Dynamic Software Update

Emili Miedes and Francesc D. Noz-Esco

Instituto Universitario Mixto Tecndlgico de Infornatica
Universitat Poliecnica de Vancia
Campus de Vera s/n, 46022 Valencia (Spain)

{emiedes, fmunyoz@iti.upv.es

Technical Report ITI-SIDI-2012/004

ITI-SIDI-2012/004

Dynamic Software Update

Emili Miedeset al.:

Dynamic Software Update

Emili Miedes and Francesc D. Nioz-Esco

Instituto Universitario Mixto Tecndlgico de Infornatica

Universitat Poliecnica de Vancia
Campus de Vera s/n, 46022 Valencia (Spain)

Technical Report ITI-SIDI-2012/004
e-mail: {emiedes, fmunycz@iti.upv.es

May 21, 2012

1 Introduction

Software systems are continuously evolving. Some typixafgples of software changes may be changing
the implementation of a given service, adding a new servigapving an existing one or fixing a bug or a
security vulnerability.

The classic way to apply a change to a software system thatrisrily running consists in producing a
new version of the software, stopping the installed versithe software, removing it, installing the new
version and restarting it.

This procedure has a number of drawbacks. First, it forceanlavailability of the service offered by
the software. Moreover, from the client side, it forces istart of the client software that was accessing
the software. Furthermore, it complicates the design ameldpment of the software service. For instance,
the software must be able to handle update requests, pyoba® some state to a persistent device and
switch itself off. When the next version is started up, it mastieve the persisted stated, use it to initialize
itself and finally go on providing its service.

The alternative is the use ofignamic update mechanismhich allows a software system to be updated
dynamically this is, without requiring it to be switched off and on agahus avoiding the issues pointed
out above.

Nowadays, such mechanisms are useful for many types of aaftaystems and applications. First,
they are useful for common final user desktop applicatiorisattsparently apply regular updates and bug
fixes, without forcing the user to restart the application.

Second, they are useful for updating and upgrading the tpgrsystems themselves, this is, to apply
both the regular updates that fix bugs or include minor cheiagd themajor upgrades that include a large
number of changes, without forcing the user to restart ts&esy.

In a more wide scale context, dynamic software update meésinarare useful to update any type of
web service or application that offers a 24/7 service to amally large set of users. Without a dynamic
update mechanism, to update such an application, a stopeatatt model would be used, which causes
significant nuisances to the user and may cause a signifiaemtto the holders of the application. First, the
ongoing user requests must &eorted thus causing a significant nuisance to the connected ugkich
sooner or later turns out to have a negative impact on théyenesponsible of the service. Moreover,
the application must be kept inactive during the time neddegerform the update or upgrade and the
corresponding testing, this yielding it unavailable soah ¢1ot serve new user requests, which definitely
has a negative impact on the holder entity.

Another example in which a dynamic update mechanism is higakirable is theloud computing
ecosystenas a general example of an on-line 24/7 high-scale envirahniedeed, one of the major fea-
tures promised by any cloud computing provider is a highllefavailability of the application deployed

in the cloud Nevertheless, all the cloud providers run a software stftecture that sooner or later has to
be updated and upgraded. As in the previous examples, a dysaftware update mechanism allows the
cloud providers to update their systems while keeping ta@édst levels of availability and transparency
from the point of view of the user.

The dynamic software update topic has been studied in ththlee decades by a number of authors, in
different contexts, and a number of techniques and solsitiddifferent types have been proposed. During
that time, few surveys of dynamic update mechanisms have jpgglished, too. Nevertheless, to the best
of our knowledge, no study surveying and classifying the mmm dynamic update techniques has been
published yet.

The goal of this paper is to help the interested reader ta aatae of the concepts and techniques found
in the literature of dynamic software updating. First, irc8m 2 we propose a selection of requirements
and goals we identify as beirgasicin any dynamic software update mechanism. Then, in Sectiwe 3
identify a number of techniques used in the existing literat In Section 4 we discuss a number of issues
related to some of the topics covered in the preceedingosectiThe paper is concluded in Section 5.

2 Requirementsand Goals

As pointed out in Section 1, a dynamic update mechanism alfbgoftware system to be updated dynam-
ically. This means that to apply a change in the software, fitoi longer necessary to stop the system and
restart it once updated. Instead, the update is appliechitime.

In the existing literature related to dynamic software ujpdga we found a variety of authors that
provide their owrdefinitionof dynamic software update and list the requirements ants gloat a dynamic
update mechanism may have. In this section we identify a earmbsuch requirements and goals. For
each requirement, we describe the main issues and provide [#erature references in which the topic is
somehow covered. In some cases, the authors propose siiggiions.

Continuity and Minimal Disruption. The update can be performed in run-time, without stoppind) an
restarting the system to update and it does not interrupetteeution of the software for a too long period
of time

The first part of the requirement (the avoidance of a stop asthrt) is theessentialconcept in the
dynamic software updat®pic, as explained in Section 1 and all the references thnarcthe dynamic
update software just implicitly assume it. Some of the arghibat identify it explicitly are Fabry [29],
Segal and Frieder [63, 32], Solarski [64], Murarka and Bdbi4] and Gregersen and Jgrgersen [35].

The second part of the requirement can be seen agtansiorof the first part. The goal is to ensure
that the availability of the service offered by the softwaréts performance do not decrease significantly.

From a practical point of view, both parts of the requiremam needed to ensure that the software
service is available. To show this, we can considerweost caseshat may happen in @ontinuousupdate
mechanism (this is, one that avoids stopping and restattiagsoftware). In the first case, the update
process is dynamically applied but due to the overhead ibsep, it completely blocks the execution of the
service thus yielding it completely unavailable. In theaetcase, the update process is also dynamically
applied and can be executed in parallel with the servicettnaduces the performance of the latter to a
minimum, which in fact would be a similar situation. In bothses, despite having the update process
dynamically performed, the software is unavailable fronracpcal point of view.

On the other hand, the best case is such that the update prdmes not block the execution of the
service at all (this is, it can be performed while regulav®er requests are being served) and it does not
alter the performance of the service.

Such a best case is quite difficult to achieve so many autlimSider aelaxed versionln some cases,
it is just required that the update process causesnihénal performance overheant disruptionto the
updateable software, without specifying what tiigruptionmay consistin ([48, 63, 32, 43, 24, 35, 52]). In
other cases, this requirement is more specific, like in [28jch admits anomentary delain the normal
execution of user requests or [64] which accepts that thategorocess may interrupt the applicattbe
shortest time possible

Moreover, some authors require the system to upgrade to aeuiescenstate for the update to be
performed, while others allow to apply a dynamic update atiie software is fully operative. In Section
3.1 we review some issues related to the conceptig#scence

Transparency. The update process is transparenthich means that it has no significant impact on its
context (the user, the programmer and the managed appfhigdteyond the results it provides (a dynamic
update). Again, this is a case of a manifold requirementesgeveral types of transparency can be consid-
ered.

First, we can consider theser transparencythe transparency from the point of view of the final user.
According to it, in an ideal case, the update mechanidnididento the user, this is, the user does not need
to be aware of the update mechanism. Moreover, it does noirestipe user to interact with the application
in any specific manner or have any specific knowledge or shiilthe worst case, the user needs to know
about the update mechanism and it changes the way the usexdtst with the software.

Then, we can consider the transparency regarding the pnogea’s point of view. Aprogrammer
transparentupdate procedure is one that does not require the prograsmimdrave specific knowledge
about the update process itself and does not change the eiadéisign and develop the systems.

Moreover, the update process can alsapplication transparentthis is, transparent from the point of
view of the software itself. Ideally, the update mechanismrie that does not impose any constraint to the
program about how to be designed or implemented, does nogetthe expected behavior of the program,
does not impose any noticeable performance impact or amy otinstraint and is not noticeable to those
parts of the system that are not related to it. Typical exaspf constraints that may be required to the
updateable software components of an application are thefuspecific programming or configuration
languages, interfaces or base classes and libraries talmai the application.

Regarding the literature, these transparency requiresraetidentified by several authors. Tinger
transparencyrequirement, as expressed above, is not found in any of feeerees surveyed although we
can consider that all those references that adminall disruption in the correct operation of the update
mechanism are implicitly using elaxedform of user transparency. On the other hand, Gregersen and
Jargersen [35] explicitly requingrogrammer transparencgnd Solarski [64] and Baret al. [16] require
application transparency

Generality. The update process is generdhis requirement actually has a twofold interpretatiomsti
the update mechanism allows to apply different types of tggdaf different types of complexity. The
types of changes that are easier to apply are reimplemestinge part of the system yet keeping the
interfaces and the semantics intact and extending the sty aconstructivemanner (this is, keeping the
existing components and adding new ones). More complexgesaare modifying the interface of some
of the components in aimcompatibleway or removing some existing components. In the general, @as
dynamic update mechanism that offgeneralitymay allow any type of change that could be applied by
theclassic stop-and-restartpdate mechanism referred to in Section 1.

A second interpretation is thtite updateable systems can be of different tyfiesfers to the ability of
the dynamic update mechanisms to updeerogeneousomponents (those using different technologies,
models, programming paradigms and languages, etc.).

The first interpretation is the one used by Ajmani [11, 12] @ndgersen and Jgrgersen [35] while the
second interpretation is used by Solarski [64]. MoreovanZita [52] provides a classification of dynamic
updates.

Consistency and Integrity. The update of a component leaves it and the whole applicatiaconsistent
or correct state.

This requirement also has some variants. Generally spgaia main variant is related to the state
of the software after a dynamic update is applied and regjtivat once the update has been applied, the
software is in a stateimilar to the one that would be got if the update had been applieidaitst Moreover,
after the dynamic update, the software is equally able torgseoving user requests.

A second variant of the requirement is related to the progrnihation of the pending user requests.
Ideally, the requests that are interrupted by a dynamic tepal@ properly terminated and the state of the

software is likewise correct.

In the literature, some authors identify this requiremerd vaguemanner. For instance, Kramer and
Magee [48], Sridhaet al. [66], Solarski [64], Murarka and Bellur [54] require thakethpdate process leave
the system in @onsistenbr correct state but do not elaborate too much about the concepbrdistency
or correctness

Gregersen and Jgrgersen [35] are a bit more specific andedhaistate of the software after a dynamic
update must be the same than the obtained by starting anshgutire application once the updates have
been appliedtatically. The behavior is expected to be correct even during the apdiEnm et al. [16]
requiredata consistencgnd alsaconsistency of floithe proper termination of pending requests). Finally,
Panzica [52] identifies both variants @fnsistencyointed out above.

State Preservation. The update of a component preserves as much of its state siblgos

When aclassic stop-and-restaleployment model is used, the software system is stoppeithwh
means that its state is lost unless it is previously savedrteegpersistence device. Sometimes, the user is
made responsible of doing the task. Nevertheless, the wsdywiamic updatenechanism does not directly
guarantee that the state kept by the old version of the aifgitis preserved so a specific requirement to
keep the state of the application is needed.

Thus, the update mechanism must provide some way to capteisdte of the component to update
andpreserve iin some way, to ensure that when a dynamic update is appliad &pplication, the state it
had just before the updatetrainsferredto the new version so it can operate with it. The state tramséy
include the transformation steps requirechttaptthe data formats understood by the previous version of
the application to the formats used by the new version.

In Section 3.5 we review some issues related to state traarsditransformation functions, respectively.

Some authors declare this requirement explicitly, likelBaret al. [66] and Ajmaniet al.[11, 12] who
also consider the possibility of applying the necessanmysfi@mations to the data.

Version Coexistence. The update process allows a component that has been updateetist with an
old version of the same component.

This requirement is important from a practical point of viéwr instance, in a client/server application
in which the server is dynamically updated, this requirerhetps to ensure smoothransition of the set of
clients that send requests to the server. If the server mdpkone version of the updateable components,
when they are updated the whole set of clients mafpledto restart, in order to be able to communicate
with the new versions of those components (unless someeitain level is used among the clients and
the server side, as pointed out in Section 3.3). The coexistef old and new versions of the updateable
components running in the server allows to keep the clielits and let them go on working normally
until they are shut down. New clients started after the updatuld access the new version of the updated
components.

Moreover, the coexistence of versions also allows the itmbe dynamically updated (so there is no
need to shut them down). The old-version clients can isseie tequests to the old-version components
of the application. Once a client is dynamically updatedait issue its requests to the corresponding new
versions of the components.

On the other hand, this requirement is also important fraaptint of view of the server side, especially
in distributed applications and, in particular, in reptad systems. In such a case, besidesitim@-
nodeversion coexistence requirement explained above, we sancahsider amter-nodeversion of the
requirement, by whiclthe update process allows that the new versions of a compdtimanis replicated
in a number of nodes of a distributed system coexist with etdions of the same component running in
some other nodes of the system.

This requirement allows to perform the update of the digted nodes in stages, for instance, updating
afew at a time, instead of being forced to update them all et olm small-scale distributed systems, this is
just a useful feature but it turns to be essential in mediutarge-scale systems, in which it is not possible
to update all the nodes at once.

Few authors, like Ajmangét al. [11, 12] (they call itmixed mode operatigrand Solarski [64] include
a requirement similar to this one.

Other Requirements. We can cite some other requirements identified by some authahe related
literature.

Atomicity and Rollbackness. The update mechanism isolates the execution of the dyngdates,
respect the execution of user requests and other dynamategpdvioreover, the update mechanism is able
to rollback a given updateThe rollback ability is important because it allows to ralitx a given update
when it is found faulty or must be uninstalled for any othersen.

In Solarski [64], the update is considered an atomic opandtiat is either successful or rollbacked
to the previous version. In the update mechanism in POLUS lwn@t al. [24, 25], besides updating
a component to the next version it is also possible to apply@ateto go back to a previous version,
which actually is an effective rollback mechanism. Gregrrand Jgrgersen [35] also consider the ability
to rollback an update to restore the previous version of the softwarealllyj Banro et al. [16] also
consider the update of a number of components as an atorita atthough they never mention the ability
to rollback an update.

Schedulability and Automation. The update mechanism allows to schedule the updates odevi
some other ways to automate theBome authors (like Ajmaret al. [11, 12]) consider the possibility to
schedule the execution of the updates to apply or more dénemvide some automation mechanisms to
minimize the human intervention (for instance, Segal anelder [63, 32], Solarski [64] and Panzica [52])

Simultaneous Updates. The update mechanism allows to apply more than one updatdtaime-
ously. This is considered by Segal and Frieder [63, 32] and Sol§sgki

3 Conceptsand Techniques

In this section we identify a number of concepts and techesqised and found in the surveyed references
and somehow related with dynamic software updating.

3.1 Quiescence

A number of papers use some formafiescence The basic idea is that an update of a component of a
program, from a given version to the next one, can not be egpli any moment during the execution of the
program. Instead, before updating the component, the epdethanism must ensure that the update does
not interrupt any running processes (for instance, thecation of a service). For this, different authors try
to ensure that the component to update reaches stabéestate. Depending on the author, this stability
requirement is given a different name and described inrdiffeways and a number of mechanisms can be
used to enforce it.

Search in the Execution Stack. Some authors inspect the execution stack of a process in tordaow

if a given function (or procedure) of a program is currentiyriy executed. If no reference to the function
is found, then it is not being called from the program and #&dfe to dynamically update the function (by
redirecting the calls as in Section 3.3, applying a binatglpas in Section 3.2, etc.).

This technique is usually part of some other technique oatggrocedure. For instance, Guptal.
[40] inspect the stack to know if a given function or procerltan be updated. They also use it in [39] to
perform its state transfer procedure (see Section 3.5 fditiadal information on state transfer).

Segal and Frieder [63, 32] also inspect the stack of the peoteupdate in order to know whether or
not the procedure to update is being executed.

The main disadvantage of this technique is that it strongpetds on the architecture of the underlying
machine. This problem is tackled by Purtilo and Hofmeis&s, [45, 57]. They propose the use of an
abstract format to represent thramesof the execution stacks of regular processes and implensenpart
of their dynamic software update solution based on theirADTH software bus.

Reach of a Safe Point. Some techniques depend on the program to reach a specificgpaitate. This
can be achieved by making the program to enter a giflerfunction or procedure. Once the program has
reached such a point, the update can be applied safely. igegon is forced to stay idle in thgafe point
while the update procedure takes place. Once the updated®ithe execution can be resumed.

This idea is used by a number of authors. For instance, indGial. [40], these safe points are called
control pointsand are determined statically, from the source code of theiqus and next versions of the
program. When a dynamic update has to be performed, the pnogréorced totransit to a safe point
and then, generate a signal. Then, the update takes plaameedinished, the execution is resumed. The
authors also propose an extended model to be used withisdgbrograms in which thenit of change
is the function or procedure. They argue about the diffictdtgpecify the safe points and then propose an
inverseapproach based on specifying sossectedunctions the control should not be in at the time of
change (see Section 4 of [40]). When a dynamic update has tpdied, first some stack inspection is
performed, as explained above, to check that the programtisunrently executing any of those selected
functions. Once checked, the update is performed.

Chen and Huang [26] use the same idea in the context of dynamdiate of OSGi applications (also
see Section 3.6.3). Before applying an update to an U&@tle they lead it to a safe point and then
proceed with the required state transfer and perform thatepd

Giuffrida and Tanenbaum [33] also use a similar approaclméir proposal of an operating system-
oriented dynamic update procedure. It uses a cebipalate Managercomponent that dialogs with the
updateable components, that mustupelate-aware When one of the components has to be updated, the
Update Manageteads it to a particular state in which a state transfer statebe safely performed (also
see Section 3.5 for additional issues related with statestes).

Communication Quiescence. The original concept ofjuiescencevas defined by Kramer and Magee
[48] in the context of dynamic software update of distrilslgystems. Informally, a node égliescenif

it is not going to start a data exchange or attending any detlaamge with any other node. The authors
argue that to apply an update that affects some nodes, theybmin a quiescent state.

When a node of the system has to be updated, it is forcpdgsivatethis is, to reach a passive state, in
which the node is not communicating (in short, it is not bouma communication with any other node and
it agrees not to start a new communication). Moreover, allrthdes in thgassive sebf the given node
(this is, all the nodes that may communicate with the giveden@re also forced to reach such a passive
state. Once a node and its passive set are passive, the gaercan be safely updated. As pointed out in
[48] this procedure requires the collaboration of the agapion'.

On the other hand, thguiescenceoncept and especially ildocking requirementsave been criticized
by some authors. They argue that in a general case, to pasaie@mponent, a number of components
must be passivated before, thus blocking them. In the wars#,call the components in the system would
have to be passivated, which may lead the application to availability state, which is totally contrary to
the essence of any dynamic software update mechanism.

For instance, Vandewouds al. [71] argue that thejuiescenceoncept in [48] is, in general, stricter
than necessary. They propose the conceploiquility as a more relaxed alternative and justify that it can
be used as stable statén a dynamic software update process.

To understand the differences between quiescence andiilign@ne must compare the formal defini-
tion of thequiescentandtranquil states, according to [48] and [71], respectively. A nod@iaduiescent
state if a) it is not currently engaged in a transaction thiaitiated, b) it will not initiate new transactions,
c) itis not currently engaged in servicing a transactiol, @mno transactions have been or will be initiated
by other nodes that require service from the node. On the bitwed, a node is in &anquil state if it
satisfies a) and b) from the previogsiescent statéefinition and moreover, c) it is not actively process-
ing a request, and d) none of its adjacent nodes are engagetlansaction in which it has both already
participated and might still participate in the future.

First, there is a difference between the c) clauses of theeitibns. According to [71], the c) clause
of thequiescence stawefinition implies that a node may be eittaetively processing a request waiting

1see also Section 3.4 for some other formitriusionandcouplingbetween and application and the underlying dynamic update
mechanism.

for a new request in an already active connectibay only the first case is required by the c) clause of the
tranquil statedefinition. In practice, this means that a node may haveestartiransaction but if it is not
currently servicing a request, it is considetegthquil and then it can be dynamically updated.

Moreover, according to [71], the d) clause of tipgiescence stateefinition implies that no node has
started or is going to start a transaction in which the giveatertakes part. Nevertheless, the d) clause of the
tranquil statedefinition is less restrictive. It is only required that ngaa@nt node has started a transaction
in which the given node has taken part and might participatbe future. The main difference is that the
definition oftranquil statedoes not consider those transactions in which the given hadeot taken part
yet, so the nodes that started them do not need fmabsivatedIn practice, this means that, according the
definition oftranquility, the update of a node isless blockingprocess.

Pauseand Resume. Another technique used by some authors consists in pausngteption of incom-
ing requests, waiting until the pending ones finish, applyhre update and then resuming the handling of
incoming requests.

For this, somentermediarylevel is used that may be implemented in various forms (sedd®e3.3
for other examples that use some kind of intermediary levédyr instance, some sort oéntral update
manageror intermediaryproxies may be used to intercept the user requests and dédepause them and
rely them once the update is finished.

This technique is used by Babret al. [16] in their FREJA framework. They use several types of
intermediary Java objects. On the one hand, there are Borastructureobjects that perform the update
and other management tasks. On the other hand, there arpewsmigjects that wrap the regular service
objects. The wrappers capture the regular service inartatinade by the clients. If no update is to be
done, the invocations are just redirected to the real semfijects. When an update is requested, one of
the infrastructure objects asks for the corresponding pegeptostopattending new invocations (bgtieue
them) and wait until the pending invocations are finishedc&xthe update is performed (by means of some
Java bytecode-level rewriting, see Section 3.2), the lddekrappers are instructed to resume their regular
operation.

Other References. This idea ofstable statusr quiescencappears in many other references: [20, 17, 44,
19, 61, 14, 70, 42]. It can also be applied in other settingeermoless related to dynamic software update
but somehow different from the work referenced above. Fstaimce, Dmitriev [27] talks about the dynamic
update of methods of Java classes and the support offeredebidtSpot Java Virtual Machine. The
mechanism is still under development, but it already offensie limited dynamic update mechanism, to
ease the development and debugging processes and acbgsibbans thdava Debugger Wire Protocol
(JDWP). This mechanism is not mature enough to be consideosiigtion-ready yet. The mechanism
requires the collaboration of the programmer, which mustiegithat the execution will actually reach the
point where there are no active old methogdg/ich can be seen as some kinduser-ensured quiescence

3.2 Rewriting of Binary Code

There are some proposals that use some sagwvafting of the binary code of the programs and applica-
tions to update. Several techniques can be identified.

Binary Redirection. Basically,binary redirectionmeans dynamically modifying the binary code that is
being executed by a process (this is, the code saved in thenmreanory of the computer and directly read
by its processor) so one or several call instructions thigit p@ some function are changed to point to some
other place.

As shown below, this was one of the first techniques propasée used by a dynamic update mecha-
nism. Nevertheless, it has a number of disadvantages.

This technique is strongly dependent on the particular di@mand especially on the hardware archi-
tecture it is aimed to. It also requires from the designets@ngrammers a deep knowledge in low level
details like the exact machine language used by the targeepsor. To apply an update to a program, to
update its version to versionv + 1, the programmer must know the exact binary representatibath the

code to replace and the new code. Below we cite some alteesdtiat avoid this last restriction although
they still require some deep low level knowledge to be agplie

This technique has some other disadvantages, derived teofow level nature. For instance, this
technique is difficult to automate, since each update dependhe binary code of both the original and
the new version of the program.

Furthermore, some precautions must be carefully takeninstance, before updating the binary code
of a function or procedure, it must be ensured that it is noterly being executed. Otherwise, undesirable
effects may be produced.

One of the first authors to propose the usbiaary redirectiorwas Fabry [29]. As a base context, there
is someclient codethat performs a call to a fragment of binary code that impletsi@ given function. To
update the function, a new fragment of binary code is loadedemory. The problem to solve consists in
making that the old call from the client program stguéntingto the old code and points to the new code.

Fabry proposes two different alternatives to perform sueltlaection. Both are based on adding a level
of indirection (see Section 3.3) and rewriting some low ldieary instructions to update such indirection
level. In the first alternative, the client program makess fiall to a specific position in memory in which a
JMP-like instruction is placed. This JMP instruction is dymically overwritten, so it points to the address
of the new version of the function.

In the second solution, when an update is performed, the aditipn of memory with the old JMP-
like instruction is discarded and a new one is allocatechtpal to the address of the new version of the
function. Then, the binary code of the client is modified tth tee new JMP instruction. Regarding to the
first solution, this second solution has the disadvantagigttis necessary to modify the binary code of the
client program.

General Binary Rewriting. The binary redirection idea showed above is actually aqadf case of the
more general concept binary rewritingthat consists in rewriting any part of the program. Some gtam
may be changing the implementation of a function or evenstof parameter types.

The modifications are applied at a binary level, this is, fyaalg the binary executables or even mod-
ifying the code currently loaded in memory, as it is beingoeted. This general technique has the same
disadvantages than the particutémary redirectionshowed above, derived from its low-level nature.

Hicks and Nettles [43] use some binary rewriting techniquemodify the service implementation,
data types and the client code that accesses to the patctied To update the code of the prograime.(
the implementation of the functions) the authors consider approachescode relinkingand reference
indirection The first alternative consists in changing the functiorocations made byglient codeto the
current implementation of the functions, forcing thenptuint to the new implementations. The second
alternative consists in adding an intermediary indirectével among the new implementation of a function
and the invocations to it (see Section 3.3), arguing thabitldl be more expensive and more complex to
implement. The alternative finally chosen was the first one.

To update the type definitions, they also consider two optiogplacemenandrenaming The first
alternative consists ireplacingthe definition of a type with a new version, by means of sdyimary
rewriting mechanism. The second alternative consists in adding a ymsvdefinition and patching the
code client to use it, also by meanshafiary rewriting The authors choose the second alternative because
they consider it is simpler and more portable.

To apply changes to the code and the type definitidgaamic patcheare used. Given a version of
the program to update and the next version to apply, someratiéal tool is used to compute thatches
to apply. Besides creating regular patches (like withdh&f andpat ch UNIX commands), the trans-
formation of the data is also considered. The programmedeéinetransformation functionésee Section
3.5) to apply to the data any transformation needed.

The authors have a prototype implementation of the propfvaetework. They have also implemented
an updateable web servdFlashEd) and used it to test the operation of the dynamiatepftamework
implementation.

Chenet al. [24, 25] describe POLUS, a tool that offers support to dyratty update a software
system. Roughly speaking, to update a running program frereianv to v + 1, the operation of the
proposed procedure is as follows. From the source code bfvmsions, gatchis generated and then

compiled into a dynamic library, which isjectedinto the running binary code (see Section 3.6.1 for other
proposals that use some sort of static analysis of the s@ade). For each function that changes in the
new version, POLUS inserts a jump instruction to redireetgtogram flow to the new implementation of
the function, which is provided by the patch (see Sectiorf@.8ther forms of level indirection).

The use of dynamic patches is inspired by Hicks and Nettl8f pithough POLUS is distinguished
by the possibility tareversethis procedure (also see Section 3.6.9). Given the versiori of a running
program, it is possible to rollback it to versianby applying aninverse patch In Section 3.6.9 other
examples of rollback-enabled mechanisms are given.

Binary Rewritingin Java. Another particular case of binary rewriting is its applioatto Java programs.
From an abstract point of view, the idea is similar to the gehewriting technique showed above, but
in this case the binary language and format are those definduehlava Language and Virtual Machine
Specifications ([34, 50]). The modifications are typicaktpected to preserve tliava binary compatibility
([34]).

As in the previous cases, this technique also has the distady@ of depending upon a binary level
although in this case, it has a minor practical impact, stheelava language is widely supported by many
operating systems and hardware platforms.

Several authors have studied the use of binary rewritinga yprograms. For instance, Milazzbal.
[53] study the run-time update of distributed applicatiemiten in the Java programming language. They
propose the use of an intermediary layer that ideally shbaléihdependent of any particular version of
the Java Virtual Machine and be usable with any Java appitésee Section 3.3). This layer includes a
new Java classloader that uses some Java rewriting te@stioggunodify the Java bytecode in loading time.
Moreover, new intermediary interfaces and objects are e@famd created to intercept the regular method
invocations and redirect them to the proper service impfeai®n. The client bytecode is also rewritten
to use the new interfaces.

Gregersen and Jgrgensen [35] propose a mechanism to dyllgmjmgrade Java programs by success-
fully saving theproblem of the version barrierin short, the problem can be described as follows. One of
the techniques to load new Java classes consists in cresimglassloaders and using them to load the
new classes. Nevertheless, this solution has the problainthh new classes are not easily accessible from
code loaded by other classloaders (for instance, by a pelassioader).

The mechanism proposed in [35] can save this barrier by ysimgjesthat are defined dynamically.
The idea is to build dynamic proxies for the updateable elaasd let them to act @®ermediariesamong
client classes and real service implementation classesS&etion 3.3 for other techniques based on adding
someindirectionlevel.

They also need to manipulate the Java bytecode, in a numivesyaf to, generally speaking, prepare
both client and server code to use and be used by the updateanmsm. Other authors also use some
binary-level rewriting techniques.

The update procedure also includdaay state migratiorthat is used to transfer the state fromaid
version of a component to a new version (also see Section Gr® of the most remarkabpeculiarities
of this proposal is that the update mechanism in general @dtate transfer mechanism in particular
aretriggered lazily, on demand. When an update is requested, it is not inatedy applied, but lazily.
Moreover, the state is notimmediately transferred. Irtstiree state of eadieldis transferred individually,
when it is accessed by the first time.

Their proposal also allows the rollback of applied updases (Section 3.6.9 for other authors that also
offer some sort ofollback mechanism).

Banr et al. [16] also use some rewriting techniques in their FREJA fraoré, to apply updates to
the bytecode of Java classes (see Sections III.C and IlI[D&Jf. This framework is based on the use of
specific classloaders, some (centralized) updaeagersand some intermediary objects that control the
execution of updateable components (see Section 3.3).

On the other hand, there are currently available a numbeiots aind libraries that offer services related
to bytecode manipulation (including run-time manipulathp For the Java programming language, there
are many alternatives like ObjectWeb ASM [56, 23, 49], CGITR Javassist [9, 68], Apache Commons
BCEL [31], Javeleon [8, 36], JRebel [74] and some othersdish [4].

3.3 Useof Proxies, Intermediaries and Indirection Levels

There are a large number of authors that propose dynamiceipdacedures, mechanisms and tools based
on the use of different sorts of proxies, intermediary ofsj@nd other indirection levels. These techniques
are useful in client/server systems in which there are a mumbdynamically updateable servers offering
some service and also a number of clients that issue reqoedsts former.

The basic idea consists in adding an intermediary level éetva client and the dynamically updateable
server it is accessing. Instead of having the client diyemll the functions and procedures that implement
the service, it calls some intermediary code that pointiéocurrent implementation of the service. Such
an intermediary code can be dynamically overwritten (sexi@e3.2).

This approach has been used by a number of authors. Fordestaabry [29] was one of the first to
use it, in combination with two different binary-level owaiting.

Bloom’s Ph. D. thesis [20], reuses the idea of redirectimgcils to the updateable codeieynapping
some handlers, in the context of Argus programs.

Segal and Frieder [63, 32] uggterprocedureswhich are some intermediary procedures useedd
rect the client invocations told versionprocedures to theinew versiorcounterparts. The authors also
use abinding tablewhich holdspointersto the updateable procedures. These pointers are ovemviitt
run-time, as new versions of such procedures are installbd.authors argue that this approach is feasi-
ble under those hardware architectures that offeinditect addressing modike those provided by the
Motorola MC68020 processor or the Intel's 386 architecture

In POLUS [24, 25], Cheet al. use an indirection level by inserting a jump instructionrmro&d-version
function, to redirect the invocations to the new version.

A refined solution consists in using, as the intermediarglleproxy objects thasimulatethe real
implementation of the service. The idea is that the clienecdoes not call the objects that implement the
service but uses intermediary proxies. These offer to tiemtctode the same interface than the original
service objects and hide the complexity of the dynamic updalhere are a number of authors that follow
this approach.

For instance, Purtil@t al. [58, 57] propose the use of a software bus to connect softmadules
by means oproxiesthat are automatically compiled from an additional dec¢legsspecification provided
by the programmer. The proxies and the bus itself interdeptonventional calls to the functions of the
modules and implement the functionality related to the dyicaeconfiguration of the modules.

Sridhar [66] includes the use of some intermediary objeatled Service Facilities These objects
encapsulate the objects that provide the real service dadtbk clients dogical referencethat can be
used as the real service object. Thus, these objects halhdhe aequests made by the clients. These
objects also include the necessary logic to perform themjmeebinding, using some well-known design
patterns (like Strategy) and some facilities offered by mw@m programming languages (at least, C++, Ada,
Java and C#).

In [53], Milazzoet al. propose a mechanism to dynamically update regular Javecapphs by means
of using an intermediary layer between the Java serviceetaand some client code that issues invocations
to the former. This layer includes some new interfaces aamsbels created and instantiated in loading time.

Ajmani et al. [12] use some intermediary objects calkdthulation objectaised to represent past and
future versions of the updateable objects. These objects areedfferthe client code as if they were the
real service objects. Internally, the simulation obje@s manage and redirect the invocations issued by
the clients, to the real objects that implement the service.

Gregersen and Jgrgensen [35] use some intermediary prthé¢sre dynamically generated, to man-
age the process of class loading and intercept and redireattocations to theerviceobjects.

Chen and Huang [26] propose the use of intermediary dynaroides in the context of dynamic update
of OSGi applications. These proxies would be placed amoagjtidateable service bundles and the client
code, this hiding to the later the existence of dynamic uglat

In their framework FREJA, Barinet al. [16] also use some specific Java class loaders and some
intermediary objects to control the execution of updateabimponents.

10

3.4 Intrusion and Cooperation

A number of authors identify the necessity or dependenceoredevel ofintrusionby the update mech-
anism, thus making the managed programs and applicatioasea the update mechanism. The goal is
to allow a managed application to cooperate with the upd&ehanism. Thisntrusioncan take different
forms.

A first type ofintrusion consists in defining special functions or procedures in biothupdate mech-
anism and the application to update. The idea is that, onrieehand, the application to manage offers
a number of functions to be called by the update mechanisnetimnon its tasks. An example of this
kind of intrusionis the use ofjet St at e- andset St at e-like functions assumed by many state transfer
mechanisms (see Section 3.5) to retrieve or set the state @fi@dateable component. On the other hand,
the update mechanism offers to the managed applicatiom fathetions it may also call, for instance, to
inform that its state has been changed or that the last refliepdate has been successfully finished.

The update mechanism proposed by Kramer and Magee [48] iofothe first works that follows
this approach. The authors identify two different couplietationships between the update mechanism
and the managed application. First, the so callpdate manageneeds to invoke functions offered by
the application (for instance, to request a state changejh®other hand, the application needs to invoke
functions offered by thapdate manage(for instance, to inform that its state has changed). Atistifying
the need of both intrusion levels, the authors argue abaunhéed of defining some kind standard
interfaceto communicate the update mechanisms and the applicatisltgseover, they argue that the
application must be involved in another way: it hagptomisethat it will remainpassivdong enough for
the update to be completed.

In [33], Giuffrida an Tanenbaum propose a dynamic updatehargism based on ampdate manager
that also depends on a close cooperation with the updateabiponents. When a dynamic update is to
be applied to one or several components, the manager askgdhreach aontrolled statgactually, some
sort of quiescentstate — also see Section 3.1). When the components reach state athey notify the
manager who waits for all the notifications and finally pratsewith the update.

A second type ointrusionis the generalization of the first one and occurs when thetapdachanism
forces the whole application to follow specific constralike the adoption of a given architecture, design
principles, hardware platforms or software environmemtsgramming languages or any other set of rules
or conventions that force the whole application to be builbehave in a specific manner.

This category includes all the proposals of update mechalimsed on the OSGi platform (see Section
3.6.3)

A third type ofintrusion consists in making the application to provide some sornhefa-information
that may be used by the update mechanism.

One example of this type imarkingthe code of the updateable applications. Some update misoie&an
require that the user marks those parts of the applicatiamhich a dynamic update may be carried on
safely. This is the case of the proposals by Frieder and $&2jehnd by Neamtiet al. [55], that allow the
programmer to identifgafe update points the source code, in which an update may be safely perfarmed

On the contrary, others depend on the user marking those ipasthich a dynamic update shouidt
be applied. This approach is followed by Hicks and Nettl&] {ho propose a mechanism that allows the
programmer tanark places in the code that should not be interrupted by a dynapdate.

There are other examples in which meta-information is pledito achieve some other goals. For
instance, Banmet al. [16] identify the need to design the updateable applicationa special way and
provide some meta-information to the update mechanismhfsité be able to preserve tsemantic con-
sistencyof the application to update.

Giuffrida and Tanenbaum [33] also argue that the best apprtmbuild dynamically updateable sys-
tems consists in making them aware of the dynamic updatepsand require that the application provides
some meta-information that may be used by the update mesrhdnilead the application to a quiescent
state (also see Section 3.1), before applying a dynamicteipda

To conclude, we can say that, in principle, the useéntfusion mechanismeffers both the update
mechanisms and the managed applications the possibiltgdperate in the application of the dynamic
updates. Nevertheless, it must be considered that istieision mechanismeeduce the level ofrans-
parencyoffered by the update mechanism, especiallydhplication transparencysee theransparency

11

requirement in Section 2). Indeed, forcing the applicatmprovide some specific functions, adapt to a
specific architecture, have some special marks, etc. ma#tepéndent on the update mechanisms and also
makes the latter less transparent to the application.

3.5 State Transfer and Transfor mation Functions

Several authors identify the need to perform some sostatt transfebetween the current version of an
updateable item (typically an object or component, but iymlso be a function or procedure or even the
whole program or application, etc.) and the next versiolrder not to lose it when the update is applied.

Some of them use a variation of the idea proposed by Liskowtertihy [41]. The basic idea consists
in defining twoaccessor functionkke get St at e andset St at e to retrieve and set the state of a com-
ponent. Before replacing a component, tjet St at e-like function may be called and sorserializable
representation of the state may be got. This state mayabeformedin some way (see below) and then
transferred to the new version of the updateable item, bynmehitsset St at e-like function.

In his Ph.D. thesis, Bloom [20] identifies the need of tran#fg thevolatile state managed by the part
of the program to be replaced, to the new implementation.

Purtiloet al. [58, 57] propose the use of an abstract representation afataekept by the (dynamically
reconfigurable) modules of the systems and the use of furctmretrieve and set the state of a module.
This allows themigration of the state of a given version of a module to the next one, opcated. The
use of the abstract format allows to get the state of a runmiadule before updating it and then restore
it back or even move it from a physical node that uses a givehitacture to a different node that uses a
different architecture.

Some other systems have used state transfer techniquedrinpgidate mechanisms [39, 65, 64, 66, 35,
26].

Banro et al. [16] identify the need of theonsistency of the daia a dynamic update and the transfer
of the data from the current component to the updated one.

On the other hand, one of the problems that may appear wheatingé component from a version to
the next one is that the new version may havéermompatible state formatSeveral authors consider this
problem and propose the use of some kinttarfisformation functionto transform the state of a component
in the format used by a given version to the proper format.s€Hanctions are typically provided by the
programmer, like in [20, 32, 58, 43, 12, 67, 54, 26].

3.6 Other Issues

In this section we briefly review some other issues relatetytmmic software update.

3.6.1 SourceCode Static Analysis

In a number of papers, some kindgifitic analysif the application source code is performed, according
to different objectives. Some authors use it to know in wipoimts of the programs is safe to perform a
dynamic update or in which ones an update should not be peefbat all. The key idea is forotectthe
state of the component or program so the update does notlyettbmponent or program in an inconsistent
state. For instance, it is safe to apply an update duringxbeution of aread-onlyfunction or procedure
(this is, one that does not alter the state of the prograni.diso safe to apply it in the very beginning of
the execution of a regular function, before it modifies anyg pathe program’s state. On the other hand, it
may not be safe to apply an update during the execution oftdaefynction since it may be changing the
state of the program. Such @terrupting update hinders and can even avoid a proper state transfer and
reconstruction.

Other authors compare the source code of the current ves$iamprogram with the next version and
build apatchout of the differences, to be applied dynamically. In som&esathe analysis can be com-
pletely automated while in others it is a manual or humarstessprocess.

For instance, Stoylet al. [67] and Murarkaet al. [54] propose the static analysis of the source code
to identify points in which a dynamic update may or may not peli@d, while ensuring somerrectness

property.

12

In their Proteus system, Stoyé¢ al. [67] propose a property callembnn-t-freenesand tries to ensure
thatafter a dynamic update of some typeo updated value’ of typet will ever be manipulated by code
that relies on the old representation ©f Their static updateability analysis used to label points in the
program withupdate expressiorthat identify those typesfor which the program may not mnn-t-free
This information is used by the Proteus run-time system twkifia given type can be dynamically updated
in a given point of the program.

Murarkaet al. [54] also perform an analysis of the source code of both theentiversion of the
program and its next version, to ensure that tiedquest Execution Criterii fulfilled. At least one of
the following conditions must be satisfied. TNew Program Executionondition requires that, before
an update to a given class, no request accesses an objeetaltitliersion of the class that could not be
accessed with the new definition of the class. MoreoverQlieProgram Executiortondition requires
that, after an update to a given class, no request accessdgeah of the old version of the class that can
not be accessed with the new definition of the class and nest@ecesses an object of the new version
of the class that can not be accessed with the old definititimeoflass. Thus, the result of the analysis is a
set ofupdate pointandunsafe regionin which dynamic updates may or may not be applied.

Neamtiuet al. propose Ginseng [55], a dynamic update solution for programitten in C, based in
dynamic patching (see Section 3.2). In their solution, thlegend on some static analysis of the source
code to ensure that the updates type-safe The idea is to ensurerapresentation consistengyoperty,
by which, at any moment, any value of a types a member of the last version &f (which means that
two different versions of the same type will never coexist).

Roughly speaking, the procedure is the following. The paogner is expected to identifypdate
pointsin the program, in which a dynamic update may be applied. WhernQ@inseng compiler builds
a dynamic patch to apply the next version of the program, ribgates each of those update points with
information aboutvhich types should not be updatbd a dynamic update applied in each update point.
Later, when a patch is applied in run-time, the annotatioaglaeckedo ensure that the update does not
violate therepresentation consistenpyoperty.

Altekar et al. propose OPUS [15], which also depends on a similar analygetectunsafe dynamic
updatesand other authors, like Hicks and Nettles [43] and Chkeal. [24, 25] in their POLUS system
also use the source code of the old and new versions of a canptmupdate to build patchthat will be
applied dynamically.

On the other hand, static analysis has also been used fomttgoses. For instance, Bauml and Brada
[18] propose a procedure based on the static analysis ofs@ade to automatically decide theb. c-
like version string of the next version of an applicationsien. As usually, incompatible changes force
a change of the major version, while backwards compatibémgés only cause the change of the minor
version number. The micro version number only changes whiennal implementation-related changes
are made.

More specifically, the analysis identifies changes betwagndgiven versions;, andwvy of any type,
according the hierarchy relationship between them. Rhsl could be the same type. Also the change is
a Specializatioror aGeneralizationf vs is aspecializatioror ageneralizatiorof vy, respectively. Finally,
the change is &utationif there is no subtype relation betweenanduws,.

Considering all the types of changes identified by the amalygome rules are applied to globally
classify the update of the program. If there is at least onéahkiin, or there is som8pecializatiorand
someGeneralization then the globalevel of the update is #Mutation, and the major version number is
incremented. Otherwise, if there is soi@eneralization the change is &eneralizationand the major
version is incremented as well. Otherwise, if there is s@pecializatiorthe change is &pecialization
and the minor version is incremented. Otherwise, it is atereid that no significant change is done and
only the micro version number is incremented.

3.6.2 Useof Underlying Facilities

A number of authors base their proposals on features of a giwderlyinginfrastructure a given hardware
architecture, a programming methodology or paradigm, amaadporogramming or configuration language,
a specific general-purpose programming language or any spleeific base level.

13

For instance, at a low abstraction level, the solution psepidoy Frieder and Segal [63, 32] needs that
the hardware architecture of the underlying machine offaisdirect addressing modé&upta and Jalote’s
proposal [39] was also designed to work on a specific hardardesoftware platform (SunOS running on a
Sun 3/60 workstation) and also depends on a specific feattine bardware architecture (specifically, the
segment-based memory addressimgge). In practice, the requirement of such features is s@raficant
constraint since these features are available in commamegsors (as they were at the time of [63, 32, 39]).

Other authors propose solutions that are a bit more genedatan be used with programs written in
imperative languagedike the one by Hicks and Nettles [43].

There are also some authors who develop their proposal bagééir own infrastructure. For instance,
Kramer and Magee base their proposal [47, 48] on their COMI@iguration language and infrastructure
[46]. In Proteus, Stoylet al. [67] describe a dynamic software update solution basedsawit program-
ming language, compiler and run-time, among other toolsragdurces. In his Ph. D. thesis, Bloom [20]
proposes a dynamic update solution for programs writteh tieé Argus programming language ([51]).
For the C programming languages there are some optionghkkproposal in Gupta’s Ph. D. thesis [38],
Ginseng by Neamtiet al. [55] and POLUS by Cheat al. [24, 25].

In a higher level of abstraction, regarding the Java prognarg language and Virtual Machine (JVM),
there are a large number of references. First, some authop®se dynamic update solutions for Java
programs (for instance, [61], [53], [35], and [16]). In Sent3.2 a number of technologies related to dy-
namic software update in Java are cited. Moreover, Dmifé&y studies an existing mechanism available
in the HotSpot JVM to allow the dynamic update of Java codeebugging time. Some other authors
like Gregersen and Jgrgensen [37] propose dynamic updateamisms based on modifying the standard
JVM. Nevertheless such an approach presents a number df@cke; as identified by Baoret al. [16].
First, they argue that a framework built on top of an ad-hodifiexd JVM becomes less portahlsince
it could not be used with any other standard virtual machindsreover,new versions of code that is
loaded dynamically may bypass security checks performeldeoyVM(no other arguments are provided)
andcode optimisations executed by the JVM at reunite may muau#fynternal structure and the flow of
operations of the application, thus making changes diffitulbe properly applied Actually, there are
some other reasons. For instance, the update mechanismégcependent on a specific version of the
JVM. To keep the mechanism updated, the developers woulkl teamodify any new version of the JVM
that were released and check that the mechanism goes omganidperly, which represents a significant
effort. Moreover, such new versions of the JVM may suffernges in their design or implementation
that prevent the required modifications from being applieds yielding the update mechanism outdated
in short period of time.

Finally, as a particular case of Java technology, the OSfBidstrd offers atandardmechanism to dy-
namically reload the bundles that compose an OSGi appitétiee Section 3.6.3 for additional references
about OSGi).

3.6.3 OSGi

OSGi [6, 13] is a platform to build Java applications from anner of modular, reusable and collaborative
components (calledundle$, that can be dynamically reloaded.

Each bundle is a Java class that implements a specific inee@Bandl eAct i vat or). It provides the
two basic methods that define tlife cycleof the bundlest art andst op, to start and stop the execution
of the service offered by the bundle, respectively. Moreaw®undle may implement additional interfaces.
For instance, there is$er vi celLi st ener interface to receive events related to the bundle (for htsta
when it is registered or unregistered in the OSGi implententh

Each bundle is packed inJava Archivg JAR) file. This file includes ananifestin which the program-
mer specifies some metadata, including the version of thdlbwand its main class (that implementing
Bundl eAct i vat or). The programmer also specifies the packages that the bexpitets in the stan-
darda. b. ¢ Java package convention. When a bundle is registered in an €#B¢r, this knows which
services arefferedby the bundle. The programmer can also specify the packagethe bundlémports
by providing a list ofa. b. c-like package list and optionally, for each package, theimméhversion that
is required. This expresses the dependencies the bunidie ogl, including general packages included in
the OSGi standard API and other services provided by thirtigsa

14

An OSGi server (or implementation) acts as a software busdi@g are first registered in it and then
started by it. Once started, a bundle may register a serviderta given symbolic name. It may also get
referencego other services (provided by other bundles), looking thgniby their symbolic names. This
means that if a service depends on another service, it doegad to depend on a specific implementation
of it. Instead, it can rely on any service registered as arlampntation of the required service.

Nevertheless, one of the main strengths of OSGi is thatatwallto dynamically reload bundles. Once a
bundle is registered and started, its source code can beéagpalad recompiled and the new version of the
bundle can be reloaded, by means of a mechanism provided By. 8en OSGi keeps the old version
of the bundle available to those bundles that already heslemenceto it (in order to let them progress
correctly) and offers the new version of the bundle to thagelkes that get a reference to the bundle, from
that moment on.

This can be explained easily with a simple example. Congdiderbundles, A and B, that depend on
a bundle Z. Then consider the following sequence of actiomsevents. First A is loaded and started.
A is able to know that no implementation of Z is available armite: Then Z is loaded and started. A
is informed about and asks to OSGi foreferenceto Z. Then Z is updated. As there are at least one
bundle (A) referencing to the old version of Z, OSGi keep$hmtl and new versions of Z and A keeps its
reference to theld versionof Z. Then B is started and asks to OSGi foreferenceto Z. In this case, B
gets a reference to thew versiorof Z.

OSGi offers two operation modes. In tBaindled Applicatioormode there is an OSGi server that acts
as a container for one or more OSGi applications. This magsimilar to that of the Apache Tomcat
application server acting as a container for a number of demapplications. In theélosted Framework
mode, the OSGi implementationésnbeddedh a given application.

A short introduction to OSGi can be found in [69]. Moreovéerte are a number of implementations
of OSGi, like Apache Felix [30], Concierge [1, 60] (espelgialesigned for resource-constrained devices),
Equinox [2], KnopflerFish [3] and Oscar [5], among others.

Moreover, there are some other proposals that extend OS&eaelated to OSGi in some way. For
instance, Rellermeyest al. propose R-OSGi [59], an extension of the standard OSGi Spatidn to
build distributed systems. Another alternative also fecusn distributed and cloud systems is O8Gi
[62]. And in [26], Chen and Huang propose a mechanism to dyeediy update the bundles of an OSGi
application.

3.6.4 Dynamic software updatein the .NET platform

In this section we survey some options related to dynamitwsoé update that are available for .NET
applications.

First, there are two technologies included in Microsoft TNE platform that allow to dynamically
load code. These are thdanaged Extensibility Framework (MERGhd theManaged Add-In Framework
(MAF).

The Managed Extensibility Framework (MEF) presents sommlaiities with the OSGi framework.
Both allow to build applications that can dynamicalbad add-in components (as plug-ins). Moreover,
both have a declarative mechanism to express relationginiagig components. As in OSGi, in MEF,
each component declares its dependencieséorice imports and its capabilities (oservice exporis
When MEF loads a component it checks its service importsdédsdr other already loaded components
exportthose services and in such a casanectgshem. Moreover, MEF also checks the service exports
of the components and decides if they can be connected tsetlvice importof other already loaded
components.

As in OSGi, the advantage of this model is that the applioatido not need tbardcodetheir depen-
dencies on other components. Instead these dependeneibs casolved in run-time, in a similar way as
in anInversion of Control (IoC) containeiMoreover, the extension components are not bound to th& .NE
assembly of the application they arextendingso they can be easily reused with other applications. The

2|n the .NET platform, applications are organizedassembliescomposed by one or more types (classes, interfaces, etc.). An
assembly is somehogimilar to a Java package. Assemblies can be dynamically loaded althibisghot possible to dynamically
load a single type. Moreover, a .NET application has one orrapplication domainswhich are thesolated contextén which
assemblies are run. Classes in different application dontainsiot communicate directly (by means of a regular local invoch

15

main drawback of MEF from the point of view of dynamic softeampdate is that it does not allow the
dynamic unloadingf the components, thus prohibiting any kinddyfnamic update

The Managed Add-In Framework (MAF) is a technology similarMEF although there are some
differences. Regarding DSU, the most important differeadbat it allows the application and the add-in
components to be in different .NEApplication domainso the add-ins can be dynamically unloaded.

There are other attempts to define some sort of dynamic uptdbanism in the .NET platform. For
instance, in [28], Escoffier et al discuss some issues tetatdynamic update of .NET applications. Their
goal is to design some sort 6fSGi for .NET although they identify some features of the .NET platform
that prevent from getting the same semantics of OSGi. Rirstload unit (and also thenload unitwhen
it is possible) is the assembly, which typically containsumber of types (classes). To load and unload
a single type, it must be the only type included in a singleeansy, which is not practical. Second,
dependencies among assemblies are included by the connpiber executable binary code, which makes
difficult to dynamically change them. In contrast, Java delemcies are resolved in run-time, which eases
reusing the compiled Java classes. Third |tlael orderof the classes and assembliestisnglycontrolled
by the virtual machine and the user can not change it easilgohtrast, Java applications can modify the
class load process by using their own class loaders. Fjtl#yname of an assembly is part of the name of
the types contained in it, which also makes difficult to resiseh types.

They propose a number of alternatives to dynamically load (@nload, in some cases) .NET types.
A first alternative consists in using a single applicatiomdm and several assemblies loaded into it. One
of these is special and is used to load the rest of them. Alalhssemblies are in the same application
domain, every class can invoke methods from any other clsisg wegular local invocations. The main
drawback is that such assemblies can not be individuallgaddd. To unload a type, the whole application
domain should be unloaded, which in practice is equivalestdp and restart the whole application.

A second alternative consists in using several applicatmmains in the same application. Each as-
sembly that needs to be unloaded is in its own applicationailonilo unload a type, which is contained
in a given assembly, the corresponding application domaimhe unloaded. As pointed out above, the
drawback is that application domains can not communicatesbwlar local invocations but some other
IPC-like mechanism must be used, with the consequent pesiace penalty. Java applications that use
different class loaders experience a similar issue, simtess loaded by a given class loader can not access
another class loaded with a class loader that belongs tdeaatitbranchof the class loader hierarchy, by
means of regular local invocations.

A third alternative consists in using .NETéhared domaingto hold assemblies that may be common
to all application domains. Other assemblies may be indudelifferent application domains.

Two alternatives more, quite similar to each other consigidving one specific application domain
to hold assemblies that may be common to the rest of the apiplitdomains. In one case, the special
application domain is @NET shared domairin the other case, the special application domain is a aegul
application domain that just has that special role. In baites, both solutions offer a better performance
when a class invokes methods from a class that belongs tepéi@al application domainOn the other
hand, both solutions suffer from the same penalty perfoomar the two first alternatives, when invoking
classes that belong to other application domains.

Finally, they conclude by identifying the two main issuesET that prevent from designing an OSGi-
like infrastructure for .NET. The main issue is tinability of unloading individual assemblies from a given
application domain. The second issue is the need to use Biowike mechanisms to communicate classes
belonging to different application domains.

3.6.5 Dynamic software updatein Erlang

Erlang [10] is an interpreted concurrent functional progmang language that can be used to build dis-
tributed fault-tolerant (and soft-real-time) applicatso Erlang allows to dynamically replace single mod-
ules of an application.

Erlang allows a module to have two concurrent versions: ciimeent version and theold version.
When a module is first loaded, it is in itsirrentversion. It then can be replaced with a new instance of the

but some inter-process communication (IPC) mechanism is négdedrising the cost of the invocation).

16

module. Then, the current version becomesdldeversion and the new instance becomes the cuawent
version.

Erlang allows to keep both versions in execution. Once adpihe update, theurrent version is
generally used but old existing processes that were acceg® updated module go on working with the
old version until they normally finish. If a new (third) versiofi the module is installed, then Erlang
removes the old version and finishes the pending procesatsvéiie using it. Then, it installs the new
version according to the procedure referred to above.

Moreover, Erlang allows to define special functions that mayun when a module is loaded. Such
functions may be used to apply the needed state transfannsati

3.6.6 Version Coexistence

Version coexistends the ability of a dynamic update system to allow differeatsions of an updateable
component to concurrently coexist, providing a regulaviseraccording to their specifications. In Section
2 we identified this feature as one of the fundamental remeérgs a dynamic update mechanism should
have. However, the support needed to provide it may havetafcom different points of view. First, it
has to be implemented, which means a significant effort. Tiieénay have some other cost in run-time,
imposing some performance overhead regarding an updateamism without such a support.

Thus, in many of the proposals reviewed, the dynamic updatshanmism ensures that the new version
of a component will nevecoexistwith an older version. Some of them ensure this behavior kingshe
program (or at least, the component to be replaced) to reamle stable or quiescent state (see Section
3.1), performing the update amdinstallingor otherwise preventing both versions to run at the same time

Nevertheless, there are some authors that provide somerstppersion coexistence. For instance, in
the context ofdynamic updatingf functions and procedures, Segal and Frieder [63, 32]pe@fterpro-
cedureswhich are some sort of intermediary procedures that deemathe real implementations. These
interprocedures may be called fraotd client code (this is, client code that ortpowsthe old version of
the updated procedure) or fronewclient code, thus providing thidusion that different versions of the
same procedure coexist.

Ajmani et al. [12, 11] follow a similar approach, by definirgimulation objectssproxiesthat wrap
the real service objects. For a given service object, it ssitbe to define proxies that represent plaet
versions and evefuture versions and all of them can coexist and be called by diftepétes of client
code that may be in different update stages.

POLUS [24] and [25, Section 2.2] allows the coexistence dfasid new versions of the saroedeas
well as old and new representations of data structures,aitapdate is applied. Moreover, it ensures that
old (new) code is only allowed to operate on the old (new) datspectively

Dmitriev [27] elaborates on different policies that may blemented in the context of the dynamic
update mechanism included in the Java Virtual Machine.

3.6.7 Replication

Few papers have tackled the topic of applying dynamic ugdateeplicated systems. For instance, So-
larski and Meling [65] propose a procedure to dynamicallgatp a distributed system that usegive
replication The procedure relies on a group communication system ffeas@ total order message de-
livery service and operates by iterating over the availabpdicas, shutting them off, updating them (in a
staticway) and restarting them. This work is later extended by Skig64] in his Ph.D. Thesis, by adding
a procedure applicable to systems that passive replication The procedure does not actually apply a
dynamic update of the replicas. Instead, the new versiohe$bftware is installed in brand new replicas
and the old ones are shut down manually. Finally, a failovectmanism is used to promote to primary
replica one of the new replicas.

Wanget al. [73] propose a mechanism to dynamically change the consigtaode used by the replicas
of a replicated system. They argue that the consistencysnefeal replicated system can change in run-
time, during the regular execution, according to the olestrates of read and write operations issued by
the clients. The rate of read an write operations majobeor high and thus, at any moment, the system
can be in any of the four possible combinations. The authamsgse to consider the current combination

17

to dynamically change the consistency mode of the replfcasy arelaxedconsistency mode tostrong
consistency mode. They also organize the nodes in thregarée: a master node, a (typically small) set
of first-level replicas known adeputy nodesind the rest of nodes, considered second-level replicas and
known aschild nodes

The first combination is atrong consistency mode which the read rate is high and the write rate
is low. Write operations sent to any replica are redirectethéomaster, which redirects them to all the
replicas, thus achieving full consistency among all thdicap. Read requests are sent to any replica and
can attended immediately because they are all updated.

The second combination isteade-off moddn which both the read and write rates are high. Write
operations sent to any replica are redirected to the madtermaster forwards them to the deputy nodes.
It also forwards them to the rest of the replicas if it conssd@at they are too outdated. Read requests are
sent to any replica and attended immediately (soldrvalue may be read).

The third combination is anoth&ade-off modén which the read rate is low and the write rate is high.
Write operations sent to any replica are resent to the magker,resends them to all the deputy nodes.
Read requests sent to the master or to any of the deputy noelessponded immediately. Read requests
sent to a child node are forwarded to and answered byltsestdeputy thus ensuring that an updated
value is provided.

The fourth combination is alsotsade-off-modén which both the read and write rates are low. The
only different case is when a child node receives a read gtgli¢he child ittoo outdatedit retrieves the
requested value from the closest deputy node and retumthiétclient. Otherwise, the child node answers
itself (so anold value may be read).

3.6.8 Scheduling and synchronizing

In Section 3.4 we provided a number of references of systeatsallow the user to mark places in the
program. In some cases, those are places in which a dynamiéteaimay be applied. In other cases, they
are places in which a dynamic update should not be applied.

Other systems consider the scheduling of the updates atherligvel of abstraction. For instance,
Ajmani et al. [12, 11] propose the use aicheduling functionsin the context of updating distributed
systems. These functions are provided by the programmbecsfiinaged system and may be called by the
dynamic update mechanism to decide when each node has talaedwith respect to the other nodes.

They identify differentupdate patterngborrowed from [21]) that may be implementedsaheduling
functions For instance, dast rebootupdate consists in updating all nodes at once. In geneiialjgh
considered dad option since it yields the software system completely unavadlahling the time required
by the update to take place. Another option Bigflip, which consists in first updating half the nodes at
once and then, the other half. This option requires some &fridad balancerable to redirect to the
proper nodes the user requests issued during the updatereflexdble option is aolling upgrade which
consists in updating only a few nodes at a time (thus needweyal steps to update the whole set of nodes).
The disadvantage of this option is that it requires that bBogtprevious and the next version of the managed
software need to be compatible since they will coexist.

They also identify other types gfatterns used tosynchronizehe progression of the nodes. For in-
stance, one pattern may bewait until all nodes are updatedvhich can be seen as some sorstsbng
synchronization barrieemong all nodes. A less restrictive option maytdevait until all nodes of class C
are updated Moreover, the load of the nodes can also be considered em¢ha be a patteto wait until
the node is lightly loadedwith some definition ofoad and some criterion to measure it).

For those cases in which sorgibal knowledgeof the state of the nodes is needed, they provide a
central upgrade databassomponent that gathers and spreads information aboutadteditthe nodes.

3.6.9 Rollbacks

Some mechanisms offer the possibilityrtdlback or undoan update.
For instance POLUS [24, 25] uses a mechanism based on theatjeneofdynamic patcheto update
a running program from versianto v + 1. The mechanism can also be appliedditback an update, for

18

instance when it is not behaving correctly or for any othasam, as decided by the programmer. For this,
it is enough to apply a patch tpdatethe program from version + 1 to .

POLUS uses a carefully designadlirection mechanism that avoids multiple indirections. When a
function is updated, from a versianto v + 1, by means of alynamic patchPOLUS inserts gumpin-
struction to redirect to the proper version implementati@requests made to the function. If the function
is updated by succeeding requests, to versior<, v + 3, etc. then POLUS makes tfgmpinstructions
to directly point to the latest version of the function, tlaweiding unnecessary redirections.

This mechanism allows the rollback of several updates, ftee @nother, so it is possible to rollback
from versionv to v — 1, then tov — 2, v — 3 and so on, as long as it is possible to build the proper patches
Besides applying the patches, POLUS alsmloesthe insertion of the correspondifigmp instructions,
thus again avoiding unnecess#gck and fortiredirections.

In [22], Brown and Patterson propose a model for rollbackmatsms, as a solution to tlesternal
inconsistencyroblem. This happens when the rollback of an update made application also discards
changes to the data that have beeanby the user.

The proposed model is based on three stages or stapistd repair andreplay. In therewindstep, the
rollback mechanism rollbacks the changes to data madeagffdying the update. Previously, the rollback
mechanism savesseemantic representatiasf those changes, so they can be re-applied later. Irefbedr
step, the update is rollbacked. In theplay step, the saved changes are re-applaxeyr the rollbacked
version of the application.

As an example (and proof of concept in their prototype), thih@rs test the rollback of updates in a
regular email client application. In thhewind step, the changes are saved usisg@antic representation
Instead ofloggingthe changes made to the filesystem (e.g. the deletion of &fited, when deleting an
email message), the rollback mechanism savesdtien performed by the user, in an abstract way (e.qg.
"delete the message with id N”). This abstract action isppliad in thereplay step, once the update is
rollbacked.

The proposed model presentdaak of genericityproblem, since it depends on particulaw level
protocols (IMAP and SMTP, JDBC, XML and SOAP, etc.). It alspdnds on the possibility of expressing
each possible user action in terms of the given protocolifatance, the deletion of an email message can
be represented in terms oDELETE IMAP command but some other user actions (e.g. the creafian o
new message draft) may not be IMAP-representable.

The authors have implemented a prototype that is usablellttaci updates to regular email client
applications that use the IMAP and SMTP protocols. They dbopmovide any details about how the
updates are first applied and then rollbacked.

4 Discussion

The dynamic software updat®pic has been being studied for decades (the first well-knaferences
are from the 70s), in the context of botlentralizedand distributed systems. Since then, many papers
have been published and there exist many practical prapoSame of them are for specific contexts and
situations but others were designed to be generally apptiddised. For instance, there exist proposals for
the dynamic update of software written in current langudigesC or Java.

Still, any user of current software can note that these fgcles are not beingniversallyapplied. The
users of current software (for instance, ih@iseholdcontext) are used to restart their software applications
and even the whole operating system when they have to ugdate t

For instance, many applications require the restart of tlogv&er in order to update it. First, the
application itself detects the existence of a new availaplate and downloads it to the local filesystem.
Next, the user is asked to restart the application so thetamda be applied during the next restart of the

3In a certain sense, the difference between using a conanetievel format or a semantic one is similar to the differencentbu
in a similar situation, in the context of replicated datalsas&’hen a replica node needs to send to other node some changes mad
to a replicated database it can sendriesetwith the changes or a representation of the correspongjiegation(for instance, a
regularUPDATE SQL sentence). In this example, some other criteria have tmbsidered, like théength of the writeset or the
computational cosdf re-executing the SQL sentence in the destination replica

19

browser (the user can usually postpone this action). Orecagplication has been restarted and the update
applied, the user can resume using it normally.

Operating systems usually have some sortijpdlate manageto detect, download and dynamically
apply updates to different components of the system andievewnkernel In some cases, updates can
be applied without having to restart the system. In otheegasome types of updates require a complete
restart of the system. And in some other cases, updates aaenityally applied but require the restart of
the system for the user to use them effectively (as it typideppens when an update is appliecctoe
components of any operating system, for instance).

Regarding web applications and services, the currenttgitués diverse. On the one hand there are
a number obig web applications (that usually belongli@ companies), like web search engines, email
services, social networks, storage and multimedia breddeavices, etc. that have their own mechanisms
to dynamically update the applications. These applicatiase replication techniques at both the server
level and the database level which allows the updates tofileedfransparently so the users do not usually
realize when the updates are applied.

On the other hand, there is the casesofallweb applications, typically belonging smallerentities
that do not have the same availability of resources obtheompaniesin many cases, the offered services
have to be temporarily shut down while the updates are apgiethese cases, the procedure followed by
the service administrators consists in redirecting the tesguestdo some other placéfor instance, to
a static information page that informs about the unavditghif the service), stopping the applications
and servers to update, applying the updates to the progradisrahe data, checking the changes and
restarting the servers and applications. During the tinexled to perform these actions, the service is
typically unavailable. Thus, users are forced to interringir use of the application and wait until the
services are restored.

To avoid the drawbacks pointed out in Section 1, the appdicatand servers to update should have
some dynamic update mechanisms that allowed them to beagbdatun-time, in the most transparent
possible way to the users. This would avoid the interruptéord thus unavailability) of the service and the
corresponding nuisances to both the users and the holdiitg @encompany.

We must also consider the casectidud computingnfrastructures. Specifically, the use of a dynamic
update mechanism, transparent to the users, makes eversemsein the case of the applications that are
executed in those infrastructures.

Indeed, one of the goals of any cloud infrastructure is maathe applications to which it gives support,
to continuously run so they can continuously provide theiviges to their users without any interruption.
For this, the own infrastructures must also be dynamicafigateable. Three different types cbud
architecturesare typically identified with the namdsfrastructure as a ServigePlatform as a Service
and Software as a Servid@2]. In all these cases, there are a number of software coergs that may
also need to be dynamically updated (to fix bugs and secigi#tyeis, add new features, etc.). In case
of laaS providers, the infrastructures typically offer be tuser abstractions as virtual machines with the
appearancef a full operating system, so applications ¢himk they are executed in dedicated servers. In
some other cases of laaS, the user has sarsmlized environmerith which the user cadropapplications.

In case of PaaS providers, the offered service consistsén af $ools, utilities, libraries, etc. that can be
used by the users to build their applications. In case of $madders, no infrastructure is offered but
one or mordinal-userapplications, that can be reached through any regular met{typically, through a
regular web browser) and used like any other locally insthfipplication. Cloud providers may include
dynamic update mechanisms so their own cloud infrastrastoan be dynamically updated.

On the other hand, the user applications that are executieé$rand PaaS cloud infrastructures can
also benefit from such update mechanisms, in order to pr@avicEntinuous service to their users. These
mechanisms may exploit tldasticnature of the underlying cloud infrastructure. For insgrapplying an
update to a cloud-hosted application could be as easy agilagihe update in ataticmanner, asking for
newinstancesnce the application has been completely updated and, aliglaasking for the halt of ex-
isting outdated versions of the application. In the patticoase of applications that have been specifically
designed to be run in cloud environments, the designers evelapers may know the problems that may
arise and may have taken some precautions by includingfgpewchanisms (for instance, mechanisms
to synchronize the instances of the application and meggjedtates).

As we have showed, the use of dynamic update mechanismsnspaigpe in many present types of

20

software systems and applications. Nevertheless, ndietkchniques referred to in Section 3 are equally
appropriate to current software. In the rest of this seatierdiscuss somissuegelated with those.

Issuesrelated to low-level techniques. Some techniques are applied at a low level of abstractioreor d
pend upon low level of abstraction details. For instanceestechniques are based on the inspection of the
execution program stack (see Section 3.1), to know if thetfan or procedure to update is currently being
used. The programmer of a dynamic update mechanism basaebricsv abstraction level techniques
must know which is the format of the memory space bound togs®es, how the stadkamesare stored
and how data is stored in the frames.

Other techniques use several formg@iiriting at the binary level (see Section 3.2). In some cases,
binary rewritingis used taredirectthe execution of the code. The idea isitstall the updated code and
redirectto that code the calls to the old code, by modifying memoryesisipointers (this is, making them
to point to someother placg. Sooner or later, the old code will be no longer used and @slypdated
version will be used. This is the case, for instance, of thbrigues based drinary patchesTo apply this
technique, some sort of pause has tinpgosedn the execution of the program to update, for instance with
any of the techniques discussed in Section 3.1. This paugebmbrief so the impact on the availability
of the program may also be small. In other cases, longer patte program are rewritten (for instance,
fragments of a function), directly altering the instruasdoaded in the main memory. Nevertheless, in this
case, the availability of the program may significantly @ase in case a large part of the program had to
be rewritten.

Nowadays, both types of techniques seem undesirable, faméer of reasons. First, these techniques
require a deep knowledge of very low level of abstractiomiietrelated to hardware architectures (formats
of the instruction set, memory addressing modes, etc.)clwséverely limits the portability of the tech-
nigues. Besides, we have to consider the currentd to use high level programming languages, most of
which are interpreted and depend on some sort of interpoetdrtual machine: Java (an others based on
the Java Virtual Machine like Scala, Groovy and others), &¥#l(other languages that depend on the .NET
platform), Perl, PHP, Python, Ruby, Erlang and many oth&re portability of the programs developed
with those languages is based on the existence of interpratel virtual machines that are available in
different platforms and that ensure the same semantic lhdegarding the Java and .NET platforms,
there exist formal specifications of their intermediatalaages (the Java Bytecode and the Microsoft Inter-
mediate Language), which means that the dynamic updatemswbuilt with such platforms may still use
some binary rewriting techniques (see Section 3.2) anidbstiportable. Even then, these solutions would
depend on a specific version of the intermediate language.d&kelopers would be forced to follow the
evolution of the platform and the programming language @&etifically, the intermediate language) and
adapt their update mechanism to the changes they expatigna@der to have an update mechanism that
could be used by current software. On the other hand, regardany other language for which no inter-
mediate language exists, it does not seem an easy task gndesdiynamic update mechanism that uses
binary rewriting (or in general, any low level techniquellat the same time is easily portable to different
platforms.

Finally, we must consider that the usehagh levels of abstractioeases the use of other underlying
abstractions. For instance, in the context of cloud comgugystems, many cloud infrastructure providers
offer abstractions based on the usevsfual machinesand othewirtualization mechanisms. The use of
low level techniques like the ones discussed above ofegruct(and in a worst case, even prevent) the
update mechanism and the cloud infrastructure itself tpgnlg work.

For all these reasons, we discourage the use of binary megvtéchniques in particular and any other
technique of a low level of abstraction is not a recommerelaption when high availability is a require-
ment.

Issues related to source code analysis. Other techniques are based on some analysis (typicalig)stat
of the source code of the updateable applications. Forrinstan some cases, such an analysis is used
to identify points in the updateable programs in which a dyicaupdate may omay notbe applied.
The advantage of these techniques is that the programmerradeneed to worry about such tasks thus
improving theprogrammer transparency

21

Nevertheless, it must be considered that these techniguesnty perform these analyses based on the
structure of the source code (this is, only frorayatacticpoint of view). The problem is that, on practice,
there may be semantic details that may remain unnoticechbahalyzers. For instance, the program
to update may use sonm®nceptof transactionthat should be respected. The syntactic analysis of the
program may identifysafeor update pointsn which dynamic updates may be applied but it may happen
that such an update interrupted the execution of a tramsacél part of the transaction may be executed
with the old version of a given function and the rest may beceter with the updated version of another
function, which could lead the program to an undesirablesta

As we discuss later, rather than depending on a static asalthe source code we recommend a more
comprehensive analysis performed by the developers ofribgrgm. The advantage of this approach is
that it allows to take better decisions, since the devekbpave a completeemantioview of the program.

Issuesrelated totheuseof intermediary levels. The use of intermediary levels also has some advantages.
Dynamic update mechanisms can use an intermediary lewgébata client program and a service it uses.
This level maywrap the real implementation of the service. It may capture thledations to the service
and manage them as necessary, by blocking or pausing thigmgréhem, modifying them, etc. Such an
intermediary level could also be used to perform other &anyiltasks like managing authorization issues,
statistically accounting the use of the service, logging monitoring it, etc.

Moreover, in client/server systems, when used along o#edmiques (as discussed later), it eases the
application of the updates. For instance, it allowsdbexistencef versions of the same program.

Nevertheless, the use of intermediary levels also poseg slisadvantages. First, the use of an in-
termediary level always imposes some overhead in run-tifthe update mechanisms use intermediary
functions,interproceduresproxy objects, etc. each invocation ofarvicefunction or method first goes
through such intermediary code, which imposes a run-tinexlmad. This overhead may be small and
even negligible, especially when compared against thefbb@ftained by using it or it may be significant
and non-negligible and yet the intermediary level may besiw@red useful. This means that this overhead
must be carefully estimated first and then measured.

Another issue is the impact that the use of such intermediapis would have on the development of
the user application (this is, on thpplication transparengy The use of a specific technique, a middleware
library or any other artifact that provides or helps to buslech an intermediary level may require some
specific knowledge or skill to the programmer and may havargract on the design of the applications
or the development process. This should have also be coadidden taking the decision of using some
intermediary level artifact. Ideally, this should be trpagently integrated into the application and required
the minimal maintenance possible in order notltsturb the designers and developers and not keep them
away of the core design and development processes.

Issues related to version coexistence. In principle, the concept ofersion coexistenceffers some ad-
vantages, especially combined with other techniques apobaphes (like the use of intermediary levels).

For instance, in a client/server context, it allows to updatsoftware server that is being currently
used, so the current clients can go on working normally widold version of the server and, at the same
time, those clientsonnectedo the server once updated can directly start working wighrtéwer version.
Otherwise, without version coexistence, once updatedehees the existing clients would be forced to
either halt or be updated, which may cause significant noesto the users.

One of the technologies that offer soimglementatiomf this technique is the OSGi standard. In OSGi
it is possible to have two different versions of the sameiserwWVhen alientprogram has seferenceof a
service and this is updated, the client program is neithertatd nor forced to be updated. Instead, it keeps
its referenceto theold-versionprogram and is able to go on working with it normally. If anetiprogram
gets a reference of the same service, once updated, it is giveference to the new implementations.
Both versionsoexistin the OSGi server and can be used normally. Finally, whethalteferences to the
old version of the program are finally discarded (for ins&rmecause all the programs that hold them are
finished or simply stop using them), then the old version efglogram isinloadedfrom the OSGi server
and finally discarded.

22

Nevertheless, version coexistence poses some problemisiskance, it is necessary to think about the
consistency of the datsharedby the different versions of the program. If two differentsiens of the
same program or component access the same data set, we rdag pesure that they access the data in a
consistentmanner. In some cases, they may be allowed to access the shofalata, if the accesses are
synchronized and the proper data transformations areeapph other cases, it may be necessary to keep
separate@napshot®f the data, so each version of the program or component casads own data set.

In this later case, sommaergemechanism may be needed to reconcile one snapshot to thetireover,
additional precautions may be taken, likgnchronizingthe access to specific resources like other data
source, physical resources, etc. In any case, the suppeetsmn coexistence leads to complications that
must be evaluated.

Issuesrelated toreplication. We have found few references that tackle the problem of dymapdate
in the case of replicated (distributed) systems.

Among them, one proposes a couple of procedures to dyndynigadate actively and passively repli-
cated systems. The procedure for actively replicated systelies on a group communication system
offering a total order message delivery service. This ptace does not actually use any of the techniques
discussed in Section 3, besides some state transfer steptaispdate the new replicas as they are started.
Instead, a regulastop-and-updat@rocedure is followed, to update, one by one, all the replidde pro-
cedure for passively replicated systems does not use ampsé techniques, too. Instead, it relies on the
regularreplica failovermechanism that may be part of the replication protocol.

The problem of these procedures is that they dependsteta transfestep to update the new replicas.
As the state to transfer may be large, this step may bexpensivén terms of the time needed to perform
it. Moreover, it may be needed to block the replicated systanng the state transfer step.

Necessity of intrusion. One of the main conclusions we can draw is that the dynamigvacé update
problem is complex enough for a tool to solve it in a completeinsparent manner, especially from the
point of view of the final user. Moreover, we find that some @& ¢joals listed in Section 2 are conflicting.
For instance, thaser transparencgndprogrammer transparenayoals are somehow conflicting.

As pointed out in Section 3.4, a number of authors proposedbkefintrusivemechanisms and tech-
nigues, in order to get a functional dynamic update solytwen if not all the desirable requirements are
fulfilled.

In this sense, one of the techniques that can be used to achieh a goal is the use of marks and
annotations in the source code to idensffeor updatepoints, in which a dynamic update can take place.
This technique may be preferablegiotomatedechniques based on the analysis of the source code, because
the programmer of the updateable program is the one thatetéer lthoose such places. The choice can
be done considering semantic constraints (like the presefitansactions)

The programmer can also help to ensure that the program qaent is kept in any sort @fuiescent
state, if needed. For instanddle functionsmay be provided and executed to help the update mechanism
to ensure that no relevant code is executed during an update.

The programmer may also provide the functionality requitettansform and transfer the state of the
updateable components or programs. Again, the progransnige one that better knows how the program
manages its state, how has it to be represented, and howdshbaltransformed.

The previous techniques can be combined with the use of sorhefsinderlying supportThis can be
some kind ofmiddleware frameworkor library. A good option available in the Jauaiverses the use of
an OSGi implementation (see Section 3.6.3).

5 Conclusion

This report surveys a number of references related talyimamic software updat®pic. The main goal
is to introduce the topic to the interested readers stracturedmanner and help them to learn about a
number of references available in the literature of thisdophe report offers a twofold contribution.

First, we study the variety afefinitionsof dynamic software updafeund in the surveyed references.
In Section 2 we provide a selection of the most importantireguents chosen by the authors.

23

Then, we also analyze which are the techniques and othéedalancepts and issues in those references
and identify which are the most used. The correspondingsetecan be found in Section 3.
Finally, in Section 4 we discuss the techniques describ&skation 3.

References

[1] Concierge. http://concierge.sourceforge.net/.

[2] Equinox. http://eclipse.org/equinox/.

[3] Knopflerfish. http://www.knopflerfish.org/.

[4] Open Source ByteCode Libraries in Java. http://javarse.net/open-source/bytecode-libraries.
[5] Oscar. http://oscar.objectweb.org.

[6] OSGi Alliance. http://www.0sgi.org.

[7] CGLib 2.2.2, April 2011. http://cglib.sourceforgethe

[8] Javeleon 1.5, September 2011. http://javeleon.org.

[9] Javassist 3.16.1, March 2012. http://www.csg.citolkyo.ac.jp/ chiba/javassist/.
[10] Ericsson AB. Erlang. http://www.erlang.org.

[11] Sameer Ajmani.Automatic Software Upgrades for Distributed SysteBD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2004.

[12] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. MediBoftware Upgrades for Distributed Sys-
tems. InEuropean Conference on Object-Oriented Programming (EEDQuly 2006.

[13] OSGi Alliance. About the OSGi Service Platform. TeataliWhitepaper. Revision 4.1., June 2007.

[14] Joao Paulo Almeida, Marteen Wegdam, Marten van Simjered Lambert Nieuwenhuis. Transparent
Dynamic Reconfiguration for CORBA. 18rd International Symposium on Distributed Objects and
Applications (DOA)pages 197-207, 2001.

[15] Gautam Altekar, llya Bagrak, Paul Burstein, and And&ustultz. OPUS: Online Patches and Updates
for Security. In14th Conference on USENIX Security Sympostas8yM’05, Baltimore, MD, 2005.
USENIX Association.

[16] Filippo Banrd, Daniele Marletta, Giuseppe Pappalardo, and Emilianm®rdaana. Handling Consis-
tent Dynamic Updates on Distributed Systems.2010 IEEE Symposium on Computers and Com-
munications (ISCC)pages 471-476, June 2010.

[17] Mario R. Barbacci, Dennis L. Doubleday, Charles B. Vétick, Michael J. Gardner, and Randall W.
Lichota. Building Fault Tolerant Distributed Applicatismvith Durra. Ininternational Workshop on
Configurable Distributed Systemsages 128-139, March 1992.

[18] Jaroslav Bauml and Premek Brada. Automated Versiomin@SGi: a Mechanism for Component
Software Consistency Guarantee. 3th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA '09ages 428-435, August 2009.

[19] Christophe Bidan, V&rie Issarny, Titos Saridakis, and Apostolos Zarras. A Dyind&econfiguration
Service for CORBA. IrfFourth International Conference on Configurable DistribdtSystem$ages
35-42, May 1998.

[20] Toby Bloom. Dynamic Module Replacement in a Distributed Programmingt&y PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, US¥83.

24

[21] Eric A. Brewer. Lessons from Giant-Scale ServicdEEE Internet Computing5(4):46-55, July
2001.

[22] Aaron B. Brown and David A. Patterson. Rewind, repaplay: three R’s to dependability. Oth
workshop on ACM SIGOPS European workshey/ 10, pages 70—-77, Saint-Emilion, France, 2002.
ACM.

[23] Eric Bruneton, Romain Lenglet, and Thierry Coupaye MA& Code Manipulation Tool to Implement
Adaptable Systems. November 2002.

[24] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chtewg. POLUS: A POwerful Live
Updating System. 129th international conference on Software Engineeri@fE '07, pages 271—
281. IEEE Computer Society, May 2007.

[25] Haibo Chen, Jie Yu, Chengqun Hang, Binyu Zang, and Plem@ Yew. Dynamic Software Updating
Using a Relaxed Consistency ModéEEE Transactions on Software Engineerirgy (5):679-694,
September-October 2011.

[26] Junging Chen and Linpeng Huang. Dynamic Service UpBated on OSGi. IMVRI World Congress
on Software Engineering (WCSE '0%plume 3, pages 493-497, Xiamen, China, May 2009. IEEE
Computer Society.

[27] M. Dmitriev. Towards Flexible and Safe Technology farrRime Evolution of Java Language Appli-
cations. InWorkshop on Engineering Complex Object-Oriented Systents/blution, in association
with OOPSLA 2001 International Conferen@901.

[28] Clement Escoffier, Didier Donsez, and Richard S. Hall. Devielppn OSGi-like Service Platform
for .NET. InIEEE Consumer Communications and Networking ConferenGN06), volume 1,
pages 213-217, January 2006.

[29] R. S. Fabry. How to Design a System in Which Modules Can banged on the Fly. I@nd Inter-
national Conference on Software Engineering (ICSE, p@ges 470-476, San Francisco, California,
United States, 1976. IEEE Computer Society Press, Los AdsnCA, USA.

[30] The Apache Software Foundation. Apache Felix. hfigliX.apache.org.

[31] The Apache Software Foundation. Apache Commons BCED, 60ctober 2011.
http://commons.apache.org/bcel/.

[32] Ophir Frieder and Mark E. Segal. On Dynamically UpdgtinComputer Program: from Concept to
Prototype.Journal of Systems and Softwate!(2):111-128, February 1991.

[33] Cristiano Giuffrida and Andrew S. Tanenbaum. A TaxoryoofiLive Updates. IPAdvanced School
for Computing and Imaging (ASCI) 2010 Confergndgldhoven, The Netherlands, November 2010.

[34] James Gosling, Bill Joy, Guy Steele, and Gilad Brachide Java Language Specificatioffhird
edition edition, 2005.

[35] Allan Raundahl Gregersen and Bo Ngrregaard JgrgensBgnamic Update of Java Applica-
tions—balancing Change Flexibility vs Programming Tramspay. Journal of Software Mainte-
nance and Evolution: Research and Practi2&(2):81-112, March 20089.

[36] Allan Raundahl Gregersen, Douglas Simon, and Bo Naasdj Jgrgensen. Towards a Dynamic-
update-enabled JVM. IWorkshop on AOP and Meta-Data for Software EvolutiBAM-SE '09,
Genova, Italy, 2009. ACM.

[37] Allan Raundahl Gregersen, Douglas Simon, and Bo Naast)Jgrgensen. Towards a Dynamic-
update-enabled JVM. lWorkshop on AOP and Meta-Data for Software EvolutiBAM-SE '09,
Genova, Italy, 2009. ACM.

25

[38] Deepak GuptaOn-line Software Version ChangBhD thesis, Department of Computer Science and
Engineering, Indian Institute of Technology, Kanpur, endiovember 1994,

[39] Deepak Gupta and Pankaj Jalote. On Line Software MerSitange Using State Transfer Between
ProcessesSoftware Practice and Experienc23(9):949-964, September 1993.

[40] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A Fdfraaiework for On-line Software Version
Change.l[EEE Transactions on Software Engineeri2@(2):120-131, February 1996.

[41] Maurice P. Herlihy and Barbara Liskov. A Value Transsiig Method for Abstract Data Type&CM
Transactions on Programming Languages and Systems (TOP&A$.527-551, October 1982.

[42] Michael Hicks, Jonathan T. Moore, and Scott Nettles.n@iypic Software Updating. IACM SIG-
PLAN 2001 Conference on Programming Language Design antemgntation PLDI '01, pages
13-23, Snowhbird, Utah, United States, May 2001. ACM.

[43] Michael Hicks and Scott Nettles. Dynamic Software Ujptth. ACM Transactions on Programming
Languages and Systems (TOPLAXS)(6):1049-1096, November 2005.

[44] Christine R. Hofmeister and James M. Purtilo. A Framewior Dynamic Reconfiguration of Dis-
tributed Programs. Technical Report UMIACS-TR-93-78,3.99

[45] Christine Ruth HofmeisterDynamic Reconfiguration of Distributed ApplicatiorBhD thesis, Uni-
versity of Maryland at College Park, College Park, MD, US893.

[46] J. Kramer, J. Magee, M. Sloman, and A. Lister. CONIC: atedgrated Approach to Distributed
Computer Control System$EE Proceedings E Computers and Digital Techniquei0(1), January
1983.

[47] Jeff Kramer and Jeff Magee. Dynamic Configuration fostDbuted SystemdEEE Transactions on
Software EngineeringSE-11(4):424-436, April 1985.

[48] Jeff Kramer and Jeff Magee. The Evolving Philosophaxsblem: Dynamic Change Management.
IEEE Transactions on Software Engineeriig(11):1293-1306, Nov. 1990.

[49] Eugene Kuleshov. Using ASM Framework to Implement CammBytecode Transformation Pat-
terns. Vancouver, Canada, March 2007.

[50] Tim Lindholm and Frank Yellin. The Java Virtual Machi&pecification, Second Edition, 1999.

[51] Barbara Liskov and Robert Scheifler. Guardians andohsti Linguistic Support for Robust,
Distributed Programs. ACM Transactions on Programming Languages and Systems LASP
5(3):381-404, July 1983.

[52] Valerio Panzica La Manna. Dynamic Software Update fomponent-based Distributed Systems. In
Proceedings of the 16th international workshop on Comptoeented programmingWCOP '11,
pages 1-8, New York, NY, USA, 2011. ACM.

[53] Marco Milazzo, Giuseppe Pappalardo, Emiliano Traraoat and Giuseppe Ursino. Handling Run-
time Updates in Distributed Applications. 205 ACM symposium on Applied computiS8éC ‘05,
pages 1375-1380, Santa Fe, New Mexico, 2005. ACM.

[54] Yogesh Murarka and Umesh Bellur. Correctness of Recdftescutions in Online Updates of Con-
current Object Oriented Programs. 16th Asia-Pacific Software Engineering Conference (APSEC
'08), pages 93-100. IEEE Computer Society, December 2008.

[55] lulian Neamtiu, Michael Hicks, Gareth Stoyle, and MehQ@riol. Practical Dynamic Software Up-
dating for C. InACM SIGPLAN conference on Programming language design mpteimentation
PLDI '06, pages 72—-83, Ottawa, Ontario, Canada, 2006. ACM.

26

[56] ObjectWeb. ASM 4.0, October 2011. http://asm.owZ2.org

[57] James M. Purtilo. The POLYLITH Software BUACM Transactions on Programming Languages
and Systemd 6(1):151-174, January 1994,

[58] James M. Purtilo and Christine R. Hofmeister. Dynamécénfiguration of Distributed Programs. In
11th International Conference on Distributed Computingt&mnspages 560-571, May 1991.

[59] Jan Rellermeyer, Gustavo Alonso, and Timothy Rosce@3&i: Distributed Applications Through
Software Modularization. In Renato Cerqueira and Roy Caetipdditors Middleware volume 4834
of Lecture Notes in Computer Scienpages 1-20, Newport Beach, CA, USA, 2007. Springer Berlin,
Heidelberg.

[60] Jan S. Rellermeyer and Gustavo Alonso. Concierge: é&ePlatform for Resource-constrained De-
vices. InProceedings of the 2nd ACM SIGOPS/EuroSys European Coicteon Computer Systems
volume 41 ofEuroSys '07 pages 245-258, Lisbon, Portugal, March 2007. ACM.

[61] Tobias Ritzau and Jesper Andersson. Dynamic Deploywofelava Applications. Idava for Embed-
ded Systems Workshdmndon, United Kingdom, May 2000.

[62] Holger Schmidt, Jan-Patrick Elsholz, Vladimir NikeloFranz J. Hauck, and iRliger Kapitza.
OSGi4C: Enabling OSGi for the Cloud. Fourth International ICST Conference on COMmuni-
cation System softWAre and middlewaRE (COMSWARE ©®OMSWARE '09, Dublin, Ireland,
June 2009. ACM.

[63] Mark E. Segal and Ophir Frieder. Dynamic Program Updain a Distributed Computer System. In
Conference of Software Maintenanpages 198—203, Scottsdale, AZ, USA, October 1988.

[64] Marcin Solarski. Dynamic Upgrade of Distributed Software componer®?hD thesis, Fakidt IV
(Elektrotechnik und Informatik), Technische Unive#siBerlin, 2004.

[65] Marcin Solarski and Hein Meling. Towards Upgrading ety Replicated Servers on-the-fly. In
26th Annual International Computer Software and Applicas Conference (COMPSAC 200@ages
1038-1043, 2002.

[66] N. Sridhar, S.M. Pike, and B.W. Weide. Dynamic ModulepReement in Distributed Protocols. In
23rd International Conference on Distributed Computingt8ynspages 620-627, May 2003.

[67] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter 8l&vand lulian Neamtiu. Mutatis Mutandis:
Safe and Predictable Dynamic Software UpdatiAg¢:M Transactions on Programming Languages
and Systems (TOPLA29(4), August 2007.

[68] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chilzad Kozo Itano. A Bytecode Translator for
Distributed Execution of “Legacy” Java Software. 16th European Conference on Object-Oriented
Programming (ECOOP '01)ECOOP '01, pages 236—255. Springer-Verlag, 2001.

[69] Andre L. C. Tavares and Marco Tulio Valente. A Gentlerdofuction to OSGIi.SIGSOFT Software
Engineering Notes33(5), September 2008.

[70] L.A. Tewksbury, L.E. Moser, and P.M. Melliar-Smith.\g Upgrades of CORBA Applications Using
Object Replication. IfProceedings of the IEEE International Conference on SofwWwéaintenance
(ICSM’01), ICSM '01, pages 488-497. IEEE Computer Society, 2001.

[71] Yves Vandewoude, Peter Ebraert, Yolande Berbers, & D’'Hondt. Tranquility: A Low Disrup-
tive Alternative to Quiescence for Ensuring Safe Dynamiclatps.IEEE Transactions on Software
Engineering 33(12):856-868, December 2007.

[72] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, Etaik Lindner. A Break in the Clouds:
owards a Cloud Definition.SIGCOMM Computer Communication Revje¥®(1):50-55, January
20009.

27

[73] Ximei Wang, Shoubao Yang, Shuling Wang, Xianlong Nindaling Xu. An Application-Based
Adaptive Replica Consistency for Cloud Storage.2010 Ninth International Conference on Grid
and Cooperative Computingages 13-17, Nanjing, November 2010.

[74] ZeroTurnaround. JRebel 4.5.4, January 2012. htgygfarnaround.com/jrebel/.

28

