The dynamic software update topic has been studied in the last three decades by many researchers, in
different contexts, and a number of techniques and solutions of different types have been proposed. During
that time, only a few surveys of dynamic update mechanisms can be found [73, 37, 42]. Nevertheless, to
the best of our knowledge, no study surveying and classifying the common dynamic update techniques has
been published yet.

The goal of this paper is to help the interested reader to understand some of the concepts and techniques
found in the literature of dynamic software updating. First, Section 2 proposes a selection of requirements
and goals that are basic in any dynamic software update mechanism. Then, Section 3 describes a number
of techniques used in the existing literature. Section 4 discusses a number of issues related to some of the
topics covered in the preceding sections. The paper is concluded in Section 5.

2 Requirements and Goals
As pointed out in Section 1, a dynamic update mechanism allows a software system to be updated while it
is running. This means that to apply a change in the software, it is no longer necessary to stop the system
and restart it once updated.

In the existing literature related to dynamic software updating, several authors provide their own defi-
nition of dynamic software update and list the requirements that a dynamic update mechanism may have.
This section identifies a number of such requirements and goals. For each requirement, the main issues are
described providing some references in which the topic is covered.

Continuity. The update can be performed at run-time, without stopping and restarting the system to
update and it does not interrupt the software execution.

The first part of the requirement (the avoidance of a stop and restart) is the key attribute of the dynamic
software update topic, as explained in Section 1. All the references that cover the dynamic software update
implicitly assume it. Some of the authors that identify it explicitly are Fabry [28], Segal and Frieder
[72, 29], Solarski [74], Murarka and Bellur [58] and Gregersen and Jørgersen [33].

The second part of the requirement can be seen as an extension of the first part. The goal is to ensure
that the availability of the service offered by the software and its performance do not decrease significantly.

From a practical point of view, both parts of the requirement are needed to ensure that the software
service is available. To show this, let us consider two worst cases that may happen in a continuous update
mechanism. In the first case, the update process is dynamically applied but due to the overhead it imposes,
it completely blocks the execution of the service thus yielding it unavailable. In the second case, the
update process is also dynamically applied and can be executed in parallel with the service but reducing its
performance to a minimum, which in fact would be a similar situation. In both cases, despite having the
update process dynamically performed, the software is unavailable from a practical point of view.

On the other hand, the best case is such that the update process does not block the execution of the
service at all (this is, it can be performed while regular service requests are being served) and it does not
alter the service performance.

That best case is difficult to achieve so many authors consider a relaxed version. To this end, it is just
required that the update process causes the minimal performance overhead or disruption to the updateable
software, without specifying what the disruption may consist in ([50, 72, 29, 44, 17, 33, 63]). In other cases,
this requirement is more specific, like in [28], which admits a momentary delay in the normal execution of

2



user requests or [74] which accepts that the update process may interrupt the application the shortest time
possible.

Transparency. The update process is transparent, which means that it has no impact on its context (the
user, the programmer and the managed application) beyond the results it provides (a software reconfigura-
tion or upgrade). This is a manifold requirement, since several types of transparency can be considered:

• User transparency: The update mechanism is hidden to the user, this is, the user does not need to
be aware of the update mechanism. These mechanisms do not require that users interact with the
application in any specific manner nor have any specific knowledge or skills. Without this kind of
transparency the user needs to know about the update mechanism and this will restrict the way users
interact with the software.

• Application transparency: The update mechanism does not impose any constraint to the program
about how it is designed or implemented, does not change the expected behavior of the program,
does not impose any noticeable performance impact nor any constraint and is not noticeable to those
system parts that are not related to it. Typical examples of constraints that may be imposed to the
updateable components of an application are the use of specific programming or configuration lan-
guages, interfaces or base classes and libraries to include in the application. Application transparency
directly implies programmer transparency; i.e., the update procedure does not require that program-
mers have any specific knowledge about the update process. So, programmers do not change the way
they design and develop their programs.

Regarding the literature, these transparency requirements are identified by several authors. The user
transparency requirement is only explicitly mentioned by Fabry [28] although it is implicitly assumed in
every paper. On the other hand, Gregersen and Jørgersen [33], Solarski [74] and Bannò et al. [6] require
application transparency.

Generality. The update process is general. This requirement actually has a twofold interpretation. First,
the update mechanism allows to apply different types of updates of different degrees of complexity. The
types of changes that are easier to apply are reimplementing some part of the system yet keeping the
interfaces and the semantics intact and extending the software in a constructive manner (this is, keeping
the existing components and adding new ones). More complex changes are modifying the interface of
some of the components in an incompatible way or extending/replacing/exchanging the protocols that
intercommunicate different system components or removing some existing components. A dynamic update
mechanism that offers generality may allow any type of change that could be applied by the classic stop-
and-restart update mechanism referred to in Section 1.

A second interpretation is that the updateable systems can be of different types. It refers to the ability
of the dynamic update mechanisms to update heterogeneous components (those using different technolo-
gies, models, programming paradigms and languages, etc.) and this implies that there exists a system-
independent update method that may be easily adapted to each specific component allowing whole system
updates.

The first interpretation is used by Ajmani [1, 2] and Gregersen and Jørgersen [33] while the second is
used by Solarski [74]. Panzica [63] refines the generality requirement specifying four different kinds of
dynamic updates (ideally, any dynamic updating support should be able to manage all these update kinds)
onto a software component: (a) perfective update (when the new component maintains the functionality of
the previous one and extends its interface with some new operations), (b) corrective update (the component
interface is not updated but its internal logic is modified: bug fixes, performance enhancements, etc), (c)
partial compatibility (the component interface is partially modified; i.e., some of its operations disappear
and are replaced by others), and (d) incompatibility (the component interface is completely changed). Hicks
[42] refers to this requirement as flexibility, encompassing the two interpretations discussed above.

Robustness. The functionality of the application being updated should be guaranteed. This implies that
the request being received by that application should always return a correct reply and generate a consis-
tent (i.e., conformant with its specification) state; i.e., state corruption should be avoided. Unfortunately,

3



update correctness is an undecidable issue [37]. Besides corruption avoidance, some additional aspects of
robustness may be considered in an updating mechanism (Hicks [42] describes some others: completeness,
well-timedness, and simplicity):

• Consistency preservation. Consistency preservation means that the state obtained after a dynamic
update should be identical to that obtained through a stop-and-restart (static) update. This implies
that the client requests being served in the updating phases should always terminate (completion).
Moreover, those requests should modify the application state and get answers both complying with
the application specification and expected functionality (conformance). For instance, Kramer and
Magee [50], Sridhar et al. [76], Solarski [74], Murarka and Bellur [58] require that the update
process leaves the system in a consistent state but do not elaborate too much about the concept of
consistency.

Gregersen and Jørgersen [33] are a bit more specific and require that the software state after a dy-
namic update must be the same than the obtained by starting and running the application once the
updates have been applied statically. The behavior is expected to be correct even during the update.
Bannò et al. [6] require data consistency and also consistency of flow (the proper termination of
pending requests). Finally, Panzica [63] identifies both variants of consistency pointed out above
(i.e., completion and conformance).

This consistency preservation is particularly hard to achieve when the new software version presents
some incompatibility with the previous one. In non-distributed applications this happens when dif-
ferent software versions use different sets of data as their state, without any derivation rules that
allow an immediate translation from the old version to the new one. On the other hand, distributed
applications face a similar problem when software versions rely on different (and incompatible) sets
of protocols that rule the interaction among their processes. In both cases some transitional interval
should be defined, requiring the usage of some translation mechanisms while it lasts, complicating
the software update.

• Safety. According to [42], safety means that “malformed or otherwise incorrect updates should not
cause the running system to crash”. This implies that the regular software engineering techniques
should be used in order to guarantee the correct functionality of each of the modules being installed
in an update, and a careful testing and deployment plan should be considered for managing the
integration of those modules with the rest of the software that will host them.

• Possibility of Update Abortion (Rollbackness). The update mechanism should allow the interrup-
tion of an ongoing update, rolling back all its effects. In case of a single centralized application an
update interruption is not a complicated action. Simply, the previous existing software is maintained
and none of its modules is replaced. Since this only affects a single machine and a few modules,
rolling back the update only requires a short time. Note that it is assumed that the update was still
on-going and this implies that both the old and new modules were both installed in the system. So,
it is simply a decision about which of the two alternatives should be maintained in the system and
which one should be finally stopped and removed from that system.

On the other hand, in a distributed deployment several application components need to be exchanged
by their new versions in order to update that application. To this end some updating protocol is
needed. The complexity of the rolling back decision depends on the amount of implied components
and the progress achieved in the updating process. Note that the rollback may be required due to
some fault in any of the components or in the updating protocol. As a result, the completion of the
update would lead to a corruption of the application state or functionality and this should be avoided.
This recommends that updating protocols forecast the actions to be taken in case of an update bug or
failure, maintaining all resources needed for aborting any on-going update.

In Solarski [74], the update is considered an atomic operation that is either successful or rollbacked
to the previous version. In the update mechanism in POLUS by Chen et al. [17, 18], besides up-
dating a component to the next version it is also possible to apply a reverse update to go back to a
previous version, which actually is an effective rollback mechanism. Gregersen and Jørgersen [33]
also consider the ability to rollback an update to restore the previous version of the software.

4



3 Updating Techniques
Different complementary techniques and mechanisms exist in order to comply with all the requirements de-
scribed in the previous section. Some techniques are specifically designed for non-distributed applications
consisting of a single program; others are intended for fault-tolerant distributed systems based on compo-
nent redundancy. Let us describe this ample set of techniques analyzing the goals that may be attained
using each of them.

3.1 Use of Indirection
There are a large number of authors that propose dynamic update procedures, mechanisms and tools based
on the use of different sorts of proxies, intermediary objects and other indirection levels. All these mech-
anisms share the characteristic of using some indirection level allowing the installation of a new module
and its proper configuration before replacing its old version. In order to complete such software update, the
“pointer” that sets such level of indirection exchanges its value, referring then to the latest version of the
module. These techniques are useful in both traditional non-distributed systems and in distributed systems
based on a client-server interaction model.

The basic idea consists in adding an intermediary level between a caller and the dynamically updateable
callee module it is accessing. Instead of having the caller directly access to the functions and procedures
implemented by the callee module, it uses some intermediary code that points to the current implementation
of that module. The state maintained by such an intermediary software piece can be overwritten at runtime.

Regarding the requirements outlined in Section 2, indirection is able to ensure a sufficient degree of
transparency since a caller may not see any difference between the previous and the current versions of a
called module, being thus unaware of the updates already completed in a given application. Continuity may
be also ensured if the old and new module versions may coexist in the system before the update is started
and the exchanging step does not force to block any call. On the other hand, generality and robustness are
not directly granted by a mechanism based on indirection but are not impeded by it. So, other mechanisms
should be considered in order to comply with those requirements.

Indirection was inspired by dynamic linking [21]. The latter allows the late binding of those modules
placed in shared libraries, completing such binding at runtime. This permits that the modules being im-
plemented by such shared libraries were updated, generating new library versions that can be used by the
interested programs without requiring their recompilation and relinking. However, this is not yet a valid
mechanism for dynamic updating, since not all parts of the application might be updated using dynamic
linking but only those held in the shared libraries. Additionally, once one of the routines stored in such
library is required by the application, such routine is loaded and bound, preventing the application from
updating such routine while it is in use. In a dynamic updating mechanism there should be no limit regard-
ing when a software piece may be updated. As a result, dynamic linking is not a valid example of dynamic
update. It should be enhanced. Despite this, the fact of storing some kind of “pointer” (to be replaced
later with the address of the called routine) that in its first access triggers the library loading and the rou-
tine binding is an example of the usefulness of indirection mechanisms and a first step towards dynamic
updating.

Indirection has been used by a number of authors in order to implement real dynamic updating mech-
anisms. For instance, Fabry [28] was one of the first to use it, in combination with two different kinds
of binary-level overwriting. The DAS operating system [32] was based on a segmented memory architec-
ture and used the segment base registers in order to implement segment replugging, thus replacing the old
version of a given module with its new one. Such mechanism demands that the interfaces of both module
versions were identical. This is one of the first examples of software upgrades applied to operating systems.
Bloom [10] reuses the idea of redirecting the calls to the updateable code by remapping some handlers, in
the context of Argus programs. Lee [52] uses indirect addressing in order to allow the upgrade of modules
in the DYMOS system.

Segal and Frieder [72, 29] use interprocedures which are some intermediary routines that redirect the
client invocations initially targeted to the old version procedures to their new version counterparts. The
authors also use a binding table which holds pointers to the updateable procedures. These pointers are
overwritten in run-time, as new versions of such procedures are installed.

5



In POLUS [17, 18], Chen et al. use an indirection level by inserting a jump instruction in an old-version
function, to redirect the invocations to the new version.

A refined solution consists in using, as an intermediary level, proxy objects that simulate the real im-
plementation of the target object. The idea is that the caller code does not call the objects that implement
the service but uses intermediary proxies. These offer to the invoker the same interface than the original
target objects and hide the complexity of the dynamic update. There are a number of authors that follow
this approach [56, 33, 19]. For instance, Purtilo et al. [65, 64] propose the use of a software bus to con-
nect software modules by means of proxies that are automatically compiled from an additional declarative
specification provided by the programmer. The proxies and the bus itself intercept the conventional calls to
the functions of the modules and implement the functionality related to the dynamic reconfiguration of the
modules.

Sridhar [76] includes the use of some intermediary objects called Service Facilities. These objects
encapsulate the objects that provide the real service and offer the clients a logical reference that can be
used as the real service object. Thus, these objects handle all the requests made by the clients. These
objects also include the necessary logic to perform the dynamic rebinding, using some well-known design
patterns (like Strategy) and some facilities offered by common programming languages (at least, C++, Ada,
Java and C#).

Ajmani et al. [2] use some intermediary objects called simulation objects that represent past and future
versions of the updateable objects. These objects are offered to the client code as if they were the real
service objects. Internally, the simulation objects can manage and redirect the invocations issued by the
clients to the real objects that implement the service.

In their framework FREJA, Bannò et al. [6] also use some specific Java class loaders and some inter-
mediary objects to control the execution of updateable components.

3.2 Rewriting of Binary Code
There are some proposals that use some sort of rewriting of the binary code of the programs and applica-
tions to update. Several techniques can be identified.

Binary Redirection. Basically, binary redirection means dynamically modifying the binary code that is
executed by a process (this is, the code saved in the main memory of the computer and directly read by its
processor) so one or several call instructions that point to some function are changed to point to some other
place.

As shown below, this was one of the first techniques proposed for a dynamic update mechanism. Never-
theless, it has a number of disadvantages. To begin with, it is strongly dependent on the particular compiler
and especially on the hardware architecture it is aimed to. This reduces its generality and transparency.

This technique is difficult to automate, since each update depends on the binary code of both the original
and the new version of the program. Furthermore, some precautions must be carefully taken. For instance,
before updating the binary code of a function or procedure, it must be ensured that it is not currently being
executed. Otherwise, undesirable effects may be produced. This compromises its robustness.

One of the first authors to propose the use of binary redirection was Fabry [28]. As a base context, there
is some client code that performs a call to a fragment of binary code that implements a given function. To
update the function, a new fragment of binary code is loaded in memory. The problem to solve consists in
making that the old call from the client program stops pointing to the old code and points to the new code.

Fabry proposes two different alternatives to perform such a redirection. Both are based on adding a level
of indirection (see Section 3.1) and rewriting some low level binary instructions to update such indirection
level. In the first alternative, the client program makes a first call to a specific position in memory in which a
JMP-like instruction is placed. This JMP instruction is dynamically overwritten, so it points to the address
of the new version of the function.

In the second solution, when an update is performed, the old position of memory with the old JMP-
like instruction is discarded and a new one is allocated, pointing to the address of the new version of the
function. Then, the binary code of the client is modified to call the new JMP instruction. Regarding to the

6



first solution, this second solution has the disadvantage that it is necessary to modify the binary code of the
client program.

General Binary Rewriting. The binary redirection idea showed above is actually a particular case of the
more general concept of binary rewriting that consists in rewriting any part of the program. Some examples
may be changing the implementation of a function or even its list of parameter types.

The modifications are applied at a binary level, this is, modifying the binary executables or even mod-
ifying the code currently loaded in memory, as it is being executed. This general technique has the same
disadvantages than the particular binary redirection showed above, derived from its low-level nature.

Buck and Hollingsworth [14] propose a platform-independent API for managing code rewriting, al-
lowing dynamic updates; i.e., the addition or removal of portions of binary code while the program is
running. In that paper, the updates are focused on facilitating the software execution profiling and debug-
ging. Nonetheless, their mechanisms are applicable to any other purposes.

Hicks and Nettles [44] use some binary rewriting techniques to modify the service implementation,
data types and the client code that accesses to the patched code. To update the code of the program (i.e.
the implementation of the functions) the authors consider two approaches: code relinking and reference
indirection. The first alternative consists in changing the function invocations made by client code to the
current implementation of the functions, forcing them to point to the new implementations. The second
alternative consists in adding an intermediary indirection level among the new implementation of a function
and the invocations to it (see Section 3.1), arguing that it would be more expensive and more complex to
implement. The alternative finally chosen was the first one.

To update the type definitions, they also consider two options: replacement and renaming. The first
alternative consists in replacing the definition of a type with a new version, by means of some binary
rewriting mechanism. The second alternative consists in adding a new type definition and patching the
code to use it, also by means of binary rewriting. The authors choose the second alternative because they
consider it is simpler and more portable.

To apply changes to the code and the type definitions, dynamic patches are used. Given a version of
the program to update and its next version, some automated tool computes the patches to apply. Besides
creating regular patches (like with the diff and patch UNIX commands), the transformation of the data
is also considered. The programmer can define transformation functions (see Section 3.5) to apply to the
data any transformation needed.

Chen et al. [17, 18] describe POLUS, a tool that offers support to dynamically update a software
system. In order to update a running program from version v to v + 1, the operation of the proposed
procedure is as follows. From the source code of both versions, a patch is generated and then compiled
into a dynamic library, which is injected into the running binary code. For each function that changes in
the new version, POLUS inserts a jump instruction to redirect the program flow to the new implementation
of the function, which is provided by the patch (see Section 3.1 for other forms of level indirection).

The use of dynamic patches is inspired by Hicks and Nettles [44], although POLUS is distinguished
by the possibility to reverse this procedure. Given the version v + 1 of a running program, it is possible
to rollback it to version v by applying an inverse patch. In Section 3.9 other examples of rollback-enabled
mechanisms are given.

Binary Rewriting in Java. Another particular case of binary rewriting is its application to Java programs.
The idea is similar to the general rewriting technique showed above, but in this case the binary language
and format are those defined by the Java Language and Virtual Machine Specifications [31, 53]. The
modifications are typically expected to preserve the Java binary compatibility [31].

As in the previous cases, this technique also has the disadvantage of depending upon a binary level
although in this case, it has a minor practical impact, since the Java language is widely supported by many
operating systems and hardware platforms.

Several authors have studied the use of binary rewriting in Java programs. One of the first proposals is
due to Malabarba et al. [54]. It is based on an extension of the Java class-loader, allowing the maintenance
of multiple class versions in a single program, and the development of a new Java Virtual Machine. This
class-loader extension still demands some amount of binary rewriting, in order to adapt the existing objects

7



to the new class interface. Moreover, since Java uses dynamic linking, changes in the method tables are
also required, thus using some of the indirection approaches described in Section 3.1.

Milazzo et al. [56] propose the use of an intermediary layer that ideally should be independent of
any particular version of the Java Virtual Machine and be usable with any Java application (see Section
3.1). This layer includes a new Java class-loader that uses some Java rewriting techniques to modify the
Java bytecode at loading time. Moreover, new intermediary interfaces and objects are defined and created
to intercept the regular method invocations and redirect them to the proper service implementation. The
client bytecode is also rewritten to use the new interfaces.

Gregersen and Jørgensen [33] propose a mechanism to dynamically upgrade Java programs by success-
fully saving the problem of the version barrier. In short, the problem can be described as follows. One of
the techniques to load new Java classes consists in creating new classloaders and using them to load the
new classes. Nevertheless, this solution has the problem that the new classes are not easily accessible from
code loaded by other classloaders (for instance, by a parent classloader). The mechanism proposed in [33]
can save this barrier by using proxies that are defined dynamically. The idea is to build dynamic proxies
for the updateable classes and let them to act as intermediaries among client classes and real service im-
plementation classes. See Section 3.1 for other techniques based on adding some indirection level. They
also need to manipulate the Java bytecode, in a number of ways to prepare both client and server code to
use and be used by the update mechanism.

The update procedure also includes a lazy state migration that transfers the state from an old version
of a component to a new version (also see Section 3.5). One of the most remarkable peculiarities of this
proposal is that the update mechanism in general and the state transfer mechanism in particular are triggered
lazily, on demand. When an update is requested, it is not immediately applied, but lazily. Moreover, the
state is not immediately transferred. Instead, the state of each object field is transferred individually, when
it is first accessed. Their proposal also allows the rollback of applied updates (see Section 3.9).

Bannò et al. [6] also use some rewriting techniques in their FREJA framework, to apply updates to
the bytecode of Java classes (see Sections III.C and III.D of [6]). This framework is based on the use of
specific classloaders, some (centralized) update managers and some intermediary objects that control the
execution of updateable components (see Section 3.1).

Finally, many tools and libraries offer services related to bytecode manipulation (including run-time
manipulations). For the Java programming language, there are many alternatives like ObjectWeb ASM
[60, 13, 51], CGLIB [16], Javassist [20, 79], Apache Commons BCEL [4], Javeleon [34, 35], JRebel [85]
and some others listed in [48].

3.3 Quiescence
A number of papers use some form of quiescence. The basic idea is that an update of a component of a
program, from a given version to the next one, cannot be applied at any moment during the execution of the
program. Instead, before updating the component, the update mechanism must ensure that the update does
not interrupt any running processes (for instance, the invocation of a service). To this end, different authors
ensure that the component to be updated reaches some stable state. Depending on the author, this stability
requirement is given a different name and described in different ways. In the end, multiple mechanisms
can enforce it. The aim of all these techniques is to ensure the robustness goal described in Section 2.

Search in the Execution Stack. Some mechanisms inspect the process execution stack in order to know
if a given function (or procedure) is currently being executed. If no reference to the function is found, then
it is not being called from the program and it is safe to dynamically update such function (by redirecting
the calls as in Section 3.1, applying a binary patch as in Section 3.2, etc.).

This technique is usually part of some other update procedure. For instance, Gupta et al. [39] inspect
the stack to know if a given routine can be updated. They also use it in [38] to perform its state transfer
procedure (see Section 3.5 for additional information on state transfer). Segal and Frieder [72, 29] also
inspect the stack in order to know whether or not the procedure to update is being executed.

The main disadvantage of this technique is that it strongly depends on the architecture of the underlying
machine. This problem is tackled by Purtilo and Hofmeister [65, 46, 64]. They propose the use of an

8



abstract format to represent the frames of the execution stacks and implement that format as a part of their
dynamic software update solution based on their POLYLITH software bus.

Reach of a Safe Point. Some techniques depend on the program to reach a specific point or state. Once
the program has reached such a point, the update can be applied safely. The program is forced to stay idle
in the safe point while the update procedure takes place. Once the update finishes, the execution can be
resumed.

This idea is used by a number of authors. The DYMOS system [52] used one of the first dynamic
upgrade mechanisms able to ensure safe points. To this end, the minimal exchangeable unit is a procedure
or module. Modules can be composed by multiple procedures. The DYMOS run-time support ensures that
modules are executed under mutual exclusion. So, in the easiest case, a safe point is reached when the
current thread exits the module to be upgraded. However, this is only possible when the interface of the old
and new module versions are the same. DYMOS allows interface evolution and in those cases the system
starts further checking in order to guarantee that a safe point is reached. To this end, the programmer may
specify a list of procedures that should not be in execution for applying the update.

In Gupta et al. [39], these safe points are called control points and are determined statically, from
the source code of the previous and next versions of the program. When a dynamic update has to be
performed, the program is forced to transit to a safe point and then, generate a signal. Then, the update
takes place and once finished, the execution is resumed. The authors also propose an extended model to
be used with structured programs in which the unit of change is the function or procedure. They argue
about the difficulty to specify the safe points and then propose an inverse approach based on specifying
some selected functions the control should not be in at the time of change (see Section 4 of [39]). When
a dynamic update has to be applied, first some stack inspection is performed, as explained above, to check
that the program is not currently executing any of those selected functions. Once checked, the update is
performed.

Chen and Huang [19] use the same idea in the context of dynamic update of OSGi applications (also
see Section 3.10.1). Before applying an update to an OSGI bundle, they lead it to a safe point and then
proceed with the required state transfer and perform the update.

Giuffrida and Tanenbaum [30] also use a central Update Manager component that dialogs with the
updateable components, that must be update-aware. When one of the components has to be updated, the
Update Manager leads it to a particular state in which a state transfer state can be safely performed (also
see Section 3.5 for additional issues related with state transfer).

Communication Quiescence. The original concept of quiescence was defined by Kramer and Magee
[50] in the context of dynamic software update of distributed systems. Informally, a node is quiescent if
it is not going to start a data exchange or attending any data exchange with any other node. The authors
argue that to apply an update that affects some nodes, they must be in a quiescent state.

When a node has to be updated, it is forced to passivate, this is, to reach a state in which the node
is not communicating (in short, it is not bound in a communication with any other node and it agrees
not to start a new communication). Moreover, all the nodes in its passive set (this is, all nodes that may
communicate with the given node) are also forced to reach such a passive state. Once a node and its passive
set are passive, the given node can be safely updated. As pointed out in [50] this procedure requires the
collaboration of the application1.

On the other hand, the quiescence concept and especially its blocking requirements have been criticized
by some authors. They argue that in a general case, to passivate a component, a number of components
must be passivated before, thus blocking them. In the worst case, all application components would be
passivated, leading the application to an unavailability state which is totally contrary to the essence of any
dynamic software update mechanism, violating its continuity requirement.

For instance, Vandewoude et al. [82] argue that the quiescence concept in [50] is, in general, stricter
than necessary. They propose the concept of tranquility as a more relaxed alternative and justify that it can
be used as a stable state in a dynamic software updating process.

1See also Section 3.4 for some other forms of intrusion and coupling between and application and the underlying dynamic update
mechanism.

9



To understand the differences between quiescence and tranquility, one must compare the formal defini-
tion of the quiescent and tranquil states, according to [50] and [82], respectively. A node is in a quiescent
state if a) it is not currently engaged in a transaction that it initiated, b) it will not initiate new transactions,
c) it is not currently engaged in servicing a transaction, and d) no transactions have been or will be initiated
by other nodes that require service from the node. On the other hand, a node is in a tranquil state if it
satisfies a) and b) from the previous quiescent state definition and moreover, c) it is not actively process-
ing a request, and d) none of its adjacent nodes are engaged in a transaction in which it has both already
participated and might still participate in the future.

First, there is a difference between the c) clauses of these definitions. According to [82], the c) clause
of the quiescence state definition implies that a node may be either actively processing a request or waiting
for a new request in an already active connection, buy only the first case is required by the c) clause of the
tranquil state definition. In practice, this means that a node may have started a transaction but if it is not
currently servicing a request, it is considered tranquil and then it can be dynamically updated.

Moreover, according to [82], the d) clause of the quiescence state definition implies that no node has
started or is going to start a transaction in which the given node takes part. Nevertheless, the d) clause of the
tranquil state definition is less restrictive. It is only required that no adjacent node has started a transaction
in which the given node has taken part and might participate in the future. The main difference is that the
definition of tranquil state does not consider those transactions in which the given node has not taken part
yet, so the nodes that started them do not need to be passivated. In practice, this means that, according the
definition of tranquility, the update of a node is a less blocking process.

Pause and Resume. Another technique used by some authors consists in pausing the reception of incom-
ing requests, waiting until the pending ones finish, applying the update and then resuming the handling of
incoming requests.

For this, some intermediary level is used that may be implemented in various forms (see Section 3.1
for other examples that use some kind of intermediary level). For instance, some sort of central update
manager or intermediary proxies may intercept the user requests and, if needed, pause them and rely them
once the update is finished.

This technique is used by Bannò et al. [6] in their FREJA framework. They use several types of
intermediary Java objects. On one hand, there are some infrastructure objects that perform the update
and other management tasks. On the other hand, there are wrapper objects that wrap the regular service
objects. The wrappers capture the regular service invocations made by the clients. If no update is to be
done, the invocations are just redirected to the real service objects. When an update is requested, one of
the infrastructure objects asks for the corresponding wrappers to stop attending new invocations (but queue
them) and wait until the pending invocations are finished. Once the update is performed (by means of some
Java bytecode-level rewriting, see Section 3.2), the blocked wrappers are instructed to resume their regular
operation.

Other References. This idea of stable status or quiescence appears in many other references: [10, 7,
45, 9, 68, 3, 81, 43]. It can also be applied in other settings more or less related to dynamic software
update but somehow different from the work referenced above. For instance, Dmitriev [23] talks about the
dynamic update of methods of Java classes and the support offered by the HotSpot Java Virtual Machine.
The mechanism is still under development, but it already offers some limited dynamic update mechanism,
to ease the development and debugging processes and accessible by means the Java Debugger Wire Pro-
tocol (JDWP). The mechanism requires the collaboration of the programmer, which must ensure ”that the
execution will actually reach the point where there are no active old methods”, which can be seen as some
kind of user-ensured quiescence.

3.4 Intrusion and Cooperation
A number of authors identify the necessity or dependence on some level of intrusion by the update mech-
anism, thus making the managed programs and applications aware of the update mechanism. This clearly
breaks the application transparency requirement described in Section 2 but facilitates the compliance with

10



the robustness goal. Its objective is to allow a managed application to cooperate with the update mecha-
nism, thus simplifying the updating tasks. This intrusion can take different forms.

A first kind of intrusion consists in defining special functions or procedures in both the update mech-
anism and the application to update. The idea is that, on one hand, the application offers a number of
functions to be called by the update mechanism to perform its tasks. An example of this kind of intrusion
is the use of getState- and setState-like functions assumed by many state transfer mechanisms (see
Section 3.5) to retrieve or set the state of an updateable component. On the other hand, the update mecha-
nism offers to the managed application other functions it may also call, for instance, to inform that its state
has been changed or that the last requested update has been successfully finished. The update mechanism
proposed by Kramer and Magee [50] is one of the first works that follows this approach. The authors
identify two different coupling relationships between the update mechanism and the managed application.
First, the so called update manager needs to invoke functions offered by the application (for instance, to
request a state change). On the other hand, the application needs to invoke functions offered by the update
manager (for instance, to inform that its state has changed). After justifying the need of both intrusion
levels, the authors argue about the need of defining some kind of standard interface to communicate the
update mechanisms and the applications. Moreover, they argue that the application must be involved in
another way: it has to promise that it will remain passive long enough for the update to be completed.

In [30], Giuffrida an Tanenbaum propose a dynamic update mechanism based on an update manager
that also depends on a close cooperation with the updateable components. When a dynamic update is to
be applied to one or several components, the manager asks them to reach a controlled state (actually, some
sort of quiescent state – also see Section 3.3). When the components reach such a state, they notify the
manager who waits for all the notifications and finally proceeds with the update.

A second type of intrusion is the generalization of the first one and occurs when the update mechanism
forces the whole application to follow specific constraints like the adoption of a given architecture, design
principles, hardware platforms, software environments, programming languages or any other set of rules
or conventions that force the whole application to be built or behave in a specific manner. This category
includes all the proposals of update mechanisms based on the OSGi platform (see Section 3.10.1)

A third type of intrusion consists in making the application to provide some sort of meta-information
that may be used by the update mechanism. One example of this type is marking the code of the updateable
applications. Some update mechanisms require that the user marks those parts of the application in which
a dynamic update may be carried on safely. This is the case of the proposals by Frieder and Segal [29]
and by Neamtiu et al. [59], that allow the programmer to identify safe update points in the source code,
in which an update may be safely performed. On the contrary, others depend on the user marking those
parts in which a dynamic update should not be applied. This approach is followed by Hicks and Nettles
[44] who propose a mechanism that allows the programmer to mark places in the code that should not be
interrupted by a dynamic update.

3.5 State Transfer and Transformation Functions
Several authors identify the need to perform some sort of state transfer between the current version of an
updateable item (typically an object or component, but it may also be a function or procedure or even the
whole program or application) and the next version, in order to preserve it when the update is applied.

These mechanisms use a variation of the idea proposed by Liskov and Herlihy [41]. The basic idea
consists in defining two accessor functions like getState and setState to retrieve and set the state of
a component. Before replacing a component, the getState-like function is called and some serialized
representation of the state is obtained. This state may be transformed in some way (see below) and then
transferred to the new version of the updateable item, by means of its setState-like function. The usage
of an abstract or serialized data representation matches the generality requirement outlined in Section 2.
Despite this, even with such serialized format several problems arise when the module versions require
incompatible data sets; i.e., when the data being used by the new version cannot be directly derived from
the elder data.

In his Ph.D. thesis, Bloom [10] identifies the need of transferring the volatile state managed by the
part of the program to be replaced, to the new implementation. Purtilo et al. [65, 64] propose an abstract
representation of the data kept by the (dynamically reconfigurable) modules and the use of functions to

11



retrieve and set the state of a module. This allows the migration of the state of a given version of a module
to the next one, once updated. The use of the abstract format allows to get the state of a running module
before updating it and then restore it back or even move it from a physical node that uses a given architecture
to a different node that uses a different architecture. Some other systems [38, 75, 74, 76, 33, 19] have used
state transfer techniques in their update mechanisms.

Bannò et al. [6] identify the need of the consistency of the data in a dynamic update and the data
transfer from the current component to the updated one. As already outlined above, one of the problems
that may appear when updating a component from a version to the next one is that the new version may have
an incompatible state format. Several authors consider this problem and propose the use of some kind of
transformation functions that adapt the state of a component from its previous version to the proper current
format. These functions are typically provided by the programmer, like in [10, 29, 65, 44, 2, 77, 58, 19].

3.6 Multiple Version Coexistence
Version coexistence is the ability of a dynamic update system to allow different versions of an updateable
component to concurrently exist, providing a regular service according to their specifications. The coexis-
tence interval lasts either until all on-going invocations to the old code terminate or until the old module
is explicitly removed from the system (e.g., by an external managing component). If a mechanism of this
kind is implemented, the robustness of the updating system is enhanced since it is easier to rollback an
on-going update action in case of problems or bugs as the previous software version is still running and the
requests initially targeted to the new version may be forwarded to the old one. Additionally, the continuity
requirement is also easily achieved since it will be trivial to migrate between different module versions
since all of them will be available and ready to run.

On the other hand, the support needed to provide this coexistence may have a cost, from different
points of view. First, some additional software able to maintain multiple components providing the same
functionality has to be implemented, which means a significant effort. Then, it may have some other
cost at run-time, imposing some performance overhead compared with an update mechanism without such
a support. Thus, in many systems, the dynamic update mechanism ensures that the new version of a
component will never coexist with an older version. Some of them ensure this behavior by asking the
program (or at least, the component to be replaced) to reach some stable or quiescent state (see Section
3.3), performing the update and uninstalling the previous version or at least preventing both versions to run
at the same time.

Nevertheless, there are some systems that support version coexistence. For instance, in the context of
dynamic updating of functions and procedures, Segal and Frieder [72, 29], define interprocedures, which
are some sort of intermediary procedures that delegate on the real implementations. These interprocedures
may be called from old client code (this is, client code that only knows the old version of the updated
procedure) or from new client code, thus providing the illusion that different versions of the same procedure
coexist.

Ajmani et al. [2, 1] follow a similar approach, by defining simulation objects as proxies that wrap
the real service objects. For a given service object, it is possible to define proxies that represent the past
versions and even future versions and all of them can coexist and be called by different pieces of client
code that may be in different update stages.

POLUS [17] and [18, Section 2.2] allow the coexistence of old and new versions of the same code as
well as old and new representations of data structures, after an update is applied. Moreover, it ensures that
old (new) code is only allowed to operate on the old (new) data, respectively.

Our group has developed different database replication middleware systems where both the replication
protocols [69] and the group multicast facilities [55] have been developed as pluggable components. To this
end, the middleware relies on different meta-protocols that allow the installation and coexistence of mul-
tiple components. So, these systems allow the coexistence of multiple replication protocols and multiple
total-order multicast protocols, being the applications able to use the most adequate protocol at every time.
With this kind of support, it is easy to migrate from a protocol to another or to upgrade the implementation
of any of the protocols, providing an adaptive platform to develop highly-available distributed applications.

12



3.7 Scheduling
Distributed applications replicate their components in order to ensure their availability, since failure and
replication transparencies are complementary aspects of the distribution transparency [47] aimed at this
kind of systems. In this scope, a software update should be carefully planned. This implies that some
scheduling mechanism is needed, setting different updating phases and the nodes and application compo-
nents that will be updated in each phase. To this end, a sequence of partial updates is progressively applied
to different replica subsets of a distributed software, guaranteeing the availability of the services being pro-
vided by that application. As a result, scheduling mechanisms are needed for complying with the continuity
(users do not perceive any sofware unavailability), user transparency (users do not modify the way they
access such software) and robustness (the software always complies with its specification and its usage is
safe) requirements described in Section 2.

In a system with static software updating (i.e., based on a stop, upgrade and restart sequence) schedul-
ing has traditionally referred to the proper selection and announcement of the unavailability interval that
such upgrade will provoke. Such unavailability interval is notified in advance to the potential application
users in order to advice them to request the software service at other intervals. In a dynamic upgrade
context, as explained above, this unavailability interval is avoided but some scheduling is still needed to
appropriately coordinate the upgrading steps.

An example of scheduling mechanisms is proposed by Ajmani et al. [2, 1] with the use of scheduling
functions. These functions are provided by the programmer of the managed system and may be called by
the dynamic update mechanism to decide when each node has to be updated with respect to the other nodes.
They identify different update patterns (borrowed from [11]) that may be implemented as scheduling func-
tions. A first alternative for these functions is a fast reboot update. It consists in updating all nodes at once
and this should be avoided since it yields the software system completely unavailable during the time re-
quired by the update. Another option is a big flip, which consists in first updating half the nodes at once and
then, the other half. This option requires some kind of load balancer able to redirect to the proper nodes
the user requests issued during the update. A more flexible option is a rolling upgrade, which consists in
updating only a few nodes at a time (thus needing several steps to update the whole set of nodes). The
disadvantage of this option is that it requires that both the previous and the next version of the managed
software were compatible since they will coexist.

3.8 Replication
Replication is not an updating mechanism per se, but a necessary technique for ensuring the availability of
distributed applications, overcoming the failures of one or several of their components. In order to manage
a replicated system, the application developer should consider some replication and recovery protocols in
order to comply with a replication model [36]. The primary-backup [15] (or passive) and the active [71]
are the two classical replication models.

In a passive replication model all the requests are directly served by a single replica: the primary one.
This replica propagates the state updates generated by each served request to the secondary or backup
replicas before returning a reply to the client. In case of failure of the primary replica, one of the backups
is elected and promoted to primary. When any of the backups fails then a new backup should join the set
of replicas, needing a state transfer from any of the other replicas.

In an active replication model all the requests are directly served by all replicas at once. In order to
guarantee a strong consistency among the replicas, the requests should follow the same delivery order
in all of them. To this end, an atomic multicast protocol [22] is used. If any of the replicas fails, the
remaining ones continue providing the requested services. So, no unavailability interval is identified in this
replication model (note that the passive model may suffer a short unavailability period if the selection and
promotion steps cannot be completed immediately). When a failed replica is recovered, it should receive a
state transfer from any other live replica.

In both models some kind of state transfer is needed to accept a new replica or to recover a previously
failed one. This is the basis for their recovery protocols, that should synchronize such transfer with the
management of incoming client requests; i.e., the new replica should be aware of which will be the first
incoming request whose effects need to be applied onto the complete state transferred by the recovery

13



protocol. With these building blocks (component redundancy, recovery protocols based on state transfer),
the design of a general dynamic updating mechanism gets rather easy. It consists in preparing new replicas
with the new software version and progressively replacing each of the existing ones with those based on
the new software version. As a result, the replication mechanism combines several basic mechanisms
described previously:

• The state transfer described in Section 3.5 for propagating the current service state to each one of
the replicas being added with the new software version, dealing with any change in the data format
or data usage between both versions. This is commonly integrated in an extended recovery protocol.

• The version coexistence described in Section 3.6 in order to allow that replicas with different software
versions cooperate in providing the expected service.

• The scheduling described in Section 3.7 in order to select and arrange an appropriate replacing order
for exchanging the software versions in all replicas of the application.

Thus, Solarski and Meling [75] propose a procedure to dynamically update a distributed system that
uses active replication. The procedure relies on a group communication system that offers a total order
message delivery service and operates by iterating over the available replicas, shutting them off, updating
them (in a static way) and restarting them. This work is later extended by Solarski [74] by adding a
procedure applicable to systems that use passive replication, following the general guidelines outlined
above.

Besides the software upgrading process, there are other axes that allow system adaptation in a dis-
tributed system that relies on software replication. The second one is controlling the consistency [57]
among the replicated component states. To this end, the software platform may provide a meta-protocol
allowing the exchange of the replication protocol, as described in [69] in the scope of replicated database
systems.

Another proposal of this kind is described in Wang et al. [84], adapting the consistency degree ac-
cording to the observed rates of read and write operations issued by clients. The proposed architecture
organizes the nodes in three categories: a master node, a (typically small) set of first-level replicas known
as deputy nodes and the rest of nodes, considered second-level replicas and known as child nodes. The
degree of consistency depends on the set of nodes that may manage each kind of request and the procedure
being followed to propagate the state updates through all the replicas.

Thus, a strong consistency mode may be achieved when write operations sent to any replica are for-
warded to the master, which sequences them and propagates them to all the replicas. Read requests can be
sent to any replica and are served immediately because all replicas are up-to-date. This mode is allowed
when the rate of write requests is tiny.

There are three other consistency modes that define different ways in which each kind of node partic-
ipates in the write and read requests. They relax the global system consistency, but allow a faster request
management.

3.9 Rollbacks
There are different techniques supporting the rollbackness requirement discussed in Section 2. Their ob-
jective is either the interruption of an on-going updating action due to some critical and unforecast error or
to undo a completed update that has introduced some kind of problem that discourages its adoption.

The basic rollback techniques are:

• Reverse updating. In stand-alone systems (i.e., non-distributed ones) that base their updating tech-
niques on patching, the traditional mechanism for aborting updates consists in building “reverse
patches”. This means that the programmer should implement two different versions of the patch,
reversing the effects of each other.

• Checkpointing. Rollback-recovery mechanisms for distributed systems were surveyed by Elnozahy
et al. [25]. They are based on checkpointing; i.e., on saving periodically the state of the components
in persistent storage. The objective of these rollback-recovery systems is to ensure fault-tolerant

14



executions of the distributed applications in case of component failures, rolling back the state of
the affected components and re-initiating their execution from a safe point previously stored on a
persistent medium, thus minimizing the amount of lost data in those failure situations.

Checkpointing may also provide an adequate basis for rolling back a software updating process,
maintaining the application data needed to re-take the execution in case an updating action were not
successful. To this end, a checkpointing-based software updating mechanism should collect a check-
point just before every updating action is initiated. If the updating action is eventually rolled back,
the application is rewound and its current state is set to that contained in the appropriate checkpoint,
allowing that the application were restarted from that point. This also allows further updates from
that safe state.

Considering concrete samples of these techniques, POLUS [17, 18] uses a mechanism based on the
generation of dynamic patches, employing a reverse updating technique for implementing rollbackness.
POLUS uses a carefully designed indirection mechanism that avoids multiple indirections. When a func-
tion is updated from version v to v + 1 by means of a dynamic patch, POLUS inserts a jump instruction to
redirect the incoming calls to the proper version implementation. If the function is updated by succeeding
requests, to versions v + 2, v + 3, etc. then POLUS makes the jump instructions to directly point to the
latest version of the function, thus avoiding unnecessary redirections. This mechanism allows the rollback
of several updates, one after another, so it is possible to rollback from version v to v − 1, then to v − 2,
v − 3 and so on, as long as it is possible to build the proper reverse patches. Besides applying the patches,
POLUS also undoes the insertion of the corresponding jump instructions, thus again avoiding unnecessary
back and forth redirections.

Brown and Patterson [12] propose a checkpointing model for rollback mechanisms that solves the
external inconsistency problem. This problem arises when the data being rolled back had already been
read and processed by the users.

The proposed model is based on three stages or steps: rewind, repair and replay. In the rewind step, the
rollback mechanism discards the changes to data made after applying the update. Previously, the rollback
mechanism saves a semantic representation of those changes, so they can be re-applied later. In the repair
step, the update is rollbacked. In the replay step, the saved changes are re-applied, but using now a fixed
version of the application.

As an example (and proof of concept in their prototype), the authors test the rollback of updates in a
regular email client application. In the rewind step, the changes are saved using a semantic representation.
Instead of logging the changes made to the filesystem (e.g. the deletion of a file record, when deleting an
email message), the rollback mechanism saves the action performed by the user, in an abstract way (e.g.
”delete the message with id N”). This abstract action is re-applied in the replay step, once the update is
rollbacked.

The proposed model presents a lack of genericity problem, since it depends on particular protocols
(IMAP and SMTP, JDBC, XML and SOAP, etc.). It also depends on the possibility of expressing each
possible user action in terms of the given protocol. For instance, the deletion of an email message can be
represented in terms of a DELETE IMAP command but some other user actions (e.g. the creation of a new
message draft) may not be IMAP-representable.

3.10 Other Techniques
Many techniques described up to now comply with the generality requirement. So, they are platform-
and programming-language-independent, being usable in multiple scenarios. However, there are other
mechanisms that do not comply with this generality principle but demand some attention since they provide
a good software updating support in their specific target system.

Those proposals are described in the sequel.

3.10.1 OSGi

OSGi [62, 61] is a platform to build Java applications from a number of modular, reusable and collab-
orative components (called bundles), that can be dynamically reloaded. Each bundle is a Java class that

15



implements a specific interface (BundleActivator). It provides the two basic methods that define
the life cycle of the bundle, start and stop, to start and stop the execution of the service offered by
the bundle, respectively. Moreover, a bundle may implement additional interfaces. For instance, there
is a ServiceListener interface to receive events related to the bundle (e.g., when it is registered or
unregistered in the OSGi implementation).

Each bundle is packed in a Java Archive (JAR) file. This file includes a manifest in which the program-
mer specifies some metadata, including the version of the bundle and its main class (that implementing
BundleActivator). The programmer also specifies the packages that the bundle exports. When a
bundle is registered in an OSGi server, this knows which services are offered by the bundle. The program-
mer can also specify the packages that the bundle imports, by providing a list of them and optionally, for
each package, the minimal version that is required. This expresses the dependencies the bundle relies on,
including general packages from the OSGi standard API and other services provided by third parties.

An OSGi server (or implementation) acts as a software bus. Bundles are first registered in it and then
started by it. Once started, a bundle may register a service under a given symbolic name. It may also get
references to other services (provided by other bundles), looking them up by their symbolic names. This
means that if a service depends on another service, it does not need to depend on a specific implementation
of it. Instead, it can rely on any service registered as an implementation of the required service.

Nevertheless, one of the main strengths of OSGi is that it allows to dynamically reload bundles. Once a
bundle is registered and started, its source code can be updated and recompiled and the new bundle version
may be reloaded. Then OSGi keeps the old bundle version available to those bundles that already had a
reference to it (in order to let them progress correctly) and offers the new bundle version to those bundles
that get a reference to the bundle from that moment on.

OSGi offers two operation modes. In the Bundled Application mode there is an OSGi server that acts
as a container for one or more OSGi applications. This model is similar to that of the Apache Tomcat
application server acting as a container for a number of Java web applications. In the Hosted Framework
mode, the OSGi implementation is embedded in a given application.

A short introduction to OSGi can be found in [80]. Moreover, there are a number of implementations
of OSGi, like Apache Felix [5], Concierge [78, 67] (especially designed for resource-constrained devices),
Equinox [24], KnopflerFish [49] and Oscar [40], among others.

Moreover, there are some other proposals that extend OSGi or are related to OSGi in some way. For
instance, Rellermeyer et al. propose R-OSGi [66], an extension of the standard OSGi specification to
build distributed systems. Another alternative also focused on distributed and cloud systems is OSGi4C
[70]. Finally, Chen and Huang [19] propose a mechanism to dynamically update the bundles of an OSGi
application.

3.10.2 Dynamic software update in the .NET platform

There are some dynamic software updating mechanisms integrated in the .NET platform. To begin with, the
Managed Extensibility Framework (MEF) and the Managed Add-In Framework (MAF) allow dynamical
code loading.

MEF presents some similarities with the OSGi framework. Both allow to build applications that can dy-
namically load add-in components (as plug-ins). Moreover, both have a declarative mechanism to express
relationships among components. As in OSGi, each MEF component declares its dependencies (or service
imports) and its capabilities (or service exports). When MEF loads a component it checks its service im-
ports, decides if other already loaded components export those services and in such a case, connects them.
Moreover, MEF also checks the service exports of the components and decides if they can be connected to
the service imports of other already loaded components.

As in OSGi, the advantage of this model is that the applications do not need to hardcode their depen-
dencies on other components. Instead these dependencies can be resolved in run-time, in a similar way as
in an Inversion of Control (IoC) container. Moreover, the extension components are not bound to the .NET
assembly 2 of the application they are extending, so they can be easily reused with other applications. The

2In the .NET platform, applications are organized in assemblies, composed by one or more types (classes, interfaces, etc.). An
assembly is somehow similar to a Java package. Assemblies can be dynamically loaded although it is not possible to dynamically
load a single type. Moreover, a .NET application has one or more application domains, which are the isolated contexts in which

16



main drawback of MEF from the point of view of dynamic software update is that it does not allow the
dynamic unloading of the components, thus prohibiting any kind of dynamic update.

MAF is a technology similar to MEF. Regarding dynamic software updating, the most important dif-
ference is that MAF allows the application and the add-in components to be in different .NET application
domains so the add-ins can be dynamically unloaded.

There are other attempts to define some sort of dynamic update mechanism in the .NET platform. For
instance, in [27], Escoffier et al. discuss some issues related to dynamic update of .NET applications.
Their goal is to design some sort of OSGi for .NET, although they identify some features of the .NET
platform that prevent from getting the same semantics of OSGi. First, the load unit (and also the unload
unit when it is possible) is the assembly, which typically contains a number of types (classes). To load and
unload a single type, it must be the only type included in a single assembly, which is not practical. Second,
dependencies among assemblies are included by the compiler in the executable binary code, which makes
difficult to dynamically change them. In contrast, Java dependencies are resolved at run-time, which eases
reusing the compiled Java classes. Third, the load order of the classes and assemblies is strongly controlled
by the virtual machine and the user cannot change it easily. In contrast, Java applications can modify the
class load process by using their own class loaders. Finally, the name of an assembly is part of the name of
the types contained in it, which also makes difficult to reuse such types.

They propose a number of alternatives to dynamically load (and unload, in some cases) .NET types. A
first alternative consists in using a single application domain and several assemblies loaded into it. One of
these is special and loads the rest of them. As all the assemblies are in the same application domain, every
class can invoke methods from any other class using regular local invocations. The main drawback is that
such assemblies cannot be individually unloaded. To unload a type, the whole application domain should
be unloaded, which in practice is equivalent to stop and restart the whole application.

A second alternative consists in using several application domains in the same application. Each as-
sembly that needs to be unloaded is in its own application domain. To unload a type, which is contained in
a given assembly, the corresponding application domain can be unloaded. As pointed out above, the draw-
back is that application domains cannot communicate by regular local invocations but some other IPC-like
mechanism must be used, with the consequent performance penalty. Java applications that use different
class loaders experience a similar issue, since a class loaded by a given class loader cannot access another
class loaded with a class loader that belongs to a different branch of the class loader hierarchy, by means
of regular local invocations.

A third alternative consists in using .NET’s shared domains, to hold assemblies that may be common
to all application domains. Other assemblies may be included in different application domains.

Two alternatives more (quite similar to each other) consist in having one specific application domain
to hold assemblies that may be common to the rest of the application domains. In one case, the special
application domain is a .NET shared domain. In the other case, the special application domain is a regular
application domain that just has that special role. In both cases, both solutions offer a better performance
when a class invokes methods from a class that belongs to the special application domain. On the other
hand, both solutions suffer from the same performance penalty of the two first alternatives, when invoking
classes that belong to other application domains.

Finally, they conclude by identifying the two main issues of .NET that prevent from designing an OSGi-
like infrastructure for .NET. One is the inability of unloading individual assemblies from a given application
domain. The other is the need to use slow IPC-like mechanisms to communicate classes belonging to
different application domains.

3.10.3 Dynamic software update in Erlang

Erlang [26] is an interpreted concurrent functional programming language that can be used to build dis-
tributed fault-tolerant (and soft-real-time) applications. Erlang allows to dynamically replace single mod-
ules of an application.

Erlang allows a module to have two concurrent versions: the current version and the old version.
When a module is first loaded, it is in its current version. It then can be replaced with a new instance of the

assemblies are run. Classes in different application domains cannot communicate directly (by means of a regular local invocation),
but some inter-process communication (IPC) mechanism is needed (thus rising the cost of the invocation).

17



module. Then, the current version becomes the old version and the new instance becomes the new current
version.

Erlang allows to keep both versions in execution. Once applied the update, the current version is
generally used but old existing processes that were accessing the updated module go on working with the
old version until they normally finish. If a new (third) version of the module is installed, then Erlang
removes the old version and finishes the pending processes that were using it. Then, it installs the new
version according to the procedure explained above.

Moreover, Erlang allows to define special functions that may be run when a module is loaded. Such
functions may apply the needed state transformations.

4 Discussion
The dynamic software update topic has been studied for decades (the first well-known references are from
the 70s), in the context of both stand-alone and distributed systems. Many papers have been published and
multiple practical mechanisms exist. Some of them are for specific contexts and situations (as described in
Section 3.10) but others were designed to be generally applied and used.

Still, any user of current software can note that these techniques are not being universally applied. The
users of current software (for instance, in a household context) are used to restart their software applications
and even the whole operating system when they have to update them. For instance, web browsers need to
be stopped and restarted in order to be updated.

Operating systems usually have some sort of update manager to detect, download and dynamically
apply updates to different components of the system and even its own kernel. In some cases, updates can
be applied without having to restart the system. In other cases, some types of updates require a complete
system restart. And in some other cases, updates are dynamically applied but still require a system restart
for using them effectively (as it typically happens when an update is applied to core components of any
operating system, for instance).

Regarding web applications and services, the current situation is diverse. On one hand there are a num-
ber of popular services (that usually belong to large companies), like web search engines, email services,
social networks, storage and multimedia broadcast services, etc. that have their own mechanisms to dy-
namically update the applications. These applications use replication techniques that allow the updates to
be transparently applied so the users do not realize when the updates happen (unless the update modifies
the existing user interface).

On the other hand, there are other small web applications, typically belonging to smaller companies
that do not have the same availability of resources of the large companies. In many cases, the offered
services have to be temporarily shut down while the updates are applied. In these cases, the procedure
followed by the service administrators consists in redirecting the user requests to some other place (for
instance, to a static page that informs about the unavailability of the service), stopping the applications
and servers to update, applying the updates to the programs and/or the data, checking the changes and
restarting the servers and applications. During the time needed to perform these actions, the service is
typically unavailable. Thus, users are forced to interrupt their use of the application and wait until the
services are restored.

To avoid these drawbacks, software should have some dynamic update mechanisms allowing updates
in run-time, in the most transparent possible way to the users. This would avoid the interruption (and thus
unavailability) of the service and the corresponding nuisances to both users and service providers.

Cloud computing systems should also be considered. A transparent dynamic update mechanism makes
even more sense in the applications that are executed in these systems, since they are potentially (and
continuously) available to a larger set of users. For this, cloud systems must be dynamically updateable.
Three different types of cloud architectures are typically identified with the names Infrastructure as a
Service, Platform as a Service and Software as a Service [83]. In all these cases, there are a number of
software components that may be updated from time to time. In case of IaaS providers, the infrastructures
typically offer to the user abstractions as virtual machines with the appearance of a full operating system,
so applications can think they are executed in dedicated servers. In some other IaaS cases, the user has
some virtualized environment in which she may deploy applications. In case of PaaS providers, the offered

18



service consists in a programming platform where users build their applications. In case of SaaS providers,
no infrastructure is offered but one or more final-user applications, that can be reached through any regular
web browser and used like any other locally installed application. In all these cases there are multiple
software components that will evolve, having user transparency, availability and quality of service as their
common requirements to be satisfied. To this end, dynamic software updating techniques are a must.
Additionally, the user applications that are executed onto IaaS and PaaS systems may also benefit from
such update mechanisms, in order to provide a continuous service to their users. These mechanisms may
exploit the elastic nature of the underlying cloud systems.

As we have showed, the use of dynamic update mechanisms is appropriate in many present types of
software systems and applications. Nevertheless, not all the techniques referred to in Section 3 are equally
appropriate to current software. In the rest of this section some related issues are discussed.

Issues related to low-level techniques. Several techniques depend upon low level of abstraction details.
For instance, some techniques are based on the inspection of the execution program stack (see Section 3.3),
to know if the function or procedure to update is currently being used. The programmer of a dynamic
update mechanism based on such low abstraction level techniques must know which is the format of the
memory space bound to processes, how the stack frames are stored and how data is stored in the frames.

Other techniques use several forms of rewriting at the binary level (see Section 3.2). In some cases,
binary rewriting is used to redirect the execution of the code. The idea is to install the updated code and
redirect to that code the calls to the old code, by modifying memory address pointers (this is, making them
to point to some other place). Sooner or later, the old code will be no longer used and only its updated
version will be used. This is the case, for instance, of the techniques based on binary patches. To apply this
technique, some sort of pause has to be imposed in the execution of the program to update, for instance with
any of the techniques discussed in Section 3.3. This pause may be brief so the impact on the availability of
the program may also be small. In other cases, longer parts of the program are rewritten directly altering
the instructions loaded in main memory. Nevertheless, in this case, the availability of the program may
significantly decrease in case a large part of the program had to be rewritten.

Nowadays, both types of techniques seem undesirable, for a number of reasons. First, these techniques
require a deep knowledge of very low level of abstraction details, related to hardware architectures (for-
mats of the instruction set, memory addressing modes, etc.), which severely limits the portability of the
techniques. Besides, we have to consider the current trend to use high level programming languages, most
of which are interpreted and depend on some sort of interpreter or virtual machine: Java, C#, Perl, PHP,
Python, Ruby, Erlang... The portability of the programs developed with those languages is based on the
existence of interpreters and virtual machines that are available in different platforms and that ensure the
same semantic behavior. Regarding the Java and .NET platforms, there exist formal specifications of their
intermediate languages (the Java Bytecode and the Microsoft Intermediate Language), which means that
the dynamic update solutions built with such platforms may use some binary rewriting techniques and still
be portable. Even then, these solutions would depend on a specific version of the intermediate language.
The developers would be forced to follow the evolution of the platform and the programming language
(and specifically, the intermediate language) and adapt their updating mechanism to the changes they ex-
perienced, in order to have an update mechanism that could be used by current software. On the other
hand, regarding many other languages for which no intermediate language exists, it does not seem an easy
task to design a dynamic update mechanism that uses binary rewriting (or in general, any other low level
technique) and at the same time was easily portable to different platforms.

For all these reasons, the use of binary rewriting techniques or other low level of abstraction mechanism
is not a recommendable option when continuity and generality are two basic requirements.

Issues related to the use of indirection. The use of indirection has some advantages. Dynamic update
mechanisms can use an intermediary level between a client program and a service it uses. This level may
wrap the real implementation of the service. It may capture the invocations to the service and manage
them as necessary, by blocking or pausing them, relying them, modifying them, etc. Such an intermediary
level could also be used to perform other auxiliary tasks like managing authorization issues, statistically
accounting the use of the service, logging and monitoring it, etc.

19



Moreover, in client/server systems, when used along other techniques (as discussed later), it eases the
application of the updates. For instance, it allows the coexistence of versions of the same program.

Nevertheless, the use of indirection also poses some disadvantages. First, the use of an intermediary
level always imposes some overhead in run-time. If the update mechanisms use intermediary functions,
interprocedures, proxy objects, etc. each invocation of a service function or method first goes through
such intermediary code, which imposes a run-time overhead. This overhead may be small and even neg-
ligible, especially when compared against the benefit obtained by using it or it may be significant and
non-negligible and yet the intermediary level may be considered useful.

Another issue is the impact that the use of such intermediary levels would have on the development of
the user application (this is, on the application transparency). The use of a specific technique, a middleware
library or any other artifact that provides or helps to build such an intermediary level may require some
specific knowledge or skill to the programmer and may have an impact on the design of the applications or
the development process. This should be considered when taking the decision of using some intermediary
level artifact. Ideally, this should be transparently integrated into the application and required the minimal
maintenance possible in order not to disturb the designers and developers and not keep them away of the
core design and development processes.

Issues related to version coexistence. Version coexistence offers some advantages, especially when com-
bined with other techniques and approaches (like the use of indirection). For instance, in a client/server
context, it allows to update a software server that is being currently used, so the current clients can go on
working normally with the old version of the server and, at the same time, those clients connected to the
server once updated can directly start working with the newer version. Otherwise, without version coexis-
tence, once updated the server, the existing clients would be forced to either halt or be updated, which may
cause significant nuisances to the users.

One of the technologies that offer some implementation of this technique is the OSGi standard. In OSGi
it is possible to have two different versions of the same service. When a client program has a reference of a
service and this is updated, the client program is neither aborted nor forced to be updated. Instead, it keeps
its reference to the old-version program and is able to go on working with it normally. If another program
gets a reference of the same service, once updated, it is given a reference to the new implementations.
Both versions coexist in the OSGi server and can be used normally. Finally, when all the references to the
old version of the program are finally discarded (for instance, because all the programs that hold them are
finished or simply stop using them), then the old version of the program is unloaded from the OSGi server
and finally discarded.

Nevertheless, version coexistence poses some problems. For instance, it is necessary to think about the
consistency of the data shared by the different versions of the program. If two different versions of the
same program or component access the same data set, they should access the data in a consistent manner.
In some cases, they may be allowed to access the same set of data, if the accesses are synchronized and the
proper data transformations are applied. In other cases, it may be necessary to keep separated snapshots of
the data, so each version of the program or component can access its own data set. In this later case, some
merge mechanism may be needed to reconcile one snapshot to the other. Moreover, additional precautions
may be taken, like synchronizing the access to specific resources like other data sources, physical resources,
etc. In any case, the support to version coexistence leads to complications that must be evaluated.

Issues related to replication. As already explained in Section 3.8, replication takes as its basis compo-
nent redundancy in order to ensure that the replicated software remains highly available and scalable. This
allows even the usage of a traditional stop-and-restart (static) update mechanism for each replica, relying
on the other live replicas that remain active serving client requests. When a replicated software needs to be
updated, its upgrade can be arranged with the composition of several mechanisms described above, mainly:
state transfer, version coexistence and scheduling. The way in which these mechanisms are driven depends
on the replication model being used.

The passive model [15] uses a single primary replica that directly serves all requests, propagating later
the effects (i.e., state updates) of such requests to the backup replicas. In order to improve its performance,
relaxed passive models allow that read requests were served by any replica, distributing thus the read-

20



requesting workload of the primary replica among all the others. On the other hand, the active model [71]
demands that all client requests are delivered to all replicas and served by each of them.

The passive model distinguishes two different replica roles: primary and backup. The backup role only
needs to manage the reception and application of the state transfers initiated by the primary. As a result,
software updating can be implemented starting with the backup replicas. To this end, each replica can be
stopped and restarted with the new software version. Such update can be static since backup replicas do
not serve client requests in a direct way, but only deal with the state transfers sent by the primary. The
renewed replica may adopt a new identifier when it rejoins the system, requiring a complete state transfer
in that recovery procedure. Thus, it does not matter how much time it has required to complete the static
software update. Besides updating all backups to the new software version, the primary should be stopped
and one of the updated backups promoted as a new primary, managing these steps as a regular primary
failure event. The old primary is then statically updated and later restarted as a new backup replica.

A careful update scheduling is needed for deciding the order in which the replicas must be updated,
ensuring the availability of the service if failures arise. Version coexistence (or state transformation) mech-
anisms should be also used since the recovery full state transfers should be understood and correctly man-
aged by the renewed backup replicas. Additionally, since not all backup replicas are renewed at once, some
of them will be able to execute the new software version while the primary still works with the old one.

In an active replication model [71] all replicas share a single role and no partial state transfer (prop-
agating the generated updates) is needed in a regular request service. Despite this, the regular updating
procedure is similar to the one described for the passive model, involving an adequate scheduling of the
sequence of replicas to be updated and state transfer or transformation mechanisms able to deal with the
version coexistence arising while there are two replica subsets executing different software versions. Those
scheduling and state transformation mechanisms are the key for maintaining the consistency among repli-
cas:

• When a replica with the new software version is restarted, assuming a static update, it should receive
a full state transfer. If the sender of such state still executes the old version of the software, a
transformation will be needed. As soon as there are other new-version replicas running, one of them
may propagate the full state, avoiding the need of such transformation. This should be considered in
the scheduling of the software update.

• If a static update model is assumed and some replicas already work with the new version of the
software, the remaining old-version ones may discard the received client requests until they are
restarted with the new software version. Note that such requests may be also answered by other
new-version replicas and the reply returned by old-version ones might be different. So, such old-
version replicas are logically stopped when any new-version replica is running. Again, this demands
a careful planning when the sequence of replicas to be updated is scheduled.

• If a dynamic update model is used, all replicas will upgrade their software at once, replacing some of
their modules. To this end, some low-level mechanisms are needed to implement the dynamic update,
as described in Section 3. Besides this, a careful scheduling and synchronization should ensure that
the update is applied in the same logical moment at every replica; i.e., that each replica has processed
the same requests before the update and will process the same sequence after it, avoiding thus any
state divergence among the replicas. That synchronization may be achieved multicasting an update
start message using the same total-order channel that propagates the client requests to every replica.

As it has been shown in this few configuration examples (combining updating and replication mod-
els), the interaction among state transfer, state transformation, version coexistence and update scheduling
mechanisms is the key for designing eficient software updating protocols for replicated software. The com-
binations mentioned above are only some of the possible ones, but further work is needed in order to find
the best strategy for each kind of replicated application.

Modern distributed applications are deployed on cloud systems. These systems are adaptive and scal-
able; i.e., elastic. Replication is needed in that context as a basic mechanism for achieving scalability.
Adaptiveness requires a fast system reconfiguration when the application requirements (workload, resource
usage, economical costs,...) vary. This adaptation usually requires varying the current number of replicas

21



supporting each of the distributed application components. In these scenarios, service level agreements
(SLA) set the non-functional requirements to be guaranteed by the cloud provider. IaaS and PaaS cloud
systems still consist of multiple software components that may require updating. In some cases those
updating actions are originated by the requirements set in the SLAs of the deployed applications; i.e.,
the adaptiveness of those IaaS and PaaS systems demands that part of its software were replaced/updated
depending on the concrete SLA to be enforced. In this context, further work is still needed in order to:

• Standardize SLA specifications.

• Take a concrete SLA as a basis to configure the set of machines to be used for deploying applications
onto IaaS and PaaS systems.

• Adapt the cloud-provider software at run-time, as dictated by the SLA, using dynamic software
updating mechanisms.

• Design and implement dynamic software updating mechanisms that automatize the updating process
for distributed applications. This can be achieved when the interfaces, states and communication
protocols used by the involved components in both software versions are still compatible or there
exist clear rules to transform the state being managed in the old version to the new one.

• Include the latter mechanisms in IaaS environments in order to help the application developer in the
software update tasks.

5 Conclusion
Software needs to be updated in order to fix remaining bugs, improve its performance or extend its func-
tionality. A static software update procedure consists in a sequence of three steps: (a) stop the software
execution, (b) replace the current version of the program with a new one, (c) restart the application. This
procedure is valid for single-user applications that are seldom used, since in the long intervals when such
applications are not used, only step (b) is needed.

Distributed services that are available to a large set of users require a dynamic software update pro-
cedure, since they should be always available. In a dynamic software update, the application requires a
non-stopping procedure. Besides this continuity goal, a good updating procedure should be general (i.e.,
applicable to any kind of software or platform), transparent (users and programmers need not be aware of
the software exchange) and robust (the application functionality should be guaranteed during the updating
procedure even when problems arise).

Multiple dynamic updating techniques exist nowadays, but most of them are not widely known nor
used. This paper has surveyed the existing proposals, analyzing their goals, internal procedures and scope.
The availability of modern cloud infrastructures and platforms opens a new horizon to these updating
techniques, since both the cloud providers and cloud developers will need dynamic approaches to update
and adapt this elastic software. Current dynamic software updating mechanisms facilitate a first solution
to this problem. In this scope, the software to be updated is replicated in order to ensure its continuous
availability. The update of replicated software requires the combined usage of multiple mechanisms: (a)
state transfer or state transformation (in order to translate the managed application state to a format usable
by the new software version), (b) version coexistence (for allowing that client requests started with the old
version were completed by that old version without being aborted, while other client requests started later
were concurrently served with the new version), and (c) scheduling (for deciding a valid replica updating
sequence and setting some synchronization points in the interim). However, update automatization and
easier adaptation to changes in the SLA are still open problems that will require further improvements in
this area.

References
[1] Sameer Ajmani. Automatic Software Upgrades for Distributed Systems. PhD thesis, Massachusetts

Institute of Technology, Cambridge, MA, USA, 2004.

22



[2] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Modular software upgrades for distributed sys-
tems. In European Conf. on Object-Oriented Progr. (ECOOP), July 2006.

[3] Joao Paulo Almeida, Marteen Wegdam, Marten van Sinderen, and Lambert Nieuwenhuis. Transparent
dynamic reconfiguration for CORBA. In 3rd Intnl. Symp. on Distrib. Objects and Appl. (DOA), pages
197–207, 2001.

[4] The Apache Software Foundation. Apache Commons BCEL 6.0, October 2011.
http://commons.apache.org/bcel/.

[5] The Apache Software Foundation. Apache Felix, July 2012. http://felix.apache.org.

[6] Filippo Bannò, Daniele Marletta, Giuseppe Pappalardo, and Emiliano Tramontana. Handling con-
sistent dynamic updates on distributed systems. In IEEE Symp. on Comput. and Commun. (ISCC),
pages 471–476, June 2010.

[7] Mario R. Barbacci, Dennis L. Doubleday, Charles B. Weinstock, Michael J. Gardner, and Randall W.
Lichota. Building fault tolerant distributed applications with Durra. In Intnl. Wshop. on Config.
Distrib. Syst., pages 128–139, March 1992.

[8] Preeti Bhoj, Sharad Singhal, and Sailesh Chutani. SLA management in federated environments. In
Intnl. Symp. on Integrated Network Management (IM), pages 293–308, Boston, USA, May 1999.
IEEE-CS Press.

[9] Christophe Bidan, Valérie Issarny, Titos Saridakis, and Apostolos Zarras. A dynamic reconfiguration
service for CORBA. In 4th Intnl. Conf. on Config. Distrib. Syst., pages 35–42, May 1998.

[10] Toby Bloom. Dynamic Module Replacement in a Distributed Programming System. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1983.

[11] Eric A. Brewer. Lessons from giant-scale services. IEEE Internet Computing, 5(4):46–55, July 2001.

[12] Aaron B. Brown and David A. Patterson. Rewind, repair, replay: Three R’s to dependability. In 10th
ACM SIGOPS European Wshop., pages 70–77, Saint-Emilion, France, 2002. ACM.

[13] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool to implement
adaptable systems. France Télécom R+D, DTL/ASR, November 2002.

[14] Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patching. Intnl. J. of High Perf.
Comput. Appl., 14(4):317–329, 2000.

[15] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Optimal primary-backup pro-
tocols. In 6th Intnl. Wshop. Distrib. Alg. (WDAG), volume 647 of Lect. Notes Comput. Sc., pages
362–378. Springer, Haifa, Israel, November 1992.

[16] CGLib Project. CGLib 2.2.2 - Code Generation Library, April 2011. http://cglib.sourceforge.net/.

[17] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. POLUS: A POwerful Live
Updating System. In 29th Intnl. Conf. on Software Eng. (ICSE), pages 271–281. IEEE-CS Press,
May 2007.

[18] Haibo Chen, Jie Yu, Chengqun Hang, Binyu Zang, and Pen-Chung Yew. Dynamic software updating
using a relaxed consistency model. IEEE Trans. Software Eng., 37(5):679–694, September 2011.

[19] Junqing Chen and Linpeng Huang. Dynamic service update based on OSGi. In WRI World Congress
on Software Eng. (WCSE), volume 3, pages 493–497, Xiamen, China, May 2009. IEEE-CS Press.

[20] Shigeru Chiba. Javassist 3.16.1, March 2012. http://www.csg.ci.i.u-tokyo.ac.jp/˜chiba/javassist/.

[21] Robert C. Daley and Jack B. Dennis. Virtual memory, processes, and sharing in MULTICS. Commun.
ACM, 11(5):306–312, 1968.

23



[22] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, 2004.

[23] M. Dmitriev. Towards flexible and safe technology for runtime evolution of Java language applica-
tions. In Wshop. on Eng. Complex Object-Oriented Syst. for Evolut., Tampa, Florida, USA, November
2001.

[24] The Eclipse Foundation. Equinox, 2012. http://eclipse.org/equinox/.

[25] Elmootazbellah N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

[26] Ericsson AB. Erlang Programming Language, 2012. http://www.erlang.org.

[27] Clément Escoffier, Didier Donsez, and Richard S. Hall. Developing an OSGi-like service platform for
.NET. In IEEE Consum. Commun. and Network. Conf. (CCNC), volume 1, pages 213–217, January
2006.

[28] Robert S. Fabry. How to design a system in which modules can be changed on the fly. In 2nd Intnl.
Conf. on Software Eng. (ICSE), pages 470–476, San Francisco, CA, USA, 1976. IEEE-CS Press.

[29] Ophir Frieder and Mark E. Segal. On dynamically updating a computer program: from concept to
prototype. J. Syst. Software, 14(2):111–128, February 1991.

[30] Cristiano Giuffrida and Andrew S. Tanenbaum. A taxonomy of live updates. In Adv. School for
Comput. and Imaging Conf. (ASCI), Veldhoven, The Netherlands, November 2010.

[31] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification. Addison-
Wesley, 3rd edition, 2005.

[32] Hannes Goullon, Rainer Isle, and Klaus-Peter Löhr. Dynamic restructuring in an experimental oper-
ating system. IEEE Trans. Software Eng., 4(4):298–307, 1978.

[33] Allan Raundahl Gregersen and Bo Nørregaard Jørgensen. Dynamic update of Java applica-
tions—balancing change flexibility vs programming transparency. J. Softw. Maint.-Res. Pr., 21(2):81–
112, March 2009.

[34] Allan Raundahl Gregersen, Michael Rasmussen, and Bo Nørregaard Jørgensen. Javeleon 2.0, June
2012. http://javeleon.org.

[35] Allan Raundahl Gregersen, Douglas Simon, and Bo Nørregaard Jørgensen. Towards a dynamic-
update-enabled JVM. In Wshop. on AOP and Meta-Data for Softw. Evol., Genova, Italy, 2009. ACM.

[36] Rachid Guerraoui and André Schiper. Software-based replication for fault tolerance. IEEE Computer,
30(4):68–74, 1997.

[37] Deepak Gupta. On-line Software Version Change. PhD thesis, Dept. of Comput. Sc. and Eng., Indian
Institute of Technology, Kanpur, India, November 1994.

[38] Deepak Gupta and Pankaj Jalote. On line software version change using state transfer between pro-
cesses. Software Pract. Exper., 23(9):949–964, September 1993.

[39] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A formal framework for on-line software version
change. IEEE T. Software Eng., 22(2):120–131, February 1996.

[40] Richard S. Hall and Nektarios K. Papadopoulos. Oscar - OSGi Framework, May 2005.
http://forge.ow2.org/projects/oscar/.

[41] Maurice P. Herlihy and Barbara Liskov. A value transmission method for abstract data types. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(4):527–551, October 1982.

24



[42] Michael Hicks. Dynamic Software Updating. PhD thesis, University of Pennsylvania, 2001.

[43] Michael Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software updating. In ACM SIGPLAN
2001 Conference on Programming Language Design and Implementation, PLDI ’01, pages 13–23,
Snowbird, Utah, United States, May 2001. ACM.

[44] Michael Hicks and Scott Nettles. Dynamic software updating. ACM T. Progr. Lang. Sys., 27(6):1049–
1096, November 2005.

[45] Christine R. Hofmeister and James M. Purtilo. A framework for dynamic reconfiguration of dis-
tributed programs. Technical Report UMIACS-TR-93-78, University of Maryland, College Park,
1993.

[46] Christine Ruth Hofmeister. Dynamic Reconfiguration of Distributed Applications. PhD thesis, Uni-
versity of Maryland at College Park, College Park, MD, USA, 1993.

[47] ISO. International standard ISO/IEC 10746-1:1998(E): Information technology - open distributed
processing - reference model: Overview. International Standard Organization, Case Postale 56, CH-
1211 Genève 20, Suiza, December 1998.

[48] Java-Source.net. Open source bytecode libraries in Java, July 2012. http://java-source.net/open-
source/bytecode-libraries.

[49] The Knopflerfish Project. Knopflerfish OSGi - Open source OSGi service platform, July 2012.
http://www.knopflerfish.org/.

[50] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic change management.
IEEE T. Software Eng., 16(11):1293–1306, Nov. 1990.

[51] Eugene Kuleshov. Using the ASM framework to implement common Java bytecode transformation
patterns. In 6th Intnl. Conf. Aspect-Oriented Softw. Devel. (AOSD), Vancouver, Canada, March 2007.

[52] Insup Lee. DYMOS: A Dynamic Modification System. PhD thesis, Dept. of Comput. Sc., Univ. of
Wisconsin, Madison, 1983.

[53] Tim Lindholm and Frank Yellin. The Java virtual machine specification, second edition, 1999.

[54] Scott Malabarba, Raju Pandey, Jeff Gragg, Earl T. Barr, and J. Fritz Barnes. Runtime support for
type-safe dynamic Java classes. In 14th European Conf. on Object-Oriented Progr. (ECOOP), volume
1850 of Lect. Notes Comput. Sc., pages 337–361, Cannes, France, June 2000. Springer.

[55] Emili Miedes and Francesc D. Muñoz-Escoı́. Dynamic switching of total-order broadcast protocols.
In Intnl. Conf. Paral. Distrib. Process. Tech. Appl. (PDPTA), pages 457–463, Las Vegas, Nevada,
USA, July 2010. CSREA Press.

[56] Marco Milazzo, Giuseppe Pappalardo, Emiliano Tramontana, and Giuseppe Ursino. Handling run-
time updates in distributed applications. In ACM Symp. on Applied Comput. (SAC), pages 1375–1380,
Santa Fe, New Mexico, 2005. ACM.

[57] David Mosberger. Memory consistency models. Operating Systems Review, 27(1):18–26, 1993.

[58] Yogesh Murarka and Umesh Bellur. Correctness of request executions in online updates of concurrent
object oriented programs. In 15th Asia-Pacific Software Eng. Conf. (APSEC), pages 93–100. IEEE-CS
Press, December 2008.

[59] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical dynamic software updat-
ing for C. In ACM SIGPLAN Conf. on Progr. Lang. Design and Impl. (PLDI), pages 72–83, Ottawa,
Ontario, Canada, 2006. ACM.

[60] ObjectWeb. ASM 4.0, October 2011. http://asm.ow2.org/.

25



[61] OSGi Alliance. About the OSGi service platform. Technical whitepaper. Revision 4.1, June 2007.

[62] OSGi Alliance. OSGi Alliance Home Page, July 2012. http://www.osgi.org.

[63] Valerio Panzica La Manna. Dynamic software update for component-based distributed systems. In
16th Intnl. Wshop. on Component-Oriented Progr. (WCOP), pages 1–8, New York, NY, USA, 2011.
ACM.

[64] James M. Purtilo. The POLYLITH software bus. ACM T. Progr. Lang. Sys., 16(1):151–174, January
1994.

[65] James M. Purtilo and Christine R. Hofmeister. Dynamic reconfiguration of distributed programs. In
11th Intnl. Conf. on Distrib. Comput. Sys. (ICDCS), pages 560–571, May 1991.

[66] Jan Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-OSGi: Distributed applications through
software modularization. In Middleware, volume 4834 of Lect. Notes Comput. Sc., pages 1–20,
Newport Beach, CA, USA, 2007. Springer.

[67] Jan S. Rellermeyer and Gustavo Alonso. Concierge: A service platform for resource-constrained
devices. In 2nd ACM European Conf. on Comput. Syst. (EuroSys), pages 245–258, Lisbon, Portugal,
March 2007. ACM.

[68] Tobias Ritzau and Jesper Andersson. Dynamic deployment of Java applications. In Java for Embed-
ded Systems Workshop, London, United Kingdom, May 2000.

[69] Marı́a Idoia Ruiz-Fuertes and Francesc D. Muñoz-Escoı́. Performance evaluation of a metaprotocol
for database replication adaptability. In 28th Intnl. Symp. Reliab. Distrib. Syst. (SRDS), pages 32–38,
Niagara Falls, New York, USA, September 2009. IEEE-CS Press.

[70] Holger Schmidt, Jan-Patrick Elsholz, Vladimir Nikolov, Franz J. Hauck, and Rüdiger Kapitza.
OSGi4C: Enabling OSGi for the cloud. In 4th Intnl. Conf. on Commun. Syst. Software and Mid-
dleware (COMSWARE), Dublin, Ireland, June 2009. ACM.

[71] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, 1990.

[72] Mark E. Segal and Ophir Frieder. Dynamic program updating in a distributed computer system. In
Conf. of Software Maintenance, pages 198–203, Scottsdale, AZ, USA, October 1988.

[73] Mark E. Segal and Ophir Frieder. On-the-fly program modification: Systems for a dynamic updating.
IEEE Software, 10(2):53–65, 1993.

[74] Marcin Solarski. Dynamic Upgrade of Distributed Software components. PhD thesis, Fakultät IV
(Elektrotechnik und Informatik), Technische Universität Berlin, 2004.

[75] Marcin Solarski and Hein Meling. Towards upgrading actively replicated servers on-the-fly. In 26th
Intnl. Comput. Software and Appl. Conf. (COMPSAC), pages 1038–1043, 2002.

[76] Nigamanth Sridhar, Scott M. Pike, and Bruce W. Weide. Dynamic module replacement in distributed
protocols. In 23rd Intnl. Conf. on Distrib. Comput. Sys. (ICDCS), pages 620–627, May 2003.

[77] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian Neamtiu. Mutatis Mutandis:
Safe and predictable dynamic software updating. ACM T. Progr. Lang. Sys., 29(4), August 2007.

[78] Swiss Federal Institute of Technology Zurich. Concierge OSGi - An optimized OSGi R3 implemen-
tation for mobile and embedded systems, April 2009. http://concierge.sourceforge.net/.

[79] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano. A bytecode translator for dis-
tributed execution of “legacy” Java software. In European Conf. on Object-Oriented Progr. (ECOOP),
pages 236–255. Springer, 2001.

26



[80] Andre L. C. Tavares and Marco Tulio Valente. A gentle introduction to OSGi. SIGSOFT Software
Eng. Notes, 33(5), September 2008.

[81] L. A. Tewksbury, Louise E. Moser, and P. Michael Melliar-Smith. Live upgrades of CORBA applica-
tions using object replication. In IEEE Intnl. Conf. on Software Maintenance (ICSM), pages 488–497.
IEEE-CS Press, 2001.

[82] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. Tranquility: A low disruptive
alternative to quiescence for ensuring safe dynamic updates. IEEE T. Software Eng., 33(12):856–868,
December 2007.

[83] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in the clouds:
Towards a cloud definition. SIGCOMM Comput. Commun. Review, 39(1):50–55, January 2009.

[84] Ximei Wang, Shoubao Yang, Shuling Wang, Xianlong Niu, and Jing Xu. An application-based adap-
tive replica consistency for cloud storage. In 9th Intnl. Conf. on Grid and Coop. Comput., pages
13–17, Nanjing, November 2010.

[85] ZeroTurnaround. JRebel 4.5.4, January 2012. http://zeroturnaround.com/jrebel/.

27


