
A Consistency-based Specification for the

One-Copy Serializability Variants
M. I. Ruiz-Fuertes, F. D. Muñoz-Escoı́

Instituto Tecnológico de Informática
Universitat Politècnica de València

46022 Valencia (SPAIN)

{miruifue,fmunyoz}@iti.upv.es

Technical Report ITI-SIDI-2012/005

M
.I

.R
ui

z-
Fu

er
te

s
et

al
.:

A
C

on
si

st
en

cy
-b

as
ed

Sp
ec

ifi
ca

tio
n

fo
r

th
e

O
ne

-C
op

y
Se

ri
al

iz
ab

ili
ty

Va
ri

an
ts

IT
I-

SI
D

I-
20

12
/0

05





A Consistency-based Specification for the One-Copy
Serializability Variants

M. I. Ruiz-Fuertes, F. D. Muñoz-Escoı́

Instituto Tecnológico de Informática
Universitat Politècnica de València

46022 Valencia (SPAIN)

Technical Report ITI-SIDI-2012/005

e-mail: {miruifue,fmunyoz}@iti.upv.es

Abstract

One-copy serializability (1SR) is the accepted correctness criterion of replicated database systems.
A distributed database must behave as a single system, and the result of concurrently executing trans-
actions should match a serial execution. In order to ensure 1SR, concurrency was initially managed
by distributed locking, and atomic commit protocols controlled transaction termination. Those systems
suffered from low throughput. Research focused then on improving performance and scalability, main-
taining 1SR. Total order broadcast provided an alternative to atomic commitment, and transactions were
locally executed before broadcasting their effects to other replicas. Outstanding performance improve-
ments were achieved. However, the enforced guarantees were subtly but significantly modified. This
paper proposes a common specification for the 1SR variants that exist nowadays. Using it, the different
replica consistency conditions set by these criteria are precisely stated.

1 Introduction
Distributed and replicated database systems appeared for providing a higher availability than existing stand-
alone databases. Bernstein et al. [2] defined one-copy serializability (1SR) as their correctness criterion. In
1SR the interleaved execution of transactions must be equivalent to their serial execution on a stand-alone
database. In order to ensure 1SR, an approach inherited from stand-alone database systems was followed
[2]. Thus, write operations over any item had to acquire write locks in all its copies before updating it.
This concurrency control based on distributed locking strongly affected performance. Moreover, an atomic
commit protocol (usually 2PC) was run for transaction termination. In such protocols, several rounds of
messages are exchanged among all participating sites, which further penalized performance and scalability.

Several optimizations were added later. According to the deferred update replication model [10], trans-
actions were processed locally at one server and, at commit time, were forwarded to the other replicas
for validation. This saved communication costs as distributed synchronization was only done during 2PC.
Another optimization consisted in substituting 2PC for a total order broadcast (TOB) [1], whose delivery
order defines the serialization order for achieving 1SR.

2PC-based replication protocols and TOB-based ones ensure 1SR. However, carefully analyzing these
systems, some differences exist. This paper shows that some replication consistency features significantly
changed when 2PC was replaced by termination protocols based on TOB.

The remaining sections are structured as follows. Section 2 details the system model. Section 3 de-
scribes memory consistency models. Inspired in the differences between those models, Section 4 presents
a complete formalization of some 1SR variants. Section 5 gives the conclusions.

1



2 System Model and Definitions
We assume a partially synchronous distributed system composed of database servers, also called sites
or replicas, R1, R2, . . . , Rn, which store data, and clients that contact these servers to access the data.
Communication between sites is based on message passing. They do not have a global clock.

A database is a collection of logical data items. Each data item is physically stored at the servers.
A local relational Database Management System (DBMS) runs at each site. The database workload is
composed of transactions, T1, T2, . . . Transactions are sequences of read and write operations followed by
a commit or an abort operation, and maintain the ACID properties. The writeset is the set of items written
by a transaction. A transaction is called a query if it does not contain any write operation; otherwise it is
called an update transaction. In the Read One Write All Available (ROWAA) [2] approach, queries only
need to access one replica, while update transactions are required to modify all available replicas. Sessions
[11] logically group a set of transactions from the same user. Transactions from different users belong to
different sessions. The replica to which a transaction T is addressed is called the delegate replica for T and
is responsible for its execution.

3 DSM Consistency Models
Memory consistency models represent how memories from different sites are synchronized to conform a
distributed shared memory (DSM). The higher the level of consistency, the higher the synchronization and
the fewer the divergences on values. According to Mosberger [8], the strictest level of consistency, atomic
consistency [7], considers that operations take effect inside an operation interval. Operation intervals
are non-overlapping, consecutive time slots. Several operations can be executed in the same slot; read
operations take effect at slot-begin time while write operations take effect at slot-end time. Thus, read
operations see the effects of all write operations of the previous slot but not those of the same slot.

Despite the easiness of design for applications that use atomic memory, this consistency model is often
discarded due to its high costs. Consequently, a more relaxed model is used as the regular level: sequential
consistency. In that model [6] the result of any execution is the same as if the operations of all processors
were executed in some sequential order, and the operations of each individual processor appear in this
sequence in the order specified by its program.

The key difference between these models is the old-new inversion. Such issue is precluded in the atomic
model but it may arise in the sequential one. It consists in the following: once a process p1 writes a value
vn onto a variable x whose previous value was vo, another process p2 reads vn while later a second reader
p3 reads vo. This is sequentially consistent since p3 might read afterwards value vn, according to the total
order associated with sequential consistency. However, such scenario violates atomic consistency since p3
reads x once the slot given to value vn was already started and all its reads should return vn (instead of vo).

4 1SR Variants
Although memory consistency models only consider individual operations, a correspondence to transac-
tional environments can be established. Indeed, the concept of transaction matches the concept of operation
interval [5]: a transaction T can be considered as a macro-operation from the DSM point of view, where
all read operations can be logically moved to the starting point of T (as read versions correspond to those
available when the transaction started), and all write operations are logically moved to the termination point
of T (when the transaction commits and its updates are visible for other transactions). Thus, the interval of
time where all transaction operations are executed is a transaction interval.

Inspired in the idea of a transaction as a macro-operation, and adapting Mosberger’s concept of oper-
ation interval [8] to its use with transactions, a formalization is presented refining 1SR by distinguishing
among its admitted replica consistency models. In the same manner as old-new inversions differentiate
atomic and sequential DSM models, we will distinguish among the resulting correctness criteria by identi-
fying divergences in their allowed executions.

2



Starting from Bernstein et al. [2], a system guarantees 1SR when a complete replicated data history
HRD (RD history) is view equivalent to a serial one-copy history H1C (1C history); i.e.: (a) HRD and
H1C have the same reads-from relationships, i.e., Tk reads from Tj in HRD iff the same holds in H1C ;
and (b) for each final write in H1C , there is a final write in HRD for some copy of the same data item.
The equivalent 1C history is serial: for every pair of transactions, all the operations of one transaction
are executed before any operation of the other. From the point of view of users, transactions in a serial
execution seem to be processed atomically, in intervals.

The following definitions present the foundations of our specification. Next, by requiring some extra
conditions over the sequence of intervals of the equivalent 1C history, we will qualify two criteria that are
enclosed in 1SR.

Definition 1 (Interval). Let H1C be a serial 1C history, and Tj a transaction committed in H1C . The
interval of Tj in H1C , I(Tj), is the block composed by the operations of Tj in H1C . As H1C is serial, it
constitutes a sequence of the intervals of all committed transactions.

Aborted transactions do not present intervals.

Definition 2 (Interval order). Let H1C be a serial 1C history. The interval order of H1C , <i, is the total
order in which the intervals appear in the sequence defined by H1C .

Definition 3 (Conflicting transactions). Two transactions conflict if they have conflicting operations. Two
operations conflict if they belong to different transactions, access the same data item and at least one of
them is a write.

Definition 4 (Independent transactions). Two transactions that do not conflict are called independent trans-
actions. Multiple transactions compose a set of independent transactions if all pairs of transactions in that
set are independent.

Independent transactions may be executed in any order: as they do not conflict, the results of the
transactions and the final database state will be the same at any possible execution order. However, when
transactions conflict, the order in which they are executed is important, as their results and the final database
state depend on this execution order. One of the equivalent serial orders of a set of conflicting transactions
must be chosen. 1SR admits any of them but, for a user, the natural and intuitive order is the order in which
transactions started in real time.

Definition 5 (First start). A transaction Tj first-starts when it accesses any item of the replicated database
for the first time through any system replica Ri (the delegate replica).

Real time is considered to capture the point of view of users. However, this does not impose any
real-time constraints on the system, nor it requires any notion of global clock among replicas.

In a locking-based concurrency control all operations over database items are preceded by the acquisi-
tion of locks. A transaction whose initial operation is held in the database while waiting for the required
locks is not first-started until those locks are granted and the first data item is effectively accessed.

After executing all its operations, a transaction asks for commitment. In the ROWAA approach, each
committed transaction Tj must apply its updates at every available replica. This can be considered as
multiple commit operations for Tj . One of the replicas, Ri, will be the first to complete the commit
operation and make the updates of Tj visible to other transactions starting at Ri. This instant is when Tj

first-commits.

Definition 6 (First commit). A transaction Tj first-commits when it commits in the replicated database for
the first time, through any system replica Ri.

Definition 7 (RT precedence). A transaction Tj precedes transaction Tk in real time, Tj <rt Tk, iff Tj

first-commits before Tk first-starts.

The <rt order is partial.

Definition 8 (Concurrent transactions). Two transactions Tj and Tk are concurrent if both Tj <rt Tk and
Tk <rt Tj are false.

3



Definition 9 (Alteration). Let Tj and Tk be two committed transactions in a 1C history H1C . Let Tj <rt

Tk. An alteration occurs in H1C if Tk <i Tj , i.e., the interval order of H1C is inconsistent with the RT
precedence.

Definition 10 (RTC precedence). A partial order called real-time and conflict precedence, <rtc, is the
transitive closure of the relationship that includes all pairs Tj <rtc Tk such that (a) Tj <rt Tk, and (b) Tj

and Tk are conflicting transactions.

Definition 11 (Inversion). Let Tj and Tk be two conflicting transactions in a 1C history H1C . Let Tj <rtc

Tk. An inversion occurs in H1C if Tk <i Tj , i.e., the interval order of H1C is inconsistent with the RTC
precedence.

An inversion is an alteration between conflicting transactions. Users may only perceive inversions.
Imagine transactions Ta, Tb and Tc, started by the same user one after the commitment of the other, i.e.,
Ta <rt Tb <rt Tc. Let Ta contain a single write operation over x, and let Tb and Tc be two queries: Tb

reads x and Tc reads y. Thus, the RTC precedence over these transactions is only: Ta <rtc Tb. Indeed, the
user expects Tb to run after Ta and thus get the updated value of x, while Tc is completely independent of
the other transactions and could be executed in any order.

The old-new inversion presented in Section 3 corresponds to an inversion where a query overtakes the
update transaction from which it was supposed to read a value.

Definition 12 (Strong 1SR correctness criterion). A complete RD history HRD over a set of transactions
is Strong 1SR if it is view equivalent to a serial 1C history H1C which respects the RTC precedence, i.e.,
which contains no inversions.

For users, this model ensures atomic consistency since the results of an execution match those generated
when each transaction is committed at every replica before starting the next one. However, this criterion is
less strict than the atomic DSM model since it only precludes inversions.

Strong 1SR restricts the serial orders that would comply with 1SR, so that orders violating RTC are not
considered. Examples of Strong 1SR are the algorithms described by Berstein et al. [2] and the strongly
serializable DBMSs of Breitbart et al. [3].

This variant is suitable for applications that require a strict consistency. However, the imposed condi-
tions may be relaxed by only requiring that users do not see inversions. Thus, even if some inversions are
allowed, individual users perceive an atomic image as in a Strong 1SR system.

Definition 13 (History projection). We define the projection of a serial 1C history for a set of transactions
T as the result of deleting from the history all intervals corresponding to transactions not belonging to T.

Definition 14 (Session). A session logically groups a set of transactions from the same user. Transactions
from different users belong to different sessions. However, it can be left to the user the decision of using
one or multiple sessions to group her transactions.

Definition 15 (Session projection). For a given session Si, composed by a set of transactions TSi
, the

projection of a serial 1C history for the set of session transactions is called the session projection of that
history for Si.

Definition 16 (Session 1SR correctness criterion). A complete RD history HRD over a set of transactions
is Session 1SR if it is view equivalent to a serial 1C history H1C such that, for each existing session Si, the
session projection of H1C for Si respects the RTC precedence.

The extra requirement of Session 1SR (inversion preclusion in sessions) further prevents undesirable
conditions from those avoided by the plain 1SR criterion: its serial order ensures RTC precedence over
the transactions of each user session. For a user grouping all her transactions within the same session, the
system cannot be distinguished from a Strong 1SR system. Algorithms that provide Session 1SR (but do
not provide Strong 1SR) are the Block and Forward ones by Daudjee and Salem [4].

Finally, applications that are not sensitive to real-time precedence are not concerned about such issue:
1SR is enough. If the commit order in each replica matches the writeset delivery order of the FIFO TOB,

4



then the system follows a sequential consistency [8]. Nevertheless, this is not mandatory (specifically, for
independent writesets [9]) and, thus, even more relaxed replica consistencies are admitted in plain 1SR. A
system providing 1SR (but not Session nor Strong 1SR) is DBSM [9].

Both Strong 1SR and Session 1SR histories are included in the set of 1SR histories. Moreover, Strong
1SR histories are a subset of Session 1SR histories. Additionally, all three sets are different.

Our specification supports two correctness criteria that refine 1SR. The resulting three criteria cover
several replica consistency conditions: preclusion of inversions (strong 1SR), preclusion of inversions
within sessions (session 1SR), and possibility of inversions (1SR).

5 Conclusions
Early database replication systems based on distributed locking and atomic commit (DLAC systems), de-
signed to provide 1SR, were more restrictive than required due to the employed techniques. Users did not
complain: distributed systems behaved as traditional stand-alone ones. Later, performance-improved sys-
tems appeared, where old techniques were substituted with deferred update propagation and TOB (DUTOB
systems). Queries were committed and serialized locally. 1SR was still guaranteed but nothing enforced
the DLAC behavior: a transaction T2 executed after another T1 might not see the effects of T1 due to an
inversion.

The difference between DLAC and DUTOB systems is their replication consistency. The ambiguity
stemming from not considering replica consistency in correctness criteria should be removed as it leads to
unfairness when comparing replication systems performance. An explicit distinction must be made. Dif-
ferent authors had proposed several 1SR variants: Strong 1SR, Session 1SR and plain 1SR. A consistency-
based specification for these 1SR criteria is provided in this paper.

Acknowledgements
This work has been supported by EU FEDER and the Spanish MICINN under grants TIN2009-14460-C03,
TIN2010-17193; and by the Spanish MEC under grant BES-2007-17362.

References
[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic broadcast in replicated

databases. In Proc. Int. Euro-Par Conf. Parall. Process., volume 1300 of Lect. Notes Comput. Sc.,
pages 496–503. Springer, August 1997.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[3] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of multidatabase transaction manage-
ment. VLDB J., 1(2):181–239, October 1992.

[4] K. Daudjee and K. Salem. Lazy database replication with ordering guarantees. In Proc. Int. Conf.
Data Eng., pages 424–435. IEEE-CS, March 2004.

[5] A. Fekete and K. Ramamritham. Consistency models for replicated data. In B. Charron-Bost, F. Pe-
done, and A. Schiper, editors, Replication. Theory and Practice, volume 5959 of Lect. Notes Comput.
Sc., pages 1–17. Springer, 2010.

[6] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE T. Comput., 28(9):690–691, September 1979.

[7] L. Lamport. On interprocess communication. Distrib. Comput., 1(2):77–101, 1986.

[8] D. Mosberger. Memory consistency models. ACM Oper. Syst. Rev., 27(1):18–26, January 1993.

5



[9] F. Pedone. The Database State Machine and group communication issues. PhD thesis, EPFL, Switzer-
land, 1999.

[10] M. K. Sinha, P. D. Nanadikar, and S. L. Mehndiratta. Timestamp based certification schemes for
transactions in distributed database systems. In Proc. ACM SIGMOD Int. Conf. Manage. Data, pages
402–411. ACM Press, May 1985.

[11] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. B. Welch. Session guarantees
for weakly consistent replicated data. In Proc. Intnl. Conf. Paral. Distrib. Inform. Syst., pages 140–
149. IEEE-CS, September 1994.

6


