
Dynamic Software Update

Emili Miedes and Francesc D. Muñoz-Escóı

Instituto Universitario Mixto Tecnológico de Inforḿatica
Universitat Polit̀ecnica de Val̀encia

Campus de Vera s/n, 46022 Valencia (Spain)

{emiedes, fmunyoz}@iti.upv.es

Technical Report ITI-SIDI-2012/004

E
m

ili
M

ie
de

se
ta

l.:
D

yn
a

m
ic

S
o

ft
w

a
re

U
p

d
a

te
IT

I-
S

ID
I-

20
12

/0
04





Dynamic Software Update

Emili Miedes and Francesc D. Muñoz-Escóı

Instituto Universitario Mixto Tecnológico de Inforḿatica
Universitat Polit̀ecnica de Val̀encia

Campus de Vera s/n, 46022 Valencia (Spain)

Technical Report ITI-SIDI-2012/004

e-mail:{emiedes, fmunyoz}@iti.upv.es

May 21, 2012

1 Introduction

Software systems are continuously evolving. Some typical examples of software changes may be changing
the implementation of a given service, adding a new service,removing an existing one or fixing a bug or a
security vulnerability.

The classic way to apply a change to a software system that is currently running consists in producing a
new version of the software, stopping the installed versionof the software, removing it, installing the new
version and restarting it.

This procedure has a number of drawbacks. First, it forces the unavailabilityof the service offered by
the software. Moreover, from the client side, it forces therestartof the client software that was accessing
the software. Furthermore, it complicates the design and development of the software service. For instance,
the software must be able to handle update requests, probably save some state to a persistent device and
switch itself off. When the next version is started up, it mustretrieve the persisted stated, use it to initialize
itself and finally go on providing its service.

The alternative is the use of adynamic update mechanismwhich allows a software system to be updated
dynamically, this is, without requiring it to be switched off and on again, thus avoiding the issues pointed
out above.

Nowadays, such mechanisms are useful for many types of software systems and applications. First,
they are useful for common final user desktop applications totransparently apply regular updates and bug
fixes, without forcing the user to restart the application.

Second, they are useful for updating and upgrading the operating systems themselves, this is, to apply
both the regular updates that fix bugs or include minor changes and themajor upgrades that include a large
number of changes, without forcing the user to restart the system.

In a more wide scale context, dynamic software update mechanisms are useful to update any type of
web service or application that offers a 24/7 service to a potentially large set of users. Without a dynamic
update mechanism, to update such an application, a stop-and-restart model would be used, which causes
significant nuisances to the user and may cause a significant harm to the holders of the application. First, the
ongoing user requests must beaborted, thus causing a significant nuisance to the connected users,which
sooner or later turns out to have a negative impact on the entity responsible of the service. Moreover,
the application must be kept inactive during the time neededto perform the update or upgrade and the
corresponding testing, this yielding it unavailable so it can not serve new user requests, which definitely
has a negative impact on the holder entity.

Another example in which a dynamic update mechanism is highly desirable is thecloud computing
ecosystemas a general example of an on-line 24/7 high-scale environment. Indeed, one of the major fea-
tures promised by any cloud computing provider is a high level of availability of the application deployed

1



in the cloud. Nevertheless, all the cloud providers run a software infrastructure that sooner or later has to
be updated and upgraded. As in the previous examples, a dynamic software update mechanism allows the
cloud providers to update their systems while keeping the highest levels of availability and transparency
from the point of view of the user.

The dynamic software update topic has been studied in the last three decades by a number of authors, in
different contexts, and a number of techniques and solutions of different types have been proposed. During
that time, few surveys of dynamic update mechanisms have been published, too. Nevertheless, to the best
of our knowledge, no study surveying and classifying the common dynamic update techniques has been
published yet.

The goal of this paper is to help the interested reader to order some of the concepts and techniques found
in the literature of dynamic software updating. First, in Section 2 we propose a selection of requirements
and goals we identify as beingbasic in any dynamic software update mechanism. Then, in Section 3we
identify a number of techniques used in the existing literature. In Section 4 we discuss a number of issues
related to some of the topics covered in the preceeding sections. The paper is concluded in Section 5.

2 Requirements and Goals

As pointed out in Section 1, a dynamic update mechanism allows a software system to be updated dynam-
ically. This means that to apply a change in the software, it is no longer necessary to stop the system and
restart it once updated. Instead, the update is applied in run-time.

In the existing literature related to dynamic software updating, we found a variety of authors that
provide their owndefinitionof dynamic software update and list the requirements and goals that a dynamic
update mechanism may have. In this section we identify a number of such requirements and goals. For
each requirement, we describe the main issues and provide some literature references in which the topic is
somehow covered. In some cases, the authors propose slight variations.

Continuity and Minimal Disruption. The update can be performed in run-time, without stopping and
restarting the system to update and it does not interrupt theexecution of the software for a too long period
of time.

The first part of the requirement (the avoidance of a stop and restart) is theessentialconcept in the
dynamic software updatetopic, as explained in Section 1 and all the references that cover the dynamic
update software just implicitly assume it. Some of the authors that identify it explicitly are Fabry [29],
Segal and Frieder [63, 32], Solarski [64], Murarka and Bellur [54] and Gregersen and Jørgersen [35].

The second part of the requirement can be seen as anextensionof the first part. The goal is to ensure
that the availability of the service offered by the softwareor its performance do not decrease significantly.

From a practical point of view, both parts of the requirementare needed to ensure that the software
service is available. To show this, we can consider twoworst casesthat may happen in acontinuousupdate
mechanism (this is, one that avoids stopping and restartingthe software). In the first case, the update
process is dynamically applied but due to the overhead it imposes, it completely blocks the execution of the
service thus yielding it completely unavailable. In the second case, the update process is also dynamically
applied and can be executed in parallel with the service but it reduces the performance of the latter to a
minimum, which in fact would be a similar situation. In both cases, despite having the update process
dynamically performed, the software is unavailable from a practical point of view.

On the other hand, the best case is such that the update process does not block the execution of the
service at all (this is, it can be performed while regular service requests are being served) and it does not
alter the performance of the service.

Such a best case is quite difficult to achieve so many authors consider arelaxed version. In some cases,
it is just required that the update process causes theminimal performance overheador disruption to the
updateable software, without specifying what thedisruptionmay consist in ([48, 63, 32, 43, 24, 35, 52]). In
other cases, this requirement is more specific, like in [29],which admits amomentary delayin the normal
execution of user requests or [64] which accepts that the update process may interrupt the applicationthe
shortest time possible.

2



Moreover, some authors require the system to upgrade to be ina quiescentstate for the update to be
performed, while others allow to apply a dynamic update while the software is fully operative. In Section
3.1 we review some issues related to the concept ofquiescence.

Transparency. The update process is transparent, which means that it has no significant impact on its
context (the user, the programmer and the managed application) beyond the results it provides (a dynamic
update). Again, this is a case of a manifold requirement, since several types of transparency can be consid-
ered.

First, we can consider theuser transparency, the transparency from the point of view of the final user.
According to it, in an ideal case, the update mechanism ishiddento the user, this is, the user does not need
to be aware of the update mechanism. Moreover, it does not require the user to interact with the application
in any specific manner or have any specific knowledge or skills. In the worst case, the user needs to know
about the update mechanism and it changes the way the user interacts with the software.

Then, we can consider the transparency regarding the programmer’s point of view. Aprogrammer
transparentupdate procedure is one that does not require the programmers to have specific knowledge
about the update process itself and does not change the way they design and develop the systems.

Moreover, the update process can also beapplication transparent, this is, transparent from the point of
view of the software itself. Ideally, the update mechanism is one that does not impose any constraint to the
program about how to be designed or implemented, does not change the expected behavior of the program,
does not impose any noticeable performance impact or any other constraint and is not noticeable to those
parts of the system that are not related to it. Typical examples of constraints that may be required to the
updateable software components of an application are the use of specific programming or configuration
languages, interfaces or base classes and libraries to include in the application.

Regarding the literature, these transparency requirements are identified by several authors. Theuser
transparencyrequirement, as expressed above, is not found in any of the references surveyed although we
can consider that all those references that admit asmall disruption in the correct operation of the update
mechanism are implicitly using arelaxedform of user transparency. On the other hand, Gregersen and
Jørgersen [35] explicitly requireprogrammer transparencyand Solarski [64] and Bannò et al. [16] require
application transparency.

Generality. The update process is general.This requirement actually has a twofold interpretation. First,
the update mechanism allows to apply different types of updates, of different types of complexity. The
types of changes that are easier to apply are reimplementingsome part of the system yet keeping the
interfaces and the semantics intact and extending the software in aconstructivemanner (this is, keeping the
existing components and adding new ones). More complex changes are modifying the interface of some
of the components in anincompatibleway or removing some existing components. In the general case, a
dynamic update mechanism that offersgeneralitymay allow any type of change that could be applied by
theclassic stop-and-restartupdate mechanism referred to in Section 1.

A second interpretation is thatthe updateable systems can be of different types. It refers to the ability of
the dynamic update mechanisms to updateheterogeneouscomponents (those using different technologies,
models, programming paradigms and languages, etc.).

The first interpretation is the one used by Ajmani [11, 12] andGregersen and Jørgersen [35] while the
second interpretation is used by Solarski [64]. Moreover, Panzica [52] provides a classification of dynamic
updates.

Consistency and Integrity. The update of a component leaves it and the whole applicationin a consistent
or correct state.

This requirement also has some variants. Generally speaking, the main variant is related to the state
of the software after a dynamic update is applied and requires that once the update has been applied, the
software is in a statesimilar to the one that would be got if the update had been applied statically. Moreover,
after the dynamic update, the software is equally able to go on serving user requests.

A second variant of the requirement is related to the proper termination of the pending user requests.
Ideally, the requests that are interrupted by a dynamic update are properly terminated and the state of the

3



software is likewise correct.
In the literature, some authors identify this requirement in avaguemanner. For instance, Kramer and

Magee [48], Sridharet al. [66], Solarski [64], Murarka and Bellur [54] require that the update process leave
the system in aconsistentor correctstate but do not elaborate too much about the concept ofconsistency
or correctness.

Gregersen and Jørgersen [35] are a bit more specific and require the state of the software after a dynamic
update must be the same than the obtained by starting and running the application once the updates have
been appliedstatically. The behavior is expected to be correct even during the update. Banǹo et al. [16]
requiredata consistencyand alsoconsistency of flow(the proper termination of pending requests). Finally,
Panzica [52] identifies both variants ofconsistencypointed out above.

State Preservation. The update of a component preserves as much of its state as possible.
When aclassic stop-and-restartdeployment model is used, the software system is stopped, which

means that its state is lost unless it is previously saved to some persistence device. Sometimes, the user is
made responsible of doing the task. Nevertheless, the use ofadynamic updatemechanism does not directly
guarantee that the state kept by the old version of the application is preserved so a specific requirement to
keep the state of the application is needed.

Thus, the update mechanism must provide some way to capture the state of the component to update
andpreserve itin some way, to ensure that when a dynamic update is applied toan application, the state it
had just before the update istransferredto the new version so it can operate with it. The state transfer may
include the transformation steps required toadaptthe data formats understood by the previous version of
the application to the formats used by the new version.

In Section 3.5 we review some issues related to state transfer and transformation functions, respectively.
Some authors declare this requirement explicitly, like Sridharet al. [66] and Ajmaniet al. [11, 12] who

also consider the possibility of applying the necessary transformations to the data.

Version Coexistence. The update process allows a component that has been updated to coexist with an
old version of the same component.

This requirement is important from a practical point of view. For instance, in a client/server application
in which the server is dynamically updated, this requirement helps to ensure asmoothtransition of the set of
clients that send requests to the server. If the server only keeps one version of the updateable components,
when they are updated the whole set of clients may beforcedto restart, in order to be able to communicate
with the new versions of those components (unless some indirection level is used among the clients and
the server side, as pointed out in Section 3.3). The coexistence of old and new versions of the updateable
components running in the server allows to keep the clients alive and let them go on working normally
until they are shut down. New clients started after the update would access the new version of the updated
components.

Moreover, the coexistence of versions also allows the clients to be dynamically updated (so there is no
need to shut them down). The old-version clients can issue their requests to the old-version components
of the application. Once a client is dynamically updated, itcan issue its requests to the corresponding new
versions of the components.

On the other hand, this requirement is also important from the point of view of the server side, especially
in distributed applications and, in particular, in replicated systems. In such a case, besides theintra-
nodeversion coexistence requirement explained above, we can also consider aninter-nodeversion of the
requirement, by whichthe update process allows that the new versions of a component that is replicated
in a number of nodes of a distributed system coexist with old versions of the same component running in
some other nodes of the system.

This requirement allows to perform the update of the distributed nodes in stages, for instance, updating
a few at a time, instead of being forced to update them all at once. In small-scale distributed systems, this is
just a useful feature but it turns to be essential in medium tolarge-scale systems, in which it is not possible
to update all the nodes at once.

Few authors, like Ajmaniet al. [11, 12] (they call itmixed mode operation) and Solarski [64] include
a requirement similar to this one.

4



Other Requirements. We can cite some other requirements identified by some authors in the related
literature.

Atomicity and Rollbackness. The update mechanism isolates the execution of the dynamic updates,
respect the execution of user requests and other dynamic updates. Moreover, the update mechanism is able
to rollback a given update.The rollback ability is important because it allows to rollback a given update
when it is found faulty or must be uninstalled for any other reason.

In Solarski [64], the update is considered an atomic operation that is either successful or rollbacked
to the previous version. In the update mechanism in POLUS by Chenet al. [24, 25], besides updating
a component to the next version it is also possible to apply anupdateto go back to a previous version,
which actually is an effective rollback mechanism. Gregersen and Jørgersen [35] also consider the ability
to rollback an update to restore the previous version of the software. Finally, Banǹo et al. [16] also
consider the update of a number of components as an atomic action although they never mention the ability
to rollback an update.

Schedulability and Automation. The update mechanism allows to schedule the updates or provides
some other ways to automate them.Some authors (like Ajmaniet al. [11, 12]) consider the possibility to
schedule the execution of the updates to apply or more generally, provide some automation mechanisms to
minimize the human intervention (for instance, Segal and Frieder [63, 32], Solarski [64] and Panzica [52])

Simultaneous Updates. The update mechanism allows to apply more than one update simultane-
ously.This is considered by Segal and Frieder [63, 32] and Solarski[64].

3 Concepts and Techniques

In this section we identify a number of concepts and techniques used and found in the surveyed references
and somehow related with dynamic software updating.

3.1 Quiescence

A number of papers use some form ofquiescence. The basic idea is that an update of a component of a
program, from a given version to the next one, can not be applied at any moment during the execution of the
program. Instead, before updating the component, the update mechanism must ensure that the update does
not interrupt any running processes (for instance, the invocation of a service). For this, different authors try
to ensure that the component to update reaches somestablestate. Depending on the author, this stability
requirement is given a different name and described in different ways and a number of mechanisms can be
used to enforce it.

Search in the Execution Stack. Some authors inspect the execution stack of a process in order to know
if a given function (or procedure) of a program is currently being executed. If no reference to the function
is found, then it is not being called from the program and it issafe to dynamically update the function (by
redirecting the calls as in Section 3.3, applying a binary patch as in Section 3.2, etc.).

This technique is usually part of some other technique or update procedure. For instance, Guptaet al.
[40] inspect the stack to know if a given function or procedure can be updated. They also use it in [39] to
perform its state transfer procedure (see Section 3.5 for additional information on state transfer).

Segal and Frieder [63, 32] also inspect the stack of the process to update in order to know whether or
not the procedure to update is being executed.

The main disadvantage of this technique is that it strongly depends on the architecture of the underlying
machine. This problem is tackled by Purtilo and Hofmeister [58, 45, 57]. They propose the use of an
abstract format to represent theframesof the execution stacks of regular processes and implement as a part
of their dynamic software update solution based on their POLYLITH software bus.

5



Reach of a Safe Point. Some techniques depend on the program to reach a specific point or state. This
can be achieved by making the program to enter a givenidle function or procedure. Once the program has
reached such a point, the update can be applied safely. The program is forced to stay idle in thesafe point
while the update procedure takes place. Once the update finishes, the execution can be resumed.

This idea is used by a number of authors. For instance, in Guptaet al. [40], these safe points are called
control pointsand are determined statically, from the source code of the previous and next versions of the
program. When a dynamic update has to be performed, the program is forced totransit to a safe point
and then, generate a signal. Then, the update takes place andonce finished, the execution is resumed. The
authors also propose an extended model to be used with structured programs in which theunit of change
is the function or procedure. They argue about the difficultyto specify the safe points and then propose an
inverseapproach based on specifying someselectedfunctions the control should not be in at the time of
change (see Section 4 of [40]). When a dynamic update has to be applied, first some stack inspection is
performed, as explained above, to check that the program is not currently executing any of those selected
functions. Once checked, the update is performed.

Chen and Huang [26] use the same idea in the context of dynamicupdate of OSGi applications (also
see Section 3.6.3). Before applying an update to an OSGIbundle, they lead it to a safe point and then
proceed with the required state transfer and perform the update.

Giuffrida and Tanenbaum [33] also use a similar approach in their proposal of an operating system-
oriented dynamic update procedure. It uses a centralUpdate Managercomponent that dialogs with the
updateable components, that must beupdate-aware. When one of the components has to be updated, the
Update Managerleads it to a particular state in which a state transfer statecan be safely performed (also
see Section 3.5 for additional issues related with state transfer).

Communication Quiescence. The original concept ofquiescencewas defined by Kramer and Magee
[48] in the context of dynamic software update of distributed systems. Informally, a node isquiescentif
it is not going to start a data exchange or attending any data exchange with any other node. The authors
argue that to apply an update that affects some nodes, they must be in a quiescent state.

When a node of the system has to be updated, it is forced topassivate, this is, to reach a passive state, in
which the node is not communicating (in short, it is not boundin a communication with any other node and
it agrees not to start a new communication). Moreover, all the nodes in thepassive setof the given node
(this is, all the nodes that may communicate with the given node) are also forced to reach such a passive
state. Once a node and its passive set are passive, the given node can be safely updated. As pointed out in
[48] this procedure requires the collaboration of the application1.

On the other hand, thequiescenceconcept and especially itsblocking requirementshave been criticized
by some authors. They argue that in a general case, to passivate a component, a number of components
must be passivated before, thus blocking them. In the worst case, all the components in the system would
have to be passivated, which may lead the application to an unavailability state, which is totally contrary to
the essence of any dynamic software update mechanism.

For instance, Vandewoudeet al. [71] argue that thequiescenceconcept in [48] is, in general, stricter
than necessary. They propose the concept oftranquility as a more relaxed alternative and justify that it can
be used as astable statein a dynamic software update process.

To understand the differences between quiescence and tranquility, one must compare the formal defini-
tion of thequiescentandtranquil states, according to [48] and [71], respectively. A node is in aquiescent
state if a) it is not currently engaged in a transaction that it initiated, b) it will not initiate new transactions,
c) it is not currently engaged in servicing a transaction, and d) no transactions have been or will be initiated
by other nodes that require service from the node. On the other hand, a node is in atranquil state if it
satisfies a) and b) from the previousquiescent statedefinition and moreover, c) it is not actively process-
ing a request, and d) none of its adjacent nodes are engaged ina transaction in which it has both already
participated and might still participate in the future.

First, there is a difference between the c) clauses of these definitions. According to [71], the c) clause
of thequiescence statedefinition implies that a node may be eitheractively processing a requestor waiting

1See also Section 3.4 for some other forms ofintrusionandcouplingbetween and application and the underlying dynamic update
mechanism.

6



for a new request in an already active connection, buy only the first case is required by the c) clause of the
tranquil statedefinition. In practice, this means that a node may have started a transaction but if it is not
currently servicing a request, it is consideredtranquil and then it can be dynamically updated.

Moreover, according to [71], the d) clause of thequiescence statedefinition implies that no node has
started or is going to start a transaction in which the given node takes part. Nevertheless, the d) clause of the
tranquil statedefinition is less restrictive. It is only required that no adjacent node has started a transaction
in which the given node has taken part and might participate in the future. The main difference is that the
definition of tranquil statedoes not consider those transactions in which the given nodehas not taken part
yet, so the nodes that started them do not need to bepassivated. In practice, this means that, according the
definition oftranquility, the update of a node is aless blockingprocess.

Pause and Resume. Another technique used by some authors consists in pausing the reception of incom-
ing requests, waiting until the pending ones finish, applying the update and then resuming the handling of
incoming requests.

For this, someintermediarylevel is used that may be implemented in various forms (see Section 3.3
for other examples that use some kind of intermediary level). For instance, some sort ofcentral update
manageror intermediaryproxies may be used to intercept the user requests and, if needed, pause them and
rely them once the update is finished.

This technique is used by Bannò et al. [16] in their FREJA framework. They use several types of
intermediary Java objects. On the one hand, there are someinfrastructureobjects that perform the update
and other management tasks. On the other hand, there are wrapper objects that wrap the regular service
objects. The wrappers capture the regular service invocations made by the clients. If no update is to be
done, the invocations are just redirected to the real service objects. When an update is requested, one of
the infrastructure objects asks for the corresponding wrappers tostopattending new invocations (butqueue
them) and wait until the pending invocations are finished. Once the update is performed (by means of some
Java bytecode-level rewriting, see Section 3.2), the blocked wrappers are instructed to resume their regular
operation.

Other References. This idea ofstable statusor quiescenceappears in many other references: [20, 17, 44,
19, 61, 14, 70, 42]. It can also be applied in other settings more or less related to dynamic software update
but somehow different from the work referenced above. For instance, Dmitriev [27] talks about the dynamic
update of methods of Java classes and the support offered by the HotSpot Java Virtual Machine. The
mechanism is still under development, but it already offerssome limited dynamic update mechanism, to
ease the development and debugging processes and accessible by means theJava Debugger Wire Protocol
(JDWP). This mechanism is not mature enough to be considered production-ready yet. The mechanism
requires the collaboration of the programmer, which must ensure”that the execution will actually reach the
point where there are no active old methods”, which can be seen as some kind ofuser-ensured quiescence.

3.2 Rewriting of Binary Code

There are some proposals that use some sort ofrewriting of the binary code of the programs and applica-
tions to update. Several techniques can be identified.

Binary Redirection. Basically,binary redirectionmeans dynamically modifying the binary code that is
being executed by a process (this is, the code saved in the main memory of the computer and directly read
by its processor) so one or several call instructions that point to some function are changed to point to some
other place.

As shown below, this was one of the first techniques proposed to be used by a dynamic update mecha-
nism. Nevertheless, it has a number of disadvantages.

This technique is strongly dependent on the particular compiler and especially on the hardware archi-
tecture it is aimed to. It also requires from the designers and programmers a deep knowledge in low level
details like the exact machine language used by the target processor. To apply an update to a program, to
update its versionv to versionv+1, the programmer must know the exact binary representation of both the

7



code to replace and the new code. Below we cite some alternatives that avoid this last restriction although
they still require some deep low level knowledge to be applied.

This technique has some other disadvantages, derived from its low level nature. For instance, this
technique is difficult to automate, since each update depends on the binary code of both the original and
the new version of the program.

Furthermore, some precautions must be carefully taken. Forinstance, before updating the binary code
of a function or procedure, it must be ensured that it is not currently being executed. Otherwise, undesirable
effects may be produced.

One of the first authors to propose the use ofbinary redirectionwas Fabry [29]. As a base context, there
is someclient codethat performs a call to a fragment of binary code that implements a given function. To
update the function, a new fragment of binary code is loaded in memory. The problem to solve consists in
making that the old call from the client program stopspointingto the old code and points to the new code.

Fabry proposes two different alternatives to perform such aredirection. Both are based on adding a level
of indirection (see Section 3.3) and rewriting some low level binary instructions to update such indirection
level. In the first alternative, the client program makes a first call to a specific position in memory in which a
JMP-like instruction is placed. This JMP instruction is dynamically overwritten, so it points to the address
of the new version of the function.

In the second solution, when an update is performed, the old position of memory with the old JMP-
like instruction is discarded and a new one is allocated, pointing to the address of the new version of the
function. Then, the binary code of the client is modified to call the new JMP instruction. Regarding to the
first solution, this second solution has the disadvantage that it is necessary to modify the binary code of the
client program.

General Binary Rewriting. The binary redirection idea showed above is actually a particular case of the
more general concept ofbinary rewritingthat consists in rewriting any part of the program. Some examples
may be changing the implementation of a function or even its list of parameter types.

The modifications are applied at a binary level, this is, modifying the binary executables or even mod-
ifying the code currently loaded in memory, as it is being executed. This general technique has the same
disadvantages than the particularbinary redirectionshowed above, derived from its low-level nature.

Hicks and Nettles [43] use some binary rewriting techniquesto modify the service implementation,
data types and the client code that accesses to the patched code. To update the code of the program (i.e.
the implementation of the functions) the authors consider two approaches:code relinkingand reference
indirection. The first alternative consists in changing the function invocations made byclient codeto the
current implementation of the functions, forcing them topoint to the new implementations. The second
alternative consists in adding an intermediary indirection level among the new implementation of a function
and the invocations to it (see Section 3.3), arguing that it would be more expensive and more complex to
implement. The alternative finally chosen was the first one.

To update the type definitions, they also consider two options: replacementand renaming. The first
alternative consists inreplacing the definition of a type with a new version, by means of somebinary
rewriting mechanism. The second alternative consists in adding a new type definition and patching the
code client to use it, also by means ofbinary rewriting. The authors choose the second alternative because
they consider it is simpler and more portable.

To apply changes to the code and the type definitions,dynamic patchesare used. Given a version of
the program to update and the next version to apply, some automated tool is used to compute thepatches
to apply. Besides creating regular patches (like with thediff andpatch UNIX commands), the trans-
formation of the data is also considered. The programmer candefinetransformation functions(see Section
3.5) to apply to the data any transformation needed.

The authors have a prototype implementation of the proposedframework. They have also implemented
an updateable web server(FlashEd) and used it to test the operation of the dynamic update framework
implementation.

Chenet al. [24, 25] describe POLUS, a tool that offers support to dynamically update a software
system. Roughly speaking, to update a running program from versionv to v + 1, the operation of the
proposed procedure is as follows. From the source code of both versions, apatch is generated and then

8



compiled into a dynamic library, which isinjectedinto the running binary code (see Section 3.6.1 for other
proposals that use some sort of static analysis of the sourcecode). For each function that changes in the
new version, POLUS inserts a jump instruction to redirect the program flow to the new implementation of
the function, which is provided by the patch (see Section 3.3for other forms of level indirection).

The use of dynamic patches is inspired by Hicks and Nettles [43], although POLUS is distinguished
by the possibility toreversethis procedure (also see Section 3.6.9). Given the versionv + 1 of a running
program, it is possible to rollback it to versionv by applying aninverse patch. In Section 3.6.9 other
examples of rollback-enabled mechanisms are given.

Binary Rewriting in Java. Another particular case of binary rewriting is its application to Java programs.
From an abstract point of view, the idea is similar to the general rewriting technique showed above, but
in this case the binary language and format are those defined by the Java Language and Virtual Machine
Specifications ([34, 50]). The modifications are typically expected to preserve theJava binary compatibility
([34]).

As in the previous cases, this technique also has the disadvantage of depending upon a binary level
although in this case, it has a minor practical impact, sincethe Java language is widely supported by many
operating systems and hardware platforms.

Several authors have studied the use of binary rewriting in Java programs. For instance, Milazzoet al.
[53] study the run-time update of distributed applicationswritten in the Java programming language. They
propose the use of an intermediary layer that ideally shouldbe independent of any particular version of
the Java Virtual Machine and be usable with any Java application (see Section 3.3). This layer includes a
new Java classloader that uses some Java rewriting techniques to modify the Java bytecode in loading time.
Moreover, new intermediary interfaces and objects are defined and created to intercept the regular method
invocations and redirect them to the proper service implementation. The client bytecode is also rewritten
to use the new interfaces.

Gregersen and Jørgensen [35] propose a mechanism to dynamically upgrade Java programs by success-
fully saving theproblem of the version barrier. In short, the problem can be described as follows. One of
the techniques to load new Java classes consists in creatingnew classloaders and using them to load the
new classes. Nevertheless, this solution has the problem that the new classes are not easily accessible from
code loaded by other classloaders (for instance, by a parentclassloader).

The mechanism proposed in [35] can save this barrier by usingproxiesthat are defined dynamically.
The idea is to build dynamic proxies for the updateable classes and let them to act asintermediariesamong
client classes and real service implementation classes. See Section 3.3 for other techniques based on adding
someindirection level.

They also need to manipulate the Java bytecode, in a number ofways to, generally speaking, prepare
both client and server code to use and be used by the update mechanism. Other authors also use some
binary-level rewriting techniques.

The update procedure also includes alazy state migrationthat is used to transfer the state from anold
version of a component to a new version (also see Section 3.5). One of the most remarkablepeculiarities
of this proposal is that the update mechanism in general and the state transfer mechanism in particular
are triggered lazily, on demand. When an update is requested, it is not immediately applied, but lazily.
Moreover, the state is not immediately transferred. Instead, the state of eachfield is transferred individually,
when it is accessed by the first time.

Their proposal also allows the rollback of applied updates (see Section 3.6.9 for other authors that also
offer some sort ofrollback mechanism).

Banǹo et al. [16] also use some rewriting techniques in their FREJA framework, to apply updates to
the bytecode of Java classes (see Sections III.C and III.D of[16]). This framework is based on the use of
specific classloaders, some (centralized) updatemanagersand some intermediary objects that control the
execution of updateable components (see Section 3.3).

On the other hand, there are currently available a number of tools and libraries that offer services related
to bytecode manipulation (including run-time manipulations). For the Java programming language, there
are many alternatives like ObjectWeb ASM [56, 23, 49], CGLIB[7], Javassist [9, 68], Apache Commons
BCEL [31], Javeleon [8, 36], JRebel [74] and some others listed in [4].

9



3.3 Use of Proxies, Intermediaries and Indirection Levels

There are a large number of authors that propose dynamic update procedures, mechanisms and tools based
on the use of different sorts of proxies, intermediary objects and other indirection levels. These techniques
are useful in client/server systems in which there are a number of dynamically updateable servers offering
some service and also a number of clients that issue requeststo the former.

The basic idea consists in adding an intermediary level between a client and the dynamically updateable
server it is accessing. Instead of having the client directly call the functions and procedures that implement
the service, it calls some intermediary code that points to the current implementation of the service. Such
an intermediary code can be dynamically overwritten (see Section 3.2).

This approach has been used by a number of authors. For instance, Fabry [29] was one of the first to
use it, in combination with two different binary-level overwriting.

Bloom’s Ph. D. thesis [20], reuses the idea of redirecting the calls to the updateable code byremapping
some handlers, in the context of Argus programs.

Segal and Frieder [63, 32] useinterprocedures, which are some intermediary procedures used toredi-
rect the client invocations toold versionprocedures to theirnew versioncounterparts. The authors also
use abinding tablewhich holdspointersto the updateable procedures. These pointers are overwritten in
run-time, as new versions of such procedures are installed.The authors argue that this approach is feasi-
ble under those hardware architectures that offer anindirect addressing modelike those provided by the
Motorola MC68020 processor or the Intel’s 386 architecture.

In POLUS [24, 25], Chenet al. use an indirection level by inserting a jump instruction in an old-version
function, to redirect the invocations to the new version.

A refined solution consists in using, as the intermediary level, proxy objects thatsimulatethe real
implementation of the service. The idea is that the client code does not call the objects that implement the
service but uses intermediary proxies. These offer to the client code the same interface than the original
service objects and hide the complexity of the dynamic update. There are a number of authors that follow
this approach.

For instance, Purtiloet al. [58, 57] propose the use of a software bus to connect softwaremodules
by means ofproxiesthat are automatically compiled from an additional declarative specification provided
by the programmer. The proxies and the bus itself intercept the conventional calls to the functions of the
modules and implement the functionality related to the dynamic reconfiguration of the modules.

Sridhar [66] includes the use of some intermediary objects called Service Facilities. These objects
encapsulate the objects that provide the real service and offer the clients alogical referencethat can be
used as the real service object. Thus, these objects handle all the requests made by the clients. These
objects also include the necessary logic to perform the dynamic rebinding, using some well-known design
patterns (like Strategy) and some facilities offered by common programming languages (at least, C++, Ada,
Java and C#).

In [53], Milazzoet al. propose a mechanism to dynamically update regular Java applications by means
of using an intermediary layer between the Java service classes and some client code that issues invocations
to the former. This layer includes some new interfaces and classes created and instantiated in loading time.

Ajmani et al. [12] use some intermediary objects calledsimulation objectsused to represent past and
futureversions of the updateable objects. These objects are offered to the client code as if they were the
real service objects. Internally, the simulation objects can manage and redirect the invocations issued by
the clients, to the real objects that implement the service.

Gregersen and Jørgensen [35] use some intermediary proxies, that are dynamically generated, to man-
age the process of class loading and intercept and redirect the invocations to theserviceobjects.

Chen and Huang [26] propose the use of intermediary dynamic proxies in the context of dynamic update
of OSGi applications. These proxies would be placed among the updateable service bundles and the client
code, this hiding to the later the existence of dynamic updates.

In their framework FREJA, Banǹo et al. [16] also use some specific Java class loaders and some
intermediary objects to control the execution of updateable components.

10



3.4 Intrusion and Cooperation

A number of authors identify the necessity or dependence on some level ofintrusionby the update mech-
anism, thus making the managed programs and applications aware of the update mechanism. The goal is
to allow a managed application to cooperate with the update mechanism. Thisintrusioncan take different
forms.

A first type of intrusionconsists in defining special functions or procedures in boththe update mech-
anism and the application to update. The idea is that, on the one hand, the application to manage offers
a number of functions to be called by the update mechanism to perform its tasks. An example of this
kind of intrusion is the use ofgetState- andsetState-like functions assumed by many state transfer
mechanisms (see Section 3.5) to retrieve or set the state of an updateable component. On the other hand,
the update mechanism offers to the managed application other functions it may also call, for instance, to
inform that its state has been changed or that the last requested update has been successfully finished.

The update mechanism proposed by Kramer and Magee [48] is oneof the first works that follows
this approach. The authors identify two different couplingrelationships between the update mechanism
and the managed application. First, the so calledupdate managerneeds to invoke functions offered by
the application (for instance, to request a state change). On the other hand, the application needs to invoke
functions offered by theupdate manager(for instance, to inform that its state has changed). After justifying
the need of both intrusion levels, the authors argue about the need of defining some kind ofstandard
interface to communicate the update mechanisms and the applications.Moreover, they argue that the
application must be involved in another way: it has topromisethat it will remainpassivelong enough for
the update to be completed.

In [33], Giuffrida an Tanenbaum propose a dynamic update mechanism based on anupdate manager
that also depends on a close cooperation with the updateablecomponents. When a dynamic update is to
be applied to one or several components, the manager asks them to reach acontrolled state(actually, some
sort of quiescentstate – also see Section 3.1). When the components reach such astate, they notify the
manager who waits for all the notifications and finally proceeds with the update.

A second type ofintrusion is the generalization of the first one and occurs when the update mechanism
forces the whole application to follow specific constraintslike the adoption of a given architecture, design
principles, hardware platforms or software environments,programming languages or any other set of rules
or conventions that force the whole application to be built or behave in a specific manner.

This category includes all the proposals of update mechanisms based on the OSGi platform (see Section
3.6.3)

A third type of intrusionconsists in making the application to provide some sort ofmeta-information
that may be used by the update mechanism.

One example of this type ismarkingthe code of the updateable applications. Some update mechanisms
require that the user marks those parts of the application inwhich a dynamic update may be carried on
safely. This is the case of the proposals by Frieder and Segal[32] and by Neamtiuet al. [55], that allow the
programmer to identifysafe update pointsin the source code, in which an update may be safely performed.

On the contrary, others depend on the user marking those parts in which a dynamic update shouldnot
be applied. This approach is followed by Hicks and Nettles [43] who propose a mechanism that allows the
programmer tomarkplaces in the code that should not be interrupted by a dynamicupdate.

There are other examples in which meta-information is provided to achieve some other goals. For
instance, Banǹo et al. [16] identify the need to design the updateable applications in a special way and
provide some meta-information to the update mechanism for this to be able to preserve thesemantic con-
sistencyof the application to update.

Giuffrida and Tanenbaum [33] also argue that the best approach to build dynamically updateable sys-
tems consists in making them aware of the dynamic update process and require that the application provides
some meta-information that may be used by the update mechanism to lead the application to a quiescent
state (also see Section 3.1), before applying a dynamic update.

To conclude, we can say that, in principle, the use ofintrusion mechanismsoffers both the update
mechanisms and the managed applications the possibility tocooperate in the application of the dynamic
updates. Nevertheless, it must be considered that suchintrusion mechanismsreduce the level oftrans-
parencyoffered by the update mechanism, especially theapplication transparency(see thetransparency

11



requirement in Section 2). Indeed, forcing the applicationto provide some specific functions, adapt to a
specific architecture, have some special marks, etc. makes it dependent on the update mechanisms and also
makes the latter less transparent to the application.

3.5 State Transfer and Transformation Functions

Several authors identify the need to perform some sort ofstate transferbetween the current version of an
updateable item (typically an object or component, but it may also be a function or procedure or even the
whole program or application, etc.) and the next version, inorder not to lose it when the update is applied.

Some of them use a variation of the idea proposed by Liskov andHerlihy [41]. The basic idea consists
in defining twoaccessor functionslike getState andsetState to retrieve and set the state of a com-
ponent. Before replacing a component, thegetState-like function may be called and someserializable
representation of the state may be got. This state may betransformedin some way (see below) and then
transferred to the new version of the updateable item, by means of itssetState-like function.

In his Ph.D. thesis, Bloom [20] identifies the need of transferring thevolatilestate managed by the part
of the program to be replaced, to the new implementation.

Purtiloet al. [58, 57] propose the use of an abstract representation of thedata kept by the (dynamically
reconfigurable) modules of the systems and the use of functions to retrieve and set the state of a module.
This allows themigrationof the state of a given version of a module to the next one, onceupdated. The
use of the abstract format allows to get the state of a runningmodule before updating it and then restore
it back or even move it from a physical node that uses a given architecture to a different node that uses a
different architecture.

Some other systems have used state transfer techniques in their update mechanisms [39, 65, 64, 66, 35,
26].

Banǹo et al. [16] identify the need of theconsistency of the datain a dynamic update and the transfer
of the data from the current component to the updated one.

On the other hand, one of the problems that may appear when updating a component from a version to
the next one is that the new version may have anincompatible state format. Several authors consider this
problem and propose the use of some kind oftransformation functionsto transform the state of a component
in the format used by a given version to the proper format. These functions are typically provided by the
programmer, like in [20, 32, 58, 43, 12, 67, 54, 26].

3.6 Other Issues

In this section we briefly review some other issues related todynamic software update.

3.6.1 Source Code Static Analysis

In a number of papers, some kind ofstatic analysisof the application source code is performed, according
to different objectives. Some authors use it to know in whichpoints of the programs is safe to perform a
dynamic update or in which ones an update should not be performed at all. The key idea is toprotectthe
state of the component or program so the update does not yieldthe component or program in an inconsistent
state. For instance, it is safe to apply an update during the execution of aread-onlyfunction or procedure
(this is, one that does not alter the state of the program). Itis also safe to apply it in the very beginning of
the execution of a regular function, before it modifies any part of the program’s state. On the other hand, it
may not be safe to apply an update during the execution of a regular function since it may be changing the
state of the program. Such aninterruptingupdate hinders and can even avoid a proper state transfer and
reconstruction.

Other authors compare the source code of the current versionof a program with the next version and
build a patchout of the differences, to be applied dynamically. In some cases, the analysis can be com-
pletely automated while in others it is a manual or human-assisted process.

For instance, Stoyleet al. [67] and Murarkaet al. [54] propose the static analysis of the source code
to identify points in which a dynamic update may or may not be applied, while ensuring somecorrectness
property.

12



In their Proteus system, Stoyleet al. [67] propose a property calledconn-t-freenessand tries to ensure
thatafter a dynamic update of some typet, no updated valuev′ of typet will ever be manipulated by code
that relies on the old representation oft. Their static updateability analysisis used to label points in the
program withupdate expressionsthat identify those typest for which the program may not beconn-t-free.
This information is used by the Proteus run-time system to know if a given type can be dynamically updated
in a given point of the program.

Murarka et al. [54] also perform an analysis of the source code of both the current version of the
program and its next version, to ensure that theirRequest Execution Criteriais fulfilled. At least one of
the following conditions must be satisfied. TheNew Program Executioncondition requires that, before
an update to a given class, no request accesses an object of the old version of the class that could not be
accessed with the new definition of the class. Moreover, theOld Program Executioncondition requires
that, after an update to a given class, no request accesses anobject of the old version of the class that can
not be accessed with the new definition of the class and no request accesses an object of the new version
of the class that can not be accessed with the old definition ofthe class. Thus, the result of the analysis is a
set ofupdate pointsandunsafe regionsin which dynamic updates may or may not be applied.

Neamtiuet al. propose Ginseng [55], a dynamic update solution for programs written in C, based in
dynamic patching (see Section 3.2). In their solution, theydepend on some static analysis of the source
code to ensure that the updates aretype-safe. The idea is to ensure arepresentation consistencyproperty,
by which, at any moment, any value of a typeT is a member of the last version ofT (which means that
two different versions of the same type will never coexist).

Roughly speaking, the procedure is the following. The programmer is expected to identifyupdate
points in the program, in which a dynamic update may be applied. When the Ginseng compiler builds
a dynamic patch to apply the next version of the program, it annotates each of those update points with
information aboutwhich types should not be updatedby a dynamic update applied in each update point.
Later, when a patch is applied in run-time, the annotations are checkedto ensure that the update does not
violate therepresentation consistencyproperty.

Altekar et al. propose OPUS [15], which also depends on a similar analysis to detectunsafe dynamic
updatesand other authors, like Hicks and Nettles [43] and Chenet al. [24, 25] in their POLUS system
also use the source code of the old and new versions of a component to update to build apatchthat will be
applied dynamically.

On the other hand, static analysis has also been used for other purposes. For instance, Bauml and Brada
[18] propose a procedure based on the static analysis of source code to automatically decide thea.b.c-
like version string of the next version of an application version. As usually, incompatible changes force
a change of the major version, while backwards compatible changes only cause the change of the minor
version number. The micro version number only changes when internal implementation-related changes
are made.

More specifically, the analysis identifies changes between two given versionsv1 andv2 of any type,
according the hierarchy relationship between them. First,they could be the same type. Also the change is
aSpecializationor aGeneralizationif v2 is aspecializationor ageneralizationof v1, respectively. Finally,
the change is aMutation if there is no subtype relation betweenv1 andv2.

Considering all the types of changes identified by the analysis, some rules are applied to globally
classify the update of the program. If there is at least one Mutation, or there is someSpecializationand
someGeneralization, then the globallevel of the update is aMutation, and the major version number is
incremented. Otherwise, if there is someGeneralization, the change is aGeneralizationand the major
version is incremented as well. Otherwise, if there is someSpecializationthe change is aSpecialization
and the minor version is incremented. Otherwise, it is considered that no significant change is done and
only the micro version number is incremented.

3.6.2 Use of Underlying Facilities

A number of authors base their proposals on features of a given underlyinginfrastructure: a given hardware
architecture, a programming methodology or paradigm, an ad-hoc programming or configuration language,
a specific general-purpose programming language or any other specific base level.

13



For instance, at a low abstraction level, the solution proposed by Frieder and Segal [63, 32] needs that
the hardware architecture of the underlying machine offersanindirect addressing mode. Gupta and Jalote’s
proposal [39] was also designed to work on a specific hardwareand software platform (SunOS running on a
Sun 3/60 workstation) and also depends on a specific feature of the hardware architecture (specifically, the
segment-based memory addressingmode). In practice, the requirement of such features is not asignificant
constraint since these features are available in common processors (as they were at the time of [63, 32, 39]).

Other authors propose solutions that are a bit more general and can be used with programs written in
imperative languages, like the one by Hicks and Nettles [43].

There are also some authors who develop their proposal basedon their own infrastructure. For instance,
Kramer and Magee base their proposal [47, 48] on their CONIC configuration language and infrastructure
[46]. In Proteus, Stoyleet al. [67] describe a dynamic software update solution based on its own program-
ming language, compiler and run-time, among other tools andresources. In his Ph. D. thesis, Bloom [20]
proposes a dynamic update solution for programs written with the Argus programming language ([51]).
For the C programming languages there are some options, likethe proposal in Gupta’s Ph. D. thesis [38],
Ginseng by Neamtiuet al. [55] and POLUS by Chenet al. [24, 25].

In a higher level of abstraction, regarding the Java programming language and Virtual Machine (JVM),
there are a large number of references. First, some authors propose dynamic update solutions for Java
programs (for instance, [61], [53], [35], and [16]). In Section 3.2 a number of technologies related to dy-
namic software update in Java are cited. Moreover, Dmitriev[27] studies an existing mechanism available
in the HotSpot JVM to allow the dynamic update of Java code in debugging time. Some other authors
like Gregersen and Jørgensen [37] propose dynamic update mechanisms based on modifying the standard
JVM. Nevertheless such an approach presents a number of drawbacks, as identified by Bannò et al. [16].
First, they argue that a framework built on top of an ad-hoc modified JVM becomes less portable, since
it could not be used with any other standard virtual machines. Moreover,new versions of code that is
loaded dynamically may bypass security checks performed bythe JVM(no other arguments are provided)
andcode optimisations executed by the JVM at reunite may modifythe internal structure and the flow of
operations of the application, thus making changes difficult to be properly applied. Actually, there are
some other reasons. For instance, the update mechanism becomes dependent on a specific version of the
JVM. To keep the mechanism updated, the developers would have to modify any new version of the JVM
that were released and check that the mechanism goes on working properly, which represents a significant
effort. Moreover, such new versions of the JVM may suffer changes in their design or implementation
that prevent the required modifications from being applied,thus yielding the update mechanism outdated
in short period of time.

Finally, as a particular case of Java technology, the OSGi standard offers astandardmechanism to dy-
namically reload the bundles that compose an OSGi application (see Section 3.6.3 for additional references
about OSGi).

3.6.3 OSGi

OSGi [6, 13] is a platform to build Java applications from a number of modular, reusable and collaborative
components (calledbundles), that can be dynamically reloaded.

Each bundle is a Java class that implements a specific interface (BundleActivator). It provides the
two basic methods that define thelife cycleof the bundle,start andstop, to start and stop the execution
of the service offered by the bundle, respectively. Moreover, a bundle may implement additional interfaces.
For instance, there is aServiceListener interface to receive events related to the bundle (for instance,
when it is registered or unregistered in the OSGi implementation).

Each bundle is packed in aJava Archive(JAR) file. This file includes amanifestin which the program-
mer specifies some metadata, including the version of the bundle and its main class (that implementing
BundleActivator). The programmer also specifies the packages that the bundleexports, in the stan-
darda.b.c Java package convention. When a bundle is registered in an OSGi server, this knows which
services areofferedby the bundle. The programmer can also specify the packages that the bundleimports,
by providing a list ofa.b.c-like package list and optionally, for each package, the minimal version that
is required. This expresses the dependencies the bundle relies on, including general packages included in
the OSGi standard API and other services provided by third parties.

14



An OSGi server (or implementation) acts as a software bus. Bundles are first registered in it and then
started by it. Once started, a bundle may register a service under a given symbolic name. It may also get
referencesto other services (provided by other bundles), looking themup by their symbolic names. This
means that if a service depends on another service, it does not need to depend on a specific implementation
of it. Instead, it can rely on any service registered as an implementation of the required service.

Nevertheless, one of the main strengths of OSGi is that it allows to dynamically reload bundles. Once a
bundle is registered and started, its source code can be updated and recompiled and the new version of the
bundle can be reloaded, by means of a mechanism provided by OSGi. Then OSGi keeps the old version
of the bundle available to those bundles that already had areferenceto it (in order to let them progress
correctly) and offers the new version of the bundle to those bundles that get a reference to the bundle, from
that moment on.

This can be explained easily with a simple example. Considertwo bundles, A and B, that depend on
a bundle Z. Then consider the following sequence of actions and events. First A is loaded and started.
A is able to know that no implementation of Z is available and waits. Then Z is loaded and started. A
is informed about and asks to OSGi for areferenceto Z. Then Z is updated. As there are at least one
bundle (A) referencing to the old version of Z, OSGi keeps both old and new versions of Z and A keeps its
reference to theold versionof Z. Then B is started and asks to OSGi for areferenceto Z. In this case, B
gets a reference to thenew versionof Z.

OSGi offers two operation modes. In theBundled Applicationmode there is an OSGi server that acts
as a container for one or more OSGi applications. This model is similar to that of the Apache Tomcat
application server acting as a container for a number of Javaweb applications. In theHosted Framework
mode, the OSGi implementation isembeddedin a given application.

A short introduction to OSGi can be found in [69]. Moreover, there are a number of implementations
of OSGi, like Apache Felix [30], Concierge [1, 60] (especially designed for resource-constrained devices),
Equinox [2], KnopflerFish [3] and Oscar [5], among others.

Moreover, there are some other proposals that extend OSGi orare related to OSGi in some way. For
instance, Rellermeyeret al. propose R-OSGi [59], an extension of the standard OSGi specification to
build distributed systems. Another alternative also focused on distributed and cloud systems is OSGi4C
[62]. And in [26], Chen and Huang propose a mechanism to dynamically update the bundles of an OSGi
application.

3.6.4 Dynamic software update in the .NET platform

In this section we survey some options related to dynamic software update that are available for .NET
applications.

First, there are two technologies included in Microsoft .NET 4 platform that allow to dynamically
load code. These are theManaged Extensibility Framework (MEF)and theManaged Add-In Framework
(MAF).

The Managed Extensibility Framework (MEF) presents some similarities with the OSGi framework.
Both allow to build applications that can dynamicallyload add-in components (as plug-ins). Moreover,
both have a declarative mechanism to express relationshipsamong components. As in OSGi, in MEF,
each component declares its dependencies (orservice imports) and its capabilities (orservice exports).
When MEF loads a component it checks its service imports, decides if other already loaded components
export those services and in such a case,connectsthem. Moreover, MEF also checks the service exports
of the components and decides if they can be connected to theservice importsof other already loaded
components.

As in OSGi, the advantage of this model is that the applications do not need tohardcodetheir depen-
dencies on other components. Instead these dependencies can be resolved in run-time, in a similar way as
in anInversion of Control (IoC) container. Moreover, the extension components are not bound to the .NET
assembly2 of the application they areextending, so they can be easily reused with other applications. The

2In the .NET platform, applications are organized inassemblies, composed by one or more types (classes, interfaces, etc.). An
assembly is somehowsimilar to a Java package. Assemblies can be dynamically loaded althoughit is not possible to dynamically
load a single type. Moreover, a .NET application has one or more application domains, which are theisolated contextsin which
assemblies are run. Classes in different application domainscan not communicate directly (by means of a regular local invocation),

15



main drawback of MEF from the point of view of dynamic software update is that it does not allow the
dynamic unloadingof the components, thus prohibiting any kind ofdynamic update.

The Managed Add-In Framework (MAF) is a technology similar to MEF although there are some
differences. Regarding DSU, the most important differenceis that it allows the application and the add-in
components to be in different .NETapplication domainsso the add-ins can be dynamically unloaded.

There are other attempts to define some sort of dynamic updatemechanism in the .NET platform. For
instance, in [28], Escoffier et al discuss some issues related to dynamic update of .NET applications. Their
goal is to design some sort ofOSGi for .NET, although they identify some features of the .NET platform
that prevent from getting the same semantics of OSGi. First,the load unit (and also theunload unitwhen
it is possible) is the assembly, which typically contains a number of types (classes). To load and unload
a single type, it must be the only type included in a single assembly, which is not practical. Second,
dependencies among assemblies are included by the compilerin the executable binary code, which makes
difficult to dynamically change them. In contrast, Java dependencies are resolved in run-time, which eases
reusing the compiled Java classes. Third, theload orderof the classes and assemblies isstronglycontrolled
by the virtual machine and the user can not change it easily. In contrast, Java applications can modify the
class load process by using their own class loaders. Finally, the name of an assembly is part of the name of
the types contained in it, which also makes difficult to reusesuch types.

They propose a number of alternatives to dynamically load (and unload, in some cases) .NET types.
A first alternative consists in using a single application domain and several assemblies loaded into it. One
of these is special and is used to load the rest of them. As all the assemblies are in the same application
domain, every class can invoke methods from any other class using regular local invocations. The main
drawback is that such assemblies can not be individually unloaded. To unload a type, the whole application
domain should be unloaded, which in practice is equivalent to stop and restart the whole application.

A second alternative consists in using several applicationdomains in the same application. Each as-
sembly that needs to be unloaded is in its own application domain. To unload a type, which is contained
in a given assembly, the corresponding application domain can be unloaded. As pointed out above, the
drawback is that application domains can not communicate byregular local invocations but some other
IPC-like mechanism must be used, with the consequent performance penalty. Java applications that use
different class loaders experience a similar issue, since aclass loaded by a given class loader can not access
another class loaded with a class loader that belongs to a differentbranchof the class loader hierarchy, by
means of regular local invocations.

A third alternative consists in using .NET’sshared domains, to hold assemblies that may be common
to all application domains. Other assemblies may be included in different application domains.

Two alternatives more, quite similar to each other consist in having one specific application domain
to hold assemblies that may be common to the rest of the application domains. In one case, the special
application domain is a.NET shared domain. In the other case, the special application domain is a regular
application domain that just has that special role. In both cases, both solutions offer a better performance
when a class invokes methods from a class that belongs to thespecial application domain. On the other
hand, both solutions suffer from the same penalty performance of the two first alternatives, when invoking
classes that belong to other application domains.

Finally, they conclude by identifying the two main issues of.NET that prevent from designing an OSGi-
like infrastructure for .NET. The main issue is theinability of unloading individual assemblies from a given
application domain. The second issue is the need to use slow IPC-like mechanisms to communicate classes
belonging to different application domains.

3.6.5 Dynamic software update in Erlang

Erlang [10] is an interpreted concurrent functional programming language that can be used to build dis-
tributed fault-tolerant (and soft-real-time) applications. Erlang allows to dynamically replace single mod-
ules of an application.

Erlang allows a module to have two concurrent versions: thecurrent version and theold version.
When a module is first loaded, it is in itscurrentversion. It then can be replaced with a new instance of the

but some inter-process communication (IPC) mechanism is needed(thus rising the cost of the invocation).

16



module. Then, the current version becomes theold version and the new instance becomes the newcurrent
version.

Erlang allows to keep both versions in execution. Once applied the update, thecurrent version is
generally used but old existing processes that were accessing the updated module go on working with the
old version until they normally finish. If a new (third) version of the module is installed, then Erlang
removes the old version and finishes the pending processes that were using it. Then, it installs the new
version according to the procedure referred to above.

Moreover, Erlang allows to define special functions that maybe run when a module is loaded. Such
functions may be used to apply the needed state transformations.

3.6.6 Version Coexistence

Version coexistenceis the ability of a dynamic update system to allow different versions of an updateable
component to concurrently coexist, providing a regular service according to their specifications. In Section
2 we identified this feature as one of the fundamental requirements a dynamic update mechanism should
have. However, the support needed to provide it may have a cost, from different points of view. First, it
has to be implemented, which means a significant effort. Then, it may have some other cost in run-time,
imposing some performance overhead regarding an update mechanism without such a support.

Thus, in many of the proposals reviewed, the dynamic update mechanism ensures that the new version
of a component will nevercoexistwith an older version. Some of them ensure this behavior by asking the
program (or at least, the component to be replaced) to reach some stable or quiescent state (see Section
3.1), performing the update anduninstallingor otherwise preventing both versions to run at the same time.

Nevertheless, there are some authors that provide some support to version coexistence. For instance, in
the context ofdynamic updatingof functions and procedures, Segal and Frieder [63, 32], define interpro-
cedures, which are some sort of intermediary procedures that delegate on the real implementations. These
interprocedures may be called fromold client code (this is, client code that onlyknowsthe old version of
the updated procedure) or fromnewclient code, thus providing theillusion that different versions of the
same procedure coexist.

Ajmani et al. [12, 11] follow a similar approach, by definingsimulation objectsasproxiesthat wrap
the real service objects. For a given service object, it is possible to define proxies that represent thepast
versions and evenfuture versions and all of them can coexist and be called by different pieces of client
code that may be in different update stages.

POLUS [24] and [25, Section 2.2] allows the coexistence of old and new versions of the samecodeas
well as old and new representations of data structures, after an update is applied. Moreover, it ensures that
old (new) code is only allowed to operate on the old (new) data, respectively.

Dmitriev [27] elaborates on different policies that may be implemented in the context of the dynamic
update mechanism included in the Java Virtual Machine.

3.6.7 Replication

Few papers have tackled the topic of applying dynamic updates to replicated systems. For instance, So-
larski and Meling [65] propose a procedure to dynamically update a distributed system that usesactive
replication. The procedure relies on a group communication system that offers a total order message de-
livery service and operates by iterating over the availablereplicas, shutting them off, updating them (in a
staticway) and restarting them. This work is later extended by Solarski [64] in his Ph.D. Thesis, by adding
a procedure applicable to systems that usepassive replication. The procedure does not actually apply a
dynamic update of the replicas. Instead, the new version of the software is installed in brand new replicas
and the old ones are shut down manually. Finally, a failover mechanism is used to promote to primary
replica one of the new replicas.

Wanget al. [73] propose a mechanism to dynamically change the consistency mode used by the replicas
of a replicated system. They argue that the consistency needs of a replicated system can change in run-
time, during the regular execution, according to the observed rates of read and write operations issued by
the clients. The rate of read an write operations may below or high and thus, at any moment, the system
can be in any of the four possible combinations. The authors propose to consider the current combination

17



to dynamically change the consistency mode of the replicas,from a relaxedconsistency mode to astrong
consistency mode. They also organize the nodes in three categories: a master node, a (typically small) set
of first-level replicas known asdeputy nodesand the rest of nodes, considered second-level replicas and
known aschild nodes.

The first combination is astrong consistency modein which the read rate is high and the write rate
is low. Write operations sent to any replica are redirected tothe master, which redirects them to all the
replicas, thus achieving full consistency among all the replicas. Read requests are sent to any replica and
can attended immediately because they are all updated.

The second combination is atrade-off modein which both the read and write rates are high. Write
operations sent to any replica are redirected to the master.The master forwards them to the deputy nodes.
It also forwards them to the rest of the replicas if it considers that they are too outdated. Read requests are
sent to any replica and attended immediately (so anold value may be read).

The third combination is anothertrade-off modein which the read rate is low and the write rate is high.
Write operations sent to any replica are resent to the master,who resends them to all the deputy nodes.
Read requests sent to the master or to any of the deputy nodes are responded immediately. Read requests
sent to a child node are forwarded to and answered by theclosestdeputy thus ensuring that an updated
value is provided.

The fourth combination is also atrade-off-modein which both the read and write rates are low. The
only different case is when a child node receives a read request. If the child ittoo outdated, it retrieves the
requested value from the closest deputy node and returns it to the client. Otherwise, the child node answers
itself (so anold value may be read).

3.6.8 Scheduling and synchronizing

In Section 3.4 we provided a number of references of systems that allow the user to mark places in the
program. In some cases, those are places in which a dynamic update may be applied. In other cases, they
are places in which a dynamic update should not be applied.

Other systems consider the scheduling of the updates at a higher level of abstraction. For instance,
Ajmani et al. [12, 11] propose the use ofscheduling functions, in the context of updating distributed
systems. These functions are provided by the programmer of the managed system and may be called by the
dynamic update mechanism to decide when each node has to be updated with respect to the other nodes.

They identify differentupdate patterns(borrowed from [21]) that may be implemented asscheduling
functions. For instance, afast rebootupdate consists in updating all nodes at once. In general, this is
considered abad option, since it yields the software system completely unavailable during the time required
by the update to take place. Another option is abig flip, which consists in first updating half the nodes at
once and then, the other half. This option requires some kindof load balancerable to redirect to the
proper nodes the user requests issued during the update. A more flexible option is arolling upgrade, which
consists in updating only a few nodes at a time (thus needing several steps to update the whole set of nodes).
The disadvantage of this option is that it requires that boththe previous and the next version of the managed
software need to be compatible since they will coexist.

They also identify other types ofpatterns, used tosynchronizethe progression of the nodes. For in-
stance, one pattern may beto wait until all nodes are updated, which can be seen as some sort ofstrong
synchronization barrieramong all nodes. A less restrictive option may beto wait until all nodes of class C
are updated. Moreover, the load of the nodes can also be considered so there can be a patternto wait until
the node is lightly loaded(with some definition ofload and some criterion to measure it).

For those cases in which someglobal knowledgeof the state of the nodes is needed, they provide a
central upgrade databasecomponent that gathers and spreads information about the state of the nodes.

3.6.9 Rollbacks

Some mechanisms offer the possibility torollback or undoan update.
For instance POLUS [24, 25] uses a mechanism based on the generation ofdynamic patchesto update

a running program from versionv to v + 1. The mechanism can also be applied torollback an update, for

18



instance when it is not behaving correctly or for any other reason, as decided by the programmer. For this,
it is enough to apply a patch toupdatethe program from versionv + 1 to v.

POLUS uses a carefully designedindirection mechanism that avoids multiple indirections. When a
function is updated, from a versionv to v + 1, by means of adynamic patch, POLUS inserts ajump in-
struction to redirect to the proper version implementationthe requests made to the function. If the function
is updated by succeeding requests, to versionsv + 2, v + 3, etc. then POLUS makes thejump instructions
to directly point to the latest version of the function, thusavoiding unnecessary redirections.

This mechanism allows the rollback of several updates, one after another, so it is possible to rollback
from versionv to v− 1, then tov− 2, v− 3 and so on, as long as it is possible to build the proper patches.
Besides applying the patches, POLUS alsoundoesthe insertion of the correspondingjump instructions,
thus again avoiding unnecessaryback and forthredirections.

In [22], Brown and Patterson propose a model for rollback mechanisms, as a solution to theexternal
inconsistencyproblem. This happens when the rollback of an update made to an application also discards
changes to the data that have beenseenby the user.

The proposed model is based on three stages or steps:rewind, repair andreplay. In therewindstep, the
rollback mechanism rollbacks the changes to data made afterapplying the update. Previously, the rollback
mechanism saves asemantic representationof those changes, so they can be re-applied later. In therepair
step, the update is rollbacked. In thereplay step, the saved changes are re-applied,over the rollbacked
version of the application.

As an example (and proof of concept in their prototype), the authors test the rollback of updates in a
regular email client application. In therewindstep, the changes are saved using asemantic representation.
Instead oflogging the changes made to the filesystem (e.g. the deletion of a file record, when deleting an
email message), the rollback mechanism saves theactionperformed by the user, in an abstract way (e.g.
”delete the message with id N”). This abstract action is re-applied in thereplay step, once the update is
rollbacked3.

The proposed model presents alack of genericityproblem, since it depends on particularlow level
protocols (IMAP and SMTP, JDBC, XML and SOAP, etc.). It also depends on the possibility of expressing
each possible user action in terms of the given protocol. Forinstance, the deletion of an email message can
be represented in terms of aDELETE IMAP command but some other user actions (e.g. the creation of a
new message draft) may not be IMAP-representable.

The authors have implemented a prototype that is usable to rollback updates to regular email client
applications that use the IMAP and SMTP protocols. They do not provide any details about how the
updates are first applied and then rollbacked.

4 Discussion

The dynamic software updatetopic has been being studied for decades (the first well-known references
are from the 70s), in the context of bothcentralizedand distributed systems. Since then, many papers
have been published and there exist many practical proposals. Some of them are for specific contexts and
situations but others were designed to be generally appliedand used. For instance, there exist proposals for
the dynamic update of software written in current languageslike C or Java.

Still, any user of current software can note that these techniques are not beinguniversallyapplied. The
users of current software (for instance, in ahouseholdcontext) are used to restart their software applications
and even the whole operating system when they have to update them.

For instance, many applications require the restart of the browser in order to update it. First, the
application itself detects the existence of a new availableupdate and downloads it to the local filesystem.
Next, the user is asked to restart the application so the update can be applied during the next restart of the

3In a certain sense, the difference between using a concrete low level format or a semantic one is similar to the difference found
in a similar situation, in the context of replicated databases. When a replica node needs to send to other node some changes made
to a replicated database it can send awritesetwith the changes or a representation of the correspondingoperation(for instance, a
regularUPDATE SQL sentence). In this example, some other criteria have to be considered, like thelengthof the writeset or the
computational costof re-executing the SQL sentence in the destination replica.

19



browser (the user can usually postpone this action). Once the application has been restarted and the update
applied, the user can resume using it normally.

Operating systems usually have some sort ofupdate managerto detect, download and dynamically
apply updates to different components of the system and evenits ownkernel. In some cases, updates can
be applied without having to restart the system. In other cases, some types of updates require a complete
restart of the system. And in some other cases, updates are dynamically applied but require the restart of
the system for the user to use them effectively (as it typically happens when an update is applied tocore
components of any operating system, for instance).

Regarding web applications and services, the current situation is diverse. On the one hand there are
a number ofbig web applications (that usually belong tobig companies), like web search engines, email
services, social networks, storage and multimedia broadcast services, etc. that have their own mechanisms
to dynamically update the applications. These applications use replication techniques at both the server
level and the database level which allows the updates to be applied transparently so the users do not usually
realize when the updates are applied.

On the other hand, there is the case ofsmallweb applications, typically belonging tosmallerentities
that do not have the same availability of resources of thebig companies. In many cases, the offered services
have to be temporarily shut down while the updates are applied. In these cases, the procedure followed by
the service administrators consists in redirecting the user requeststo some other place(for instance, to
a static information page that informs about the unavailability of the service), stopping the applications
and servers to update, applying the updates to the programs and/or the data, checking the changes and
restarting the servers and applications. During the time needed to perform these actions, the service is
typically unavailable. Thus, users are forced to interrupttheir use of the application and wait until the
services are restored.

To avoid the drawbacks pointed out in Section 1, the applications and servers to update should have
some dynamic update mechanisms that allowed them to be updated in run-time, in the most transparent
possible way to the users. This would avoid the interruption(and thus unavailability) of the service and the
corresponding nuisances to both the users and the holding entity or company.

We must also consider the case ofcloud computinginfrastructures. Specifically, the use of a dynamic
update mechanism, transparent to the users, makes even moresense in the case of the applications that are
executed in those infrastructures.

Indeed, one of the goals of any cloud infrastructure is to allow the applications to which it gives support,
to continuously run so they can continuously provide their services to their users without any interruption.
For this, the own infrastructures must also be dynamically updateable. Three different types ofcloud
architecturesare typically identified with the namesInfrastructure as a Service, Platform as a Service
andSoftware as a Service[72]. In all these cases, there are a number of software components that may
also need to be dynamically updated (to fix bugs and security issues, add new features, etc.). In case
of IaaS providers, the infrastructures typically offer to the user abstractions as virtual machines with the
appearanceof a full operating system, so applications canthink they are executed in dedicated servers. In
some other cases of IaaS, the user has somevirtualized environmentin which the user candropapplications.
In case of PaaS providers, the offered service consists in a set of tools, utilities, libraries, etc. that can be
used by the users to build their applications. In case of SaaSproviders, no infrastructure is offered but
one or morefinal-userapplications, that can be reached through any regular network (typically, through a
regular web browser) and used like any other locally installed application. Cloud providers may include
dynamic update mechanisms so their own cloud infrastructures can be dynamically updated.

On the other hand, the user applications that are executed inIaaS and PaaS cloud infrastructures can
also benefit from such update mechanisms, in order to providea continuous service to their users. These
mechanisms may exploit theelasticnature of the underlying cloud infrastructure. For instance, applying an
update to a cloud-hosted application could be as easy as applying the update in astaticmanner, asking for
new instancesonce the application has been completely updated and, in parallel, asking for the halt of ex-
isting outdated versions of the application. In the particular case of applications that have been specifically
designed to be run in cloud environments, the designers and developers may know the problems that may
arise and may have taken some precautions by including specific mechanisms (for instance, mechanisms
to synchronize the instances of the application and merge their states).

As we have showed, the use of dynamic update mechanisms is appropriate in many present types of

20



software systems and applications. Nevertheless, not all the techniques referred to in Section 3 are equally
appropriate to current software. In the rest of this sectionwe discuss someissuesrelated with those.

Issues related to low-level techniques. Some techniques are applied at a low level of abstraction or de-
pend upon low level of abstraction details. For instance, some techniques are based on the inspection of the
execution program stack (see Section 3.1), to know if the function or procedure to update is currently being
used. The programmer of a dynamic update mechanism based on such low abstraction level techniques
must know which is the format of the memory space bound to processes, how the stackframesare stored
and how data is stored in the frames.

Other techniques use several forms ofrewriting at the binary level (see Section 3.2). In some cases,
binary rewriting is used toredirect the execution of the code. The idea is toinstall the updated code and
redirect to that code the calls to the old code, by modifying memory address pointers (this is, making them
to point to someother place). Sooner or later, the old code will be no longer used and onlyits updated
version will be used. This is the case, for instance, of the techniques based onbinary patches. To apply this
technique, some sort of pause has to beimposedin the execution of the program to update, for instance with
any of the techniques discussed in Section 3.1. This pause may be brief so the impact on the availability
of the program may also be small. In other cases, longer partsof the program are rewritten (for instance,
fragments of a function), directly altering the instructions loaded in the main memory. Nevertheless, in this
case, the availability of the program may significantly decrease in case a large part of the program had to
be rewritten.

Nowadays, both types of techniques seem undesirable, for a number of reasons. First, these techniques
require a deep knowledge of very low level of abstraction details, related to hardware architectures (formats
of the instruction set, memory addressing modes, etc.), which severely limits the portability of the tech-
niques. Besides, we have to consider the currenttrend to use high level programming languages, most of
which are interpreted and depend on some sort of interpreteror virtual machine: Java (an others based on
the Java Virtual Machine like Scala, Groovy and others), C# (and other languages that depend on the .NET
platform), Perl, PHP, Python, Ruby, Erlang and many others.The portability of the programs developed
with those languages is based on the existence of interpreters and virtual machines that are available in
different platforms and that ensure the same semantic behavior. Regarding the Java and .NET platforms,
there exist formal specifications of their intermediate languages (the Java Bytecode and the Microsoft Inter-
mediate Language), which means that the dynamic update solutions built with such platforms may still use
some binary rewriting techniques (see Section 3.2) and still be portable. Even then, these solutions would
depend on a specific version of the intermediate language. The developers would be forced to follow the
evolution of the platform and the programming language (andspecifically, the intermediate language) and
adapt their update mechanism to the changes they experienced, in order to have an update mechanism that
could be used by current software. On the other hand, regarding many other language for which no inter-
mediate language exists, it does not seem an easy task to design a dynamic update mechanism that uses
binary rewriting (or in general, any low level technique) and at the same time is easily portable to different
platforms.

Finally, we must consider that the use ofhigh levels of abstractioneases the use of other underlying
abstractions. For instance, in the context of cloud computing systems, many cloud infrastructure providers
offer abstractions based on the use ofvirtual machinesand othervirtualization mechanisms. The use of
low level techniques like the ones discussed above mayobstruct(and in a worst case, even prevent) the
update mechanism and the cloud infrastructure itself to properly work.

For all these reasons, we discourage the use of binary rewriting techniques in particular and any other
technique of a low level of abstraction is not a recommendable option when high availability is a require-
ment.

Issues related to source code analysis. Other techniques are based on some analysis (typically static)
of the source code of the updateable applications. For instance, in some cases, such an analysis is used
to identify points in the updateable programs in which a dynamic update may ormay notbe applied.
The advantage of these techniques is that the programmer does not need to worry about such tasks thus
improving theprogrammer transparency.

21



Nevertheless, it must be considered that these techniques can only perform these analyses based on the
structure of the source code (this is, only from asyntacticpoint of view). The problem is that, on practice,
there may be semantic details that may remain unnoticed for the analyzers. For instance, the program
to update may use someconceptof transactionthat should be respected. The syntactic analysis of the
program may identifysafeor update pointsin which dynamic updates may be applied but it may happen
that such an update interrupted the execution of a transaction. A part of the transaction may be executed
with the old version of a given function and the rest may be executed with the updated version of another
function, which could lead the program to an undesirable state.

As we discuss later, rather than depending on a static analysis of the source code we recommend a more
comprehensive analysis performed by the developers of the program. The advantage of this approach is
that it allows to take better decisions, since the developers have a completesemanticview of the program.

Issues related to the use of intermediary levels. The use of intermediary levels also has some advantages.
Dynamic update mechanisms can use an intermediary level between a client program and a service it uses.
This level maywrap the real implementation of the service. It may capture the invocations to the service
and manage them as necessary, by blocking or pausing them, relying them, modifying them, etc. Such an
intermediary level could also be used to perform other auxiliary tasks like managing authorization issues,
statistically accounting the use of the service, logging and monitoring it, etc.

Moreover, in client/server systems, when used along other techniques (as discussed later), it eases the
application of the updates. For instance, it allows thecoexistenceof versions of the same program.

Nevertheless, the use of intermediary levels also poses some disadvantages. First, the use of an in-
termediary level always imposes some overhead in run-time.If the update mechanisms use intermediary
functions,interprocedures, proxy objects, etc. each invocation of aservicefunction or method first goes
through such intermediary code, which imposes a run-time overhead. This overhead may be small and
even negligible, especially when compared against the benefit obtained by using it or it may be significant
and non-negligible and yet the intermediary level may be considered useful. This means that this overhead
must be carefully estimated first and then measured.

Another issue is the impact that the use of such intermediarylevels would have on the development of
the user application (this is, on theapplication transparency). The use of a specific technique, a middleware
library or any other artifact that provides or helps to buildsuch an intermediary level may require some
specific knowledge or skill to the programmer and may have an impact on the design of the applications
or the development process. This should have also be considered when taking the decision of using some
intermediary level artifact. Ideally, this should be transparently integrated into the application and required
the minimal maintenance possible in order not todisturb the designers and developers and not keep them
away of the core design and development processes.

Issues related to version coexistence. In principle, the concept ofversion coexistenceoffers some ad-
vantages, especially combined with other techniques and approaches (like the use of intermediary levels).

For instance, in a client/server context, it allows to update a software server that is being currently
used, so the current clients can go on working normally with theold version of the server and, at the same
time, those clientsconnectedto the server once updated can directly start working with the newer version.
Otherwise, without version coexistence, once updated the server, the existing clients would be forced to
either halt or be updated, which may cause significant nuisances to the users.

One of the technologies that offer someimplementationof this technique is the OSGi standard. In OSGi
it is possible to have two different versions of the same service. When aclientprogram has areferenceof a
service and this is updated, the client program is neither aborted nor forced to be updated. Instead, it keeps
its referenceto theold-versionprogram and is able to go on working with it normally. If another program
gets a reference of the same service, once updated, it is given a reference to the new implementations.
Both versionscoexistin the OSGi server and can be used normally. Finally, when allthe references to the
old version of the program are finally discarded (for instance, because all the programs that hold them are
finished or simply stop using them), then the old version of the program isunloadedfrom the OSGi server
and finally discarded.

22



Nevertheless, version coexistence poses some problems. For instance, it is necessary to think about the
consistency of the datasharedby the different versions of the program. If two different versions of the
same program or component access the same data set, we may need to ensure that they access the data in a
consistentmanner. In some cases, they may be allowed to access the same set of data, if the accesses are
synchronized and the proper data transformations are applied, In other cases, it may be necessary to keep
separatedsnapshotsof the data, so each version of the program or component can access its own data set.
In this later case, somemergemechanism may be needed to reconcile one snapshot to the other. Moreover,
additional precautions may be taken, likesynchronizingthe access to specific resources like other data
source, physical resources, etc. In any case, the support toversion coexistence leads to complications that
must be evaluated.

Issues related to replication. We have found few references that tackle the problem of dynamic update
in the case of replicated (distributed) systems.

Among them, one proposes a couple of procedures to dynamically update actively and passively repli-
cated systems. The procedure for actively replicated systems relies on a group communication system
offering a total order message delivery service. This procedure does not actually use any of the techniques
discussed in Section 3, besides some state transfer step, used to update the new replicas as they are started.
Instead, a regularstop-and-updateprocedure is followed, to update, one by one, all the replicas. The pro-
cedure for passively replicated systems does not use any of those techniques, too. Instead, it relies on the
regularreplica failovermechanism that may be part of the replication protocol.

The problem of these procedures is that they depend on astate transferstep to update the new replicas.
As the state to transfer may be large, this step may be tooexpensivein terms of the time needed to perform
it. Moreover, it may be needed to block the replicated systemduring the state transfer step.

Necessity of intrusion. One of the main conclusions we can draw is that the dynamic software update
problem is complex enough for a tool to solve it in a completely transparent manner, especially from the
point of view of the final user. Moreover, we find that some of the goals listed in Section 2 are conflicting.
For instance, theuser transparencyandprogrammer transparencygoals are somehow conflicting.

As pointed out in Section 3.4, a number of authors propose theuse ofintrusivemechanisms and tech-
niques, in order to get a functional dynamic update solution, even if not all the desirable requirements are
fulfilled.

In this sense, one of the techniques that can be used to achieve such a goal is the use of marks and
annotations in the source code to identifysafeor updatepoints, in which a dynamic update can take place.
This technique may be preferable toautomatedtechniques based on the analysis of the source code, because
the programmer of the updateable program is the one that can better choose such places. The choice can
be done considering semantic constraints (like the presence of transactions)

The programmer can also help to ensure that the program or component is kept in any sort ofquiescent
state, if needed. For instance,idle functionsmay be provided and executed to help the update mechanism
to ensure that no relevant code is executed during an update.

The programmer may also provide the functionality requiredto transform and transfer the state of the
updateable components or programs. Again, the programmer is the one that better knows how the program
manages its state, how has it to be represented, and how should it be transformed.

The previous techniques can be combined with the use of some sort of underlying support. This can be
some kind ofmiddleware, frameworkor library. A good option available in the Javauniverseis the use of
an OSGi implementation (see Section 3.6.3).

5 Conclusion

This report surveys a number of references related to thedynamic software updatetopic. The main goal
is to introduce the topic to the interested readers in astructuredmanner and help them to learn about a
number of references available in the literature of this topic. The report offers a twofold contribution.

First, we study the variety ofdefinitionsof dynamic software updatefound in the surveyed references.
In Section 2 we provide a selection of the most important requirements chosen by the authors.

23



Then, we also analyze which are the techniques and other related concepts and issues in those references
and identify which are the most used. The corresponding selection can be found in Section 3.

Finally, in Section 4 we discuss the techniques described inSection 3.

References

[1] Concierge. http://concierge.sourceforge.net/.

[2] Equinox. http://eclipse.org/equinox/.

[3] Knopflerfish. http://www.knopflerfish.org/.

[4] Open Source ByteCode Libraries in Java. http://java-source.net/open-source/bytecode-libraries.

[5] Oscar. http://oscar.objectweb.org.

[6] OSGi Alliance. http://www.osgi.org.

[7] CGLib 2.2.2, April 2011. http://cglib.sourceforge.net/.

[8] Javeleon 1.5, September 2011. http://javeleon.org.

[9] Javassist 3.16.1, March 2012. http://www.csg.ci.i.u-tokyo.ac.jp/ chiba/javassist/.

[10] Ericsson AB. Erlang. http://www.erlang.org.

[11] Sameer Ajmani.Automatic Software Upgrades for Distributed Systems. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2004.

[12] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Modular Software Upgrades for Distributed Sys-
tems. InEuropean Conference on Object-Oriented Programming (ECOOP), July 2006.

[13] OSGi Alliance. About the OSGi Service Platform. Technical Whitepaper. Revision 4.1., June 2007.

[14] Joao Paulo Almeida, Marteen Wegdam, Marten van Sinderen, and Lambert Nieuwenhuis. Transparent
Dynamic Reconfiguration for CORBA. In3rd International Symposium on Distributed Objects and
Applications (DOA), pages 197–207, 2001.

[15] Gautam Altekar, Ilya Bagrak, Paul Burstein, and AndrewSchultz. OPUS: Online Patches and Updates
for Security. In14th Conference on USENIX Security Symposium, SSYM’05, Baltimore, MD, 2005.
USENIX Association.

[16] Filippo Banǹo, Daniele Marletta, Giuseppe Pappalardo, and Emiliano Tramontana. Handling Consis-
tent Dynamic Updates on Distributed Systems. In2010 IEEE Symposium on Computers and Com-
munications (ISCC), pages 471–476, June 2010.

[17] Mario R. Barbacci, Dennis L. Doubleday, Charles B. Weinstock, Michael J. Gardner, and Randall W.
Lichota. Building Fault Tolerant Distributed Applications with Durra. InInternational Workshop on
Configurable Distributed Systems, pages 128–139, March 1992.

[18] Jaroslav Bauml and Premek Brada. Automated Versioningin OSGi: a Mechanism for Component
Software Consistency Guarantee. In35th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA ’09), pages 428–435, August 2009.

[19] Christophe Bidan, Valérie Issarny, Titos Saridakis, and Apostolos Zarras. A Dynamic Reconfiguration
Service for CORBA. InFourth International Conference on Configurable Distributed Systems, pages
35–42, May 1998.

[20] Toby Bloom. Dynamic Module Replacement in a Distributed Programming System. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1983.

24



[21] Eric A. Brewer. Lessons from Giant-Scale Services.IEEE Internet Computing, 5(4):46–55, July
2001.

[22] Aaron B. Brown and David A. Patterson. Rewind, repair, replay: three R’s to dependability. In10th
workshop on ACM SIGOPS European workshop, EW 10, pages 70–77, Saint-Emilion, France, 2002.
ACM.

[23] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: a Code Manipulation Tool to Implement
Adaptable Systems. November 2002.

[24] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-ChungYew. POLUS: A POwerful Live
Updating System. In29th international conference on Software Engineering, ICSE ’07, pages 271–
281. IEEE Computer Society, May 2007.

[25] Haibo Chen, Jie Yu, Chengqun Hang, Binyu Zang, and Pen-Chung Yew. Dynamic Software Updating
Using a Relaxed Consistency Model.IEEE Transactions on Software Engineering, 37(5):679–694,
September-October 2011.

[26] Junqing Chen and Linpeng Huang. Dynamic Service UpdateBased on OSGi. InWRI World Congress
on Software Engineering (WCSE ’09), volume 3, pages 493–497, Xiamen, China, May 2009. IEEE
Computer Society.

[27] M. Dmitriev. Towards Flexible and Safe Technology for Runtime Evolution of Java Language Appli-
cations. InWorkshop on Engineering Complex Object-Oriented Systems for Evolution, in association
with OOPSLA 2001 International Conference, 2001.

[28] Clément Escoffier, Didier Donsez, and Richard S. Hall. Developing an OSGi-like Service Platform
for .NET. In IEEE Consumer Communications and Networking Conference (CCNC’06), volume 1,
pages 213–217, January 2006.

[29] R. S. Fabry. How to Design a System in Which Modules Can be Changed on the Fly. In2nd Inter-
national Conference on Software Engineering (ICSE ’76), pages 470–476, San Francisco, California,
United States, 1976. IEEE Computer Society Press, Los Alamitos, CA, USA.

[30] The Apache Software Foundation. Apache Felix. http://felix.apache.org.

[31] The Apache Software Foundation. Apache Commons BCEL 6.0, October 2011.
http://commons.apache.org/bcel/.

[32] Ophir Frieder and Mark E. Segal. On Dynamically Updating a Computer Program: from Concept to
Prototype.Journal of Systems and Software, 14(2):111–128, February 1991.

[33] Cristiano Giuffrida and Andrew S. Tanenbaum. A Taxonomy of Live Updates. InAdvanced School
for Computing and Imaging (ASCI) 2010 Conference, Veldhoven, The Netherlands, November 2010.

[34] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language Specification. Third
edition edition, 2005.

[35] Allan Raundahl Gregersen and Bo Nørregaard Jørgensen.Dynamic Update of Java Applica-
tions—balancing Change Flexibility vs Programming Transparency. Journal of Software Mainte-
nance and Evolution: Research and Practice, 21(2):81–112, March 2009.

[36] Allan Raundahl Gregersen, Douglas Simon, and Bo Nørregaard Jørgensen. Towards a Dynamic-
update-enabled JVM. InWorkshop on AOP and Meta-Data for Software Evolution, RAM-SE ’09,
Genova, Italy, 2009. ACM.

[37] Allan Raundahl Gregersen, Douglas Simon, and Bo Nørregaard Jørgensen. Towards a Dynamic-
update-enabled JVM. InWorkshop on AOP and Meta-Data for Software Evolution, RAM-SE ’09,
Genova, Italy, 2009. ACM.

25



[38] Deepak Gupta.On-line Software Version Change. PhD thesis, Department of Computer Science and
Engineering, Indian Institute of Technology, Kanpur, India, November 1994.

[39] Deepak Gupta and Pankaj Jalote. On Line Software Version Change Using State Transfer Between
Processes.Software Practice and Experience, 23(9):949–964, September 1993.

[40] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A FormalFramework for On-line Software Version
Change.IEEE Transactions on Software Engineering, 22(2):120–131, February 1996.

[41] Maurice P. Herlihy and Barbara Liskov. A Value Transmission Method for Abstract Data Types.ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(4):527–551, October 1982.

[42] Michael Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic Software Updating. InACM SIG-
PLAN 2001 Conference on Programming Language Design and Implementation, PLDI ’01, pages
13–23, Snowbird, Utah, United States, May 2001. ACM.

[43] Michael Hicks and Scott Nettles. Dynamic Software Updating. ACM Transactions on Programming
Languages and Systems (TOPLAS), 27(6):1049–1096, November 2005.

[44] Christine R. Hofmeister and James M. Purtilo. A Framework for Dynamic Reconfiguration of Dis-
tributed Programs. Technical Report UMIACS-TR-93-78, 1993.

[45] Christine Ruth Hofmeister.Dynamic Reconfiguration of Distributed Applications. PhD thesis, Uni-
versity of Maryland at College Park, College Park, MD, USA, 1993.

[46] J. Kramer, J. Magee, M. Sloman, and A. Lister. CONIC: an Integrated Approach to Distributed
Computer Control Systems.IEE Proceedings E Computers and Digital Techniques, 130(1), January
1983.

[47] Jeff Kramer and Jeff Magee. Dynamic Configuration for Distributed Systems.IEEE Transactions on
Software Engineering, SE-11(4):424–436, April 1985.

[48] Jeff Kramer and Jeff Magee. The Evolving Philosophers Problem: Dynamic Change Management.
IEEE Transactions on Software Engineering, 16(11):1293–1306, Nov. 1990.

[49] Eugene Kuleshov. Using ASM Framework to Implement Common Bytecode Transformation Pat-
terns. Vancouver, Canada, March 2007.

[50] Tim Lindholm and Frank Yellin. The Java Virtual MachineSpecification, Second Edition, 1999.

[51] Barbara Liskov and Robert Scheifler. Guardians and Actions: Linguistic Support for Robust,
Distributed Programs. ACM Transactions on Programming Languages and Systems (TOPLAS),
5(3):381–404, July 1983.

[52] Valerio Panzica La Manna. Dynamic Software Update for Component-based Distributed Systems. In
Proceedings of the 16th international workshop on Component-oriented programming, WCOP ’11,
pages 1–8, New York, NY, USA, 2011. ACM.

[53] Marco Milazzo, Giuseppe Pappalardo, Emiliano Tramontana, and Giuseppe Ursino. Handling Run-
time Updates in Distributed Applications. In2005 ACM symposium on Applied computing, SAC ’05,
pages 1375–1380, Santa Fe, New Mexico, 2005. ACM.

[54] Yogesh Murarka and Umesh Bellur. Correctness of Request Executions in Online Updates of Con-
current Object Oriented Programs. In15th Asia-Pacific Software Engineering Conference (APSEC
’08), pages 93–100. IEEE Computer Society, December 2008.

[55] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical Dynamic Software Up-
dating for C. InACM SIGPLAN conference on Programming language design and implementation,
PLDI ’06, pages 72–83, Ottawa, Ontario, Canada, 2006. ACM.

26



[56] ObjectWeb. ASM 4.0, October 2011. http://asm.ow2.org/.

[57] James M. Purtilo. The POLYLITH Software Bus.ACM Transactions on Programming Languages
and Systems, 16(1):151–174, January 1994.

[58] James M. Purtilo and Christine R. Hofmeister. Dynamic Reconfiguration of Distributed Programs. In
11th International Conference on Distributed Computing Systems, pages 560–571, May 1991.

[59] Jan Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-OSGi: Distributed Applications Through
Software Modularization. In Renato Cerqueira and Roy Campbell, editors,Middleware, volume 4834
of Lecture Notes in Computer Science, pages 1–20, Newport Beach, CA, USA, 2007. Springer Berlin,
Heidelberg.

[60] Jan S. Rellermeyer and Gustavo Alonso. Concierge: a Service Platform for Resource-constrained De-
vices. InProceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems,
volume 41 ofEuroSys ’07, pages 245–258, Lisbon, Portugal, March 2007. ACM.

[61] Tobias Ritzau and Jesper Andersson. Dynamic Deployment of Java Applications. InJava for Embed-
ded Systems Workshop, London, United Kingdom, May 2000.

[62] Holger Schmidt, Jan-Patrick Elsholz, Vladimir Nikolov, Franz J. Hauck, and R̈udiger Kapitza.
OSGi4C: Enabling OSGi for the Cloud. InFourth International ICST Conference on COMmuni-
cation System softWAre and middlewaRE (COMSWARE ’09), COMSWARE ’09, Dublin, Ireland,
June 2009. ACM.

[63] Mark E. Segal and Ophir Frieder. Dynamic Program Updating in a Distributed Computer System. In
Conference of Software Maintenance, pages 198–203, Scottsdale, AZ, USA, October 1988.

[64] Marcin Solarski. Dynamic Upgrade of Distributed Software components. PhD thesis, Fakultät IV
(Elektrotechnik und Informatik), Technische Universität Berlin, 2004.

[65] Marcin Solarski and Hein Meling. Towards Upgrading Actively Replicated Servers on-the-fly. In
26th Annual International Computer Software and Applications Conference (COMPSAC 2002), pages
1038–1043, 2002.

[66] N. Sridhar, S.M. Pike, and B.W. Weide. Dynamic Module Replacement in Distributed Protocols. In
23rd International Conference on Distributed Computing Systems, pages 620–627, May 2003.

[67] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian Neamtiu. Mutatis Mutandis:
Safe and Predictable Dynamic Software Updating.ACM Transactions on Programming Languages
and Systems (TOPLAS), 29(4), August 2007.

[68] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba,and Kozo Itano. A Bytecode Translator for
Distributed Execution of “Legacy” Java Software. In15th European Conference on Object-Oriented
Programming (ECOOP ’01), ECOOP ’01, pages 236–255. Springer-Verlag, 2001.

[69] Andre L. C. Tavares and Marco Tulio Valente. A Gentle Introduction to OSGi.SIGSOFT Software
Engineering Notes, 33(5), September 2008.

[70] L.A. Tewksbury, L.E. Moser, and P.M. Melliar-Smith. Live Upgrades of CORBA Applications Using
Object Replication. InProceedings of the IEEE International Conference on Software Maintenance
(ICSM’01), ICSM ’01, pages 488–497. IEEE Computer Society, 2001.

[71] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. Tranquility: A Low Disrup-
tive Alternative to Quiescence for Ensuring Safe Dynamic Updates.IEEE Transactions on Software
Engineering, 33(12):856–868, December 2007.

[72] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, andMaik Lindner. A Break in the Clouds:
owards a Cloud Definition.SIGCOMM Computer Communication Review, 39(1):50–55, January
2009.

27



[73] Ximei Wang, Shoubao Yang, Shuling Wang, Xianlong Niu, and Jing Xu. An Application-Based
Adaptive Replica Consistency for Cloud Storage. In2010 Ninth International Conference on Grid
and Cooperative Computing, pages 13–17, Nanjing, November 2010.

[74] ZeroTurnaround. JRebel 4.5.4, January 2012. http://zeroturnaround.com/jrebel/.

28


