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Abstract

Most database management systems support several isolation iegklding Serializable, Snap-
shot Isolation, and Read Committed. Serializable is used when transawdiemstrong isolation needs.
Read Committed provides a very relaxed isolation and, thus, it is used &y applications are able
to deal with the isolation anomalies that such level allows. Snapshot Iso(&ipis widely used since
it provides an almost serializable isolation with improved performanceicpkarly in read-intensive
workloads since it never blocks read accesses nor aborts reattamsgctions. Unfortunately, few theo-
retical models indicate when the execution of a set of transactions folkevsigolation level conditions
when different isolation levels are requested by different transactidhgy are either ambiguous or
oriented to concrete concurrency control mechanisms like locks. Apriat exception is the model
proposed by Atul Adya. Such specification proposes Mixed Serializ&i@aphs (MSG) as a tool for
representing executions that involve multiple isolation levels. Adya’'s MS&®ath well-defined and
mechanism-independent, although they do not consider Sl since iificgtean is based on some trans-
action dependences that do not arise in any other isolation level. This paédes an alternative Sl
specification that can be embedded in MSGs.

1 Introduction

Database management systems (DBMS) can concurrentlytexieansactions requesting different isola-
tion levels. Serializable, Snapshot Isolation, Repeat&aad, Read Committed and Read Uncommitted
are some of the isolation level$7] being regularly supported. The advantage of managingrakiss-
lation levels is performancel{]. With Serializable, the strictest isolation level, thezention of a set

of transactions is equivalent to a serial execution of thmesaet even if they are executed concurrently
[7]. However, Serializable isolation increases the numbdiacked transactions, transaction aborts and
response time, reducing the degree of concurrency and #ralbperformance. Relaxed isolation levels
increase concurrency at the cost of allowing some typesotdtion anomalies. For example, with Read
Committed, the default isolation level in some DBMSs (eMjcrosoft SQL Server 2008 RZLE], Oracle
Database 11dl[/], PostgreSQL 9.1.31[F]), a transaction may get different values in two conseeutdads

on the same data since it allows other concurrent transectioupdate data between both reads.

Weak isolation levels should be used only when their unmash@pomalies cannot appear during the
execution of a given transaction or are tolerated by apiptica and users. Furthermore, databases may be
accessed by several applications and, thus, it is usualBBMS to manage the execution of concurrent
transactions with different isolation needs. The coeristeof those transactions improves the overall



system performance and compromises isolation guarantées/ben they are tolerated by the application
tier.

There are several mechanisms to manage concurrency ingbenme of several isolation levels. They
are based on locking, multi-versioning or both. Only a fewdels can formally describe how those sys-
tems should behave to manage isolation correctly and mdkeaf assume locking as their concurrency
control mechanism3]. The model developed by Adyé][is an exception. Adya'’s specification has been
widely followed in recent years, because of its generaligethtion characterization.p, 8, 14, 16] and
its clear and mechanism-independent specification for tlapshot isolation levellD, 15]. His specifi-
cation uses variations of serialization graphs to definagblation levels with independence on concrete
concurrency control mechanisms. Serialization graph&weaginally introduced in{] to define the Se-
rializable isolation but Adya extended them to define otBetation levels as well. Given an execution,
in a Direct Serialization Graph (DSG) the nodes represamsactions and the directed edges represent
dependences between them. The execution of a set of tranmsagtiarantees a given isolation level if the
associated DSG keeps some properties, usually relate@ tbdence of cycles. When transactions with
different isolation levels are executed, Adya introduceddation of DSGs, named Mixed Serialization
Graphs (MSG). An MSG is like the DSG but including only obtigy edges. An edge is obligatory if it is
representative for the isolation levels of at least one etthnsactions directly involved in the dependency.

Unfortunately, MSGs do not consider transactions with thegshot Isolation (Sl) level. The reason is
that Adya introduced another variant of DSG, named Statéi@d Serialization Graph or SSG, to define
that level. Since MSGs are based on DSGs, they only consdtation levels defined with DSGs and
that excludes Sl. In this paper we present an alternativeefgiition, very similar to Adya’s definition but
based on DSGs. Our specification can be supported by MSGsreshing MSGs are able to model
executions that encompass transactions using the isolevels generally available in current DBMSs
and they also provide a basis to reason about the correathdssabase replication protocols supporting
multiple isolation levelsf]. Regarding the latter, the designers of those replicatimbocols should take
care that the validation rules being used for deciding wérethtransaction will be committed or not,
considering any concurrent transactions, ensure thaethdting transaction dependences are only those
admitted in a valid MSG.

The rest of this paper is structured as follows. Related vimidutlined in Sectior?. Section3 de-
scribes the system model. Sectbsummarizes the isolation level specification givenlin]. Section5
provides an alternate specification for gsreapshoisolation level, integratable in MSGs. Finally, Section
6 concludes the paper.

2 Related Work

Correctness in executions where multiple concurrent &etitns are involved has regularly assumed seri-
alizable isolation T]. Other isolation levels introduce the risk of anomaliéls §enerating several kinds of
inconsistent results. Despite this, relational DBMSs suppeveral standard isolation levels, and most of
them use th&®ead Committetibvel by default. A relaxed isolation is able to enhance th@iaation perfor-
mance §, 10]. As a result, the programmer should carefully select wigdhe most appropriate isolation
level for each one of the application transactions, acogrth the application requirements and semantics.
Indeed, Feketed] showed that, following certain rules, a careful mixing efiglizable and Sl transactions
is able to generate conflict serializable executions; tt®se executions are able to avoid all anomalies.
Moreover, that work g] also proposed as a further line of investigation to find gmsgules for mixing
transactions using read-committed, Sl and serializablatisns in order to still obtain conflict serializable
executions. This shows that the usage of multiple isoldgwels in real applications is convenient from a
practical point of view and that still demands some supporhfa theoretical perspective.

The proposal of the semantic correctness concepililds a similar aim: to set the rules that en-
sure a correct execution of multiple transactions that ugeofthe standard isolation levels in relational
databases. However, in this case the semantic correctaggsroposed is slightly weaker than serializ-
ability. Despite this, the rules for managing Sl are onlyegi¥or conventional databases (i.e., for those that
do not use predicates]), but not for relational ones. As a result, Sl is not fullypported in f], despite
admitting that executions with multiple isolation levete @onvenient when throughput and response time



should be optimized.

The focus of the current paper is not placed on obtaining icbs#rializable executions when multiple
isolation levels are mixed, but only in adequately représgrthe resulting dependences in a mixing graph.
The usefulness of that representation resides in guidimgékigners and developers of database replication
protocols on the set of rules that should be considered iardodcheck which conflicts should be allowed
and avoided (against other committed transactions, dépgah their isolation level) when transactions
reach their commitment point. As a result, we are mainly $eclion replication transparency, one of the
aims of any distributed systemi(]]: i.e., in providing the same support in a replicated enwinent than
in a single-machine one. This demands database repligatatocols managing multiple isolation levels,
since regular DBMSs always provide such management.

To this end, as it has been already said in the introductidyaA4l] provided a solid model for support-
ing such mixed executions in his MSGs. Unfortunately, MS@xdt consider Si since the latter demands
another kind of graph: the SSG. In our previous watkye tried to complement MSGs demanding two
additional rules for the Sl transactions involved in a mix@cution. This allowed to include Sl trans-
actions in those “extended MSGs”, but not in a regular wayfabt, the result was not a regular MSG
nor any other kind of plain graph since it should be complemeiby two building rules maintaining an
information similar to that of the start dependences thigimmaited the SSGs. The model being proposed in
the current paper solves this issue.

3 System Model

This section presents some definitions needed in the relsé gfeper.

3.1 Databases and transactions

A database is a set of items that can be read and written. Epdaserts and deletes are all treated as
writes. Clients (usually applications) read and write date items through transactions. A transaction is a
sequence of read and write operations plus an initial sggtation and a final commit or abort operation.
If the transaction is committed all its writes are persistetthe database. If it is aborted all writes are rolled
back.

Operatiorw; (x;) represents transactidgis write on itemx, beingx; the value written. Operation(x;)
representd;’s read of the value; written by transactiorT;. Ty’s start, commit and abort operations are
represented as, ¢ andg;. Note thatc; anda; are mutually exclusive, i.e., transactions either commit
or abort. If a transaction performs several writes on itemy (x; n) represents the n-th write on item
performed byT;. If no suffix is presenty; represents the last value establishedlpyOperationr;(x;.n)
indicates &l;’s read of the n-tiT’s write onx andr;(x;) T's read ofT;’s last write onx. Finally, Xo is the
initial value of an itenx ando; represents any operation performedThy

A transactionT; is defined in the following way:

Definition 1 (Transaction) A transaction Tis a totally ordered set of operations with a binary relatian
where:

o Ti C {ri(xj),wi(x)|x is a data itemyU{s,a;,Ci }.

e SET.

GeTiffa &T.

For any T's operation @, if 0; # 5 then $ < 0.

If ¢; € T then, for any operation;c# ¢;, 0, < C;.

If aj € T; then, for any operation;o# &, 0; < &;.

For any two T's operations @ and @, 01 < 02 Or 02 < 0j.



3.2 Histories

When a set of transactions is executed in the system, thetmperxecution order is determined by a
system scheduler. A history represents how transactioves leen ordered during the execution. Given
two operation®; ando,, 01 <y 02 in a historyH if they have been executed in that order and either belong
to the same transaction or are conflictive. Operatmrando, conflict if they operate over the same item
and at least one of them is a write. Thus, two read operatibdistinct transactions never conflict and are
not directly ordered irdH. Formally:

Definition 2 (History). Given a set of transaction§” = {T1,..., Ty}, a history H is a partially ordered set
of the operations in7’s transactions with a binary relatior:y where:

e For any transaction jTe .7 and any operationioc T, ¢ € H.

e For any transaction iTe .7 and any two operations;00, € T;, if 01 < 02 € T then @ <y 02 € H.

If ri(xj) € H then w(xj) € H and w;(xj) < ri(x;) € H.

e For any two conflicting operations;00, € H, 01 <y 0 € H or 0p <y 01 € H.

3.3 Time-precedes order

The scheduler assigns transaction start and end points. répeesent when transactions start and finish
and determine which committed database state is observesldry transaction when it is started. That
order is called @me-precedes orddrl]. Formally:

Definition 3 (Time-precedes order)Given a history H and E the set of start and commit operatidns o
transactions committed in H, a time-precedes ordeis a partial order on E such that:

e For any transaction iTcommitted in H, s<; ¢;.
e Given T, T transactions committed in H; & Sj or sj <¢ .

Two transactiongj andT; are concurrent i§ <; ¢j ands;j < ¢;.

4 |solation levels

Ensuring a strict isolation is costly and, depending on thecoete mechanism being used, this implicates
many blocked transactions and/or many aborts. To improxfermeance, commercial DBMSs allow trans-
actions to be executed with weaker isolation levels at tls @ballowing certain types of interferences or
phenomena, which must be either managed by the applicaioartaccepted by the user. An example is
the phenomenon known as Write Skeb}. [Assume a database with two items x and y and an integrity
constraint requiring that+y > 0. If two transactiond; andT; concurrently reack = 50 andy = 50 and
later are allowed to writs = —10 (T;) andy = O (Tj), both will think that the integrity constraint is pre-
served but it is actually violated in the final state. If a gaction is executed with an isolation level which
does not prevent this phenomenon we must be sure that sutdriscs managed by the application logic
avoiding that kind of concurrent transactions.

Snapshot Isolation is an isolation level widely used in DBMS8 provides almost the same isolation
guarantees than Serializable but it never blocks read tipesa As a result, read-only transactions can be
executed without being blocked or aborted.

4.1 Adya’s isolation level definitions

Several isolation level specifications have been givenerlitarature .2, 3, 1, 2]. They identify possible
phenomena that may appear when transactions are executegri@ntly and categorize isolation levels
depending on which of those phenomena are forbidden. Thel/ANSTS specification 7] is widely



accepted but, as Berenson et &i] §howed up, it is ambiguous. Berenson et &l refined ANSI defi-
nitions and extended the classification with new phenomadasmlation level definitions. Actually, they
suggested one of the first definitions of Snapshot Isolasiopported at that moment by some commercial
DBMS as Serializable due to a loose interpretation of ANSm@mena. They proved that Sl allows some
non-serializable executions. Indeed, other pap&ilghowed up that there were other anomalies in Sl
histories. However, Berenson’s specification focuses ok-bmsed concurrency control, ignoring other
mechanisms like multi-versioning, widely used to providefshot Isolation.

Due to that fact, Adyall] presented an alternative specification that is indeperafazoncrete concur-
rency control mechanisms. Adya used a variation of Bem'steerialization graphs to represent histories
as graphs showing dependencies among transactions. Péeaane defined as properties in those graphs.

Definition 4 (Direct Serialization Graph)Given a history H, DS@H) is a directed graph containing a
vertex per committed transaction in H and a directed edgeaficto Tj if one of the following dependencies
appears:

e T, directly read-depends on,Tenoted asiF— Tj, if rj(x) € H.

e T; directly write-depends on; Tdenoted as{T Tj, if wi(x;) <y Wj(X;) € H and it does not exist
any other operation W) such that W(x) <u Wi(X) <n W;j(X;j) € H.

e T, directly anti-depends onj;Tdenoted asiTF~ Tj, if ri(xm) <n Wj(xj) € H and it does not exist
any other operation wxy) such that r(xm) <n Wi (X) <n Wj(X;j) € H.

We say thafT; directly depends or depends Gnif T; directly read- or write-depends di. We also
say thafT; anti-depends off; if it directly anti-depends off;.

As an example of DSG, given a histary/= wo(Xo)Wo(¥o)Wo(Z0)or i (Xo)Wi (X )Ti (Yo) civw; (¥} )W (X, )C;
(this is the flatten representation ldfbut remember that a history is a partial order and not a tot#@r,

the associateBSGH) is:
/WW\

To wriww —= T rw/iww —= T

Figure 1: DSG oH;

Adya used DSG to define a set of possible isolation phenonTéreamain ones are the following:

e GO: Write Cycles: a historyH exhibits phenomenon GO DSGH) contains a directed cycle
composed only by write-dependency edges.

e Gla: Aborted Reads a historyH exhibits phenomenon G1a if it contains an aborted trarmadti
and a committed transactidn such thaw; (X.m) <u rj(X.m) € H.

e G1b: Intermediate Reads a historyH exhibits phenomenon G1b if a transactiGrreads inH a
value written byT; which is not the last write ofj over the item. Formallyw; (Xi.m) <u r'j(Xi.m) <H
Wi(Xi.n) € H andcj € H.

e Glc: Circular Information Flow : a historyH exhibits phenomenon G1lc BSGH) contains a
directed cycle composed only by dependency edges.

e G2: Anti-dependency Cyclesa historyH exhibits phenomenon G2BSGH) contains a directed
cycle containing at least one anti-dependency edge.

Based on the previous phenomena, the following isolatieel$eare defined:

e PL-1: it forbids phenomenon GO and provides a generalized spatidn for Read Uncommitted.



e PL-2: it forbids phenomena GO, Gla, G1b and Gl1c and provides ag@esal specification for
Read Committed.

e PL-3: it forbids phenomena GO, Gla, G1b, G1c and G2 and provides@rglized specification for
Serializable.

Instead of focusing on what should be observed in everyactim execution to determine if its isola-
tion requirements have been ensured, Adya’s definitionsaite what should happen in an entire history
to guarantee a given isolation level to all comitted tratisas. Thus, if PL-1, PL-2 and PL-3 transactions
are executed, we do not know if isolation requirements haanlensured to every transaction but which
isolation level is ensured to the whole transaction setui@t represented bi. To fill that void, Adya
suggested a variation of serialization graphs named Mixathization Graphs (MSG). Given a history
H and itsDSGH), MSGH) has allDSGH) nodes but only those edges representing obligatory depen-
dencies for one of the involved transactions isolationlkevé&he overall execution is correctiMSGH )
does not have cycles and does not show Gla and G1b phenonePla-20and PL-3 transactions. The
obligatory dependencies are the following:

e All direct write-dependencies.
e Direct read-dependencies ending in PL-2 and PL-3 trarsati
e Direct anti-dependencies starting from a PL-3 transaction

Unfortunately, MSGs do not consider transactions requgdtie Sl level. The reason is that the Sl
specification proposed by Adya, named PL-SI, is not based@4but on another variation named Start-
dependency Serialization Graphs (SSGs). Given a histaagd a time-precedes ordef, SSGH, <;) has
all DSGH) nodes and edges plus start-dependency edges:

e T, start-dependsonT;, denoted ag; — Tj, if ¢ <t sj.
SSGs consider new phenomena:

e G-Sla: Interference: a historyH and a time-precedes ordex exhibit the phenomenon G-Sla if
Ti =5 T; € SSGH, <) or Ti == T; € SSGH, <) butTi = T; ¢ SSGH, <y).

e G-Slb: Missed Effects a historyH and a time-precedes ordet exhibit the phenomenon G-Slb if
SSGH, <) contains a directed cycle with exactly one direct anti-tejeaicy edge.

PL-Sl isolation level forbids phenomena GO, Gla, G1b, G1§l&and G-Sib.

4.2 An alternative definition for G-Slb

PL-SI actually forbids more cycles than those explicitlgbidden by GO, G1c and G-Slb. Thus, we provide
an alternative definition which explicitly excludes all ghes representing non PL-SI executions:

Definition 5 (New G-Slb: Missed Effects)A history H and a time-precedes ordey exhibit the phe-
nomenon New G-Slb if S8, <) contains a directed cycle with at least one direct anti-dejency edge
but without two consecutive direct anti-dependency edges.

Lemmal proves that both G-Slb definitions can be indistinctly useBL-SI definition.

Lemma 1 (G-Slb and New G-Slb are equivalentsiven a history H and a times precedes ordsgy,
SSGH, <) forbids GO, Gla, G1b, Glc, G-Sla and GSI-b phenomena iff(BS&) forbids GO, G1la,
G1b, Glc, G-Sla and New G-Slb phenomena.

Proof. New G-Slb is less restrictive than the original G-Slb andsttwhen New G-SlIb is proscribed, it
is admitting less histories than the original definition.n@ersely, we prove that any histoky and time-
precedes ordex; proscribing GO, Gla, G1lb, Glc, G-Sla and G-Slb proscribes Hew G-SIb. This
implies that both conditions sets are equivalent. By abseddiction, we assum8SGH, <) is PL-SI



and it has a cycle with anti-dependency edges but withouttmsecutive anti-dependency edges. Since
SSGH, <) is PL-SI, it has not any cycle with a single anti-dependerdiyeeand, thus, the cycle has at
least two of those edges. Assume that one of them goesTydonT;, T LN T;. Thus,s <t cj because,
otherwisec; <; 5 and there is a start-dependency edge figro T; which closes a cycle with a single
anti-dependency edge which contradicts the initial assiampSince there are not two consecutive anti-
dependency edges, there must be an edge from anotheTptw& and another one fror; to T;, both
dependency or start-dependency edges. Thus, by G-Sla andigpendency definitionsy, <; § and

Cj <t 9. Sinces < ¢j, thency <; § and this implies thafy — T € SSGH, <(). Consequently, there is
a shorter cycle without; =~ T; anti-dependency edge. We can iteratively apply the sarterion until
getting a cycle with a single anti-dependency edge whichraditts the initial assumption saying that
and<; avoid the original G-SIb phenomenon. O

5 Alternative definition of Snapshot Isolation

A history H is PL-SI if it exists a schedule®(E, <) such thatE is the set of start and commit events
of committed transactions iH, <; is a time-precedes order dh and SSGH, <;) does not show GO,
Gla, G1b, Glc, G-Sla and G-Slb phenomena. This sectiordintes PL-SI’, an alternative definition
exclusively based on DSG dependency edges. We also pravitlteany PL-SI’ historyH there exists at
least one schedul&E, <¢) such thaSSGH, <) is PL-SI.

5.1 PL-SI': an alternative definition of PL-SI

With Snapshot Isolation (Sl) a transaction is executed av@mmitted state of the database or snapshot.
If a transactionl; reads or overwrites a valug then transactiof;j is in Ti's snapshot. Ifl; reads a value
overwritten by another transactidp thenTy is not inTy’s snapshot. IfT; is in Ti’s snapshot and; is in
Tj's snapshot thef is also inT;’s snapshot. Thus, a transactionirisa snapshos if its updates can be
read froms or if they were accessible at a previous committed state amd heen later overwritten by
transactions also ia

In a Sl historyH, T; cannot be involved in a cycle composed only by dependencgs(@lc phe-
nomenon).T; cannot be part of the snapshot it observes while it is beiegwed. Cycles with only one
anti-dependency edge are neither possible. If we assurhsubh cycle exists and the anti-dependency
goes fromT; to T; then there is a path frofi; to T in DSGH) composed only by dependency edges.
Thus, T; is and is not inTj’s snapshot at the same time, which is a contradiction. Asirti®n4.2, that
can be extended to any cycle with anti-dependency edgesoasasotwo or more of them do not appear
consecutively.

Consequently, G-Slb can be redefined in the following way:

Definition 6 (G-SIb’: Missed Effects) A history H exhibits the phenomenon G-SIb’ if D$G contains
a directed cycle with at least one direct anti-dependenayeetlit without two consecutive direct anti-
dependency edges.

Thus, PL-SI’ can be defined in the following way:

Definition 7 (PL-SI). A history H is PL-SI' if it forbids GO, G1la, G1b, G1lc and G-Slb’

5.2 PL-SI' and PL-SI equivalence

PL-SI'and PL-SI do not represent actually the same, bdgibatause PL-SI’ is based on the dependencies
in H but PL-SI contemplates also the dependencies among theistacommit operations iB. However,

limagine a cycle with two or more non-consecutive anti-depeegledges. This cycle should have at least four nodeg, If,
T3 andTy are four consecutive nodes in the cycle and there is an apgmtlency edge froi» to Tz then the edges froffy to T, and
from T3 to T, are dependency edges. Thiisjs in T,'s snapshot and is in T4's snapshot but is not ifi,’s snapshot. Consequently,
T, observes a committed state previou3i@napshot. SincE is in T,'s snapshot theil is also inT,'s snapshot. If that is iteratively
applied to the rest of anti-dependency edges we will finach to a contradiction likE is in T;'s snapshot (note that this means
that the items written byf; had been committed befoflg started, and this is impossible).



it can be said that PL-SI’ histories are also PL-SI if theyresent a correct PL-SI execution. In other
words, PL-SI' is equivalent to PL-SI if for any PL-SI’ hisgoH exists at least one scheduf&E, <) such
that SSGH, <;) is PL-SI. In this section we prove that at least one schediletthis exists and is based
on what we call an Extended Sl-derived ordgy; a specific type of time-precedes order.

The inverse assertion is trivially true. H and <. are PL-SI therH is PL-SI’ since proscribing G-
SIb’ is less restrictive than proscribing G-Slb and G-Slfathére is not a cycle with anti-dependencies
but without two consecutive anti-dependencieSBGH, <¢) then this cycle obviously does not exist in
DSGH) because both graphs have the same verticd88®H ) has only a subset §SGH, <¢)’s edges.

Both PL-SI and PL-SI’ forbid GO, Gla, G1b and G1c phenomerenT a PL-SI’ histonH is PL-SI
if SSGH, <¢) does not show G-Sla and G-Slb aad is a times-precedes ordet. is an extension of a
Sl-derived ordeks. <g orders starts and commits of committed transactiorts$ by applying Sl rules to
the dependencies DSGH). In the following we define both, Sl-derived order and Exth&I-deriver
order.

Definition 8 (Sl-derived order) Given a history H and E the set of start and commit operatidrsom-
mitted transactions in H, a Sl-derived ordek is a partial order on E where:

a) ¢ <ssif T} =5 T, € DSGH) or Tj == T; € DSGH).
b) Sj <sGi iij M Te DSGH).
C) § <sG if Tjisin H and T commits.

Condition a) avoids G-Sla phenomena and condition b) allawrainsactior; to miss the effects of
transactions only if they do not belongTds snapshot. Condition c) indicates how a transaction atzat
commit operations are ordered.

Unfortunately,<s may not order any possible combinationspfandc; and, thus, it is not a time-
precedes order. For example, it will never order start amdnaih operations of transactions not connected
in DSGH). The Extended Sl derived ordet. we further present is a Sl-derived order, a time-precedes
order and, most important, applied to a PL-Blresults in a PL-SESGH, <).

Definition 9 (Extended Sl-derived order)siven a history H and E the set of start and commit operations
of committed transactions in H, an Extended Sl-derivedrotdeis a partial order on E where:

a) <eis a Sl-derived order on E.

b) s <ecj (alternatively, ¢ <e §) iff they are ordered that way by the following set-order
algorithm. Givene the set of pairs(s,cj} unordered by Sl-derived order conditions a), b)
and c) and given<, a total order on¢ such that{s,c;} <o {s..c} iffi <kV (i=kAj<l),
the set-order algorithm orders the elementiras follows:

e While &' is not empty:
— Take off the minor paifs,cj} from & (A{sc} € ¢ such that
{860} <o {5.6/}).
— Order its operations as; S<e Cj.
— Take off fromy’ any other pair if its operations ordering can be now
deduced.

The idea behind<e is not to accurately represent how transactionsl ihave been originally sched-
uled (actually, this may be not feasiblex deduces start-dependencies from dependencies and anti-
dependencies il and suggest an ordering of the rest of transactions stagt€@mmits avoiding any
possible violation of PL-SI restrictions. As we prove laierthis section,<e shows that at least thee
ordering produces PL-SI executions when applied to a PLkiStoryH, which proves thaH represents a
PL-SI scheduler.

As an example, assume the histdty = wq(x1) Wa(Y2) €1 C2 Wa(X3) C3 Wa(Ya) €4 and the associated
DSGH;). The associateBSGHj) is shown in Figure.



wWwW—— T3

T Wr——= Ty

Figure 2:DSGH3)

< orders all commit and start operations of committed tratisas inH1: {s;,c1}, {s1,C2}, {s1,C3},
{s1,Ca}, {82, C1}s {2, C2}, {2, Ca}, {2, Ca}s {Ss, 1}, {S3,Ca}, {S3,Ca},s {S3,Ca}, {Su,Ca}, {S4,C2}, {1, Ca},
{s4,C4}. Sl-derived order condition a) ordets <e S3 andc,; <e s4. Condition b) cannot be applied in
this case and c) ordess <e €1, <e C2,S3 <e C3 andsy <e C4. Due to the transitivity property of partial
order <, if 51 <e €1, €1 <e S3 @anNdsz <e C3, thens; <e €3 can be deduced. Similarlg, <e ¢4 can also
be deduced from conditions a) and c) orderings. The uncddeses ares'=({s1,C2}, {S1,Ca}, {2, C1},
{s2,C3}, {s3,C2}, {S3,Ca}, {s4,C1}, {s4,C3}). The set-order algorithm pops the first pairdhand orders it
ass) <e C2. Sincec; <e¢ 4 andsy <e €4, S1 <e €4 Can be deduced and it is also popped frémThen the
algorithm orderss; < €1, deduces, < C3 (Sincec; <e S3 andss <e €3) and both pairs are also popped.
In the following steps; <e Cz is popped and ordered. Since<e 4 andsy <e €4, S3 <e C4 IS also popped.
C1 <e 4 Can be also popped since <e S3, S3 <e C2 andcy <e 4. Finally, s <e €3 is popped and ordered.
Figure3 shows the resulting graph:

T ww/s— T3

To wr/s—»= Ty

Figure 3:SSGH;)
As another example, assume a histbly= wp (Xo) Wo(Yo) Co Wi(X1) C1 r2(Yo) C2 Wa(X3) Ws(Y3) C3

wq(y4) €4 which generates the followinDSGH) (To establishes the initial state of the database and, for
the sake of simplicity, it is not representedd$GHy)). Figure4 shows the associat&SGH,):

Tl\

Figure 4:DSGH)

Ordering <e must order the following start and commit pairs of committeghsactions:{s;,c;},
{s1,C2}, {s1,C3}, {S1,Ca}, {S2,C1}, {2, Ca}, {2, Ca}y {2, Ca}s {S5,Ca}, {S3,C2}, {S3,Ca}, {S3,Ca}y {S4,Ca},
{s,C2}, {s4,C3}, {=4,C4}. Condition &) orders; <e S3 andcz <e &4. Condition b) orders; <e c3. Condi-
tion ¢) orderss; <e C1,S <e C2,S3 <e C3 aNdsy <e C4. From those orderings <e C3, S1 <e Ca, 2 <e C4,

S5 < €4 andcy <e &4 can be deduced. Thug, = ({s1,C2}, {S2,C1}, {Ss,C2}, {%4,C2}). The set-order algo-
rithm will order them as; <e C2, S <e C1, S3 <e C2 andsy <e C2. Thus,H and < represent an execution
whereT;, T3 and T, have been scheduled serially afidhas been executed concurrently to all of them,
which do not violate any PL-SI requisite. The resultB§GH,, <t) is depicted in Figuré:

Once defined the Extended Sl-derived oreer we now prove that, applied to any PL-SI’ histdty
the resultingSSGH, <¢) is PL-SI. Since PL-SI' avoids GO, Gla, G1b, G1c and G-Slb'rameena, we



Figure 5:SSGH, <¢)

should prove that the8SGH, <¢) proscribes G-Sla and G-Slb and tkat is a time-precedes order. The
demostration starts by proving that Sl-derived order dioaé and the set-order algorithm do not violate
G-Sla or G-SIb (Lemmag and3). Next, Theorend proves thak is also a time-precedes order. Finally,
all is gathered together in Theoretio prove thalSSGH, <) is PL-SI.

Lemma 2 (Correctness of Sl-derived order conditions a), b) and Gjiven a PL-SI' history H and a
Sl-derived ordeks, G-Sla and New G-Slb phenomena do not show up inBSG;).

Proof. The condition a) of SI-derived ordets adds a start-dependency edge=- T; to SSGH, <s) for

every dependency edqewﬂ>r T; in DSGH). That trivially forbids G-Sla.

SinceH is PL-SI’, G-SIb’ and G1c forbid any cycle iBSGH) composed by dependency and anti-
dependency edges. The only exception are cycles with twoooe rronsecutive anti-dependency edges.
By absurd reduction, assume tli&is PL-SI’ butSSGH, <s) shows New G-Slb. Thu§SGH, <s) has a
cycle with anti-dependency edges but without two conseew@nti-dependency edges. SIRBGH, <s)
only differs fromDSGH) in the start-dependency edges &hdbrbids G-Slb’, that cycle contains at least
one start-dependency edge. From Lenfhisee Appendix), ii — Tj in SSGH, <s) (i.e., ¢ <sSj) then
exists a directed paghin DSGH) from T, to T; such thap starts and ends with dependency edges and does
not show two consecutive anti-dependency edges. If we eéhangry start-dependency edge in the cycle
by its alternative path we will get a new cycle composed onlylependency and anti-dependency edges
and without two consecutive anti-dependency edges. TBE8&(H) shows G-SIb’ phenomena which
contradicts the initial assumption. Th&SGH ) forbids New G-Sib. O

The set-order algorithm orders the remaining starts andntitsmonce conditions a), b) and c) are
applied. The algorithm itself avoids contradictions siitaenly orders unordered pairs. Thusgif<e s
can be deduced from a), b) and c) or from any other previousrimgl applied by the set-order algorithm
then this pair will never be i@’ and will never be ordered again.

Lemma 3 (Set-order algorithm correctnesspiven a PL-SI’ history H and an Extended Sl-derived order
<e, the start-dependency edges added by the set-order dlgoniever produce a New G-Slb cycle in
SSGH, <e).

Proof. The set-order algorithm explicitly orders starts beformuoats only. By absurd reduction, assume
that the set-order algorithm adds an orderinge cj and that closes a cycle with anti-dependency edges
but without two consecutive anti-dependency edges. Asghmaew anti-dependency edge produced by
the set-order algorithm goes from verfgxto T, such thaty <e § andcj <e s, Then, there is a path from

T, to Tp with anti-dependency edges but without two consecutivedeggendency edges. From Lemiha
(see Appendix), we can deduce tlsate Co and, hence, thatj <e 5. Since the set-order algorithm only
orders start and commit operations if their ordering cabealeduced from previous orderings, then it will
never ordes <e ¢j which contradicts the initial assumption. Hengexe ¢; will never close a cycle with
anti-dependency edges but without two consecutive api@dency edges. O

Finally, we prove thak is a time-precedes order and produces a PESEGH, <) if H is PL-SI'.
Theorem 1. An Extended Sl-derived ordete is also a time-precedes order.

Proof. We split the proof in two parts:
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e <eorders any pair {s;,cj} in H: some pairs are ordered by Sl-derived order conditions)ant
c¢). The remaining pairs are ordered by the set-order alguorih condition d).

e < does not generate contradictionsin other words, it will never ordes; <e ¢j andcj <e s at the
same time. From Lemm@ (see Appendix) we know that Sl-derived order conditiondagnd c)
will never produce a contradiction and the set-order athjorionly orders unordered pairs and does
not introduce contradictions either.

O
Theorem 2. If H is PL-SI' then SS@H, <¢) is PL-SI.

Proof. GO, Gla, G1b, Glc are avoided by definition siRtes supposed to be PL-SI'. Thus, we only have
to prove that G-Sla and G-Slb are avoided too:

e G-Sla: Itis trivially avoided by Condition a) of Defo.

e G-Slb: Lemmasl, 2 and3 ensure that Conditions a), b), ¢) and d) will never produc@3@H, <e)
a cycle with exactly one anti-dependency edge.

O

Thus, when time-precedes ordeg is applied to the start and commit operations of committadg¥
actions in a PL-SI’ histor, the resultingSSGH, <¢) is PL-SI. Then, a PL-SI’ histori is also PL-SI.

6 Conclusions

Existing commercial DBMSs support several isolation Ieteladjust the concurrency control mechanisms
to transaction isolation needs. This improves the oveyaliesn performance by compromising only the
isolation guarantees that can be managed by applicaticassomed by the final users. However, today it
does not exist a complete and mechanism-independent fonodel to determine if a given execution is
correctly managing isolation when multiple transactiogguest different isolation levels.

The closest model is the one introduced by Adya. Howevemli supports PL-1, PL-2 and PL-3
isolation levels, equivalent to Read Uncommitted, Read @idtad and Serializable but leaves aside the
widely used Snapshot Isolation level. Sl offers almost thees isolation guarantees than Serializable
but shows a better performance in read intensive envirotsnspecially if there are a lot of read-only
transactions. Sl is not included in Adya’s model becausmigribes phenomena based on a time-precedes
order and SSG graphs while his model supporting severadtisallevels is based on DSGs, which only
contemplates dependencies related on conflicts among neladrée operations. In this paper we present
PL-SI', an alternative definition of Sl based on DSGs. We gsave that any PL-SI histori is also
PL-SI' and vice versa by showing that it is possible to defirtaree-precedes ordet, over any PL-SI
historyH such thatSSGH, <¢) is PL-SI. Our definition can be included in Adya’s MSG theamyptrove
the correctness of a history when transactions requesteélift isolation levels, including SI.

APPENDIX

Lemma 4 (Start and commit orderings bys in PL-SI' histories) Given a PL-SI history H and a SI-
depends ordeks, § <s Cj iff

a) A path pin DS@H) connects nodes &nd T; and
b) pis adirected path from; To T; and

c) p does not contain two consecutive anti-dependency edges

Proof. a) If s <sc;j then a), b) and c)

11



e a) proof < conditions only order starts and commits of transactiomseoted by an
edge inDSGH). Thus,s <sc;j if Ty andT; are connected iDSGH) by a path of edges.

e b) and c) proof Assumes <sc;j is deduced from patp. We prove by induction over
p’s lengthn that p fulfils b) and c) conditions:

— Base case (& 1): pis composed by a single edgeSinces <s¢j, thene can only

Ww/wr

beT - T;j (by <s condition b)) orTi — T; (by the combination ofs conditions
a) and c)). Any other alternative (i.e., an edge fropnto T;) will contradicts <sc;
initial assumption. Thus fulfils b) and c).

— Induction hypothesis (r 1): if 5 <scj andplengthn < | then b) and c) are fulfilled.

— Induction step (n=1): assumes <sc;j and p length isl. Doesp fulfil b) and c)?
Supposdy is the immediate node befolig in p. Thus, there is a path’ connecting
Ti andTi and a final edge joining Ty andT; in DSGH). p’ is| —1 length. b) and
c) are fulfilled inp only if they are also fulfiled i’ and they are neither violated
by e. There are four alternatives:

x €= Tkwvv—/W»r Tj: by <¢'s condition a) ¢« <sSj and, by<s’s condition ¢),cx <sC;j.
Sinces <s¢;j is deduced fronp, 5 <s ¢ in p’. By the induction hypothesis,

p’' fulfils b) and c). SinceTy A Tj goes in the samg’ direction and is a
dependency edge,also fulfills b) and c) conditions.

x e=Ty — Tj: by <s's condition b),s <s ;. Sinces <sc;j is deduced fronp,
s <sS and, by ¢)s <sck. By induction hypotesisy fulfils b) and c). Imagine
€ =Ty_1 — Tk is the last edge ip'. Sinces <s S, exists alx_1’'s operation
Ok_1 Such thatog_1 <s S ands <s0x_1. Ok_1 IS eithersc_1 or cx_1 since<sg
only orders starts and commits. If we obsetug a start is always ordered with
a commit in an edge and, thug,_1 <s S and€ is a dependency edge. Thus,
there are not two consecutive anti-dependency edgegp &iills b) and c).

Ww/wr

x e=T; — T in this casep trivially does not fulfil condition b) and, thus,
we should prove tha £scj. By <g's condition a)c; <ss«. Evenifs <ss,
S <sCj can not be deduced.

x e=T; 5 Ti: again,p trivially does not fulfil condition b) and, thus, we should
prove thats £scj. By <s's condition b)s; <scx. Evenifs <sck, 5 <sCj can
not be deduced.

b) If @), b) and c) then s <s¢;: thus, there is a directed pafhfrom T; to Tj without two
consecutive anti-dependency edge% i§ composed only by dependency edges then trivially
S <sCj. Givenp=T, i To == Tm iy Tj, by <s condition a)g; <s S, ...,Cm <s Sj. Since,
by <s condition c),s¢ <s C for any nodely, s <s G <s Sy <s ... <sCm <sSj <s Cj and, thus,

S <s¢Cj. If there are anti-dependency edgespinwe proves <s cj by induction over the
numbem of anti-dependency edgesm

e Base casdn = 1): there is only one anti-dependency edgé/Ne differentiate the fol-
lowing cases:

e eis the only edge ip: by <s condition b),s <e C;j.
e pis composed by two or more edges and:

e e=T ™ Ty is the first edge inp. By <g condition b),s <e Ck.
Any other edgel,, — Tny1 in p is a dependency edge and, hy
condition a),c, <e Sha1. By <s condition ¢),s¢ <s Ck for any nodeTy
in p. Thus,s <e G <e S <eCj-

e e=Ty == T, is the last edge ip. By <s condition b),s <e C;.
Any other edgel, — T,.1 in p is a dependency edge and, ky
condition a),c, <e Sh11. By <s condition c),s¢ <s ¢k for any nodeTy
in p. Thus,s <e G <e S <eCj-

12



o e=T % Tyy1 is notthe first, neither the last edgegnThen, T # T,
andTi1 # Tj. Any other edgd,, — T,,1 in pis a dependency edge
and, by<s condition a),c, <e Sh+1- By <s condition ¢),s¢ <s ¢k for
any nodeTy in p. Thus,c <e & andcyey1 <e Sj. Thens <e G <e
S <e Ck+1 <e Sj <eCj.

e Induction hypothesis(n < I): the lemma holds ip hasn < | anti-dependency edges.

e Induction step (n=1): assume now a path starts fromT;, ends inT;, hasl| anti-
dependency edges and fulfils b) and c). Thes c;? Again, there are several possibil-
ities:

e p starts with an anti-dependency edge- Ti ™~ T¢. By <s condition b),
S <e Ck- Since there aren’t two consecutive anti-dependency edgedge
T« — Tkr1 Next toeis a dependency and, Bys condition a)cx <e 1. The
subpathp’ = Tg,1 — ... — T hasl — 1 anti-dependency edges and, by the
induction hypothesisg 1 <e Cj. Thus,s <e Cx <e Sk+1 <e Cj-

e p ends with an anti-dependency edge- T, — Tj. By <s condition b),
S <e Cj. Since there aren’t two consecutive anti-dependency edgesdge
Tk_1 — Tk previous toeis a dependency and, Bys condition a) ¢k <e Si1-
The subpathy/ = T — ... — Tx_1 hasl — 1 anti-dependency edges and, by
the induction hypothesis, <e Cc—1. Thus,s <e Ck—1 <e & <e Gj.

e p does not start, neither ends with an anti-dependency edgegihee =
Tk — Ti,1 is one of the anti-dependency edgeinThus, by<s condition
b), sc <eCkr1. The previous and the next eddgs; — Tk andTiy 1 — Tki2
are dependency edges because there aren’t two conseautindependency
edges. Thus, by:s condition a),cx 1 <e S andcy 1 <e S;2. The paths from
Ti to Ty—1 and the path fronTy,, to T; will havel — 1 or less anti-dependency
edges and, by the induction hypothesisse C_1 andsy; 2 <e Cj. Thus,s <e
Cr—1 <e Sk <e Ck+1 <e S+2 <eCj.

O

Lemma 5 (Start-dependency edges generated by Sl-derived ergerGiven a PL-SI’ history H and a
Sl-derived ordeks, G <sS; iff

a) A path pin DS@EH) connectsiTand T, and
b) pis adirected path from; To T; and
¢) p does not contain two consecutive anti-dependency edges

d) p starts and ends with dependency edges.

Proof. a) If ¢ <ssjthen a), b), c) and d) if ¢ <ssj then, by<s condition c),s <scj and
Lemma4 proves a), b), and c). Thus, there is a directed gaffom T; to T; without two
consecutive anti-dependency edges. We prove d) by induatier the lengttm of p:

e Base cas¢n=1): pis composed by a single directed eddeom T to Tj. Sincec; <ss;j,
by < condition a) this edge must be a dependency edge.

e Induction hypothesitn < I): if plengthn < | andc; <ss;j, d) is also fulfilled.

e Induction step(n = |): assumely and T, are, either, the immediate nodes affeand
beforeT; in p. Thus, there is a directed pgth= Ty — ... — T with lengthr/ <. If p/
starts and ends with dependency edggs;s S by the induction hypothesis. Otherwise,
S <sC by Lemmad. Sincec <ssj, at least; <ssc andc <ss;. Thus, by<s condition
a), i — T andT; — T; must be dependency-edges and, thustarts and ends with
dependency edges.
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b) If &), b), c) and d) then ¢ <ss;: thus a directed patp from T; to T; exists with an initial
and final dependency edges and without two consecutivedlapgndency edges. By Lemma
4,5 <sCj. We prove that alsg; <ssj by induction over the length of p:

e Base casén=1): in that case, by djp is composed by a single dependency edge. Thus,
C <sSj by <s condition b).

e Induction hypothesign <1): if plengthn <1 and a), b), c) and d) conditions are ensured,
G <sSj.

e Induction stegn=1): a), b), c) and d) ang lengthisn=1. ¢; <ss;? pis a directed path
Ti — ... — Tj without two consecutive anti-dependency edgealso starts and ends
with T ™ T, and T, "™ T; dependency edges. Thi,— ... — T is a pathp/ of
lengthn’ < | which ensures a), b) and c) and, by Lem#ns <5 ¢;. From <g condition
b) we also get that; <ss¢ andc <sSj. Thus,G <s S <sC <sSj.

O

Lemma 6 (<5 conditions a), b) and c) are not contradictorg)onditions a), b) and c) applied to a PL-SI’
history H will never produce a contradiction like §e ¢j and g <e .

Proof. By absurd reduction, given two transactiohsl; € H, if 5 <e ¢j andcj < s then, by Lemmag
and5, there isa patipl = Ti — ... — T; in DSGH) and another patp2 =T j — ... — T such that

pl andp2 do not have two consecutive anti-dependency edgepaathrt and end with dependency edges.
Thus, pl andp2 form a cycle inDSGH) without two consecutive anti-dependency edges. Howelvet, t
contradicts the initial assumption because that sort desyare explicitly forbidden by PL-SI'. O
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