Dynamic Total Order Protocol Replacement

Emili Miedes, Francesc D. Miwoz-Esco

Instituto Universitario Mixto Tecndlgico de Infornatica
Universitat Poliecnica de Vancia
46022 Valencia (SPAIN)

{emiedes,fmunycz@iti.upv.es

Technical Report ITI-SIDI-2012/009

ITI-SIDI-2012/009

Dynamic Total Order Protocol Replacement

Emili Miedeset al.:

Dynamic Total Order Protocol Replacement

Emili Miedes, Francesc D. Mwz-Esco

Instituto Universitario Mixto Tecndlgico de Infornatica

Universitat Poliecnica de Vancia
46022 Valencia (SPAIN)

Technical Report ITI-SIDI-2012/009
e-mail: {emiedes,fmunydz@iti.upv.es

July 9, 2012

Abstract

Thedynamic total order protocol replacememechanism proposed in this paper allows an applica-
tion to change, in run-time, the total order broadcast protocol it is uirgconventionaketting, without
such a replacement mechanism, the application should be stoppedfigered and then restarted, in or-
der to be adapted to a changing environment. The problem of this stepestadt approach is that it
stops the normal operation of the application, reducing its availability. Amjomeeplacement mecha-
nism allows the application to switch from the current total order protocolusisg to a different one
that performs better under the new operation conditions. Moreoveswteh should be performed in
a transparent manner, from both the application and its users. This p&sents a software architec-
ture for dynamically switching total order protocols, including the switchilggtthm, its correctness
justification and an experimental evaluation of its performance.

1 Introduction

Group Communication Systems are useful building blockstetbp highly available distributed applica-
tions. Such systems typically offer services like reliaflelticast and broadcast message transports and
group membership services. They usually offer additioralises like total order broadcast, also known
asatomic broadcast

Such a service allows the nodes of a distributed applicatidimoadcast messages while ensuring that
all of the nodes receive the same sequence of messages,f ¢ken getdisorderedby the underlying
network mechanisms.

Total order has been studied for decades and a large numtiexasétical [14, 10, 4, 11] and practical
results [7, 6, 29, 12, 26, 3, 24, 1] have been shown. Nevedbehll theselassicresults arestaticin
the sense that the relationship between an applicationrendrtderlying group communication sytem is
statically established (for instance, in compile time othe best cases, in configuration time). This means
that if an application needs to change #tackof underlying protocols, aebootof the communication
layers is needed, thus causing an interruption in the agtjic service and reducing its availability.

On the other hand, the results presented in some previoespfipm this area [22, 21, 23] show that
there is no single total order protocol that provides the pegormance under any working conditions. In
practice, this means that the election of a total order patmay have a significant impact on the perfor-
mance of the application. Specifically, the election ofreappropriateprotocol may lead the application
to get a worse performance. For this reason, the electidmegbtotocol to use must be done carefully.

In this context, there are some problems that must be caesidd-irst of all, it is not easy tguess
the working conditions an application will have, unlesssitai very specific application that has already
been carefully evaluated. On the other hand, even when thkingoconditions of the application are

known beforehand, the election of the most suitable prét@zpires from the designers of the application
some knowledge about the available protocols. Moreovarait happen that the working conditions of an
application change during its execution, so the protocstl ¢inosen as the most suitable beconmesuitable
due to these changes.

In practice, there should be some mechanism that allowspkcations to use, in every moment,
the most suitable total order protocol, according to défeifactors (application-dependent factors like the
system load or message sendpagterns system-dependent factors like the underlying network itsd
topology, etc.). Moreover, such a mechanism shoulttdresparentrom the point of view of the protocols
and the applications.

Such a mechanism offers several advantages. First of plicafion designers do not needgaesshe
working conditions of the applications. They do neitherdheknow too many details about the protocols
available nor about the best settings for each one of themedWer, such mechanism allows an application
to adapt tochanging working conditions and, in general, to get a bgkeformance.

This paper studies the problem of dynamically changingated brder protocol used by an application.
Section 2 presents a software architecture that allows audinamic replacement. Sections 3 and 4
present aSwitching protocol that is able to perform the dynamic replacement. Sectionsbudses the
properties of theSwitching protocol and proves that it can act as a regular total order protocetti@

6 presents an experimental work proving that besides befifegtive the Switching protocol does not
impose a significant performance overhead. Section 7 re\dewe previous papers that tackle the dynamic
switching topic. Finally, the paper is concluded in Sec&on

2 A Dynamic Protocol Replacement Architecture

An architecture for dynamically replacing Group Commutima Protocols (GCPs) was presented in [23]
and is explained in the sequel, discussing how it could bptaddo fit the needs presented above. Figure 1
shows a high level graphical description of the architextur

(User process)

AGCS broadcast | deliver view change

Switching protocol Membership
// service
[GCPOJ [GCF’J

send deliver

4(Reliable transpo@i

Figure 1: Architecture of a node

Switching
manager

System
monitor

This architecture is based on a main component, caltiptive Group Communication SysteheCS).
As shown in the figure, the user process sits on top oABES and this, in turn, relies on a regular reliable
message transport layer. TA&CS wraps several standard group communication componenisniber
of GCPs, for instance, total order protocols and a membesshivice) and other specific components.
The Switching protocol implements the mechanism of replacing the GCPs at run-tinoaptures the
regular communication that occurs among the user procesthanGCPs and performs the GCP replace-
ment. TheSwitching manager is a component that decides when GCP changes should take goalc
which GCP should be installed. TI8itching manager relies on aSystem monitor that keeps track of

several system and application measurable variables aathpters. Th&witching manager collects the
data provided by th&ystem monitor and uses them to decide about GCP changes.

The architecture includesMembership service component and a reliable transport layer. Tthem-
bership service provides notifications about changes on the set of nodesdmyesdalive (due to joins of
new nodes, node failures or node disconnections). Fintdlé/Reliable transport layer offers a regular
reliable andFIFO message transport layer which ensures that a message sedéstination is received
by that destination unless it fails.

3 The Switching Protocol

This section provides an overview of tBitching protocol and then presents some notation details and
its pseudocode algorithm.

3.1 Oveview

During normal operation, when no GCP replacement is beimgechon, theSwitching protocol takes
charge of the messages sent by the user process, whichaerded to the current GCP. Incoming mes-
sages are received by the current GCP and directly handlis protocol, which delivers them to the user
process. The core of tiwitching protocol does not take part in this process.

A GCP replacement starts when tBgitching manager instructs theSwitching protocol in a particular
node to start a GCP change. T®w&itching protocol in thisinitiator nodeto—bcast@ PREPARE message to
inform all the nodes about the new change. At every nodeShieshing protocol stops relaying messages
with the current GCP, instances and initializes a new GCPséartks relaying messages with it. Moreover,
each nodeo—bcastsa PREPARE_ACK message to tell all nodes about the number of messages iehas s
with the previous GCP and waits foRREPARE_ACK from all the nodes.

In the meantime, th&witching protocol goes on receiving messages delivered to it by the previous
GCP and forwarding them to the user application. Baétching protocol may also receive messages
broadcast by the new protocol, as it has already been sfarédichodes. These messages are not delivered
to the user process yet, but stored in a local queue, untitedlsages broadcast with the previous GCP are
delivered to the user process.

When theSwitching protocol receives all thd®REPARE_ACK messages it knows how many messages
were sent with the previous GCP by each node. When all of therfirally received, th&witching pro-
tocol can finally discard the previous GCP. Then, it delivers touber application the messages broadcast
with the new GCP, which were locally queued. When all of theendmlivered, th&witching protocol can
go on using the new protocol as the only available one.

The protocol receives view changes from an independent meship service, for instance, when a
node failure happens. If such a notification is receivedrdpe protocol change, the protocol basically
stops waiting formessages from the failed node, so the protocol change carqtavhen a node failure
happens. An additional discussion is provided in Secti@n 4.

Moreover, the protocol is able to manage consecutive pobtdtange requests. The protocol ensures
that if a protocol change request is received by a node wigitexdous request is being handled, the current
protocol change is completed and the next one is then handliiditional details are given in Section 4.2.

3.2 Pseudocode

The pseudocode of the protocol is shown in Algorithms 1 and 2.

The protocol uses sevemglobal variables A count of the GCP changes is maintained in varidbl#
is initialized to0 and incremented when a new GCP change is staff@édnging_gcp is a flag to know if
there is a GCP change in progress or it has already finished.nodes is the set of live nodes as notified
by the membership service.

The algorithm also uses a struct of typefor each GCP it manages. Thu%, would be the struct for
the first GCP usedP; would be the one for the second, etc. Such a struct contawesaddields to store
some state related to a GCP. Given a stiggtthe expressio®,.GC P is used to reference that GCP. The

Algorithm 1 The Switching protocol pseudocode (part 1)

1: INIT(G):

2: current_k < 0

3 next_k < 0

4: changing_gcp + false

5: instance, prepare and initialize
6: call CREATEP(Py,cxt i, G)

7

8

9

. CREATEP(, g):

. p.GCP g
10: p.k + nextk
11: p.sent + 0

12: p.other_sent[q] <+ 0, for each procesgin live_nodes
13: p.ack_received|[q] < false, for each procesgin live_nodes
14: p.delivered|q] + 0, for each procesgin live_nodes
15: p.deliverable < {}

16:

17: TO-BCAST(m):

18: if changing_gcp == true then

19: to-bcastm with P, ¢t . GCP

20: Preot.n-sent + +

21: else

22 to-bcastm with P..,,-yent 1. GCP

23: Peurrent.k-sent + +

24: end if

25:

26: HANDLE_USERMSG(m):

27: if m.k == current_k then

28: deliverm to the local process

29: Peyrrent.k-delivered[m.sender] + +

30: if changing-gcp == true then

31: call FINISH.PENDING()

32: end if

33: else

34: queuem in P, i.deliverable

35: end if

36:

37: START(G'):
38: to-bcast PREPAREY’) with P.yrrentt.-GCP

40: HANDLE_PREPARE():

41: next.k + +

42: changing_gcp + true

43: instance, prepare and initializg’

44: call CREATEP(Ppesin, ')

45: bcast PREPAREACK(current-k, Peyrrent_k-sent) With Peyrrent k- GCP

47: HANDLE_PREPAREACK(k, sent) from process;:
48: Py, .other_sent[q] + sent

49: Py,.ack_received|q] < true
50: call FINISH.PENDING()
51

Algorithm 2 The Switching protocol pseudocode (part I1)

: FINISH-PENDING():

changing-gep-aux < false
for j = current_k to next_k do
if DELIVERY _FINISHED(j) then
call END(j)
current_k + +
else
changing-gcp-aux < true
break
end if
end for
changing-gep < changing-gcp-aux

: END(j):

for all m in Pj;.deliverable do
if m is a user messaghen
call HANDLE_USERMSG(m)
elseif m is a PREPARE messagieen
call HANDLE_PREPARE(n)
else
call HANDLE_PREPAREACK(m)
end if
removem from P .deliverable
end for
destroyP; .GC P

: HANDLE_VIEW_CHANGE(f ailed-nodes):

removefailed_nodes fromlive_nodes
call FINISH.PENDING

: DELIVERY _FINISHED(j):

totalOtherSent < 0
totalDelivered <— 0
for all g in live_nodes do
if P;.ack_received|q] == falsethen
return false
end if
totalOtherSent+ = Pj.other_sent|q]
totalDelivered+ = Pj.delivered|q]
end for
if totalOtherSent == totalDelivered then
returntrue
else
return false
end if

Algorithm 3 The Switching protocol pseudocode (part IlI)
gg: INIT(G, sending):

100: provide_sending_view < sending

101: changing-view <+ false

102:

103: TO-BCAST(m):

104: if changing-view == true andprovide_sending-view == true then
105: block call

106: end if

107: if changing_gcp == true then

108: to-bcastm with P, eyt . GC P

109: Prestr.sent + +

110: else

111: to-bcastm with Py rent - GCP

112: Peurrent.k-sent + +

113: end if

114:

115: HANDLE_VIEW_CHANGE(new_nodes, failed_nodes):
116: changing-view < true

117: removefailed_nodes fromlive_nodes

118: to-bcastN EW _VIEW (new-nodes, failed-nodes) With Pyt 1. GC P
119: call FINISH.PENDING()

120:

121: HANDLE_NEW_VIEW(new_nodes, failed-nodes):
122: addnew-nodes to live_nodes

123: for all g in new_-nodes do

124: for j = current_k to next_k do

125: Pj.other_sent[q] < 0

126: Pj.ack.received[q] < false

127: Pj.delivered[q] < 0

128: end for

129: end for

130: deliver (new_-nodes, failed-nodes) to the local process
131: if provide_sending_view == true then

132: unblock call to TO-BCAST (if any)

133: end if

134: changing_view <+ false

135:

Py .k field is the number of the replacement by which tReGCP is installed. In generalP.k = k.
Py.sent is the number of user messages that have been broadcBst®@¢' P. Py.other_sent is an array
that stores the number of messages sent by all the processastionP,.k by means of?,.GC P. Each
entry of the array is initialized t0 and updated when a new protocol replacement is startedy ttstn
information received from each process. The number of ngesssent by procesggis Py.other_sent[q]
and it is initialized to0. Py.delivered is an array that stores the number of messages sent by all the
processes delivered by the local process by meals.61C P. Py;.delivered|q] is the entry corresponding
to the messages sent by procgssEach entry of the array is initialized tband updated by the local
process each time it receives a message fRanC' P. Py.deliverable is a list of messages delivered to
the protocol byP,.GCP. If P,.GCP is not the current protocol but a later one, the messagesdeti by

it cannot be directly forwarded to the user process. Instisay are stored i, .deliverable, until all the
messages sent with all the previous GCPs are delivered.

Itis assumed that the managed GCPs provige-bcasprimitive to broadcast (in total order) a message
to all the nodes in the system. Given a messagen.sender denotes its sender.

The algorithm is composed by a setldndlersand functionswhich are executed as a response to
external messages (sent by other nodes) and events (evgchasge events produced by tkembership
service) or called from other event handlers and functions. Thesellees and functions ar@omig i.e.
two handlers or functions can not be executed concurrently.

Thel NI T function is executed only once, when the whole system igestallheTO- BCAST handler is
invoked by the user application in order to broadcast a nges@a total order). Th&lANDLER_USER M5G
handler is invoked by the GCPs to deliver incoming totallglesed messages to tlaitching protocol.
The START function is executed when tHawitching manager decides to start a new protocol change.
The HANDL E_PREPARE and HANDL E_PREPARE_ACK are invoked by the GCPs to delivBREPARE or
PREPARE_ACK messages, to th8witching protocol. The FI NI SH.PENDI NG function is invoked to
try to finish as much pending protocol changes as possiblee END function is executed to finish a

protocol change. ThElANDLE_VI EWCHANGE handler is invoked by the membership service to deliver
notifications on the membership view. TBELI VERY_FI NI SHED function is invoked to decide if all the
pending messages needed to perform a protocol change headyabeen received.

4 Discussion

This section presents some issues that were not coverectiiois8 to simplify the presentation of the
protocol. These issues cover the normal operation of theopoband also its behavior in presence of
failures.

4.1 Normal Operation

The Switching protocol offers a number of advantages over the protocols review&egation 7. First of
all, it does not block the sending of user messages. When aigodgructed to start a protocol switch, the
sending of messages with the current GCP is disabled butagesending is immediately enabled with
the new GCP. Moreover, it allows both protocols to coexist eork (i.e. to order messages) in parallel
during the protocol change, until the old protocol is no lengeeded. An important consequence is that
the normal flow of messages is not delayed by slower procegsesn more, the delivery of messages to
the user process is neither blocked. Indeed, when the otdquidis finally discarded and uninstalled, the
Switching protocol immediately delivers to the user process the queued messageaged by the new
GCP. After this step, regular delivery with the new protosoknabled, thus keepingreormal flowof
messages delivered to the user process.

On the other hand, for this mechanism to properly work, sossaas must be considered. Firstly,
it is needed some way to distinguish the messages broaditastach GCP. A first solution consists in
adding soméeader datan the regular messages but this solution would imply thelreédnowing some
implementation details, thus making tBeitching protocol dependent on specific GCP implementations.
A second option, general enough to fulfill this requiremertbi encapsulate the regular user messages in
other messages whose format is only known bySWeching protocol. The protocol can include in these
messages additional headers with all the needed meta@ia¢eof these headers stores the identifier of the
GCP used to broadcast the encapsulated user message. Erpoirthof view of the GCPs managed by
the Switching protocol, these protocol-dependent messages are as opaque asulae usgr messages.

4.2 Concurrent Starts

A second issue is the ability of ti&witching protocol to face concurrent starts of the switching procedure.
Indeed, when several protocol switches are started cagrttlyrby different nodes, the use of a total order
broadcast protocol to broadcast fAREPARE messages forces that all the nodes receive tREEPARE
messages in the same order.

Thus, multiplePREPARE messages can be received by a node. WHREFPARE message is received
by a node, it starts a nemext_k iteration, by creating a new,,...; » structure. The protocol starts sending
messages with the new GCP and queueingjn.; ».deliverable the messages delivered by it. Each time
a newPREPARE message is received, a new iteration is started, even i thier some previous GCPs
receiving messages.

When the current GCP delivers a message td@&hi¢ching protocol it checks if that message delivery
allows to finish the execution of one or more iterations. Huos,ttheFl NIl SH.PENDI NG function is
invoked. The only issue to worry about is the proper final@aof the iterations, in the same order
they were started. This function checks that, for eachtitarsstarted, a correspondirRREPARE_ACK
message has already been received from all the live praxasskall the messages sent by them with the
corresponding GCP have also already been received. Indbés the iteration can be considered finished,
and the following iteration can be checked.

4.3 View Management

When no node failure happens, the behavior of the protocbhisshown in Algorithms 1 and 2. Neverthe-
less, theBwitching protocol is able to react to failure notifications provided by an ingleglent membership
manager. These are received in HAERNDLE_VI EWCHANGE handler. This handler updates the local copy
of the set of nodes considered alive and callsRhBll SH.PENDI NG function. This function removes the
failed nodes from the set that was checked in each pendirajids.

The reaction to view changes in these algorithms is actuaitymum. Algorithm 3 extends the initial
pseudocode shown in Algorithms 1 and 2. These extensioow #le protocol to provide view change
notifications to the upper user process and also manageithefjpew nodes. Regarding the first issue,
two different alternative guarantees can be providgane View DelivergndSending View Deliverfi0].

If the Sending View Delivergroperty has to be guaranteed, ®witching protocol has to ensure that
all the messages broadcast by the user processes are ettligethem in the view they were sent. In
particular, the protocol has to ensure that all the messhigegicast with any of thpendingGCPs are
deliveredbeforedelivering the following view change notification to the ugeocess. Moreover, once
the Switching protocol learns about a node failure, it has to prevent the user psdeas sending more
messages until the corresponding view change is deliveried t

To this end, when th&witching protocoal is informed about a node failure, it first blocks the sendihg o
user messages. Then, it broadcasts a speEMMVI EWmessage, with the last GCP startél (., . GC P).

This message is broadcast with the last GCP started be¢asiset guaranteed that the previous GCPs are
still available in all nodes. ThBEWVI EWmessage includes the set of nodes that compose the new view.
After delivering all the pending user messages (those loasdvith any of the started GCPs, including the
current one), thilNEWVI EWmessage is eventually delivered to fitching protocol. The Switching
protocol can then forward th&lEWVI EWmessage to the user process, in order to notify the new view.
Finally, it unblocks the sending of user messages.

A few assumptions must be made for this procedure to be dorfécst of all, if the Sending View
Delivery property has to be provided by tB&CS, it must be ensured by the wrapped GCPs. This means
that the GCPs must have sorigsh mechanisrthat ensures that when a node fails, before installing the
new view, the pending messages fiushed This mechanism may resend and forward messages, so all the
alive nodes receive and deliver the pending messagesughhiheSwitching protocol does not need to
be aware of thélushprocedure. The second assumption is thatNB®/VVI EWmessages broadcast by the
Switching protocol by means of the GCPs, to inform about the view changes areonstdered as regular
application-level messages by the GCPs but interpretedessb@rship messages. When Switching
protocol sends &NEWVI EWmessage through a GCP, informing about a view change, aegdiafip about
node failures, the GCP may startitsshprotocol. This ensures that the pending user messages allg fin
delivered.

If the Sending View Delivergroperty is not needed, then the sending of user messagesidbreed
to be blocked. The procedure to follow is thus the same thahdrprevious case except that the sending
of user messages is not blocked. In this case, the user groaaggo on broadcasting messages after the
Switching protocol receives the node failure notification. Nevertheless,gtmessages may be delivered
to the user process (once totally ordered) afteiShiching protocol delivers the view change to the user
process, i.e., in a different view from the one they were serdlthough the total order property provided
by all the GCPs ensures that, at least, each message isrdélingdhe same view to all the user processes.
This way, theSame View Delivergroperty is ensured.

TheSwitching protocol is also able to manage the join of new nodes. Joins are nadidigabw changes.

In fact, a view change can be viewed as a set of new nodes (tloatgsin the system) and a set of nodes
that fail.

In order to implement these features, Algorithm 3 uses twoglebal variables. Therovide_sending_view
variable is a flag that sets whether Bending View Delivergroperty has to be ensured. Its value is set to
the value of thesending parameter of the NI T handler. If it is set tgf alse, then theSame View Delivery
property is offered instead. Moreover, there isitanging_view global flag that maintains whether a view
change is in progress.

The TO BCAST handler is also modified. As a first action, it checks if a vidvarmge has been started
and if theSending View Deliverpgroperty has to be ensured. In this case, the user call td@h&8CAST

is blocked. The rest of the handler is the same that the onersimAlgorithm 2.

TheHANDLE_VI EWCHANGE handler is also modified. First of all, a new parameter is ddtereceive
a set of new nodes (i.e., nodes tf@h the system). Then, it broadcasts a speldNVI EWmessage, by
means of the last GCP started. Finally, FieNl SH.PENDI NG function is invoked, as in Algorithm 2.

The NEWVI EWmessage is received in the né#NDLE_NEWYVI EWhandler. First, the new nodes
are added to the local copy of the set of nodes considereel. alihie P data structures fron®.,,,cns_x
to P,...ir are updated, to initialize the state corresponding to tlve medes. Then the view change is
delivered up to the user process. Finally, in caseSkading View Deliverproperty was required, it
unblocks the execution of thEO- BCAST handler.

Another issue related to the notification of node failurestie addressed. When a node fails it may
happen that, in several nodes, the corresponding mempegshiice notifies to th&witching protocol,
which would broadcast itNSEWVI EWmessage. The result is a numbeNEWVI EWmessages represent-
ing the same node failure are broadcast and received by @dsndro avoid the multiple notification of a
view change to the user processes a simple solution can ipéeado

The Switching protocol keeps avziew counteias a global variable. Itis initialized tband incremented
each time &EWVI EWis delivered to thé&witching protocol and then forwarded to the user process. Each
NEWYVI EWmessage is tagged with the current value of the counter vihebioadcast. If th&witching
protocol receives differenNEWVI EWmessages with the same value of ew counterit considers the
first one and then discards the rest. Asi&\VVI EWmessages are broadcast in total order, using the last
GCP started, all nodes keep the sVl EWmessage and discard the same other messages.

5 Propertiesof the Switching protocol

This section presents some properties of $gtching protocol and some reasoning about their correct-
ness. First, some lemmas are proposed.

Lemma 1. Downwards Validity If a user process in a correct node broadcasts a messag¢hen
exactly one of the GCPs of that node eventually broadeastgactly once.

Proof. IntheTO- BCAST handler, each message sent by the user process is immgtiataticast exactly
once, by any of the GCPs currently managed byShiching protocol (lines 18—24).

Considering the modifications presented in Algorithm 3, asetheSending View Deliverproperty
is requested and a view change happens, the following medsagdcast by the user process may be
blocked. In this case, it should be shown that the sendingtiblocked infinitely.

First, when a view change is notified, therNBWVI EWmessage is broadcast (line 118). By the
Validity property of the GCP used to broadcast Mi&\VVI EWmessage, this is eventually delivered by the
local node and handled in the HANDLEEW_VIEW handler. In this handler, the user process is finally
unblocked (line 132) and the message can finally be brogdeeettly once and using exactly one GCP
(lines 107-113). O

Lemma2: UpwardsValidity If a GCP delivers a message to theSwitching protocol, then theSwitch-
ing protocol eventually deliversn to the user process.

Proof. It has to be shown that th®witching protocol does not indefinitely retain a message delivered
to it by a GCP. First, if a message is delivered to theSwitching protocol by P, rent_-GC P, then it

is immediately delivered to the user process (line 28). ¢f tessage is delivered Wy, .GC P (where
current_k < k' < next_k), then it is stored inPy.deliverable. In this case, it has to be shown that the
message is not retained in that queue infinitely. In othed&at has to be shown that all iterations of the
protocol previous td’ are eventually finished.

If m was broadcast witl?,,.GC P (with current_k < k'), then we know that a finite number of mes-
sages were broadcast with.GCP (Vj : current_k < j < k'). By theValidity andUniform Agreement
properties of these GCPs, it is known that all those messagesventually delivered to tt&vitching pro-
tocol and, by Lemma 1, eventually delivered to the user procesghEsame reason, we also know that all

the correspondinREPARE_ACK and PREPARE messages (used to finish an iteration and start the next
one, respectively) are eventually delivered to 8wétching protocol. Then, all the iterations previous to
P, are eventually finished. An iteratiaf; is finished when all the messages broadcast witth&'C' P

are delivered to th8witching protocol (as decided by thBELI VERY_FI NI SHED function). At the end of

the iterationP;, all the pending messages broadcast With,.GC P (those stored irP; 4 .deliverable)

are delivered to the user process (lines 66—75). Them;ent_k is incremented (line 57). Eventually,
current_k reacheg’ and message is finally delivered to the user process. O

Lemma 3: Local Integrity The Switching protocol delivers a message: to the user process at most
once, and only ifn has been delivered to tH&witching protocol by exactly one of the GCPs of the local
node.

Proof. First of all, theSwitching protocol delivers the message to the user process at most once. If the
message is delivered by the current GAR, (. cn:x-GCP) then, it is directly delivered (line 28). If
the message is delivered by a later GAR/ (GCP, with current_k < k'), then it is first queued (in
Py .deliverable). By Lemma 2, the message is eventually delivered to the pisress, exactly once
(lines 66-75).

On the other hand, it has to be proved that a single messag®tche delivered to th&witching
protocol by more than one GCP. Let's suppose that a message is ddlit@the Switching protocol by
two different GCPs. Thé&niform Integrity property offered by these GCPs ensures that they previously
sent the message. Nevertheless, this is not possible sieSaiitching protocol sends each message only
with one of the GCPs (lines 28 and 34). O

Lemma 4: Change Safety The Switching protocol does not deliver to the user process a message
delivered to the protocol by,.GC P after having delivered to the user process a messagehich was
delivered to the protocol by, .GC P, wherek < k'.

Proof. If no view change happens, tH€D> BCAST handler broadcasts the user messages by means of
Poyrrent.k-GCP (line 22). As theSwitching protocol does not keep &, previous toP,,,rent_k, then no
message can be broadcast with a previous GCP.

If a GCP change happens, th® BCAST handler broadcasts the user messages by medhs of,.GC P
(line 19). The value ofiext_k is incremented each time a GCP change is started (line 41,50 .GC P
is always the last GCP that has been started. If a messagaiddast withP, ..., ..GC P, then any message
subsequently broadcast will be sent with the same GCP oeildat. O

Property 1: Validity If a process in a correct node broadcasts a messagthen theSwitching protocol
eventually deliversn to it.

Proof. If no GCP change happens, messagés sent with the current GCPP{,-renti-GC P). By its
Validity property, the GCP eventually deliversto theSwitching protocol (in the same node). According
to Lemma 3 [ocal Integrity) stated above, thBwitching protocol eventually delivers the message to the
user process.

If a GCP change happens, Lemmadbwnwards Validity and 2 Upwards Validity ensure that the
Switching protocol does not indefinitely retain thautgoingmessages sent to it by the user process nor the
up-goingmessages delivered to it by the GCP. O

Property 2: Uniform Agreement If the Switching protocol in a node, whether correct or faulty, delivers
a messagen to the user process, then tBaitching protocol in all correct nodes eventually delivet to
their corresponding user processes.

Proof. Let’s suppose that, in one of the nodes, 8wétching protocol delivers a message to the user pro-
cess. By Lemma 3 (Local Integrity), the message must have thelevered to theSwitching protocol by

10

one of the GCPs. By theniform Agreemenproperty of the GCPs, in all the correct nodes, the GCP de-
livers the message to ti®&vitching protocol and by Lemma 2 (Upwards Validity), tHwitching protocol
eventually delivers up the message to the user processdaradict nodes. O

Note that when the GCPs do not satisfy haform Agreemenproperty but just &Non-uniform Agree-
mentproperty, then the property satisfied by ®witching protocol is notUniform Agreemeniut just the
correspondingNon-uniform Agreemenmroperty.

Property 3: Uniform Integrity For any messagen, the Switching protocol of every node, whether
correct or faulty, deliversn at most once to the user process and onty ifvas previously broadcast by its
sender.

Proof. First of all, it has to be shown that a user process does nved@ message twice.

First, by Lemma 3, th&witching protocol cannot deliver twice the same message.

Moreover, it has to be shown that tBeitching protocol only delivers a message to the user process if
the message was previously broadcast by its sender node.

First, it is known that theSwitching protocol only delivers to the user process messages that have
previously been delivered to it by one of the GCPs (lines B8)the Uniform Integrityof the GCPs, this
only happens after the GCP in the sender node has broadeasiegsage. Th8witching protocol itself
ensures that this can only happen after it has broadcastdehsage through the corresponding GCP in the
sender node. O

Property 4: Uniform Total Order If the Switching protocol in any hode and g, whether correct or
faulty, both deliver messages and m/’, then theSwitching protocol in p deliversm to its user process
beforem’ if and only if theSwitching protocol in ¢ deliversm to its user process befora’.

Proof. Let’s suppose that thBwitching protocol in both node® andq delivers two messages andm'.

If p delivers bothm andm’ using the same GCP, by théniform Total Orderproperty of the GCP and
by protocol construction, it is known that all the nodes wiliverm andm’ in the same order, using the
same GCP.

Now let's suppose that deliversm using P,.GC P and deliversn’ using P,,.GCP, with k < &'
Then,q also deliversn using P,.GC P andm' using P, .GC P. Moreover, by Lemma 4Ghange Safe}y
asm has been broadcast usidgy.GC P, ¢ deliversm to the user process before delivering any other
message broadcast B, .GC P, which means that deliversm prior tom/’.

The reasoning is also valid jf or ¢ fail after deliveringm andm’, respectively. On one hangd,and
q deliverm andm/’, as long asP,.GCP and P,,.GC P satisfy theUniform Total Orderproperty. On
the other hand, by Lemma €hange Safe)y both nodes deliver all the messages broadcagibg&C P
before starting to deliver messages broadcasPpyGCP. As a result, bottp and ¢ deliver m before
deliveringm/'. O

6 Experimental Evaluation of the Switching protocol

This section presents an experimental evaluation oSthieching protocol. First, the environment and the
methodology used to perform the evaluation are describbdn,Tsome results that show the effectiveness
of the protocol are presented.

The overall architecture of the system running in each nsdédawn in Figure 2, which is a simplified
version of that depicted in Figure 1. The application acta elent of the Switching protocol which in
turn wraps several of the total order protocols implemetdgaerform the experimental evaluations.

The message transport layer is a new transport layer implestieon top of the JBoss Netty 3.2.4
networking library [16]. Netty is a client/server libraydt implements the Java NIO specification [2] and
offers asynchronous event-driven abstractions for ugidgesources.

On the other hand, the implemented system does not inclivknebership servicsince view changes
are not considered in this evaluation. Moreover, the impleted system does not include tBgstem
monitor or the Switching manageshown in the original figure. Instead, the test applicatiself is in

11

(User process)

AGCS broadcast deliver

N

Switching protocol)

)
(o) [cen] -

send deliver

4(Reliable transport)i

Figure 2: Architecture of a node (simplified version).

charge of issuing thetart-of-changeevents to request a GCP change, to any of the avaifabloaded
GCPs UB, TR, etc.), as described later.

The application is executed in a system composed of foursio&ach node is a different physical
machine with an Intel Pentium D 925 processor running at 342 @&d 2 GB of RAM, running Debian
GNU/Linux 4.0 and Sun JDK 1.5.0. The nodes are connected nmef a 24-port 100/1000 Mbps
DLINK DGS-1224T switch. The switch keeps the nodes isolétech any other node, so no other network
traffic can influence the results.

The test application is a regular Java console applicatiahis run in each of the four nodes of the
system. In each node, the application broadcasts a seqoEmessages by handling them to 8witching
protocol as if it were a regular total order protocol.

The messages are broadcast at a uniform sending rate, aexdfigxternally. No other message flow
control mechanism has been used.

To perform the evaluation of thBwitching protocol, the test application has been run under different
configurations. In a first set of executions, Bwitching protocol is configured to use theB (sequencer-
based) and th&R (privilege-based) protocols. The application was conéduio periodically request a
GCP change each 5000 ms. Thus, 8aétching protocol starts using th&R protocol and after 5000 ms
the Switching protocol is asked teswitchto UB. After the next 5000 ms, the application asks to change to
TR and so on.

In each test, the application was configured to broadcassages at a fixed sending rate. Different
tests have been run using rates of 40, 60, 80, 120 and 130 gesdsaadcast per second and node. Thus,
the global sending rates range from 160 to 520 messagesquetdse

Each execution measures ttelivery timeof the messages, computed as the time observed by the
application in a given node, from the moment in which it breasts the message to the moment in which
it receives back the message, once totally ordered. Thiagrtbat for each node, a series of delivery times
is gotten corresponding to the series of messages broductsit node.

Moreover, in order to know thdistribution in timeof the message deliveries, the number of messages
that are delivered in eadiundredthof a second is considered. These numbers allow us to knowrié fils
a regularflow of messages being delivered.

This set of experiments is repeated, usinglttiz PRI O andTR_PRI O protocols.

Figure 3 shows thdelivery timegecorded by a single node in tFiest set of experiments, witliR and
UB and a sending rate of 40, 60, 80, 120 and 130 messages bropeicascond and node. Figure 4 shows
the corresponding amount of messages delivered in eachiddthdf a second, using a sending rate of 40,
60, 80, 120 and 130 messages broadcast per second and node.

Figure 5 shows théelivery timesrecorded by a single node in tlsecondset of experiments, with
TR_PRIO andUB_PRIO and a sending rate of 40, 60, 80, 120 and 130 messages brbpdcascond
and node. Figure 6 shows the corresponding amount of mesdafjeered in each hundredth of a second,

12

10 T " T T T 10 T T T T T
Rt "] afe S0, -]
B N . .]
5 @ i + + v *
£ 3 wr e
= S ety N . .
5 g e L + +
g g apers) oo 1
N
0
) 500 1000 1500 2000 2500
Message Message
10 T T T T T T 10 T T - T T T T T T
B R - L S L N
s—‘o:~ T + 4 alo,;‘u. L * O 1
o P * A .ot +
it + ¥ + R , -+
- M - - - _ Fare r s . + .
[N A . N 1 7 oL i v N |
E LR e M N + E é:": o T M o
H P .o 2 b T
> P T AR A -+ 2> S +7 s +
g |gw g i, cp - g RN S ke . *
3 T v bt : + + 4 3 L et oot M + + 4
8 4%‘ £ * 0+ + 8 4 e + o+ +
g * - e
+ e
N 3 .
L o

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Message Message
10 T T T T T T T T
8
E
@
E
g
g 4
2
0 .

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Message

()

Figure 3: Delivery times witfTR andUB: (a) 40 msg/s, (b) 60 msg/s, (c) 80 msg/s, (d) 120 msg/s, @) 13
msg/s.

13

Hundredth of a second

()

8 T T T T T T 12 T T T T T T T T
7k]
ofs o+ o+]
6 +]
8 +]
3 5F+ + 4 b
§ g P +
g s
PRy T Fow v me b o w .+ 1 P Y R + +]
3 s
H g
2 S PO + + + +
g g
23 1 £
4]
2]
2]
1]
o .\ " " - o . , . N . , " .
o 1000 2000 3000 4000 5000 6000 7000 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Hundredth of a second Hundredth of a second
2 - - T T T T T T 35 - - T T T T T
. 3 1
20 + 4
25 B
- b N + o+
g st + + 1 B i
2 + 2 20 + o+ 4
g -) b
g g st o+ + 4
g 1w + 1 H N
= + + + = + + ++
" S MR + - o
bosee wese + 4+ wof "ML]
o+ I T e+ + e e et T et e w .
5 ™ S Her e 4] s i - B T NI Ty
5]
ik T T T U VY " v
A oo e e e R R R
0 M . , A . . A A g anitaant h
o 500 1000 1500 2000 2500 3000 3500 4000 4500 o 500 1000 1500 2000 2500 3000 3500 4000
Hundredth of a second Hundredth of a second
40 T T T T T T
as +]
30 . B
3 sr . 4
g + +
3 . s N
e 20 + 1
g b4 + +
g Y + N
LT N +]
IO
A S +
PR + +
S + +
10 o T o vy T .]
v S S R T Ll
e B T T .
e i
i e
s]
fa
i B gt
fn ", + { s
SR A, Lt . R M
0 500 1000 1500 2000 2500 3000 3500

Figure 4: Messages delivered by hundredth wihandUB: (a) 40 msg/s, (b) 60 msg/s, (c) 80 msg/s, (d)
120 msg/s, (e) 130 msg/s.

14

using a sending rate of 40, 60, 80, 120 and 130 messages hebadc second and node.

Figure 3 shows the delivery time of the messages. Each tasiste of a series of messages, which are
delivered in total order. In a given series, thg message is represented by= ¢ and its delivery time
(in milliseconds) isy(¢). As explained above, in these tests 8vatching protocol switches between two
total order protocols (e.glR andUB). This means that in any test, the application delivesalaserie®of
the messages with the first protocol (in Figure 3.a, aboutr@@fsages witifR), then it delivers another
sub-seriesvith the second protocol (in Figure 3.a, another 200 messagth UB) and so on.

These figures show that ti8itching protocol does not increase the delivery time of the messages.

These figures show two differedistributionsof the message delivery times. The delivery times of the
messages delivered witfR show a highewariability than the times corresponding to messages delivered
with UB. The reason of this behavior is because according tdBierotocol, a node needs to have the
privilegeto send messages. TR andTR_PRI O, this is implemented by means of a rotattogen message
To broadcast a (totally ordered) message, the nodes tijpltale to wait someariable time until they
get the token. This extra delay is the main responsible ohitjeervariability observed in Figures 3.a to
3.e

As the sending rate is increased, the delivery times got Wighend to increase because the sequencer
node is more and motausysequencing messages. The time increment becomes more aadamiable,
thus increasing the variability of the final message dejiiimes. Nevertheless, these differences are
not actually so important, since even in these cases, theefigghow that th&witching protocol is not
introducing any significant delay in the message delivanet. This can be checked by analyzing the
delivery times in eaclsub-series In case that th&witching protocol introduced a delay in the delivery
times, this delay would have been noticeable. Specifictily,delivery times at the beginning of each
sub-seriesvould have been noticeably higher than the delivery timethefrest of thesub-series As the
figures show, the delivery times in a given series are quitdai and comparable among them (apart from
several punctual times that can be consideneaimalous From this behavior, it can be concluded that the
Switching protocal is not introducing any significant delay in the message dglitimes.

On the other hand, those figures assess the cost of deliveatigmessage but they do not provide any
information about how that message delivery is bairgributedover time. Figure 4 shows the number
of messages delivered every hundredth of a second (i. entidweval [0:100] corresponds to one second).
These graphs allow to know about the message delivery avet ti

For instance, Figure 4.a shows that in most ofdhe hundredth of a secontervals, theSwitching
protocal is delivering between 1 and 3 messages. As the sending ra@éased (Figures 4.b to 4.e), this
delivery rate also increases. For instance, in Figure €®yden 5 and 6 messages are delivered in each
one-hundredtlinterval.

The importance of these figures is that in all cases, the nuoflmessages delivered by hundredth of a
second follow ayuite regular distributionin spite of the successive protocol changes that have hagpe
These figures also show a small number of anomalous valuéisdaut be seen that they do not happen at
instants of time which are multiple of 500 hundredths of $ecb000 ms) but at any time, which means
that they are not directly caused by a protocol switch, busdiye other reason (for instance, due to the
thread scheduling policies of the operating system or thia Vatual Machine). Thus, it can asserted that
the number of messages delivered per time unit does not depewhether a protocol switching is being
carried on and for this reason, it can be concluded tha®ahitehing protocol is not producing interruptions
or delays in thdlow of message deliveries.

Figure 5 shows the corresponding results when usingd ¢RI O and UB_PRIO protocols. These
results are very similar to those depicted in Figures 3 anghdch allow to conclude that th&witching
protocol is working properly when switches among any kind of totalesrdrotocols (prioritized or not): it
does not impose significant time overheads in the messalyerydimes and it does not interrupt or delay
the message delivery.

This shows that thé&witching protocol is useful to adapt an application to changing requirements
and load conditions. The figures presented show that sorakbdater protocols are able to minimize
the dispersion of the message delivery times while otherd te a reduction in the mean delivery time
of the messages. The proposed switching support allowspiplécations to switch among different total
order protocols under changing conditions, without sirffgsignificant performance penalties during the
protocol switch.

15

2000 2500 3000

1500

Message

(b)

1500 2000 2500 3000 3500 4000 4500

1000

Message

(d)

4500 5000

4000

500
“
3

500

3500

3000

(sw) awn Kianeq

2500

2000

1500

1000

500

Message

@)

+

Gt S LF et

(sw)

<

awnp Kiangea

2500 3000 3500 4000

2000
Message

(©

1000

500

bk

T

'

)

2000

1000

(sw) swn Aianiaq

2500

()

1500

500

Figure 5: Delivery times witTR_PRIO andUB_PRI O: (a) 40 msg/s, (b) 60 msg/s, (c) 80 msg/s, (d) 120

msg/s, (e) 130 msg/s.

16

. 1] N . i
16} f
15 - +
1l i
b 3
g B ol i
2 2
s | . 3
o 10| B o 10 | B
3 3
£ ¢ i .
g £ s8f+ + 4
= + + = o+ + o+
s e .] bovwr + e . -
b e e . i
2 i
° To00 3000 3000 2000 5000 5000 7000 0 100 100 2000 2500 3000 3500 4000 4500
Hundredth of a second Hundredth of a second
2 0
25 B 25 |+ -
20 q 20 F+ 4
3 M H
g + s ! + .
HEI S i f HE = i
g : [.
ﬁ + ﬁ [t
2 | g PO .
10F+ + 4 10+ + + o+ + 4
T Boe s .
e e e o e e e ¢ e h e
PN .
5 Do Lo e L S e L+ o e s] B i
e i T T
Aot e o L A }
o 500 1000 1500 2000 2500 3000 3500 4000 4500 o 500 1000 1500 2000 2500 3000 3500 4000
Hundredth of a second Hundredth of a second
35 T T T T T T
30 + 4
25 | + B
2 ¥
S 20 + 4
& |
8 15F + + + 4
8 o + +
[I . .
M L . . .
[TR F- . A . i
S e we I
LI T S e T
P / -
5
iy
1, T s p——
P e e L
SR WA ‘ L+ ‘
o 00 1000 1500 2000 5500 3000 3500

Hundredth of a second

()

Figure 6: Messages delivered by hundredth Wil PRI O andUB_PRIO: (a) 40 msg/s, (b) 60 msg/s, (c)
80 msg/s, (d) 120 msg/s, (e) 130 msg/s.

17

7 Related Work

There have been other papers proposing some dynamic swgtoféchanism allowing the replacement of
one or several services or modules by other that are beiierethto the current context. Such proposals
are the key for obtaining an adaptive system and are desddritibe sequel, in chronological order.

The Ensemble system [15] is a group communication systerdbas the configuration and use of a
stack of protocolsEach protocol of the stack provides a different servicesgage transport, group mem-
bership, ordering, etc.) to the application or to other qeots of the stack. In [28], a Protocol Switch
Protocol (PSP) is proposed. The PSP is an Ensemble protuabhliows the dynamic replacement of
the full protocol stack used by Ensemble. The PSP is a twaghammit protocol (2PC) [13, 18]. The
protocol includes some fault-tolerance support that &béer the loss of messages (by means of retrans-
missions) and the node failures or disconnections. The P&epts a significant disadvantage. As it is
composed of two independent parts and the second part isantgdsuntil the first one is completed, the
regular operation of the application is somehow blockece fBlet that the whole protocol stack is replaced
is actually another inconvenience. Indeed, there is no wagilace a single protocol in a given protocol
stack without having to stop and replace all the stack paoitoc

In [19], the authors present an alternate mechanism to titetsing protocols based on a 2PC tech-
nigue. The idea is to make the switching more scalable, bigangthe dependency on a single coordinator
node and reduce the delay imposed by the transition fromlthex protocol to the new one. This alterna-
tive consists in definingwitching functionshat are used to switch from the state kept by a protocol to the
state used by another protocol. In run-time, during a dyongmotocol switching, the use of such functions
allow the nodes to go on working with the new protocol, whitdrts by managing the messageiserited
from the first protocol and then goes on with the new messages.

In [20] a secondSwitching Protoco(SP) for the Ensemble system is presented. Unlike the pobtoc
presented in [28], the SP allows the replacement of a sirrgl®ol of the Ensemble’s protocol stack. The
protocol is presented asaappingthat sits on top of a number of alternative protocols thatratie same
service, i.e. the same guarantees. This wrapping protdfmkdhose guarantees to the protocol layered
about it, which, in fact, does not need to know abounitappingnature. When it operates imormal mode
it just forwards up and down the messages sent by and daliteriés neighbor layers. When it operates
in switching modgit performs a protocol replacement. As in [28], the SP agsisome mechanism that
decides about when the current protocol has to be changads, e protocol replacement starts when
someoracle chooses a node as a replacemmanager The protocol operation is similar to that of [28]
but there are some differences. First of all, the commuigica&tmong the manager and the rest of nodes is
no longer based on broadcasts. Instead, a logical ringrisddramong all nodes and a token is forwarded
from node to node along the ring. The token ham@defield that identifies the phase of the protocol.
There are three protocol phases. This protocol has somébdcha related to itblockingnature. First of
all, it prevents nodes from sending messages with both tirerduand the new protocol until they are in the
third token round. Moreover, the structure of the protobaked on three rounds along the ring imposes a
significant delay. Furthermore, this delay is increasechieyaiocking third round.

An adaptive architecture for run-time protocol switchisgroposed in [9, 8], designed for Cactus [5],
a framework for building distributed protocols and appiicas. A Cactus application is based on a stack
of layered components, each offering a service. Some oétbesiponents may badaptive including
different implementations of the same service. Initiatige of the available implementations of a given
component is chosen. This architecture allows to changaynirtime, the current implementation of a
service to one of the other available implementations ofséwice, in order to adapt to changing envi-
ronments or contexts. For this, each component includeslaptor, which is a module that collaborates
with the service implementations to perform the replacdame&he protocol change procedure is actually
an abstract generic protocol, composed of three phasesstffiase is the detection of some changing en-
vironment or application parameters. A second phase,lgloskated to the first one, includes the election
of the new implementation of the service. The third phasbaestlaptationphase, which consists of three
steps: a) preparation, lutgoing switchoveand c)incoming switchover The preparation step includes
all the actions needed to start and prepare the switchimg émee implementation of the service to the new
one. It finishes with @ynchronization barrierOnce all the participating nodes reach this barrier, tlay c
proceed with the next step. The outgoing switchover is tap by which the flow of outgoing messages

18

that arrive to a service implementation aeglirectedto a different implementation of the service. The
incoming switchover is a similar messagelirection applied to incoming messages.

Rutti et al. [27] consider the problem @ynamic Protocol Updatas a particular case of the more
generalDynamic Software Updateroblem. The solution proposed is based on smatching algorithms
that allow the dynamic replacement of one of the protocotbénstack used by an application. There is a
switching protocol to replace the consensus protocol othek and another switching protocol to replace
the atomic broadcast protocol. This solution is aimed atSA&OA framework [30] but the basic idea
may be applied to other protocol stack-oriented framewofccording to the architecture proposed, one
of the switching protocols is placed in the protocol stacist jabove the protocol to change. When no
protocol change is to be done, the switching protocol sinfigiwards up and down the messages sent by
and delivered to the application. During a protocol chatigeswitching protocol intercepts the application
messages. The general ideaitkrceptionincludes delaying and resending messages. Both algorithms
guarantee that theervice requestperformed with the current protocol (consensus or atomiadcast)
are finished before starting the operation with the new patoThe operation of the atomic broadcast
switching protocol actually relies on the atomic broadgastocol to be replaced. When a node decides to
start a protocol change, it broadcasts a special messalg¢hsiturrent atomic broadcast protocol. When
a node receives this special message, it performs the ptateglacement, by installing and activating
the new protocol. If there are some pending messages sdntheitold protocol they will be discarded
by all nodes at delivery time and resent by their correspandienders, using the new protocol. Some
performance evaluation of both protocols is also presemisdshown in the graphical results, the need to
resend some messages during the execution of the protaamogetalgorithm has a negative impact on the
latency of a number of messages.

Mocito and Rodrigues [25] propose another switching protéar total order protocols It avoids block-
ing message sending with the new protocol so the flow of agipdic messages is never blocked. It sets
a point in time from which no more messages are sent with thesicutotal order protocol. Incoming
messages broadcast with the new protocol are queued uttitadending messages are delivered with the
current total order protocol and the protocol switchingaspleted. In order to deactivate the total order
protocol being replaced, each node broadcasts an ackmgsviezht message as the last message broadcast
using the current total order protocol. Upon reception fath acknowledgement messages, a given node
knows that no more messages will be sent with the currertgodéocol so the node can deactivate it.

Karmakar et al. [17] describe the use of a switching protdeealynamically change the broadcast
protocol used by a network of nodes. A broadcast protocatdas a Breadth-First Search tree yields
lower message latencies when the network load is low. Onttier dhand, a broadcast protocol based on
a Depth-First Search reduces the load on individual nodeshwihe global network load is higher. The
mechanism discussed in [17] can switch between two broagcatcols, one based on a BFS tree and
another based on a DFS tree. The core of the mechanism isnk&uction of the spanning tree used by
the broadcast protocol.

8 Conclusion

This paper reviews the problem of dynamically replacing tibtal order broadcast protocol used by a
distributed application. It provides a new, non-blockihgghly concurrent switching protocol, fully inte-
grable with existing independent membership services.elger, this protocol admits concurrent starts of
the switching procedure.

The paper includes an extensive description of the switchiotocol, a pseudocode algorithm and a
discussion of the properties offered by the switching protdhat allow it to behave like a regular total
order protocol. It presents an experimental evaluatiotsabperation.

Although this switching protocol was designed to allow tlyaamic replacement of regular total order
broadcast protocols, it can also be used to repteicritized total order broadcast protocols, without any
further modification.

To argue about this, it may be considered that the priodtfm@tocols presented in [22, 21] behave like
regular total order protocols and tHatioritization is a property that can be observed on the sequence of
messages they totally order. These protocols can be wrapmedarchitecture like the one presented in

19

Figure 1. As long as the order of the sequence of messageisigtdyy a given GCP is preserved by this

architecture, th@rioritization property will be preserved. Moreover, as the switching geot only relies
in the regular properties offered by common total ordergurols {alidity, Uniform AgreementUniform
Integrity and Total Orden and does not specifically rely on any other properties Hkieritization, it can

be isolated from specific total order broadcast implemantatand additional semantics offered by them.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

2012. JGroups website: http://www.jgroups.org.
2012. JSR 51: New I/O APIs for the Java Platform, httpwiwjcp.org/en/jsr/detail?id=51.

Yair Amir, Claudiu Danilov, and Jonathan Robert Stanténlow latency, loss tolerant architecture
and protocol for wide area group communicationldml. Conf. on Depend. Syst. and Netw. (DSN)
pages 327-336, Washington, DC, USA, 2000. IEEE-CS.

Ozalp Babaoglu, Renzo Davoli, and Alberto Montresoro@r communication in partitionable sys-
tems: specification and algorithm&EE T. Software Eng27(4):308-336, April 2001.

Nina T. Bhatti. A system for constructing configurable high-level protecdPhD thesis, Dept. of
Comput. Sc., The University of Arizona, December 1996.

Ken Birman and Robert van Reness$eliable distributed computing with the Isis tooldEEE-CS
Press, Los Alamitos, CA, USA, 1993.

Kenneth P. Birman and Thomas A. Joseph. Reliable comecation in the presence of failureAaCM
T. Comput. Syst5(1):47-76, 1987.

Patrick G. Bridges, Wen-Ke Chen, Matti A. Hiltunen, angtiard D. Schlichting. Supporting coor-
dinated adaptation in networked systems.Wgshop. on Hot Topics in Operat. Syst. (HotO%jge
162, Elmau, Germany, May 2001. IEEE-CS Press.

Wen-Ke Chen, Matti A. Hiltunen, and Richard D. Schlieigi Constructing adaptive software in
distributed systems. Imtnl. Conf. on Distrib. Comput. Syst. (ICDG®pges 635-643, Phoenix, AZ,
USA, April 2001. IEEE-CS Press.

Gregory Chockler, Idit Keidar, and Roman Vitenberg.o®r communication specifications: a com-
prehensive studyACM Comput. Sury33(4):427-469, 2001.

Xavier Défago, Andé Schiper, and &er Urkan. Total order broadcast and multicast algorithms:
Taxonomy and surveyACM Comput. Sury36(4):372—-421, 2004.

Danny Dolev and Dalia Malki. The design of the Transisteyn. Inintnl. Wshop. on Theory and
Pract. in Distrib. Syst. volume 938 ofLect. Notes Comput. Sqpages 83-98. Springer, Dagstul,
Germany, September 1994.

Jim Gray. Notes on database operating system8plerating Systems, An Advanced Coupseges
393-481. Springer-Verlag, 1978.

Vassos Hadzilacos and Sam Toueg. Fault-tolerant loass and related problems. Distributed
Systemschapter 5, pages 97-145. Addison-Wesley, 2nd editior3.199

Mark Hayden.The Ensemble SystefAhD thesis, Cornell University, 1998.
JBoss. JBoss Netty, 2012. http://www.jboss.orginett

Sushanta Karmakar and Arobinda Gupta. Adaptive brasidey distributed protocol switching. In
Intnl. Symp. on Appl. Comput. (SA@pges 588-589, New York, NY, USA, 2007. ACM Press.

20

[18] Butler W. Lampson and Howard E. Sturgis. Crash recovery distributed data storage system.
Technical report, Xerox Palo Alto Research Center, Jun®.197

[19] Xiaoming Liu and Robbert van Renesse. Fast protocaokit®n in a distributed environment (brief
announcement). IACM Symp. on Princ. of Distrib. Comput. (PODQ@gage 341, New York, NY,
USA, 2000. ACM.

[20] Xiaoming Liu, Robbert van Renesse, Mark Bickford, Gtwph Kreitz, and Robert Constable. Pro-
tocol switching: Exploiting meta-properties. Intnl. Wshop. on Applied Reliab. Group Comm.
(WARGC-ICDCS)pages 37-42, Phoenix, AZ, USA, 2001. IEEE-CS Press.

[21] Emili Miedes and Francesc D. Nioz-Escd. On the cost of prioritized atomic multicast protocols.
In Intnl. Symp. on Distrib. Obj., Middleware and Appl. (DQA®lume 5870 ol ect. Notes Comput.
Sc, pages 585-599. Springer, Vilamoura, Portugal, Novemdeg 2

[22] Emili Miedes, Francesc D. Mioz-Escd, and Hendrik Decker. Reducing Transaction Abort Rates
with Prioritized Atomic Multicast Protocols. lintnl. Euro. Conf. on Paral. and Distrib. Comput.
(Euro-Par), volume 5168 ot ect. Notes Comput. Spages 394—-403. Springer, Las Palmas de Gran
Canaria, Spain, August 2008.

[23] Emili Miedes and Francesc D. Nioz-Escd. Dynamic switching of total-order broadcast protocols.
In Intnl. Conf. on Paral. and Distrib. Proces. Tech. and AppIDPTA) pages 457-463, Las Vegas,
Nevada, USA, July 2010. CSREA Press.

[24] Hugo Miranda, Alexandre Pinto, and isuRodrigues. Appia: A flexible protocol kernel supporting
multiple coordinated channels. Intnl. Conf. on Distrib. Comput. Syst. (ICDG$®)ages 707-710,
Phoenix, Arizona, USA, April 2001. IEEE-CS.

[25] Jo< Mocito and Liis Rodrigues. Run-time switching between total order allgors. In12th Intnl.
Euro-Par Conf. (EuroPar)volume 4128 of_ect. Notes Comput. Spages 582-591. Springer, Dres-
den, Germany, 2006.

[26] Louise E. Moser, P. Michael Melliar-Smith, Deborah Aga&wal, R.K. Budhia, and C.A. Lingley-
Papadopoulos. Totem: a fault-tolerant multicast group roamication system.Commun. ACM
39(4):54-63, April 1996.

[27] Olivier Ritti, Pawel Wojciechowski, and AndiSchiper. Structural and algorithmic issues of dynamic
protocol update. Irntnl. Paral. and Distrib. Proces. Symp. (IPDR$)age 9 pgs, Rhodes Island,
Greece, April 2006. IEEE-CS Press.

[28] Robbert van Renesse, Ken Birman, Mark Hayden, Alexeysifard, and David Karr. Building adap-
tive systems using Ensembli8oftware Pract. Exper28(9):963-979, 1998.

[29] Robbert van Renesse, Kenneth P. Birman, and SilvanéeidaHorus: A flexible group communica-
tion system.Commun. ACM39(4):76—83, 1996.

[30] Pawel T. Wojciechowski, Olivier Rti, and Andé Schiper. SAMOA: a framework for a
synchronisation-augmented microprotocol approachParal. and Distrib. Proces. Symp. (IPDRS)
page 64b, Santa Fe, New Mexico, USA, April 2004. IEEE-CS ®res

21

