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Abstract

Thedynamic total order protocol replacementmechanism proposed in this paper allows an applica-
tion to change, in run-time, the total order broadcast protocol it is using.In aconventionalsetting, without
such a replacement mechanism, the application should be stopped, reconfigured and then restarted, in or-
der to be adapted to a changing environment. The problem of this stop-and-restart approach is that it
stops the normal operation of the application, reducing its availability. A dynamic replacement mecha-
nism allows the application to switch from the current total order protocol it isusing to a different one
that performs better under the new operation conditions. Moreover, theswitch should be performed in
a transparent manner, from both the application and its users. This paper presents a software architec-
ture for dynamically switching total order protocols, including the switching algorithm, its correctness
justification and an experimental evaluation of its performance.

1 Introduction

Group Communication Systems are useful building blocks to develop highly available distributed applica-
tions. Such systems typically offer services like reliablemulticast and broadcast message transports and
group membership services. They usually offer additional services like total order broadcast, also known
asatomic broadcast.

Such a service allows the nodes of a distributed applicationto broadcast messages while ensuring that
all of the nodes receive the same sequence of messages, even if they getdisorderedby the underlying
network mechanisms.

Total order has been studied for decades and a large number oftheoretical [14, 10, 4, 11] and practical
results [7, 6, 29, 12, 26, 3, 24, 1] have been shown. Nevertheless, all theseclassicresults arestatic in
the sense that the relationship between an application and the underlying group communication sytem is
statically established (for instance, in compile time or, in the best cases, in configuration time). This means
that if an application needs to change thestackof underlying protocols, arebootof the communication
layers is needed, thus causing an interruption in the application service and reducing its availability.

On the other hand, the results presented in some previous papers from this area [22, 21, 23] show that
there is no single total order protocol that provides the best performance under any working conditions. In
practice, this means that the election of a total order protocol may have a significant impact on the perfor-
mance of the application. Specifically, the election of aninappropriateprotocol may lead the application
to get a worse performance. For this reason, the election of the protocol to use must be done carefully.

In this context, there are some problems that must be considered. First of all, it is not easy toguess
the working conditions an application will have, unless it is a very specific application that has already
been carefully evaluated. On the other hand, even when the working conditions of the application are
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known beforehand, the election of the most suitable protocol requires from the designers of the application
some knowledge about the available protocols. Moreover, itmay happen that the working conditions of an
application change during its execution, so the protocol first chosen as the most suitable becomesunsuitable
due to these changes.

In practice, there should be some mechanism that allows the applications to use, in every moment,
the most suitable total order protocol, according to different factors (application-dependent factors like the
system load or message sendingpatterns, system-dependent factors like the underlying network andits
topology, etc.). Moreover, such a mechanism should betransparentfrom the point of view of the protocols
and the applications.

Such a mechanism offers several advantages. First of all, application designers do not need toguessthe
working conditions of the applications. They do neither need to know too many details about the protocols
available nor about the best settings for each one of them. Moreover, such mechanism allows an application
to adapt tochanging working conditions and, in general, to get a betterperformance.

This paper studies the problem of dynamically changing the total order protocol used by an application.
Section 2 presents a software architecture that allows sucha dynamic replacement. Sections 3 and 4
present aSwitching protocol that is able to perform the dynamic replacement. Section 5 discusses the
properties of theSwitching protocol and proves that it can act as a regular total order protocol. Section
6 presents an experimental work proving that besides beingeffective, the Switching protocol does not
impose a significant performance overhead. Section 7 reviews some previous papers that tackle the dynamic
switching topic. Finally, the paper is concluded in Section8.

2 A Dynamic Protocol Replacement Architecture

An architecture for dynamically replacing Group Communication Protocols (GCPs) was presented in [23]
and is explained in the sequel, discussing how it could be adapted to fit the needs presented above. Figure 1
shows a high level graphical description of the architecture.

User process

Membership
service

0GCP 1GCP GCPk

Switching protocol

...

view change

Reliable transport

deliversend

AGCS broadcast deliver

Switching
manager

System
monitor

Figure 1: Architecture of a node

This architecture is based on a main component, calledAdaptive Group Communication System(AGCS).
As shown in the figure, the user process sits on top of theAGCS and this, in turn, relies on a regular reliable
message transport layer. TheAGCS wraps several standard group communication components (a number
of GCPs, for instance, total order protocols and a membership service) and other specific components.

TheSwitching protocol implements the mechanism of replacing the GCPs at run-time.It captures the
regular communication that occurs among the user process and the GCPs and performs the GCP replace-
ment. TheSwitching manager is a component that decides when GCP changes should take place and
which GCP should be installed. TheSwitching manager relies on aSystem monitor that keeps track of
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several system and application measurable variables and parameters. TheSwitching manager collects the
data provided by theSystem monitor and uses them to decide about GCP changes.

The architecture includes aMembership service component and a reliable transport layer. TheMem-
bership service provides notifications about changes on the set of nodes consideredalive (due to joins of
new nodes, node failures or node disconnections). Finally,the Reliable transport layer offers a regular
reliable andFIFO message transport layer which ensures that a message sent toa destination is received
by that destination unless it fails.

3 The Switching Protocol

This section provides an overview of theSwitching protocol and then presents some notation details and
its pseudocode algorithm.

3.1 Overview

During normal operation, when no GCP replacement is being carried on, theSwitching protocol takes
charge of the messages sent by the user process, which are forwarded to the current GCP. Incoming mes-
sages are received by the current GCP and directly handled byits protocol, which delivers them to the user
process. The core of theSwitching protocol does not take part in this process.

A GCP replacement starts when theSwitching manager instructs theSwitching protocol in a particular
node to start a GCP change. TheSwitching protocol in this initiator nodeto–bcastsaPREPAREmessage to
inform all the nodes about the new change. At every node, theSwitching protocol stops relaying messages
with the current GCP, instances and initializes a new GCP andstarts relaying messages with it. Moreover,
each nodeto–bcastsaPREPARE ACK message to tell all nodes about the number of messages it has sent
with the previous GCP and waits for aPREPARE ACK from all the nodes.

In the meantime, theSwitching protocol goes on receiving messages delivered to it by the previous
GCP and forwarding them to the user application. TheSwitching protocol may also receive messages
broadcast by the new protocol, as it has already been startedin all nodes. These messages are not delivered
to the user process yet, but stored in a local queue, until allmessages broadcast with the previous GCP are
delivered to the user process.

When theSwitching protocol receives all thePREPARE ACK messages it knows how many messages
were sent with the previous GCP by each node. When all of them are finally received, theSwitching pro-
tocol can finally discard the previous GCP. Then, it delivers to theuser application the messages broadcast
with the new GCP, which were locally queued. When all of them are delivered, theSwitching protocol can
go on using the new protocol as the only available one.

The protocol receives view changes from an independent membership service, for instance, when a
node failure happens. If such a notification is received during a protocol change, the protocol basically
stops waiting formessages from the failed node, so the protocol change can proceed when a node failure
happens. An additional discussion is provided in Section 4.3.

Moreover, the protocol is able to manage consecutive protocol change requests. The protocol ensures
that if a protocol change request is received by a node while aprevious request is being handled, the current
protocol change is completed and the next one is then handled. Additional details are given in Section 4.2.

3.2 Pseudocode

The pseudocode of the protocol is shown in Algorithms 1 and 2.
The protocol uses severalglobal variables. A count of the GCP changes is maintained in variablek. It

is initialized to0 and incremented when a new GCP change is started.Changing gcp is a flag to know if
there is a GCP change in progress or it has already finished.Live nodes is the set of live nodes as notified
by the membership service.

The algorithm also uses a struct of typeP for each GCP it manages. Thus,P0 would be the struct for
the first GCP used,P1 would be the one for the second, etc. Such a struct contains several fields to store
some state related to a GCP. Given a structPk, the expressionPk.GCP is used to reference that GCP. The
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Algorithm 1 TheSwitching protocol pseudocode (part I)
1: INIT(G):
2: current k ← 0
3: next k ← 0
4: changing gcp← false

5: instance, prepare and initializeG
6: call CREATEP(Pnext k, G)
7:
8: CREATE P(p, g):
9: p.GCP ← g

10: p.k ← next k

11: p.sent← 0
12: p.other sent[q]← 0, for each processq in live nodes

13: p.ack received[q]← false, for each processq in live nodes

14: p.delivered[q]← 0, for each processq in live nodes

15: p.deliverable← {}
16:
17: TO-BCAST(m):
18: if changing gcp == true then
19: to-bcastm with Pnext k.GCP

20: Pnext k.sent + +
21: else
22: to-bcastm with Pcurrent k.GCP

23: Pcurrent k.sent + +
24: end if
25:
26: HANDLE USER MSG(m):
27: if m.k == current k then
28: deliverm to the local process
29: Pcurrent k.delivered[m.sender] + +
30: if changing gcp == true then
31: call FINISH PENDING()
32: end if
33: else
34: queuem in Pm.k.deliverable

35: end if
36:
37: START(G′):
38: to-bcast PREPARE(G′) with Pcurrent k.GCP

39:
40: HANDLE PREPARE(G′):
41: next k + +
42: changing gcp← true

43: instance, prepare and initializeG′

44: call CREATEP(Pnext k, G
′)

45: bcast PREPAREACK(current k, Pcurrent k.sent) with Pcurrent k.GCP

46:
47: HANDLE PREPAREACK(k, sent) from processq:
48: Pk.other sent[q]← sent

49: Pk.ack received[q]← true

50: call FINISH PENDING()
51:
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Algorithm 2 TheSwitching protocol pseudocode (part II)
52: FINISH PENDING():
53: changing gcp aux← false

54: for j = current k tonext k do
55: if DELIV ERY FINISHED(j) then
56: call END(j)
57: current k + +
58: else
59: changing gcp aux← true

60: break
61: end if
62: end for
63: changing gcp← changing gcp aux

64:
65: END(j):
66: for all m in Pj+1.deliverable do
67: if m is a user messagethen
68: call HANDLE USER MSG(m)
69: else if m is a PREPARE messagethen
70: call HANDLE PREPARE(m)
71: else
72: call HANDLE PREPAREACK(m)
73: end if
74: removem from Pj+1.deliverable

75: end for
76: destroyPj .GCP

77:
78: HANDLE VIEW CHANGE(failed nodes):
79: removefailed nodes from live nodes

80: call FINISH PENDING
81:
82: DELIVERY FINISHED(j):
83: totalOtherSent← 0
84: totalDelivered← 0
85: for all q in live nodes do
86: if Pj .ack received[q] == false then
87: return false
88: end if
89: totalOtherSent+ = Pj .other sent[q]
90: totalDelivered+ = Pj .delivered[q]
91: end for
92: if totalOtherSent == totalDelivered then
93: returntrue
94: else
95: returnfalse
96: end if
97:

5



Algorithm 3 TheSwitching protocol pseudocode (part III)
98: INIT(G, sending):
99: ...
100: provide sending view ← sending

101: changing view ← false

102:
103: TO-BCAST(m):
104: if changing view == true andprovide sending view == true then
105: block call
106: end if
107: if changing gcp == true then
108: to-bcastm with Pnext k.GCP

109: Pnext k.sent + +
110: else
111: to-bcastm with Pcurrent k.GCP

112: Pcurrent k.sent + +
113: end if
114:
115: HANDLE VIEW CHANGE(new nodes, failed nodes):
116: changing view ← true

117: removefailed nodes from live nodes

118: to-bcastNEW V IEW (new nodes, failed nodes) with Pnext k.GCP

119: call FINISH PENDING()
120:
121: HANDLE NEW VIEW(new nodes, failed nodes):
122: addnew nodes to live nodes

123: for all q in new nodes do
124: for j = current k to next k do
125: Pj .other sent[q]← 0
126: Pj .ack received[q]← false

127: Pj .delivered[q]← 0
128: end for
129: end for
130: deliver (new nodes, failed nodes) to the local process
131: if provide sending view == true then
132: unblock call to TO-BCAST (if any)
133: end if
134: changing view ← false

135:

Pk.k field is the number of the replacement by which thePk.GCP is installed. In general,Pk.k = k.
Pk.sent is the number of user messages that have been broadcast byPk.GCP . Pk.other sent is an array
that stores the number of messages sent by all the processes in iterationPk.k by means ofPk.GCP . Each
entry of the array is initialized to0 and updated when a new protocol replacement is started, using the
information received from each process. The number of messages sent by processq is Pk.other sent[q]
and it is initialized to0. Pk.delivered is an array that stores the number of messages sent by all the
processes delivered by the local process by means ofPk.GCP . Pk.delivered[q] is the entry corresponding
to the messages sent by processq. Each entry of the array is initialized to0 and updated by the local
process each time it receives a message fromPk.GCP . Pk.deliverable is a list of messages delivered to
the protocol byPk.GCP . If Pk.GCP is not the current protocol but a later one, the messages delivered by
it cannot be directly forwarded to the user process. Instead, they are stored inPk.deliverable, until all the
messages sent with all the previous GCPs are delivered.

It is assumed that the managed GCPs provide ato–bcastprimitive to broadcast (in total order) a message
to all the nodes in the system. Given a messagem, m.sender denotes its sender.

The algorithm is composed by a set ofhandlersand functionswhich are executed as a response to
external messages (sent by other nodes) and events (e.g. view change events produced by theMembership
service) or called from other event handlers and functions. These handlers and functions areatomic, i.e.
two handlers or functions can not be executed concurrently.

TheINIT function is executed only once, when the whole system is started. TheTO-BCAST handler is
invoked by the user application in order to broadcast a message (in total order). TheHANDLER USER MSG
handler is invoked by the GCPs to deliver incoming totally ordered messages to theSwitching protocol.
The START function is executed when theSwitching manager decides to start a new protocol change.
TheHANDLE PREPARE andHANDLE PREPARE ACK are invoked by the GCPs to deliverPREPARE or
PREPARE ACK messages, to theSwitching protocol. The FINISH PENDING function is invoked to
try to finish as much pending protocol changes as possible. The END function is executed to finish a
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protocol change. TheHANDLE VIEW CHANGE handler is invoked by the membership service to deliver
notifications on the membership view. TheDELIVERY FINISHED function is invoked to decide if all the
pending messages needed to perform a protocol change have already been received.

4 Discussion

This section presents some issues that were not covered in Section 3 to simplify the presentation of the
protocol. These issues cover the normal operation of the protocol and also its behavior in presence of
failures.

4.1 Normal Operation

TheSwitching protocol offers a number of advantages over the protocols reviewed inSection 7. First of
all, it does not block the sending of user messages. When a nodeis instructed to start a protocol switch, the
sending of messages with the current GCP is disabled but message sending is immediately enabled with
the new GCP. Moreover, it allows both protocols to coexist and work (i.e. to order messages) in parallel
during the protocol change, until the old protocol is no longer needed. An important consequence is that
the normal flow of messages is not delayed by slower processes. Even more, the delivery of messages to
the user process is neither blocked. Indeed, when the old protocol is finally discarded and uninstalled, the
Switching protocol immediately delivers to the user process the queued messages managed by the new
GCP. After this step, regular delivery with the new protocolis enabled, thus keeping anormal flowof
messages delivered to the user process.

On the other hand, for this mechanism to properly work, some issues must be considered. Firstly,
it is needed some way to distinguish the messages broadcast with each GCP. A first solution consists in
adding someheader datain the regular messages but this solution would imply the need of knowing some
implementation details, thus making theSwitching protocol dependent on specific GCP implementations.
A second option, general enough to fulfill this requirement is to encapsulate the regular user messages in
other messages whose format is only known by theSwitching protocol. The protocol can include in these
messages additional headers with all the needed meta-data.One of these headers stores the identifier of the
GCP used to broadcast the encapsulated user message. From the point of view of the GCPs managed by
theSwitching protocol, these protocol-dependent messages are as opaque as the regular user messages.

4.2 Concurrent Starts

A second issue is the ability of theSwitching protocol to face concurrent starts of the switching procedure.
Indeed, when several protocol switches are started concurrently by different nodes, the use of a total order
broadcast protocol to broadcast thePREPARE messages forces that all the nodes receive thosePREPARE
messages in the same order.

Thus, multiplePREPARE messages can be received by a node. When aPREPARE message is received
by a node, it starts a newnext k iteration, by creating a newPnext k structure. The protocol starts sending
messages with the new GCP and queueing inPnext k.deliverable the messages delivered by it. Each time
a newPREPARE message is received, a new iteration is started, even if there are some previous GCPs
receiving messages.

When the current GCP delivers a message to theSwitching protocol it checks if that message delivery
allows to finish the execution of one or more iterations. For this, theFINISH PENDING function is
invoked. The only issue to worry about is the proper finalization of the iterations, in the same order
they were started. This function checks that, for each iteration started, a correspondingPREPARE ACK
message has already been received from all the live processes and all the messages sent by them with the
corresponding GCP have also already been received. In this case, the iteration can be considered finished,
and the following iteration can be checked.
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4.3 View Management

When no node failure happens, the behavior of the protocol is that shown in Algorithms 1 and 2. Neverthe-
less, theSwitching protocol is able to react to failure notifications provided by an independent membership
manager. These are received in theHANDLE VIEW CHANGE handler. This handler updates the local copy
of the set of nodes considered alive and calls theFINISH PENDING function. This function removes the
failed nodes from the set that was checked in each pending iteration.

The reaction to view changes in these algorithms is actuallyminimum. Algorithm 3 extends the initial
pseudocode shown in Algorithms 1 and 2. These extensions allow the protocol to provide view change
notifications to the upper user process and also manage the join of new nodes. Regarding the first issue,
two different alternative guarantees can be provided:Same View DeliveryandSending View Delivery[10].

If the Sending View Deliveryproperty has to be guaranteed, theSwitching protocol has to ensure that
all the messages broadcast by the user processes are delivered to them in the view they were sent. In
particular, the protocol has to ensure that all the messagesbroadcast with any of thependingGCPs are
deliveredbeforedelivering the following view change notification to the user process. Moreover, once
the Switching protocol learns about a node failure, it has to prevent the user process from sending more
messages until the corresponding view change is delivered to it.

To this end, when theSwitching protocol is informed about a node failure, it first blocks the sending of
user messages. Then, it broadcasts a specialNEW VIEWmessage, with the last GCP started (Pnext k.GCP ).
This message is broadcast with the last GCP started because it is not guaranteed that the previous GCPs are
still available in all nodes. TheNEW VIEW message includes the set of nodes that compose the new view.
After delivering all the pending user messages (those broadcast with any of the started GCPs, including the
current one), thisNEW VIEW message is eventually delivered to theSwitching protocol. TheSwitching
protocol can then forward theNEW VIEW message to the user process, in order to notify the new view.
Finally, it unblocks the sending of user messages.

A few assumptions must be made for this procedure to be correct. First of all, if theSending View
Deliveryproperty has to be provided by theAGCS, it must be ensured by the wrapped GCPs. This means
that the GCPs must have someflush mechanismthat ensures that when a node fails, before installing the
new view, the pending messages areflushed. This mechanism may resend and forward messages, so all the
alive nodes receive and deliver the pending messages, although theSwitching protocol does not need to
be aware of theflushprocedure. The second assumption is that theNEW VIEW messages broadcast by the
Switching protocol by means of the GCPs, to inform about the view changes are not considered as regular
application-level messages by the GCPs but interpreted as membership messages. When theSwitching
protocol sends aNEW VIEW message through a GCP, informing about a view change, and especially about
node failures, the GCP may start itsflushprotocol. This ensures that the pending user messages are finally
delivered.

If the Sending View Deliveryproperty is not needed, then the sending of user messages does not need
to be blocked. The procedure to follow is thus the same than inthe previous case except that the sending
of user messages is not blocked. In this case, the user process can go on broadcasting messages after the
Switching protocol receives the node failure notification. Nevertheless, these messages may be delivered
to the user process (once totally ordered) after theSwitching protocol delivers the view change to the user
process, i.e., in a different view from the one they were sentin, although the total order property provided
by all the GCPs ensures that, at least, each message is delivered in the same view to all the user processes.
This way, theSame View Deliveryproperty is ensured.

TheSwitching protocol is also able to manage the join of new nodes. Joins are notifiedas view changes.
In fact, a view change can be viewed as a set of new nodes (nodesthat join the system) and a set of nodes
that fail.

In order to implement these features, Algorithm 3 uses two new global variables. Theprovide sending view

variable is a flag that sets whether theSending View Deliveryproperty has to be ensured. Its value is set to
the value of thesending parameter of theINIT handler. If it is set tofalse, then theSame View Delivery
property is offered instead. Moreover, there is achanging view global flag that maintains whether a view
change is in progress.

TheTO-BCAST handler is also modified. As a first action, it checks if a view change has been started
and if theSending View Deliveryproperty has to be ensured. In this case, the user call to theTO-BCAST
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is blocked. The rest of the handler is the same that the one shown in Algorithm 2.
TheHANDLE VIEW CHANGE handler is also modified. First of all, a new parameter is added, to receive

a set of new nodes (i.e., nodes thatjoin the system). Then, it broadcasts a specialNEW VIEW message, by
means of the last GCP started. Finally, theFINISH PENDING function is invoked, as in Algorithm 2.

The NEW VIEW message is received in the newHANDLE NEW VIEW handler. First, the new nodes
are added to the local copy of the set of nodes considered alive. TheP data structures fromPcurrent k

to Pnext k are updated, to initialize the state corresponding to the new nodes. Then the view change is
delivered up to the user process. Finally, in case theSending View Deliveryproperty was required, it
unblocks the execution of theTO-BCAST handler.

Another issue related to the notification of node failures must be addressed. When a node fails it may
happen that, in several nodes, the corresponding membership service notifies to theSwitching protocol,
which would broadcast itsNEW VIEW message. The result is a number ofNEW VIEW messages represent-
ing the same node failure are broadcast and received by all nodes. To avoid the multiple notification of a
view change to the user processes a simple solution can be adopted.

TheSwitching protocol keeps aview counteras a global variable. It is initialized to0 and incremented
each time aNEW VIEW is delivered to theSwitching protocol and then forwarded to the user process. Each
NEW VIEW message is tagged with the current value of the counter when it is broadcast. If theSwitching
protocol receives differentNEW VIEW messages with the same value of theview counter, it considers the
first one and then discards the rest. As theNEW VIEW messages are broadcast in total order, using the last
GCP started, all nodes keep the sameNEW VIEW message and discard the same other messages.

5 Properties of the Switching protocol

This section presents some properties of theSwitching protocol and some reasoning about their correct-
ness. First, some lemmas are proposed.

Lemma 1: Downwards Validity If a user process in a correct node broadcasts a messagem, then
exactly one of the GCPs of that node eventually broadcastsm exactly once.

Proof. In theTO-BCAST handler, each message sent by the user process is immediately broadcast exactly
once, by any of the GCPs currently managed by theSwitching protocol (lines 18–24).

Considering the modifications presented in Algorithm 3, in case theSending View Deliveryproperty
is requested and a view change happens, the following message broadcast by the user process may be
blocked. In this case, it should be shown that the sending is not blocked infinitely.

First, when a view change is notified, then aNEW VIEW message is broadcast (line 118). By the
Validity property of the GCP used to broadcast theNEW VIEW message, this is eventually delivered by the
local node and handled in the HANDLENEW VIEW handler. In this handler, the user process is finally
unblocked (line 132) and the message can finally be broadcast, exactly once and using exactly one GCP
(lines 107–113).

Lemma 2: Upwards Validity If a GCP delivers a messagem to theSwitching protocol, then theSwitch-
ing protocol eventually deliversm to the user process.

Proof. It has to be shown that theSwitching protocol does not indefinitely retain a message delivered
to it by a GCP. First, if a messagem is delivered to theSwitching protocol by Pcurrent k.GCP , then it
is immediately delivered to the user process (line 28). If the message is delivered byPk′ .GCP (where
current k < k′ ≤ next k), then it is stored inPk′ .deliverable. In this case, it has to be shown that the
message is not retained in that queue infinitely. In other words, it has to be shown that all iterations of the
protocol previous tok′ are eventually finished.

If m was broadcast withPk′ .GCP (with current k < k′), then we know that a finite number of mes-
sages were broadcast withPj .GCP (∀j : current k ≤ j < k′). By theValidity andUniform Agreement
properties of these GCPs, it is known that all those messagesare eventually delivered to theSwitching pro-
tocol and, by Lemma 1, eventually delivered to the user process. For the same reason, we also know that all
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the correspondingPREPARE ACK andPREPARE messages (used to finish an iteration and start the next
one, respectively) are eventually delivered to theSwitching protocol. Then, all the iterations previous to
Pk′ are eventually finished. An iterationPj is finished when all the messages broadcast with thePj .GCP

are delivered to theSwitching protocol (as decided by theDELIVERY FINISHED function). At the end of
the iterationPj , all the pending messages broadcast withPj+1.GCP (those stored inPj+1.deliverable)
are delivered to the user process (lines 66–75). Then,current k is incremented (line 57). Eventually,
current k reachesk′ and messagem is finally delivered to the user process.

Lemma 3: Local Integrity TheSwitching protocol delivers a messagem to the user process at most
once, and only ifm has been delivered to theSwitching protocol by exactly one of the GCPs of the local
node.

Proof. First of all, theSwitching protocol delivers the message to the user process at most once. If the
message is delivered by the current GCP (Pcurrent k.GCP ) then, it is directly delivered (line 28). If
the message is delivered by a later GCP (Pk′ .GCP , with current k < k′), then it is first queued (in
Pk′ .deliverable). By Lemma 2, the message is eventually delivered to the userprocess, exactly once
(lines 66–75).

On the other hand, it has to be proved that a single message cannot be delivered to theSwitching
protocol by more than one GCP. Let’s suppose that a message is delivered to theSwitching protocol by
two different GCPs. TheUniform Integrityproperty offered by these GCPs ensures that they previously
sent the message. Nevertheless, this is not possible since theSwitching protocol sends each message only
with one of the GCPs (lines 28 and 34).

Lemma 4: Change Safety TheSwitching protocol does not deliver to the user process a messagem

delivered to the protocol byPk.GCP after having delivered to the user process a messagem′ which was
delivered to the protocol byPk′ .GCP , wherek < k′.

Proof. If no view change happens, theTO-BCAST handler broadcasts the user messages by means of
Pcurrent k.GCP (line 22). As theSwitching protocol does not keep aPk previous toPcurrent k, then no
message can be broadcast with a previous GCP.

If a GCP change happens, theTO-BCAST handler broadcasts the user messages by means ofPnext k.GCP

(line 19). The value ofnext k is incremented each time a GCP change is started (line 41), soPnext k.GCP

is always the last GCP that has been started. If a message is broadcast withPnext k.GCP , then any message
subsequently broadcast will be sent with the same GCP or a later one.

Property 1: Validity If a process in a correct node broadcasts a messagem, then theSwitching protocol
eventually deliversm to it.

Proof. If no GCP change happens, messagem is sent with the current GCP (Pcurrent k.GCP ). By its
V alidity property, the GCP eventually deliversm to theSwitching protocol (in the same node). According
to Lemma 3 (Local Integrity) stated above, theSwitching protocol eventually delivers the message to the
user process.

If a GCP change happens, Lemmas 1 (Downwards Validity) and 2 (Upwards Validity) ensure that the
Switching protocol does not indefinitely retain theoutgoingmessages sent to it by the user process nor the
up-goingmessages delivered to it by the GCP.

Property 2: Uniform Agreement If theSwitching protocol in a node, whether correct or faulty, delivers
a messagem to the user process, then theSwitching protocol in all correct nodes eventually deliverm to
their corresponding user processes.

Proof. Let’s suppose that, in one of the nodes, theSwitching protocol delivers a message to the user pro-
cess. By Lemma 3 (Local Integrity), the message must have been delivered to theSwitching protocol by
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one of the GCPs. By theUniform Agreementproperty of the GCPs, in all the correct nodes, the GCP de-
livers the message to theSwitching protocol and by Lemma 2 (Upwards Validity), theSwitching protocol
eventually delivers up the message to the user process in allcorrect nodes.

Note that when the GCPs do not satisfy theUniform Agreementproperty but just aNon-uniform Agree-
mentproperty, then the property satisfied by theSwitching protocol is notUniform Agreementbut just the
correspondingNon-uniform Agreementproperty.

Property 3: Uniform Integrity For any messagem, the Switching protocol of every node, whether
correct or faulty, deliversm at most once to the user process and only ifm was previously broadcast by its
sender.

Proof. First of all, it has to be shown that a user process does not deliver a message twice.
First, by Lemma 3, theSwitching protocol cannot deliver twice the same message.
Moreover, it has to be shown that theSwitching protocol only delivers a message to the user process if

the message was previously broadcast by its sender node.
First, it is known that theSwitching protocol only delivers to the user process messages that have

previously been delivered to it by one of the GCPs (lines 28).By theUniform Integrityof the GCPs, this
only happens after the GCP in the sender node has broadcast the message. TheSwitching protocol itself
ensures that this can only happen after it has broadcast the message through the corresponding GCP in the
sender node.

Property 4: Uniform Total Order If the Switching protocol in any nodesp andq, whether correct or
faulty, both deliver messagesm andm′, then theSwitching protocol in p deliversm to its user process
beforem′ if and only if theSwitching protocol in q deliversm to its user process beforem′.

Proof. Let’s suppose that theSwitching protocol in both nodesp andq delivers two messagesm andm′.
If p delivers bothm andm′ using the same GCP, by theUniform Total Orderproperty of the GCP and
by protocol construction, it is known that all the nodes willdeliverm andm′ in the same order, using the
same GCP.

Now let’s suppose thatp deliversm usingPk.GCP and deliversm′ usingPk′ .GCP , with k < k′.
Then,q also deliversm usingPk.GCP andm′ usingPk′ .GCP . Moreover, by Lemma 4 (Change Safety),
asm has been broadcast usingPk.GCP , q deliversm to the user process before delivering any other
message broadcast byPk′ .GCP , which means thatq deliversm prior tom′.

The reasoning is also valid ifp or q fail after deliveringm andm′, respectively. On one hand,p and
q deliverm andm′, as long asPk.GCP andPk′ .GCP satisfy theUniform Total Orderproperty. On
the other hand, by Lemma 4 (Change Safety), both nodes deliver all the messages broadcast byPk.GCP

before starting to deliver messages broadcast byPk′ .GCP . As a result, bothp andq deliverm before
deliveringm′.

6 Experimental Evaluation of the Switching protocol

This section presents an experimental evaluation of theSwitching protocol. First, the environment and the
methodology used to perform the evaluation are described. Then, some results that show the effectiveness
of the protocol are presented.

The overall architecture of the system running in each node is shown in Figure 2, which is a simplified
version of that depicted in Figure 1. The application acts asa client of the Switching protocol which in
turn wraps several of the total order protocols implementedto perform the experimental evaluations.

The message transport layer is a new transport layer implemented on top of the JBoss Netty 3.2.4
networking library [16]. Netty is a client/server library that implements the Java NIO specification [2] and
offers asynchronous event-driven abstractions for using I/O resources.

On the other hand, the implemented system does not include aMembership servicesince view changes
are not considered in this evaluation. Moreover, the implemented system does not include theSystem
monitor or theSwitching managershown in the original figure. Instead, the test application itself is in

11



User process

0GCP 1GCP GCPk

Switching protocol

...

Reliable transport

deliversend

AGCS broadcast deliver

Switching
manager

System
monitor

view change

service
Membership

Figure 2: Architecture of a node (simplified version).

charge of issuing thestart-of-changeevents to request a GCP change, to any of the availablepre-loaded
GCPs (UB, TR, etc.), as described later.

The application is executed in a system composed of four nodes. Each node is a different physical
machine with an Intel Pentium D 925 processor running at 3.0 GHz and 2 GB of RAM, running Debian
GNU/Linux 4.0 and Sun JDK 1.5.0. The nodes are connected by means of a 24-port 100/1000 Mbps
DLINK DGS-1224T switch. The switch keeps the nodes isolatedfrom any other node, so no other network
traffic can influence the results.

The test application is a regular Java console application that is run in each of the four nodes of the
system. In each node, the application broadcasts a sequenceof messages by handling them to theSwitching
protocol as if it were a regular total order protocol.

The messages are broadcast at a uniform sending rate, configured externally. No other message flow
control mechanism has been used.

To perform the evaluation of theSwitching protocol, the test application has been run under different
configurations. In a first set of executions, theSwitching protocol is configured to use theUB (sequencer-
based) and theTR (privilege-based) protocols. The application was configured to periodically request a
GCP change each 5000 ms. Thus, theSwitching protocol starts using theTR protocol and after 5000 ms
theSwitching protocol is asked toswitchto UB. After the next 5000 ms, the application asks to change to
TR and so on.

In each test, the application was configured to broadcast messages at a fixed sending rate. Different
tests have been run using rates of 40, 60, 80, 120 and 130 messages broadcast per second and node. Thus,
the global sending rates range from 160 to 520 messages per second.

Each execution measures thedelivery timeof the messages, computed as the time observed by the
application in a given node, from the moment in which it broadcasts the message to the moment in which
it receives back the message, once totally ordered. This means that for each node, a series of delivery times
is gotten corresponding to the series of messages broadcastby that node.

Moreover, in order to know thedistribution in timeof the message deliveries, the number of messages
that are delivered in eachhundredthof a second is considered. These numbers allow us to know if there is
a regularflow of messages being delivered.

This set of experiments is repeated, using theUB PRIO andTR PRIO protocols.
Figure 3 shows thedelivery timesrecorded by a single node in thefirst set of experiments, withTR and

UB and a sending rate of 40, 60, 80, 120 and 130 messages broadcast per second and node. Figure 4 shows
the corresponding amount of messages delivered in each hundredth of a second, using a sending rate of 40,
60, 80, 120 and 130 messages broadcast per second and node.

Figure 5 shows thedelivery timesrecorded by a single node in thesecondset of experiments, with
TR PRIO andUB PRIO and a sending rate of 40, 60, 80, 120 and 130 messages broadcast per second
and node. Figure 6 shows the corresponding amount of messages delivered in each hundredth of a second,
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Figure 3: Delivery times withTR andUB: (a) 40 msg/s, (b) 60 msg/s, (c) 80 msg/s, (d) 120 msg/s, (e) 130
msg/s.
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using a sending rate of 40, 60, 80, 120 and 130 messages broadcast per second and node.
Figure 3 shows the delivery time of the messages. Each test consists of a series of messages, which are

delivered in total order. In a given series, theith message is represented byx = i and its delivery time
(in milliseconds) isy(i). As explained above, in these tests theSwitching protocol switches between two
total order protocols (e.g.TR andUB). This means that in any test, the application delivers asub-seriesof
the messages with the first protocol (in Figure 3.a, about 200messages withTR), then it delivers another
sub-serieswith the second protocol (in Figure 3.a, another 200 messages, withUB) and so on.

These figures show that theSwitching protocol does not increase the delivery time of the messages.
These figures show two differentdistributionsof the message delivery times. The delivery times of the

messages delivered withTR show a highervariability than the times corresponding to messages delivered
with UB. The reason of this behavior is because according to theTR protocol, a node needs to have the
privilegeto send messages. InTR andTR PRIO, this is implemented by means of a rotatingtoken message.
To broadcast a (totally ordered) message, the nodes typically have to wait somevariable time, until they
get the token. This extra delay is the main responsible of thehighervariability observed in Figures 3.a to
3.e.

As the sending rate is increased, the delivery times got withUB tend to increase because the sequencer
node is more and morebusysequencing messages. The time increment becomes more and more variable,
thus increasing the variability of the final message delivery times. Nevertheless, these differences are
not actually so important, since even in these cases, the figures show that theSwitching protocol is not
introducing any significant delay in the message delivery times. This can be checked by analyzing the
delivery times in eachsub-series. In case that theSwitching protocol introduced a delay in the delivery
times, this delay would have been noticeable. Specifically,the delivery times at the beginning of each
sub-serieswould have been noticeably higher than the delivery times ofthe rest of thesub-series. As the
figures show, the delivery times in a given series are quite similar and comparable among them (apart from
several punctual times that can be consideredanomalous). From this behavior, it can be concluded that the
Switching protocol is not introducing any significant delay in the message delivery times.

On the other hand, those figures assess the cost of deliveringeach message but they do not provide any
information about how that message delivery is beingdistributedover time. Figure 4 shows the number
of messages delivered every hundredth of a second (i. e. the interval [0:100] corresponds to one second).
These graphs allow to know about the message delivery over time.

For instance, Figure 4.a shows that in most of theone hundredth of a secondintervals, theSwitching
protocol is delivering between 1 and 3 messages. As the sending rate isincreased (Figures 4.b to 4.e), this
delivery rate also increases. For instance, in Figure 4.e, between 5 and 6 messages are delivered in each
one-hundredthinterval.

The importance of these figures is that in all cases, the number of messages delivered by hundredth of a
second follow aquite regular distribution, in spite of the successive protocol changes that have happened.
These figures also show a small number of anomalous values butit can be seen that they do not happen at
instants of time which are multiple of 500 hundredths of second (5000 ms) but at any time, which means
that they are not directly caused by a protocol switch, but bysome other reason (for instance, due to the
thread scheduling policies of the operating system or the Java Virtual Machine). Thus, it can asserted that
the number of messages delivered per time unit does not depend on whether a protocol switching is being
carried on and for this reason, it can be concluded that theSwitching protocol is not producing interruptions
or delays in theflow of message deliveries.

Figure 5 shows the corresponding results when using theTR PRIO andUB PRIO protocols. These
results are very similar to those depicted in Figures 3 and 4,which allow to conclude that theSwitching
protocol is working properly when switches among any kind of total order protocols (prioritized or not): it
does not impose significant time overheads in the message delivery times and it does not interrupt or delay
the message delivery.

This shows that theSwitching protocol is useful to adapt an application to changing requirements
and load conditions. The figures presented show that some total order protocols are able to minimize
the dispersion of the message delivery times while others lead to a reduction in the mean delivery time
of the messages. The proposed switching support allows the applications to switch among different total
order protocols under changing conditions, without suffering significant performance penalties during the
protocol switch.
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Figure 5: Delivery times withTR PRIO andUB PRIO: (a) 40 msg/s, (b) 60 msg/s, (c) 80 msg/s, (d) 120
msg/s, (e) 130 msg/s.
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7 Related Work

There have been other papers proposing some dynamic switching mechanism allowing the replacement of
one or several services or modules by other that are better tailored to the current context. Such proposals
are the key for obtaining an adaptive system and are described in the sequel, in chronological order.

The Ensemble system [15] is a group communication system based on the configuration and use of a
stack of protocols. Each protocol of the stack provides a different service (message transport, group mem-
bership, ordering, etc.) to the application or to other protocols of the stack. In [28], a Protocol Switch
Protocol (PSP) is proposed. The PSP is an Ensemble protocol that allows the dynamic replacement of
the full protocol stack used by Ensemble. The PSP is a two-phase commit protocol (2PC) [13, 18]. The
protocol includes some fault-tolerance support that tolerates the loss of messages (by means of retrans-
missions) and the node failures or disconnections. The PSP presents a significant disadvantage. As it is
composed of two independent parts and the second part is not started until the first one is completed, the
regular operation of the application is somehow blocked. The fact that the whole protocol stack is replaced
is actually another inconvenience. Indeed, there is no way to replace a single protocol in a given protocol
stack without having to stop and replace all the stack protocols.

In [19], the authors present an alternate mechanism to the switching protocols based on a 2PC tech-
nique. The idea is to make the switching more scalable, by avoiding the dependency on a single coordinator
node and reduce the delay imposed by the transition from the older protocol to the new one. This alterna-
tive consists in definingswitching functionsthat are used to switch from the state kept by a protocol to the
state used by another protocol. In run-time, during a dynamic protocol switching, the use of such functions
allow the nodes to go on working with the new protocol, which starts by managing the messagesinherited
from the first protocol and then goes on with the new messages.

In [20] a secondSwitching Protocol(SP) for the Ensemble system is presented. Unlike the protocol
presented in [28], the SP allows the replacement of a single protocol of the Ensemble’s protocol stack. The
protocol is presented as awrappingthat sits on top of a number of alternative protocols that offer the same
service, i.e. the same guarantees. This wrapping protocol offers those guarantees to the protocol layered
about it, which, in fact, does not need to know about itswrappingnature. When it operates innormal mode,
it just forwards up and down the messages sent by and delivered to its neighbor layers. When it operates
in switching mode, it performs a protocol replacement. As in [28], the SP assumes some mechanism that
decides about when the current protocol has to be changed. Thus, the protocol replacement starts when
someoracle chooses a node as a replacementmanager. The protocol operation is similar to that of [28]
but there are some differences. First of all, the communication among the manager and the rest of nodes is
no longer based on broadcasts. Instead, a logical ring is formed among all nodes and a token is forwarded
from node to node along the ring. The token has amodefield that identifies the phase of the protocol.
There are three protocol phases. This protocol has some drawbacks related to itsblockingnature. First of
all, it prevents nodes from sending messages with both the current and the new protocol until they are in the
third token round. Moreover, the structure of the protocol,based on three rounds along the ring imposes a
significant delay. Furthermore, this delay is increased by the blocking third round.

An adaptive architecture for run-time protocol switching is proposed in [9, 8], designed for Cactus [5],
a framework for building distributed protocols and applications. A Cactus application is based on a stack
of layered components, each offering a service. Some of these components may beadaptive, including
different implementations of the same service. Initially,one of the available implementations of a given
component is chosen. This architecture allows to change, inrun-time, the current implementation of a
service to one of the other available implementations of theservice, in order to adapt to changing envi-
ronments or contexts. For this, each component includes anadaptor, which is a module that collaborates
with the service implementations to perform the replacement. The protocol change procedure is actually
an abstract generic protocol, composed of three phases. A first phase is the detection of some changing en-
vironment or application parameters. A second phase, closely related to the first one, includes the election
of the new implementation of the service. The third phase is theadaptationphase, which consists of three
steps: a) preparation, b)outgoing switchoverand c)incoming switchover. The preparation step includes
all the actions needed to start and prepare the switching from one implementation of the service to the new
one. It finishes with asynchronization barrier. Once all the participating nodes reach this barrier, they can
proceed with the next step. The outgoing switchover is the step by which the flow of outgoing messages
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that arrive to a service implementation areredirectedto a different implementation of the service. The
incoming switchover is a similar messageredirection, applied to incoming messages.

Rütti et al. [27] consider the problem ofDynamic Protocol Updateas a particular case of the more
generalDynamic Software Updateproblem. The solution proposed is based on twoswitching algorithms
that allow the dynamic replacement of one of the protocols inthe stack used by an application. There is a
switching protocol to replace the consensus protocol of thestack and another switching protocol to replace
the atomic broadcast protocol. This solution is aimed at theSAMOA framework [30] but the basic idea
may be applied to other protocol stack-oriented frameworks. According to the architecture proposed, one
of the switching protocols is placed in the protocol stack, just above the protocol to change. When no
protocol change is to be done, the switching protocol simplyforwards up and down the messages sent by
and delivered to the application. During a protocol change,the switching protocol intercepts the application
messages. The general idea ofinterceptionincludes delaying and resending messages. Both algorithms
guarantee that theservice requestsperformed with the current protocol (consensus or atomic broadcast)
are finished before starting the operation with the new protocol. The operation of the atomic broadcast
switching protocol actually relies on the atomic broadcastprotocol to be replaced. When a node decides to
start a protocol change, it broadcasts a special message with the current atomic broadcast protocol. When
a node receives this special message, it performs the protocol replacement, by installing and activating
the new protocol. If there are some pending messages sent with the old protocol they will be discarded
by all nodes at delivery time and resent by their corresponding senders, using the new protocol. Some
performance evaluation of both protocols is also presented. As shown in the graphical results, the need to
resend some messages during the execution of the protocol change algorithm has a negative impact on the
latency of a number of messages.

Mocito and Rodrigues [25] propose another switching protocol for total order protocols It avoids block-
ing message sending with the new protocol so the flow of application messages is never blocked. It sets
a point in time from which no more messages are sent with the current total order protocol. Incoming
messages broadcast with the new protocol are queued until all the pending messages are delivered with the
current total order protocol and the protocol switching is completed. In order to deactivate the total order
protocol being replaced, each node broadcasts an acknowledgement message as the last message broadcast
using the current total order protocol. Upon reception of all such acknowledgement messages, a given node
knows that no more messages will be sent with the current total protocol so the node can deactivate it.

Karmakar et al. [17] describe the use of a switching protocolto dynamically change the broadcast
protocol used by a network of nodes. A broadcast protocol based on a Breadth-First Search tree yields
lower message latencies when the network load is low. On the other hand, a broadcast protocol based on
a Depth-First Search reduces the load on individual nodes when the global network load is higher. The
mechanism discussed in [17] can switch between two broadcast protocols, one based on a BFS tree and
another based on a DFS tree. The core of the mechanism is the construction of the spanning tree used by
the broadcast protocol.

8 Conclusion

This paper reviews the problem of dynamically replacing thetotal order broadcast protocol used by a
distributed application. It provides a new, non-blocking,highly concurrent switching protocol, fully inte-
grable with existing independent membership services. Moreover, this protocol admits concurrent starts of
the switching procedure.

The paper includes an extensive description of the switching protocol, a pseudocode algorithm and a
discussion of the properties offered by the switching protocol that allow it to behave like a regular total
order protocol. It presents an experimental evaluation of its operation.

Although this switching protocol was designed to allow the dynamic replacement of regular total order
broadcast protocols, it can also be used to replaceprioritized total order broadcast protocols, without any
further modification.

To argue about this, it may be considered that the prioritized protocols presented in [22, 21] behave like
regular total order protocols and thatPrioritization is a property that can be observed on the sequence of
messages they totally order. These protocols can be wrappedin an architecture like the one presented in
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Figure 1. As long as the order of the sequence of messages provided by a given GCP is preserved by this
architecture, thePrioritization property will be preserved. Moreover, as the switching protocol only relies
in the regular properties offered by common total order protocols (Validity, Uniform Agreement, Uniform
Integrity andTotal Order) and does not specifically rely on any other properties likePrioritization, it can
be isolated from specific total order broadcast implementations and additional semantics offered by them.
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