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Abstract

Most database management systems support several isolation levels,including Serializable, Snap-
shot Isolation, and Read Committed. Serializable is used when transactionshave strong isolation needs.
Read Committed provides a very relaxed isolation and, thus, it is used only when applications are able
to deal with the isolation anomalies that such level allows. Snapshot Isolation(SI) is widely used since
it provides an almost serializable isolation with improved performance, particularly in read-intensive
workloads since it never blocks read accesses nor aborts read-onlytransactions. Unfortunately, few theo-
retical models indicate when the execution of a set of transactions follows each isolation level conditions
when different isolation levels are requested by different transactions. They are either ambiguous or
oriented to concrete concurrency control mechanisms like locks. An important exception is the model
proposed by Atul Adya. Such specification proposes Mixed SerializationGraphs (MSG) as a tool for
representing executions that involve multiple isolation levels. Adya’s MSGs are both well-defined and
mechanism-independent, although they do not consider SI since its specification is based on some trans-
action dependences that do not arise in any other isolation level. This paper provides an alternative SI
specification that can be embedded in MSGs.

1 Introduction

Database management systems (DBMS) can concurrently execute transactions requesting different isola-
tion levels. Serializable, Snapshot Isolation, Repeatable Read, Read Committed and Read Uncommitted
are some of the isolation levels [12] being regularly supported. The advantage of managing several iso-
lation levels is performance [10]. With Serializable, the strictest isolation level, the execution of a set
of transactions is equivalent to a serial execution of the same set even if they are executed concurrently
[7]. However, Serializable isolation increases the number ofblocked transactions, transaction aborts and
response time, reducing the degree of concurrency and the overall performance. Relaxed isolation levels
increase concurrency at the cost of allowing some types of isolation anomalies. For example, with Read
Committed, the default isolation level in some DBMSs (e.g.,Microsoft SQL Server 2008 R2 [18], Oracle
Database 11g [17], PostgreSQL 9.1.3 [19]), a transaction may get different values in two consecutive reads
on the same data since it allows other concurrent transactions to update data between both reads.

Weak isolation levels should be used only when their unmanaged anomalies cannot appear during the
execution of a given transaction or are tolerated by applications and users. Furthermore, databases may be
accessed by several applications and, thus, it is usual for aDBMS to manage the execution of concurrent
transactions with different isolation needs. The coexistence of those transactions improves the overall
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system performance and compromises isolation guarantees only when they are tolerated by the application
tier.

There are several mechanisms to manage concurrency in the presence of several isolation levels. They
are based on locking, multi-versioning or both. Only a few models can formally describe how those sys-
tems should behave to manage isolation correctly and most ofthem assume locking as their concurrency
control mechanism [3]. The model developed by Adya [1] is an exception. Adya’s specification has been
widely followed in recent years, because of its generalizedisolation characterization [13, 8, 14, 16] and
its clear and mechanism-independent specification for the snapshot isolation level [10, 15]. His specifi-
cation uses variations of serialization graphs to define theisolation levels with independence on concrete
concurrency control mechanisms. Serialization graphs were originally introduced in [7] to define the Se-
rializable isolation but Adya extended them to define other isolation levels as well. Given an execution,
in a Direct Serialization Graph (DSG) the nodes represent transactions and the directed edges represent
dependences between them. The execution of a set of transactions guarantees a given isolation level if the
associated DSG keeps some properties, usually related to the absence of cycles. When transactions with
different isolation levels are executed, Adya introduced avariation of DSGs, named Mixed Serialization
Graphs (MSG). An MSG is like the DSG but including only obligatory edges. An edge is obligatory if it is
representative for the isolation levels of at least one of the transactions directly involved in the dependency.

Unfortunately, MSGs do not consider transactions with the Snapshot Isolation (SI) level. The reason is
that Adya introduced another variant of DSG, named Start-ordered Serialization Graph or SSG, to define
that level. Since MSGs are based on DSGs, they only consider isolation levels defined with DSGs and
that excludes SI. In this paper we present an alternative SI definition, very similar to Adya’s definition but
based on DSGs. Our specification can be supported by MSGs. Theresulting MSGs are able to model
executions that encompass transactions using the isolation levels generally available in current DBMSs
and they also provide a basis to reason about the correctnessof database replication protocols supporting
multiple isolation levels [5]. Regarding the latter, the designers of those replicationprotocols should take
care that the validation rules being used for deciding whether a transaction will be committed or not,
considering any concurrent transactions, ensure that the resulting transaction dependences are only those
admitted in a valid MSG.

The rest of this paper is structured as follows. Related workis outlined in Section2. Section3 de-
scribes the system model. Section4 summarizes the isolation level specification given in [1, 2]. Section5
provides an alternate specification for thesnapshotisolation level, integratable in MSGs. Finally, Section
6 concludes the paper.

2 Related Work

Correctness in executions where multiple concurrent transactions are involved has regularly assumed seri-
alizable isolation [7]. Other isolation levels introduce the risk of anomalies [3], generating several kinds of
inconsistent results. Despite this, relational DBMSs support several standard isolation levels, and most of
them use theRead Committedlevel by default. A relaxed isolation is able to enhance the application perfor-
mance [6, 10]. As a result, the programmer should carefully select whichis the most appropriate isolation
level for each one of the application transactions, according to the application requirements and semantics.
Indeed, Fekete [9] showed that, following certain rules, a careful mixing of serializable and SI transactions
is able to generate conflict serializable executions; i.e.,those executions are able to avoid all anomalies.
Moreover, that work [9] also proposed as a further line of investigation to find possible rules for mixing
transactions using read-committed, SI and serializable isolations in order to still obtain conflict serializable
executions. This shows that the usage of multiple isolationlevels in real applications is convenient from a
practical point of view and that still demands some support from a theoretical perspective.

The proposal of the semantic correctness concept in [6] has a similar aim: to set the rules that en-
sure a correct execution of multiple transactions that use any of the standard isolation levels in relational
databases. However, in this case the semantic correctness being proposed is slightly weaker than serializ-
ability. Despite this, the rules for managing SI are only given for conventional databases (i.e., for those that
do not use predicates [6]), but not for relational ones. As a result, SI is not fully supported in [6], despite
admitting that executions with multiple isolation levels are convenient when throughput and response time
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should be optimized.
The focus of the current paper is not placed on obtaining conflict serializable executions when multiple

isolation levels are mixed, but only in adequately representing the resulting dependences in a mixing graph.
The usefulness of that representation resides in guiding the designers and developers of database replication
protocols on the set of rules that should be considered in order to check which conflicts should be allowed
and avoided (against other committed transactions, depending on their isolation level) when transactions
reach their commitment point. As a result, we are mainly focused on replication transparency, one of the
aims of any distributed system [20]: i.e., in providing the same support in a replicated environment than
in a single-machine one. This demands database replicationprotocols managing multiple isolation levels,
since regular DBMSs always provide such management.

To this end, as it has been already said in the introduction, Adya [1] provided a solid model for support-
ing such mixed executions in his MSGs. Unfortunately, MSGs did not consider SI since the latter demands
another kind of graph: the SSG. In our previous work [4] we tried to complement MSGs demanding two
additional rules for the SI transactions involved in a mixedexecution. This allowed to include SI trans-
actions in those “extended MSGs”, but not in a regular way. Infact, the result was not a regular MSG
nor any other kind of plain graph since it should be complemented by two building rules maintaining an
information similar to that of the start dependences that originated the SSGs. The model being proposed in
the current paper solves this issue.

3 System Model

This section presents some definitions needed in the rest of the paper.

3.1 Databases and transactions

A database is a set of items that can be read and written. Updates, inserts and deletes are all treated as
writes. Clients (usually applications) read and write database items through transactions. A transaction is a
sequence of read and write operations plus an initial start operation and a final commit or abort operation.
If the transaction is committed all its writes are persistedin the database. If it is aborted all writes are rolled
back.

Operationwi(xi) represents transactionTi ’s write on itemx, beingxi the value written. Operationr i(x j)
representsTi ’s read of the valuex j written by transactionTj . Ti ’s start, commit and abort operations are
represented assi , ci andai . Note thatci andai are mutually exclusive, i.e., transactions either commit
or abort. If a transaction performs several writes on itemx, wi(xi.n) represents the n-th write on itemx
performed byTi . If no suffix is present,xi represents the last value established byTi . Operationr i(x j.n)
indicates aTj ’s read of the n-thTi ’s write onx andr i(x j) Ti ’s read ofTj ’s last write onx. Finally, x0 is the
initial value of an itemx andoi represents any operation performed byTi .

A transactionTi is defined in the following way:

Definition 1 (Transaction). A transaction Ti is a totally ordered set of operations with a binary relation<
where:

• Ti ⊆ {r i(x j),wi(xi)|x is a data item}∪{si ,ai ,ci}.

• si ∈ Ti .

• ci ∈ Ti iff ai 6∈ Ti .

• For any Ti ’s operation oi , if oi 6= si then si < oi .

• If ci ∈ Ti then, for any operation oi 6= ci , oi < ci .

• If ai ∈ Ti then, for any operation oi 6= ai , oi < ai .

• For any two Ti ’s operations o1 and o2, o1 < o2 or o2 < o1.
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3.2 Histories

When a set of transactions is executed in the system, the operation execution order is determined by a
system scheduler. A history represents how transactions have been ordered during the execution. Given
two operationso1 ando2, o1 <H o2 in a historyH if they have been executed in that order and either belong
to the same transaction or are conflictive. Operationso1 ando2 conflict if they operate over the same item
and at least one of them is a write. Thus, two read operations of distinct transactions never conflict and are
not directly ordered inH. Formally:

Definition 2 (History). Given a set of transactionsT = {T1, ...,Tn}, a history H is a partially ordered set
of the operations inT ’s transactions with a binary relation<H where:

• For any transaction Ti ∈ T and any operation oi ∈ Ti , oi ∈ H.

• For any transaction Ti ∈ T and any two operations o1,o2 ∈ Ti , if o1 < o2 ∈ Ti then o1 <H o2 ∈ H.

• If r i(x j) ∈ H then wj(x j) ∈ H and wj(x j) <H r i(x j) ∈ H.

• For any two conflicting operations o1,o2 ∈ H, o1 <H o2 ∈ H or o2 <H o1 ∈ H.

3.3 Time-precedes order

The scheduler assigns transaction start and end points. They represent when transactions start and finish
and determine which committed database state is observed byevery transaction when it is started. That
order is called atime-precedes order[1]. Formally:

Definition 3 (Time-precedes order). Given a history H and E the set of start and commit operations of
transactions committed in H, a time-precedes order<t is a partial order on E such that:

• For any transaction Ti committed in H, si <t ci .

• Given Ti , Tj transactions committed in H, ci <t sj or sj <t ci .

Two transactionsTi andTj are concurrent ifsi <t c j andsj <t ci .

4 Isolation levels

Ensuring a strict isolation is costly and, depending on the concrete mechanism being used, this implicates
many blocked transactions and/or many aborts. To improve performance, commercial DBMSs allow trans-
actions to be executed with weaker isolation levels at the cost of allowing certain types of interferences or
phenomena, which must be either managed by the application tier or accepted by the user. An example is
the phenomenon known as Write Skew [3]. Assume a database with two items x and y and an integrity
constraint requiring thatx+y > 0. If two transactionsTi andTj concurrently readx = 50 andy = 50 and
later are allowed to writex = −10 (Ti) andy = 0 (Tj ), both will think that the integrity constraint is pre-
served but it is actually violated in the final state. If a transaction is executed with an isolation level which
does not prevent this phenomenon we must be sure that such scenario is managed by the application logic
avoiding that kind of concurrent transactions.

Snapshot Isolation is an isolation level widely used in DBMSs. It provides almost the same isolation
guarantees than Serializable but it never blocks read operations. As a result, read-only transactions can be
executed without being blocked or aborted.

4.1 Adya’s isolation level definitions

Several isolation level specifications have been given in the literature [12, 3, 1, 2]. They identify possible
phenomena that may appear when transactions are executed concurrently and categorize isolation levels
depending on which of those phenomena are forbidden. The ANSI/INCITS specification [12] is widely
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accepted but, as Berenson et al. [3] showed up, it is ambiguous. Berenson et al. [3] refined ANSI defi-
nitions and extended the classification with new phenomena and isolation level definitions. Actually, they
suggested one of the first definitions of Snapshot Isolation,supported at that moment by some commercial
DBMS as Serializable due to a loose interpretation of ANSI phenomena. They proved that SI allows some
non-serializable executions. Indeed, other papers [11] showed up that there were other anomalies in SI
histories. However, Berenson’s specification focuses on lock-based concurrency control, ignoring other
mechanisms like multi-versioning, widely used to provide Snapshot Isolation.

Due to that fact, Adya [1] presented an alternative specification that is independent of concrete concur-
rency control mechanisms. Adya used a variation of Bernstein’s serialization graphs to represent histories
as graphs showing dependencies among transactions. Phenomena are defined as properties in those graphs.

Definition 4 (Direct Serialization Graph). Given a history H, DSG(H) is a directed graph containing a
vertex per committed transaction in H and a directed edge from Ti to Tj if one of the following dependencies
appears:

• Tj directly read-depends on Ti , denoted as Ti
wr−→ Tj , if r j(xi) ∈ H.

• Tj directly write-depends on Ti , denoted as Ti
ww−→ Tj , if wi(xi) <H w j(x j) ∈ H and it does not exist

any other operation wk(xk) such that wi(xi) <H wk(xk) <H w j(x j) ∈ H.

• Tj directly anti-depends on Ti , denoted as Ti
rw−→ Tj , if r i(xm) <H w j(x j) ∈ H and it does not exist

any other operation wk(xk) such that ri(xm) <H wk(xk) <H w j(x j) ∈ H.

We say thatTj directly depends or depends onTi if Tj directly read- or write-depends onTi . We also
say thatTj anti-depends onTi if it directly anti-depends onTi .

As an example of DSG, given a historyH = w0(x0)w0(y0)w0(z0)c0r i(x0)wi(xi)r i(y0)ciw j(y j)w j(x j)c j

(this is the flatten representation ofH but remember that a history is a partial order and not a total order),
the associatedDSG(H) is:

T0 Ti Tjwr/ww rw/ww

ww

Figure 1: DSG ofH1

Adya used DSG to define a set of possible isolation phenomena.The main ones are the following:

• G0: Write Cycles: a historyH exhibits phenomenon G0 ifDSG(H) contains a directed cycle
composed only by write-dependency edges.

• G1a: Aborted Reads: a historyH exhibits phenomenon G1a if it contains an aborted transactionTi

and a committed transactionTj such thatwi(xi.m) <H r j(xi.m) ∈ H.

• G1b: Intermediate Reads: a historyH exhibits phenomenon G1b if a transactionTi reads inH a
value written byTj which is not the last write ofTj over the item. Formally,wi(xi.m) <H r j(xi.m) <H

wi(xi.n) ∈ H andc j ∈ H.

• G1c: Circular Information Flow : a historyH exhibits phenomenon G1c ifDSG(H) contains a
directed cycle composed only by dependency edges.

• G2: Anti-dependency Cycles: a historyH exhibits phenomenon G2 ifDSG(H) contains a directed
cycle containing at least one anti-dependency edge.

Based on the previous phenomena, the following isolation levels are defined:

• PL-1: it forbids phenomenon G0 and provides a generalized specification for Read Uncommitted.
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• PL-2: it forbids phenomena G0, G1a, G1b and G1c and provides a generalized specification for
Read Committed.

• PL-3: it forbids phenomena G0, G1a, G1b, G1c and G2 and provides a generalized specification for
Serializable.

Instead of focusing on what should be observed in every transaction execution to determine if its isola-
tion requirements have been ensured, Adya’s definitions indicate what should happen in an entire history
to guarantee a given isolation level to all comitted transactions. Thus, if PL-1, PL-2 and PL-3 transactions
are executed, we do not know if isolation requirements have been ensured to every transaction but which
isolation level is ensured to the whole transaction set execution represented byH. To fill that void, Adya
suggested a variation of serialization graphs named Mixed Serialization Graphs (MSG). Given a history
H and itsDSG(H), MSG(H) has allDSG(H) nodes but only those edges representing obligatory depen-
dencies for one of the involved transactions isolation levels. The overall execution is correct ifMSG(H)
does not have cycles and does not show G1a and G1b phenomena for PL-2 and PL-3 transactions. The
obligatory dependencies are the following:

• All direct write-dependencies.

• Direct read-dependencies ending in PL-2 and PL-3 transactions.

• Direct anti-dependencies starting from a PL-3 transaction.

Unfortunately, MSGs do not consider transactions requesting the SI level. The reason is that the SI
specification proposed by Adya, named PL-SI, is not based on DSGs but on another variation named Start-
dependency Serialization Graphs (SSGs). Given a historyH and a time-precedes order<t , SSG(H,<t) has
all DSG(H) nodes and edges plus start-dependency edges:

• Tj start-dependsonTi , denoted asTi
s−→ Tj , if ci <t sj .

SSGs consider new phenomena:

• G-SIa: Interference: a historyH and a time-precedes order<t exhibit the phenomenon G-SIa if
Ti

ww−→ Tj ∈ SSG(H,<t) or Ti
wr−→ Tj ∈ SSG(H,<t) butTi

s−→ Tj 6∈ SSG(H,<t).

• G-SIb: Missed Effects: a historyH and a time-precedes order<t exhibit the phenomenon G-SIb if
SSG(H,<t) contains a directed cycle with exactly one direct anti-dependency edge.

PL-SI isolation level forbids phenomena G0, G1a, G1b, G1c, G-SIa and G-SIb.

4.2 An alternative definition for G-SIb

PL-SI actually forbids more cycles than those explicitly forbidden by G0, G1c and G-SIb. Thus, we provide
an alternative definition which explicitly excludes all graphs representing non PL-SI executions:

Definition 5 (New G-SIb: Missed Effects). A history H and a time-precedes order<t exhibit the phe-
nomenon New G-SIb if SSG(H,<t) contains a directed cycle with at least one direct anti-dependency edge
but without two consecutive direct anti-dependency edges.

Lemma1 proves that both G-SIb definitions can be indistinctly used in PL-SI definition.

Lemma 1 (G-SIb and New G-SIb are equivalent). Given a history H and a times precedes order<t ,
SSG(H,<t) forbids G0, G1a, G1b, G1c, G-SIa and GSI-b phenomena iff SSG(H,<t) forbids G0, G1a,
G1b, G1c, G-SIa and New G-SIb phenomena.

Proof. New G-SIb is less restrictive than the original G-SIb and, thus, when New G-SIb is proscribed, it
is admitting less histories than the original definition. Conversely, we prove that any historyH and time-
precedes order<t proscribing G0, G1a, G1b, G1c, G-SIa and G-SIb proscribes also New G-SIb. This
implies that both conditions sets are equivalent. By absurdreduction, we assumeSSG(H,<t) is PL-SI
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and it has a cycle with anti-dependency edges but without twoconsecutive anti-dependency edges. Since
SSG(H,<t) is PL-SI, it has not any cycle with a single anti-dependency edge and, thus, the cycle has at
least two of those edges. Assume that one of them goes fromTi to Tj , Ti

rw−→ Tj . Thus,si <t c j because,
otherwise,c j <t si and there is a start-dependency edge fromTj to Ti which closes a cycle with a single
anti-dependency edge which contradicts the initial assumption. Since there are not two consecutive anti-
dependency edges, there must be an edge from another nodeTk to Ti and another one fromTj to Tl , both
dependency or start-dependency edges. Thus, by G-SIa and start-dependency definitions,ck <t si and
c j <t sl . Sincesi <t c j , thenck <t sl and this implies thatTk

s−→ Tl ∈ SSG(H,<t). Consequently, there is
a shorter cycle withoutTi

rw−→ Tj anti-dependency edge. We can iteratively apply the same criterion until
getting a cycle with a single anti-dependency edge which contradicts the initial assumption saying thatH
and<t avoid the original G-SIb phenomenon.

5 Alternative definition of Snapshot Isolation

A history H is PL-SI if it exists a schedulerS(E,<t) such thatE is the set of start and commit events
of committed transactions inH, <t is a time-precedes order onE and SSG(H,<t) does not show G0,
G1a, G1b, G1c, G-SIa and G-SIb phenomena. This section introduces PL-SI’, an alternative definition
exclusively based on DSG dependency edges. We also prove that for any PL-SI’ historyH there exists at
least one schedulerS(E,<t) such thatSSG(H,<t) is PL-SI.

5.1 PL-SI’: an alternative definition of PL-SI

With Snapshot Isolation (SI) a transaction is executed overa committed state of the database or snapshot.
If a transactionTi reads or overwrites a valuex j then transactionTj is in Ti ’s snapshot. IfTi reads a value
overwritten by another transactionTk thenTk is not in Ti ’s snapshot. IfTj is in Ti ’s snapshot andTl is in
Tj ’s snapshot thenTl is also inTi ’s snapshot. Thus, a transaction isin a snapshots if its updates can be
read froms or if they were accessible at a previous committed state and have been later overwritten by
transactions also ins.

In a SI historyH, Ti cannot be involved in a cycle composed only by dependency edges (G1c phe-
nomenon).Ti cannot be part of the snapshot it observes while it is being executed. Cycles with only one
anti-dependency edge are neither possible. If we assume that such cycle exists and the anti-dependency
goes fromTi to Tj then there is a path fromTj to Ti in DSG(H) composed only by dependency edges.
Thus,Tj is and is not inTi ’s snapshot at the same time, which is a contradiction. As in Section4.2, that
can be extended to any cycle with anti-dependency edges as soon as two or more of them do not appear
consecutively1.

Consequently, G-SIb can be redefined in the following way:

Definition 6 (G-SIb’: Missed Effects). A history H exhibits the phenomenon G-SIb’ if DSG(H) contains
a directed cycle with at least one direct anti-dependency edge but without two consecutive direct anti-
dependency edges.

Thus, PL-SI’ can be defined in the following way:

Definition 7 (PL-SI’). A history H is PL-SI’ if it forbids G0, G1a, G1b, G1c and G-SIb’.

5.2 PL-SI’ and PL-SI equivalence

PL-SI’ and PL-SI do not represent actually the same, basically because PL-SI’ is based on the dependencies
in H but PL-SI contemplates also the dependencies among the start and commit operations inE. However,

1Imagine a cycle with two or more non-consecutive anti-dependency edges. This cycle should have at least four nodes. IfT1, T2,
T3 andT4 are four consecutive nodes in the cycle and there is an anti-dependency edge fromT2 to T3 then the edges fromT1 to T2 and
from T3 to T4 are dependency edges. Thus,T1 is in T2’s snapshot andT3 is in T4’s snapshot but is not inT2’s snapshot. Consequently,
T2 observes a committed state previous toT4 snapshot. SinceT1 is in T2’s snapshot thenT1 is also inT4’s snapshot. If that is iteratively
applied to the rest of anti-dependency edges we will finally reach to a contradiction likeT1 is in T1’s snapshot (note that this means
that the items written byT1 had been committed beforeT1 started, and this is impossible).
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it can be said that PL-SI’ histories are also PL-SI if they represent a correct PL-SI execution. In other
words, PL-SI’ is equivalent to PL-SI if for any PL-SI’ history H exists at least one schedulerS(E,<t) such
thatSSG(H,<t) is PL-SI. In this section we prove that at least one schedulerlike this exists and is based
on what we call an Extended SI-derived order<e, a specific type of time-precedes order.

The inverse assertion is trivially true. IfH and<e are PL-SI thenH is PL-SI’ since proscribing G-
SIb’ is less restrictive than proscribing G-SIb and G-SIa. If there is not a cycle with anti-dependencies
but without two consecutive anti-dependencies inSSG(H,<e) then this cycle obviously does not exist in
DSG(H) because both graphs have the same vertices butDSG(H) has only a subset ofSSG(H,<e)’s edges.

Both PL-SI and PL-SI’ forbid G0, G1a, G1b and G1c phenomena. Then, a PL-SI’ historyH is PL-SI
if SSG(H,<e) does not show G-SIa and G-SIb and<e is a times-precedes order.<e is an extension of a
SI-derived order<s. <s orders starts and commits of committed transactions inH by applying SI rules to
the dependencies inDSG(H). In the following we define both, SI-derived order and Extended SI-deriver
order.

Definition 8 (SI-derived order). Given a history H and E the set of start and commit operations of com-
mitted transactions in H, a SI-derived order<s is a partial order on E where:

a) cj <s si if Tj
ww−→ Ti ∈ DSG(H) or Tj

wr−→ Ti ∈ DSG(H).

b) sj <s ci if Tj
rw−→ Ti ∈ DSG(H).

c) si <s ci if Ti is in H and Ti commits.

Condition a) avoids G-SIa phenomena and condition b) allowsa transactionTi to miss the effects of
transactions only if they do not belong toTi ’s snapshot. Condition c) indicates how a transaction startand
commit operations are ordered.

Unfortunately,<s may not order any possible combination ofsi and c j and, thus, it is not a time-
precedes order. For example, it will never order start and commit operations of transactions not connected
in DSG(H). The Extended SI derived order<e we further present is a SI-derived order, a time-precedes
order and, most important, applied to a PL-SI’H results in a PL-SISSG(H,<e).

Definition 9 (Extended SI-derived order). Given a history H and E the set of start and commit operations
of committed transactions in H, an Extended SI-derived order <e is a partial order on E where:

a) <e is a SI-derived order on E.

b) si <e c j (alternatively, cj <e si) iff they are ordered that way by the following set-order
algorithm. GivenO the set of pairs{si ,c j} unordered by SI-derived order conditions a), b)
and c) and given<o a total order onO such that{si ,c j} <o {sk,cl} iff i < k∨ (i = k∧ j < l),
the set-order algorithm orders the elements inO as follows:

• WhileO is not empty:

– Take off the minor pair{si ,c j} from O ( 6 ∃{sk,cl} ∈ O such that
{sk,cl} <o {si ,c j}).

– Order its operations as si <e c j .

– Take off fromO any other pair if its operations ordering can be now
deduced.

The idea behind<e is not to accurately represent how transactions inH have been originally sched-
uled (actually, this may be not feasible).<e deduces start-dependencies from dependencies and anti-
dependencies inH and suggest an ordering of the rest of transactions starts and commits avoiding any
possible violation of PL-SI restrictions. As we prove laterin this section,<e shows that at least the<e

ordering produces PL-SI executions when applied to a PL-SI’historyH, which proves thatH represents a
PL-SI scheduler.

As an example, assume the historyH1 = w1(x1) w2(y2) c1 c2 w3(x3) c3 w4(y4) c4 and the associated
DSG(H1). The associatedDSG(H1) is shown in Figure2.
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Figure 2:DSG(H1)

<e orders all commit and start operations of committed transactions inH1: {s1,c1}, {s1,c2}, {s1,c3},
{s1,c4}, {s2,c1}, {s2,c2}, {s2,c3}, {s2,c4}, {s3,c1}, {s3,c2}, {s3,c3}, {s3,c4}, {s4,c1}, {s4,c2}, {s4,c3},
{s4,c4}. SI-derived order condition a) ordersc1 <e s3 andc2 <e s4. Condition b) cannot be applied in
this case and c) orderss1 <e c1,s2 <e c2,s3 <e c3 ands4 <e c4. Due to the transitivity property of partial
order<e, if s1 <e c1, c1 <e s3 ands3 <e c3, thens1 <e c3 can be deduced. Similarly,s2 <e c4 can also
be deduced from conditions a) and c) orderings. The unordered pairs areO=({s1,c2}, {s1,c4}, {s2,c1},
{s2,c3}, {s3,c2}, {s3,c4}, {s4,c1}, {s4,c3}). The set-order algorithm pops the first pair inO and orders it
ass1 <e c2. Sincec2 <e s4 ands4 <e c4, s1 <e c4 can be deduced and it is also popped fromO. Then the
algorithm orderss2 <e c1, deducess2 <e c3 (sincec1 <e s3 ands3 <e c3) and both pairs are also popped.
In the following steps3 <e c2 is popped and ordered. Sincec2 <e s4 ands4 <e c4, s3 <e c4 is also popped.
c1 <e s4 can be also popped sincec1 <e s3, s3 <e c2 andc2 <e s4. Finally, s4 <e c3 is popped and ordered.
Figure3 shows the resulting graph:

T1

T2

T3

T4

ww/s

wr/s

s

Figure 3:SSG(H1)

As another example, assume a historyH2 = w0 (x0) w0(y0) c0 w1(x1) c1 r2(y0) c2 w3(x3) w3(y3) c3

w4(y4) c4 which generates the followingDSG(H) (T0 establishes the initial state of the database and, for
the sake of simplicity, it is not represented inDSG(H2)). Figure4 shows the associatedDSG(H2):

T1

T2

T3 T4

ww

rw

ww

Figure 4:DSG(H)

Ordering<e must order the following start and commit pairs of committedtransactions:{s1,c1},
{s1,c2}, {s1,c3}, {s1,c4}, {s2,c1}, {s2,c2}, {s2,c3}, {s2,c4}, {s3,c1}, {s3,c2}, {s3,c3}, {s3,c4}, {s4,c1},
{s4,c2}, {s4,c3}, {s4,c4}. Condition a) ordersc1 <e s3 andc3 <e s4. Condition b) orderss2 <e c3. Condi-
tion c) orderss1 <e c1,s2 <e c2,s3 <e c3 ands4 <e c4. From those orderingss1 <e c3, s1 <e c4, s2 <e c4,
s3 < c4 andc1 <e s4 can be deduced. Thus,O = ({s1,c2}, {s2,c1}, {s3,c2}, {s4,c2}). The set-order algo-
rithm will order them ass1 <e c2, s2 <e c1, s3 <e c2 ands4 <e c2. Thus,H and<e represent an execution
whereT1, T3 andT4 have been scheduled serially andT2 has been executed concurrently to all of them,
which do not violate any PL-SI requisite. The resultingSSG(H2,<T) is depicted in Figure5:

Once defined the Extended SI-derived order<e, we now prove that, applied to any PL-SI’ historyH,
the resultingSSG(H,<e) is PL-SI. Since PL-SI’ avoids G0, G1a, G1b, G1c and G-SIb’ phenomena, we
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Figure 5:SSG(H,<e)

should prove that thatSSG(H,<e) proscribes G-SIa and G-SIb and that<e is a time-precedes order. The
demostration starts by proving that SI-derived order conditions and the set-order algorithm do not violate
G-SIa or G-SIb (Lemmas2 and3). Next, Theorem1 proves that<e is also a time-precedes order. Finally,
all is gathered together in Theorem2 to prove thatSSG(H,<e) is PL-SI.

Lemma 2 (Correctness of SI-derived order conditions a), b) and c)). Given a PL-SI’ history H and a
SI-derived order<s, G-SIa and New G-SIb phenomena do not show up in SSG(H,<s).

Proof. The condition a) of SI-derived order<s adds a start-dependency edgeTi
s−→ Tj to SSG(H,<s) for

every dependency edgeTi
ww/wr
−→ Tj in DSG(H). That trivially forbids G-SIa.

SinceH is PL-SI’, G-SIb’ and G1c forbid any cycle inDSG(H) composed by dependency and anti-
dependency edges. The only exception are cycles with two or more consecutive anti-dependency edges.
By absurd reduction, assume thatH is PL-SI’ butSSG(H,<s) shows New G-SIb. Thus,SSG(H,<s) has a
cycle with anti-dependency edges but without two consecutive anti-dependency edges. SinceSSG(H,<s)
only differs fromDSG(H) in the start-dependency edges andH forbids G-SIb’, that cycle contains at least
one start-dependency edge. From Lemma5 (see Appendix), ifTi

s−→ Tj in SSG(H,<s) (i.e.,ci <s sj ) then
exists a directed pathp in DSG(H) from Ti to Tj such thatp starts and ends with dependency edges and does
not show two consecutive anti-dependency edges. If we change every start-dependency edge in the cycle
by its alternative path we will get a new cycle composed only by dependency and anti-dependency edges
and without two consecutive anti-dependency edges. Thus,DSG(H) shows G-SIb’ phenomena which
contradicts the initial assumption. Thus,SSG(H) forbids New G-SIb.

The set-order algorithm orders the remaining starts and commits once conditions a), b) and c) are
applied. The algorithm itself avoids contradictions sinceit only orders unordered pairs. Thus, ifci <e sj

can be deduced from a), b) and c) or from any other previous ordering applied by the set-order algorithm
then this pair will never be inO and will never be ordered again.

Lemma 3 (Set-order algorithm correctness). Given a PL-SI’ history H and an Extended SI-derived order
<e, the start-dependency edges added by the set-order algorithm never produce a New G-SIb cycle in
SSG(H,<e).

Proof. The set-order algorithm explicitly orders starts before commits only. By absurd reduction, assume
that the set-order algorithm adds an orderingsi <e c j and that closes a cycle with anti-dependency edges
but without two consecutive anti-dependency edges. Assumethe new anti-dependency edge produced by
the set-order algorithm goes from vertexT0 to Tn such thatc0 <e si andc j <e sn. Then, there is a path from
Tn to T0 with anti-dependency edges but without two consecutive anti-dependency edges. From Lemma4
(see Appendix), we can deduce thatsn <e c0 and, hence, thatc j <e si . Since the set-order algorithm only
orders start and commit operations if their ordering cannotbe deduced from previous orderings, then it will
never ordersi <e c j which contradicts the initial assumption. Hence,si <e c j will never close a cycle with
anti-dependency edges but without two consecutive anti-dependency edges.

Finally, we prove that<e is a time-precedes order and produces a PL-SISSG(H,<e) if H is PL-SI’.

Theorem 1. An Extended SI-derived order<e is also a time-precedes order.

Proof. We split the proof in two parts:
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• <e orders any pair {si ,c j} in H: some pairs are ordered by SI-derived order conditions a), b) and
c). The remaining pairs are ordered by the set-order algorithm in condition d).

• <e does not generate contradictions. In other words, it will never ordersi <e c j andc j <e si at the
same time. From Lemma6 (see Appendix) we know that SI-derived order conditions a),b) and c)
will never produce a contradiction and the set-order algorithm only orders unordered pairs and does
not introduce contradictions either.

Theorem 2. If H is PL-SI’ then SSG(H,<e) is PL-SI.

Proof. G0, G1a, G1b, G1c are avoided by definition sinceH is supposed to be PL-SI’. Thus, we only have
to prove that G-SIa and G-SIb are avoided too:

• G-SIa: It is trivially avoided by Condition a) of Def.9.

• G-SIb: Lemmas1, 2 and3 ensure that Conditions a), b), c) and d) will never produce inSSG(H,<e)
a cycle with exactly one anti-dependency edge.

Thus, when time-precedes order<e is applied to the start and commit operations of committed trans-
actions in a PL-SI’ historyH, the resultingSSG(H,<e) is PL-SI. Then, a PL-SI’ historyH is also PL-SI.

6 Conclusions

Existing commercial DBMSs support several isolation levels to adjust the concurrency control mechanisms
to transaction isolation needs. This improves the overall system performance by compromising only the
isolation guarantees that can be managed by applications orassumed by the final users. However, today it
does not exist a complete and mechanism-independent formalmodel to determine if a given execution is
correctly managing isolation when multiple transactions request different isolation levels.

The closest model is the one introduced by Adya. However, it only supports PL-1, PL-2 and PL-3
isolation levels, equivalent to Read Uncommitted, Read Committed and Serializable but leaves aside the
widely used Snapshot Isolation level. SI offers almost the same isolation guarantees than Serializable
but shows a better performance in read intensive environments, specially if there are a lot of read-only
transactions. SI is not included in Adya’s model because it proscribes phenomena based on a time-precedes
order and SSG graphs while his model supporting several isolation levels is based on DSGs, which only
contemplates dependencies related on conflicts among read and write operations. In this paper we present
PL-SI’, an alternative definition of SI based on DSGs. We alsoprove that any PL-SI historyH is also
PL-SI’ and vice versa by showing that it is possible to define atime-precedes order<e over any PL-SI’
historyH such thatSSG(H,<e) is PL-SI. Our definition can be included in Adya’s MSG theory to prove
the correctness of a history when transactions request different isolation levels, including SI.

APPENDIX

Lemma 4 (Start and commit orderings by<s in PL-SI’ histories). Given a PL-SI history H and a SI-
depends order<s, si <s c j iff

a) A path p in DSG(H) connects nodes Ti and Tj and

b) p is a directed path from Ti to Tj and

c) p does not contain two consecutive anti-dependency edges.

Proof. a) If si <s c j then a), b) and c):
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• a) proof. <s conditions only order starts and commits of transactions connected by an
edge inDSG(H). Thus,si <s c j if Ti andTj are connected inDSG(H) by a path of edges.

• b) and c) proof. Assumesi <s c j is deduced from pathp. We prove by induction over
p’s lengthn that p fulfils b) and c) conditions:

– Base case (n= 1): p is composed by a single edgee. Sincesi <s c j , thenecan only

beTi
rw−→ Tj (by <s condition b)) orTi

ww/wr
−→ Tj (by the combination of<s conditions

a) and c)). Any other alternative (i.e., an edge fromTj to Ti) will contradictsi <s c j

initial assumption. Thus,e fulfils b) and c).
– Induction hypothesis (n< l): if si <s c j andp lengthn< l then b) and c) are fulfilled.
– Induction step (n= l): assumesi <s c j and p length isl . Doesp fulfil b) and c)?

SupposeTk is the immediate node beforeTj in p. Thus, there is a pathp′ connecting
Ti andTk and a final edgee joining Tk andTj in DSG(H). p′ is l −1 length. b) and
c) are fulfilled in p only if they are also fulfiled inp′ and they are neither violated
by e. There are four alternatives:

∗ e= Tk
ww/wr
−→ Tj : by <s’s condition a),ck <s sj and, by<s’s condition c),ck <s c j .

Sincesi <s c j is deduced fromp, si <s ck in p′. By the induction hypothesis,

p′ fulfils b) and c). SinceTk
ww/wr
−→ Tj goes in the samep′ direction and is a

dependency edge,p also fulfills b) and c) conditions.
∗ e= Tk

rw−→ Tj : by <s’s condition b),sk <s c j . Sincesi <s c j is deduced fromp,
si <s sk and, by c),si <s ck. By induction hypotesis,p′ fulfils b) and c). Imagine
e′ = Tk−1 −→ Tk is the last edge inp′. Sincesi <s sk, exists aTk−1’s operation
ok−1 such thatok−1 <s sk andsi <s ok−1. ok−1 is eithersk−1 or ck−1 since<s

only orders starts and commits. If we observe<s, a start is always ordered with
a commit in an edge and, thus,ck−1 <s sk ande′ is a dependency edge. Thus,
there are not two consecutive anti-dependency edges andp fulfills b) and c).

∗ e = Tj
ww/wr
−→ Tk: in this casep trivially does not fulfil condition b) and, thus,

we should prove thatsi 6<s c j . By <s’s condition a)c j <s sk. Even if si <s sk,
si <s c j can not be deduced.

∗ e= Tj
rw−→ Tk: again,p trivially does not fulfil condition b) and, thus, we should

prove thatsi 6<s c j . By <s’s condition b)sj <s ck. Even ifsi <s ck, si <s c j can
not be deduced.

b) If a), b) and c) then si <s c j : thus, there is a directed pathp from Ti to Tj without two
consecutive anti-dependency edges. Ifp is composed only by dependency edges then trivially

si <s c j . Givenp = Ti
ww/wr
−→ T0

...−→ Tm
ww/wr
−→ Tj , by <s condition a)ci <s s0, ...,cm <s sj . Since,

by <s condition c),sk <s ck for any nodeTk, si <s ci <s s0 <s ... <s cm <s sj <s c j and, thus,
si <s c j . If there are anti-dependency edges inp, we provesi <s c j by induction over the
numbern of anti-dependency edges inp.

• Base case(n = 1): there is only one anti-dependency edgee. We differentiate the fol-
lowing cases:

• e is the only edge inp: by <s condition b),si <e c j .
• p is composed by two or more edges and:

• e = Ti
rw−→ Tk is the first edge inp. By <s condition b),si <e ck.

Any other edgeTn −→ Tn+1 in p is a dependency edge and, by<s

condition a),cn <e sn+1. By <s condition c),sk <s ck for any nodeTk

in p. Thus,si <e ci <e sk <e c j .
• e = Tk

rw−→ Tj is the last edge inp. By <s condition b),sk <e c j .
Any other edgeTn −→ Tn+1 in p is a dependency edge and, by<s

condition a),cn <e sn+1. By <s condition c),sk <s ck for any nodeTk

in p. Thus,si <e ci <e sk <e c j .
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• e= Tk
rw−→Tk+1 is not the first, neither the last edge inp. Then,Tk 6= Ti

andTk+1 6= Tj . Any other edgeTn −→ Tn+1 in p is a dependency edge
and, by<s condition a),cn <e sn+1. By <s condition c),sk <s ck for
any nodeTk in p. Thus,ci <e sk andck+1 <e sj . Thensi <e ci <e

sk <e ck+1 <e sj <e c j .

• Induction hypothesis(n < l): the lemma holds ifp hasn < l anti-dependency edges.

• Induction step (n = l): assume now a pathp starts fromTi , ends inTj , has l anti-
dependency edges and fulfils b) and c). Thensi <s c j? Again, there are several possibil-
ities:

• p starts with an anti-dependency edgee = Ti
rw−→ Tk. By <s condition b),

si <e ck. Since there aren’t two consecutive anti-dependency edges, the edge
Tk −→ Tk+1 next toe is a dependency and, by<s condition a),ck <e sk+1. The
subpathp′ = Tk+1 −→ ...−→ Ti hasl −1 anti-dependency edges and, by the
induction hypothesis,sk+1 <e c j . Thus,si <e ck <e sk+1 <e c j .

• p ends with an anti-dependency edgee = Tk
rw−→ Tj . By <s condition b),

sk <e c j . Since there aren’t two consecutive anti-dependency edges, the edge
Tk−1 −→ Tk previous toe is a dependency and, by<s condition a),ck <e sk+1.
The subpathp′ = Ti −→ ...−→ Tk−1 hasl −1 anti-dependency edges and, by
the induction hypothesis,si <e ck−1. Thus,si <e ck−1 <e sk <e c j .

• p does not start, neither ends with an anti-dependency edge. Imaginee =
Tk

rw−→ Tk+1 is one of the anti-dependency edges inp. Thus, by<s condition
b), sk <e ck+1. The previous and the next edgesTk−1 −→ Tk andTk+1 −→ Tk+2

are dependency edges because there aren’t two consecutive anti-dependency
edges. Thus, by<s condition a),ck−1 <e sk andck+1 <e sk+2. The paths from
Ti to Tk−1 and the path fromTk+2 to Tj will have l −1 or less anti-dependency
edges and, by the induction hypothesis,si <e ck−1 andsk+2 <e c j . Thus,si <e

ck−1 <e sk <e ck+1 <e sk+2 <e c j .

Lemma 5 (Start-dependency edges generated by SI-derived order<s). Given a PL-SI’ history H and a
SI-derived order<s, ci <s sj iff

a) A path p in DSG(H) connects Ti and Tj and

b) p is a directed path from Ti to Tj and

c) p does not contain two consecutive anti-dependency edgesand

d) p starts and ends with dependency edges.

Proof. a) If ci <s sj then a), b), c) and d): if ci <s sj then, by<s condition c),si <s c j and
Lemma4 proves a), b), and c). Thus, there is a directed pathp from Ti to Tj without two
consecutive anti-dependency edges. We prove d) by induction over the lengthn of p:

• Base case(n= 1): p is composed by a single directed edgee from Ti to Tj . Sinceci <s sj ,
by <s condition a) this edge must be a dependency edge.

• Induction hypothesis(n < l): if p lengthn < l andci <s sj , d) is also fulfilled.

• Induction step(n = l): assumeTk andTl are, either, the immediate nodes afterTi and
beforeTj in p. Thus, there is a directed pathp′ = Tk −→ ... −→ Tl with lengthn′ < l . If p′

starts and ends with dependency edges,ck <s sl by the induction hypothesis. Otherwise,
sk <s cl by Lemma4. Sinceci <s sj , at leastci <s sk andcl <s sj . Thus, by<s condition
a), Ti −→ Tk andTl −→ Tj must be dependency-edges and, thus,p starts and ends with
dependency edges.
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b) If a), b), c) and d) then ci <s sj : thus a directed pathp from Ti to Tj exists with an initial
and final dependency edges and without two consecutive anti-dependency edges. By Lemma
4, si <s c j . We prove that alsoci <s sj by induction over the lengthn of p:

• Base case(n = 1): in that case, by d)p is composed by a single dependency edge. Thus,
ci <s sj by <s condition b).

• Induction hypothesis(n< l): if p lengthn< l and a), b), c) and d) conditions are ensured,
ci <s sj .

• Induction step(n= l): a), b), c) and d) andp length isn= l . ci <s sj? p is a directed path
Ti −→ ... −→ Tj without two consecutive anti-dependency edges.p also starts and ends

with Ti
ww/wr
−→ Tk andTl

ww/wr
−→ Tj dependency edges. Thus,Tk −→ ... −→ Tl is a pathp′ of

lengthn′ < l which ensures a), b) and c) and, by Lemma4 sk <s cl . From<s condition
b) we also get thatci <s sk andcl <s sj . Thus,ci <s sk <s cl <s sj .

Lemma 6 (<s conditions a), b) and c) are not contradictory). Conditions a), b) and c) applied to a PL-SI’
history H will never produce a contradiction like si <e c j and cj <e si .

Proof. By absurd reduction, given two transactionsTi ,Tj ∈ H, if si <e c j andc j <e si then, by Lemmas4
and5, there is a pathp1 = Ti −→ ... −→ Tj in DSG(H) and another pathp2 = T j −→ ... −→ Ti such that
p1 andp2 do not have two consecutive anti-dependency edges andp2 start and end with dependency edges.
Thus,p1 andp2 form a cycle inDSG(H) without two consecutive anti-dependency edges. However, that
contradicts the initial assumption because that sort of cycles are explicitly forbidden by PL-SI’.
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