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Universitat Politècnica de València
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1 Introduction
In this report we survey a number of references related to dynamic software updates (DSU), which generally
speaking can be defined as the application of changes to software that is currently on execution, without
having to stop and restart it. This is probably the more general definition of DSU that can be given, at least
at a so high level of abstraction. Unfortunately, the different authors that have worked on this topic have
not reached a consensus on it and no standard definition of DSU exists yet.

Moreover, a standardized classification of different types of dynamic updates is also missing. Different
authors have proposed different classifications, considering their own selection of criteria. For instance,
Purtilo et al. [59] identify three types of dynamic changes: a) changes to the implementation of a module,
b) changes to the structure of the application, this is, changes to the relationships or bindings among the
modules and c) changes to the geometry of the application, this is, to the mapping of that structure onto a
distributed architecture (see Section 3.5).

Gupta et al. [39, 41] identify three types of updates: a) changes in the structure of the system (for
instance, in the relationships among the components), b) changes in the code (for instance, changes in the
implementation of existing components) and c) changes in the geometry of the system (the assignment of
software components to physical nodes, for instance to adapt to a different architecture). See Section 3.7
for additional details.

Buckley et al. [23] present a taxonomy of dynamic update mechanisms, based on fifteen dimensions
like the moment in time in which they are applied (respect to the development and execution processes),
the impact an update on the whole application or the visibility of the history of changes, among others (see
Section 3.11).

Giuffrida and Tanenbaum [34] propose a taxonomy of dynamic update mechanisms and also a classi-
fication of different types of dynamic updates (see Section 3.23). Panzica [52] proposes a classification
of dynamic updates in four classes depending on the type relationship (specialization, improvement, etc.)
between the current version of a component and the next version to install (see Section 4.6). Other authors
have proposed different classifications, considering different criteria.

In this survey, we are not providing neither a standard definition of DSU nor a classification of dynamic
updates or DSU mechanisms. Instead, we try to keep the survey-oriented nature of the report, by organizing
its sections as follows. In Section 2, we show a collection of requirements and goals pointed out as desirable
according to different authors. This collection is useful to realize about the variety of the criteria considered
by the authors and also the variety of contexts in which DSU can be applied. Moreover, it is also useful to
realize about the lack of such a standard definition of DSU.

The main part of the survey is showed in Section 3. Then, in Section 4 we present some additional
references.
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Next, in Section 5 we list a number of concepts, issues and techniques we have identified along all the
surveyed references. We conclude the report in Section 6.

2 Requirements and Goals
The collection of requirements and goals that a DSU mechanism must offer varies from one author to
another. In this section, the most significant ones are listed.

Fabry [30] identifies the following desirable requirements of a DSU mechanism:

• It should not be necessary to stop the system during a long period of time (but it may suffer a
momentary delay).

• The update must not be noticeable by the user, beyond a momentary delay.

Kramer and Magee [48] list a number of essential properties related to configurable software, as well
as some desirable, classified in several groups. They identify properties of the programming languages
used to build configurable software components, the language used to express both the configuration of the
system and the changes to be dynamically applied to that configuration, the underlying operating system
itself, the process used to validate the configuration of a system and the configuration manager that is in
charge to perform the dynamic reconfigurations.

Segal and Frieder [66, 33] identify the following requirements of a DSU mechanism:

• It must allow a new version of a running program to be loaded without having to stop and restart the
program. Moreover, the performance should not be affected too much.

• It must enable the update of programs written with current conventional programming languages and
also distributed systems whose size is in the order of several hundreds of nodes.

• It must minimize the amount of user intervention needed.

• It must allow the simultaneous execution of several updates.

Kramer and Magee [49] identify the following requirements:

• Changes should be specified in terms of the system structure. Specifically, the changes considered
are the addition and removal of nodes and the addition and removal of connection among nodes.

• Change specifications should be declarative, instead of operational, like those specified by an algo-
rithm.

• Change specifications should be independent of the algorithms, protocols, and states of the applica-
tion.

• Changes should leave the system in a consistent state.

• Changes should minimize the disruption to the application system.

Purtilo and Hofmeister [59] identify the following requirements:

• Users need an easy way to configure and invoke a (possibly distributed) application.

• Users must have a notation for identifying any of the program components or attributes that they
wish to reconfigure.

• Users must be able to visualize the current state and geometry of a running program.

• There must be a reliable way to coerce the representation of data that is transmitted during both
normal communication and any reconfiguration.
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• All communication between processes must be controlled by the external agent responsible for re-
configuration. This is to avoid that uncontrolled communications interfere in the normal operation
of the reconfiguration mechanism.

• Any reconfiguration mechanism in the execution environment must ensure that all information char-
acterizing a process is captured and represented.

• The execution environment needs some way to mark some of the processes as non-relocatable, rec-
ognizing that some modules must necessarily act as guards to private resources.

Sridhar et al. [69] identify the following requirements:

• Initiation. The update mechanism must be started either by itself or by a third-party (that may be an
administrator user, another program, etc.).

• Module Integrity. The consistency of the components must be ensured at any time. Tipically, the
system controls the interactions among the client code and the components affected by an update,
while it takes place.

• Module Rebinding. The new version of a component must be loaded and linked in runtime, so new
instances of the corresponding objects can be created from then on.

• State Migration. When updating an object, its state must be transferred to the new version.

• Instance Rebinding. The handles (like pointers or references) to the old objects must be redirected
to the corresponding new versions. Moreover, old objects must be terminated.

Ajmani, in his thesis [12] (and later, Ajmani et al. [13]), identifies the following requirements:

• Modularity. The upgrader user should not need to know the whole history of updates of a component,
but just the current version and the following.

• Generality. The update mechanism must allow to apply different types of updates. Two sub-goals
are considered:

– Incompatibility. The new version must be allowed to be incompatible with the old one. The idea
is that it may be useful to relax de backwards compatibility requirements of the update mecha-
nism to avoid further complications. Keeping the legacy behavior is allowed and enforced only
when no additional complications are added.

– Persistence. The updates must preserve the persistent state used by the applications (e.g. in
databases), although it may be modified.

• Automatic deployment. Due to the large size of the target system, updates must be automatable.

• Controlled deployment. Updates must be schedulable in time.

• Mixed mode operation. There may be long periods of time in which there may coexist nodes with
older versions of the software and nodes with newer versions.

Solarski, in his thesis [67], identifies the following functional requirements:

• Basic Deployment Capabilities. It should be possible to install, enable, disable and uninstall services.

• Support for distributed services. It should be possible to install services in the different nodes of a
distributed system.

• Support for co-existence of multiple versions. The update system should allow to simultaneously run
different versions of the same service.

and also some non-functional requirements:
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• Extensibility. A dynamic upgrade support system is required to be easily extensible. It should be
possible to add both policies to manage dynamic upgrades in the system and mechanisms supporting
these policies.

• Portability. It should be easily portable to other hardware architecture and operating systems.

Moreover, regarding the algorithm itself, the following functional requirements are specified:

• Automated upgrade process. The update mechanism must be automated as much as possible, and
yet it must allow an administrator to manually intervene to solve problems if some failure happens.

• System consistency preserved during the upgrade. The update mechanism should not lead the system
to an inconsistent state, although the exact definition of consistency depends on the application itself.

and also these non-functional requirements:

• Minimizing the loss of the system functionality during the upgrade process. In case the dynamic
update process degrades some part of the system, this must be small and well isolated.

• Minimizing the unavailability periods. The update process should interrupt the application the short-
est time possible.

• Dependability of the upgrade. The update process must be atomic. In case some failure happens, a
rollback procedure should be performed.

• Upgrade transparency. The update process must be invisible for those parts of the system that are
not directly related with it.

Some other requirements, related with the management and coordination of the updates are also iden-
tified:

• Automated upgrade management. There should be some mechanisms to decide in which moment an
update has to be applied. Typically, a number of alternatives can be considered: just after processing
an update request, when the component to update is found idle or at any other point in time.

• Support for multiple simultaneous upgrades. It should be possible to apply different updates simul-
taneously.

Finally, some requirements of the components to update are also specified:

• Orthogonal upgradability. The part of the components that is updateable must be clearly away from
the rest of the funcionality.

• Simplicity of development of upgradable components. The application programmer should not make
a big effort to create the dynamically updateable part of the components. Preferably, this part should
be provided by the update mechanism itself, in a more or less automatic way.

• Minimizing the set of constraints on the system. The dynamic update mechanism should impose the
smallest number of constraints to the user applications and the whole system in general.

• Heterogeneous service support. The update mechanism should allow the update of heterogeneous
components (for instance, using different technologies, models, programming languages, etc. even
among different versions of the same component).

Hicks and Nettles [44] identify the following requirements:

• Flexibility. Any part of a running system should be updateable without requiring downtime.

• Robustness. A system should minimize the risk of errors and crashes due to an update, using auto-
mated means to promote update correctness.
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• Ease of use. Generally speaking, the less complicated the updating process is, the less error-prone it
will tend to be. The updating system should therefore be easy to use.

• Low overhead. Making a program updateable should impact its performance as little as possible.

Chen et al. [24] identify the following requeriments:

• Binary Compatibility. The dynamic update mechanisms must offer backward compatibility, i. e.,
they must allow the update of existing programs (already compiled, in binary form) and even the
update of currently running programs.

• Multithreading Support. The update mechanisms should be able to update multithreading programs.

• Recovery of Tainted Stated. The update mechanism should be able to restore a correct state of an
updateable program from a tainted or corrupted state.

• Usability and Manageability. The update mechanism must be easy to use and offer to the user
operator mechanisms to control the update processes (for instance, the roll-back of updates, even of
those already confirmed).

• Low Overhead. The update mechanism should impose the lowest overhead possible to the updateable
program.

Murarka and Bellur [54] identify two general requirements:

• Correctness. A dynamic update should not lead the system to an incorrect state.

• Continuity. During and after a dynamic update, the system must go on offering its service, suffering
the smallest interference possible.

Gregersen and Jørgersen [36] list a number of requirements, extracted from other papers:

• Programmer transparency. The application programmer should not need to know too many details
about the update mechanism and this should not modify significantly their workflow.

• Flexibility. The update mechanism should allow to apply many different types of updates (ideally,
it should allow to apply any update that could be made under a stop, redeploy and restart operation
mode).

• Performance. The performance overhead imposed to the application should be minimized.

• Correctness. The behavior of the application must be the same than the one that may be obtained by
starting and running the application once the updates have been applied statically. The behavior is
expected to be correct even during the update.

• Concurrency. The update mechanism should allow the update of multithreading applications. It
should no provoke any deadlocks or any other related issue.

• Availability. The dynamic updates should not reduce the application availability.

• Configurability. The update mechanism should admit a number of update policies to configure and
tune its operation.

• Roll-back. The update mechanism should allow to roll-back the updates (although it will not always
be possible).

Bannò et al. [17] identify the following goals:

• Guarantee the data consistency.

• Guarantee the consistency of flow. Before updating a component, the update mechanism must wait
until it finishes processing all the pending requests.
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• Guarantee the semantic consistenciy in the sequences of invocations that are interrupted by an update.

• Avoid blocking too many parts of the application, to minimize a significant performance impact.

• Guarantee that the update of several components is atomic.

Panzica [52] proposes an update mechanism that satisfies the following goals:

• Granularity. The update is performed at an architecture level, considering the relationships among
the components.

• Locality. The update considers information local to the component to update.

• Correctness. The update allows the system to behave normaly, including a normal termination of the
on-going requests.

• Timeliness. The update is carried in a short period of time.

• Disruption. The update interrupts the normal operation of the application during the shortest time
possible.

• Human effort. The update is automated and the user intervention is minimized.

3 Main Results
In this section, a number of main works are listed. These works are considered important because they
usually propose a new procedure or technique and they are usually referenced by many other subsequent
works.

3.1 How to Design a System in which Modules can be Changed on the fly, Fabry,
1976

Fabry [30] is one of the first authors to identify the need to dynamically update parts of a software system.
He also identifies different levels of complexity of dynamic update mechanisms, depending on whether or
not the application has some state that should be persistent.

Moreover, he proposes a basic dynamic update mechanism based on two key techniques: adding a level
of indirection (see Section 5.3) and rewriting some parts of the application at a binary level (see Section
5.2). The mechanism is illustrated with and example in which a function is updated.

First, a level of indirection is added between the updateable function and a call to it from the client
code. This indirection level consists of a low level JMP-like instruction, to jump to the definition of the
function. When the function is updated, a new version of the function is installed and the jump instruction
is modified (directly editing the low level binary instruction) to make it point to the new definition of the
function.

The paper includes two more examples, also based on this idea, which cover two other situations.

3.2 Dynamic Module Replacement in a Distributed Programming System, Bloom,
1983

Bloom’s Ph. D. thesis [21] tackles the problem of dynamic update of distributed systems in the context of
the Argus programming system [51]. His main goals are to clearly define the semantics of the process of
dynamically updating a distributed system and under which conditions it can be performed, in a safe man-
ner. Moreover, he introduces a mechanism developed to support the dynamic update of Argus programs.
The mechanism depends heavily upon the Argus libraries and runtime, but the basic idea behind the mech-
anism is to use some redirection technique (see Section 5.3 for other forms of indirection) to remap some
handlers. Before applying the update, a state transfer must be performed, to preserve the state used by the
part of the program to be replaced (see Section 5.5).
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That work is one of the first to identify several issues related with the dynamic update (especially that
of distributed systems). For instance, it identifies the syntactic gap among a data type that has been updated
from version v1 to version v2 and the data used by that type, created or modified by its version v1. He
is also one of the first authors to identify the need of using transformation functions (see Section 5.6) to
migrate the data accordingly to the updates of the data type that handle them.

The thesis takes some ideas from [30] like the use of version numbers to identify the different versions
of the data types and the data items themselves. It uses them to perform the necessary checks in runtime
and if necessary, invoke the proper transformation functions.

3.3 Dynamic Program Updating in a Distributed Computer System, Segal and Frieder,
1988

Segal and Frieder [66, 33] define a mechanism for dynamically updating procedures in a distributed system.
This mechanism should be transparent from different points of view: a) the source code should no need to
depend on the update mechanism and b) the need of human intervention should be minimized. Moreover,
it should impose the least performance overhead possible.

The authors define the concept of active and inactive procedures, used to restrict the dynamic update
mechanism they propose.

First, a procedure is active if it is in the runtime stack (this is, if it is being executed) or if its new version
is able to call any active procedure. Otherwise, the procedure is inactive.

To update a procedure P , the following constraints must be fulfilled:

• P must be inactive

• All the procedures reachable from P are also inactive

In a certain sense, such a requirement can be seen as a certain form of quiescence like the one originally
defined in [49] (see also Section 5.1).

Moreover, the authors also define the concept of semantic dependency of a procedure P like the set of
procedures P depends on. This dependency does not need to be syntactic but can be semantic (in this case,
it must explicitly be declared by the programmer, thus reducing the transparency of the solution).

Given these two definitions, the authors propose a mechanism to dynamically update a procedure P
and the set of all the procedures that semantically depend on P .

The mechanism relies on additional mechanisms and techniques. First, it uses mapper procedures
which are procedures that are written by the programmer to transform data structures from an old version
to a new one. These procedures are in essence similar to the transformation functions used by other authors
(see Section 5.6). Furthermore, it uses interprocedures which are intermediary procedures used to redirect
the invocations to the old versions of the procedures to the new versions. If needed, they are even able
to hide to the old version of a procedure, the existence of new versions of the data types so it can go on
operating with the old data types it knows. The second type of indirection used by the authors is based on a
binding table which holds pointers to the updateable procedures. These pointers are overwritten in runtime,
as new versions of such procedures are installed. The authors argue that this approach is feasible under
those hardware architectures that offer an indirect addressing mode like those provided by the Motorola
MC68020 processor or the Intel’s 386 architecture. See Section 5.3 for other forms of indirection.

3.4 The Evolving Philosophers Problem: Dynamic Change Management, Kramer
and Magee, 1990

In [49], Kramer and Magee (1990) present one of the seminal works about dynamic software update. They
propose a mechanism to manage changes in a distributed system. The types of changes considered are
the addition or removal of nodes and the addition or removal of links between nodes. The goals of such a
mechanism are listed in Section 2.

The idea of consistency used in those goals refers to the state of the communications among the nodes.
A system is in a consistent state if none of its nodes has pending transactions (seen as data exchanges). As
some types of changes can violate the consistency of a system (for instance, removing a node or a link),

7



the update procedure must be careful and avoid applying changes that may violate the consistency of the
current system.

In [49], the authors present a number of relevant concepts and ideas, used later, directly or indirectly, by
many other authors. One of these key ideas is the concept of quiescence (see Section 5.1) which is related
with the concept of activity of a node (see its Section III.D). A regular node is usally active in the sense
that it can be sending and receiving data to and from other nodes. On the contrary, a passive node is a node
which a) is not currently taking part in any transaction started by itself and b) is not going to start a new
transaction. The passive set of a node is a set composed of a) the node itself and b) the set of nodes that
may start data exchanges with it. It’s worth noting that such a set can be sintacticaly deduced if the system
uses a declarative way to specify the relationships among the nodes like the one proposed by the authors in
[47, 48].

A quiescent node is a node such that all the nodes in its passive set are passive. Informally, this
means that the node is not involved in any communication with other nodes, this is, the node is quiet and
moreover, all the nodes that can communicate with it are also quiet. In Section II.E, the authors reason
about the reachability of the passive state (considering that any transaction or data exchange finishes in a
bounded time).

Based on these concepts, the authors propose the following procedure to dynamically update a set of
nodes:

1. Calculate the set of nodes that must be quiescent

2. Passivate those nodes (this is, ensure they enter in a quiescent state)

3. Apply the change (unlink, remove, create and link nodes)

4. Reactivate the passivated nodes

The complete procedure is described in Section IV.A of [49].
For this procedure to work, the application must collaborate. The authors identify two different cou-

pling relationships between the update mechanism and the managed application. First, the so called update
manager needs to invoke functions offered by the application (for instance, to request a state change). On
the other hand, the application needs to invoke functions offered by the update manager (for instance, to
inform that its state has changed). Moreover, the application must be involved in another way: it has to
promise that it will remain passive long enough for the update to be completed.

This kind of connections between the update mechanisms and the managed processes or applications
has been also found in some other papers (see Section 5.4). In fact, in [49], the authors argue about
the need of defining some kind of standard interface to communicate the update mechanisms and the
applications. Unfortunatelly, these requeriments are opposite to the transparency requirements and goals
usually requested by some of those papers (see Section 2).

As shown in Section 5.1, the concept of quiescence has been directly or indirectly used by many other
authors to express some stability requirement. Nevertheless, it also has been criticized because it may
impose a significant blocking. For instance, in a distributed system in which all the nodes are strongly
coupled, the whole system may become completely (temporarily) stalled. To avoid this problem, in Section
VII of [49], the authors suggest to apply a relaxed definition of active and passive nodes. The idea is that
a node could be active respect to a given connection and passive respect to another. They also suggest
that nodes may be grouped in order to restrict the scope of the passivization to the nodes of a group and
thus avoid blocking the whole system. Regarding this subject, in [74] Vandewoude et al. (2007) argue
that the quiescence concept proposed by [49] is too strict and propose a relaxed form of quiescence, called
tranquility.

3.5 Dynamic Reconfiguration of Distributed Programs, Purtilo and Hofmeister, 1991
Purtilo et al. [59, 58] present POLYLITH, a software bus to build distributed systems that can be dynami-
cally reconfigured. The idea is that the programmer also specifies some specification of the program using
its own configuration language. These allows POLYLITH to know about the modules of the program, their
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interfaces and some other details. During the compilation phase, POLYLITH also compiles this specifica-
tion and produces some proxies that intercept the invocations to the functions of the modules (see Section
5.3 for other forms of indirection).

The basic idea behind the reconfiguration mechanism used by POLYLITH consists in using an abstract
format to characterize the state of the modules, as proposed in [42] (see Section 5.5 for other references
related to state transfer). This allows to get the state of a running module before updating it and then restore
it back or even move a module from a physical node that uses a given architecture to a different node that
may use a different architecture.

Regarding the update procedure, it is performed by the bus and the proxies. The considered updates
are the change of the implementation or interface of a module or the change of the bindings among mod-
ules (through their interfaces). The basic idea is that to perform a dynamic reconfiguration, one or more
capabilities must be obtained. Once got, the updates are applied and finally atomically committed.

3.6 On Line Software Version Change Using State Transfer between Processes, Gupta
and Jalote, 1993

Gupta et al. [40] propose a procedure to dynamically update a process. Roughly speaking, the procedure
consists of the following steps:

1. Start a new process with the new version of the binary code

2. At some point, transfer to the new process the state of the original process

3. Transfer the control to the new process

They also provide an implementation of the procedure (for programs written in C, running in Sun 3/60
machines under SunOS). The implementation includes an overwrite of some system calls like open and
close.

The mechanism tries to apply the updates when it is safe. To apply an update that consists in modifying
a given procedure p of the process, the update mechanism tries to ensure that p is not currently on execution
by looking for it in the stack of the process. If the procedure is not in the stack, then it is safe to apply the
update. This check tries to ensure some stable state, which is, in a certain sense, some sort of quiescent
state (see Section 5.1 for other forms of quiescence). See also Section 5.5 for details about other references
that use some state transfer technique.

3.7 On-line Software Version Change, Gupta, 1994
The Ph. D. thesis by Gupta [39] presents a formal framework to model changes to be dynamically applied
to running software and reason about the validity of such dynamic changes, considering that a dynamic
change is valid ”if some time after the change, the process reaches a reachable state of the new program
version” (see also [41]).

He considers software systems of several types: non-structured imperative, structured imperative,
object-oriented and distributed. For each of them, he proposes sufficient conditions that must be fulfilled
in order to ensure that the dynamic changes are valid.

The thesis includes a prototype implementation of a dynamic update mechanism for programs written
in C and a performance study that shows that the dynamic update mechanism causes a little disruption.

3.8 Towards Upgrading Actively Replicated Servers on-the-fly, Solarski and Meling,
2002

Solarski and Meling [68] propose a procedure to dynamically update a distributed system that uses active
replication.

The following assumptions are made:

• The server is updated atomically. Two update processes cannot interleave.
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• While a replica is being updated, it cannot process client requests.

• Input conformance. The new version of a replica accepts the input acceptable by the old version.

• There exists a mapping from the state of the old version of a replica to a next version.

• Output conformance. The output produced by the new version is the same that the previous version
would produce (if the input provided is acceptable to that previous version)1.

• Upgrade atomicity with respect to client upgrades. Once an update from an old version to a new
version is performed, clients only provide input acceptable to the new version.

To update a distributed system composed by a set of replicas, first a set of candidate replicas is defined,
initially containing all the available replicas. Then a number of steps are followed:

1. Choose a candidate replica from the set of candidate replicas (observing the assumptions pointed out
above: for instance, it can’t be serving requests, etc).

2. Check that it can be updated.

3. If so, shutdown the replica, apply the software update, restart it, update its state from the states of
other replicas and remove it from the set of candidate replicas.

4. If not, choose another replica and proceed.

These steps are repeated for all the available replicas, until all of them get updated.
It must be noted that the procedure used to update the replicas may be a regular one, since it is applied

when they are stopped.
On the other hand, according to the assumptions pointed out above, we can assume that some kind of

state transfer process (see Section 5.5) is performed when a replica is updated.

3.9 Dynamic Module Replacement in Distributed Protocols, Sridhar et al., 2003
Sridhar et al. [69] present a technique for replacing software modules, which is based on the use of
intermediary objects (see Section 5.3). These objects encapsulate the objects that provide the real service
and offer the clients a logical reference that can be used as the real service object. Thus, these objects
handle all the requests made by the clients. These objects also include the necessary logic to perform the
dynamic rebinding, using some well-known design patterns (like Strategy) and some facilities offered by
common programming languages (at least, C++, Ada, Java and C#).

3.10 Dynamic Upgrade of Distributed Software Components, Solarski, 2004
The Ph. D. thesis by Solarski [67] includes the proposal of three dynamic update algorithms, for centralized
systems and distributed systems that use the active replication and passive replication (see Section 5.11).

The first algorithm proposed is addressed to centralized systems. It is very basic and limited but can be
used as a reference in comparisons with the next algorithms. Basically, this algorithm is composed by the
following steps:

1. Install the new version of the component

2. Deactivate the old component, transfer the state, rebind the connections

3. Activate the new version of the component

4. Uninstall the old version of the component

1Our main concern about this assumption is that it prevents some bugs to be fixed. For instance, it may happen that a given version
of an application produces some output for a given input and the output is wrong due to some bug in the code. In this case, should the
next version of the application be forced to produce the same wrong output for the given input? Instead, the output should be allowed
to change, according to the proper fix of the bug.
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As the authors say, the component is yield unavailable during the second step (which means that the
service is interrupted). Moreover, although it is not explicitly said, it assumes that two versions of the same
component can, at least, be installed simultaneously.

The second algorithm addresses the dynamic update in distributed systems that use the active replica-
tion technique. It was previously presented in [68]. A brief sketch can be found in Section 3.8.

The third algorithm addresses the dynamic update in distributed systems that use the passive replication
technique. It has the following steps:

1. Create a new replica, with the new version of the software and add it as a passive replica, to the set
of secondary replicas.

2. Update, one by one, all the original secondary replicas. For each one:

(a) Create a new updated replica

(b) Add it as a passive replica, to the set of secondary replicas

(c) Stop the original secondary replica

3. Force a failover so one of the passive replicas is promoted to primary

4. Stop the original primary replica

Although in some cases it is not explicitly said in the procedure sketches provided in [67], the three of
them depend on some state transfer step to copy the state of a current component to the new version of the
component (see Sections 3.4.1.3 and 4.1 of [67]). The state transfer topic is covered in Section 5.5.

3.11 Towards a Taxonomy of Software Change, Buckley et al., 2005
Buckley et al. [23] present a taxonomy of dynamic update mechanisms, based on fifteen dimensions,
grouped in four themes:

• Temporal properties: Time of change, Change history, Change frequency, Anticipation

• Object of change: Artifact, Granularity, Impact, Change propagation

• System properties: Availability, Activeness, Openness, Safety

• Change support: Degree of automation, Degree of formality, Change type

3.11.1 Description of the dimensions

Time of change. It can be static (changes are applied at a source code level), load time (changes are
applied at load- or link-time) and dynamic (changes are applied in runtime).

Change history. The change history is the set of changes applied to a given system or application. The
update mechanism may or may not render visible and publicly available the sequence or history of changes:

• The history of changes is visible. This case is covered by version control tools.

1. The versioning of the changes may or may not be supported:

– The versioning is static. In runtime, there is a single version of each component.
– The versioning is dynamic. In runtime, different versions of a component can coexist.

2. The changes may be applied in different ways:

– The changes are applied sequentially: changes from different users are allowed but not at
the same time.

– The changes are applied in parallel: changes from different users can be applied concur-
rently.
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∗ The changes are synchronous: all the users apply their changes to the same copy of
the data.

∗ The changes are asynchronous: each user may apply the changes to a different copy
of the data.
· The changes are convergent: the changes from all the users are merged into a single

copy.
· The changes are diverging: each user keeps a different copy of the data.

• The history of changes is not visible. The changes are applied destructively.

Change frequency. The changes may be applied continuously (when there is something to change),
periodically, or at arbitrary intervals.

Anticipation. The changes can be anticipated (when they are foreseen during the initial developement
of the system) or unanticipated (they typically arise during the deployment or exploitation of the system).

Artifacts. The changes can be applied to the architecture, the design, source code, documentation, con-
figurations, test suites or a combination of them.

Granularity. The granularity of the changes can vary. For instance, changes to the architecture of a
system can be coarse if they affect the whole system or fine if they affect just a subsystem.

Impact. The impact of the changes can also vary, from local (when a change affects a small part of the
system) to global (when it affects to the whole system).

Change propagation. Once applied a change, it may be necessary to propagate it to some other parts of
the system. The authors point out the use of completely automated propagation mechanisms in contrast
to a completely manual change prograpagion. Between these two alternatives, we can identify a third
type of change propagation that could be called user-assisted change propagation. Refactoring tools like
those used in current development suites like Eclipse or Visual Studio typically offer user-assisted change
propagation mechanisms but at the same time, they offer the possibility to completely automate the process.

Availability. An update mechanism can be classified according to the availability needs of the system to
update. Some mechanisms force the system to be paused or even halted and restarted (thus reducing its
availability) while others allow the system to remain available.

Activeness. From the point of view of how the change is started, systems can be reactive if the change
has to be started externally (for instance, by a user) or proactive if the system itself decides to start the
change (which is typical in self-adaptive systems, self-healing systems, auto-reparing systems, etc.).

Openness. The update mechanism may be:

1. Open, if it is targeted to systems designed to be extended (for instance, by means of plugins).

2. Partially open, if it is not open but still offers some limited capacities to be extended.

3. Closed, if the target system is not updateable (beyond the update of its source code).
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Safety. The update systems can offer different kinds of safety mechanisms:

• Security, as a synonym of protection of the software. Typically includes mechanisms to protect the
software from malware, unauthorized users, etc.

• Behavioral safety, this is, a correct behavior of the software regarding to its specification.

• Backward compatibility (when a change is applied to a system, it can go on working as before the
change).

Degree of automation. The degree of automation can be automated, partially automated or manual.

Degree of formality. The degree of formality used to express the changes can vary from a very formal
level (for instance, like in [47, 48]) to a completely manual (for instance, by applying changes to the source
code).

Change type. The changes can be:

• Structural, if they affect the structure of the system, like the addition of new parts of the software,
the subtraction or the alteration of existing parts of the software. Another classification can be found
in [52] (see Section 4.6).

• Semantic, if they affect the behavior of the system. They can be semantic-modifying or semantic-
preserving, depending on whether they modify the semantics of the system or preserve it.

3.11.2 Application of the dimensions

The authors apply this taxonomy to three systems related to software changes:

1. Refactoring Browser [64], a browser for Smalltalk IDEs (like VisualWorks, VisualWorks/ENVY and
IBM Smalltalk).

2. CVS [2]

3. eLiza [57], a technology ”to create self-managing servers and networks in four ways: self-configuring,
self-healing, self-optimizing and self-protecting”.

3.12 Dynamic Software updating, Hicks and Nettles, 2005
Hicks and Nettles [44] present a framework that allows the dynamic update of running programs written
in a C-like programming language. The authors ensure that it is the first framework that ensures the type-
safeness of the updated systems. The update mechanism uses dynamic patches that consist of verifiable
native code (regular binary code that includes ”annotations that allow online verification of the code’s
safety”).

The proposal allows the programmer to update the code of the software, the definition of the data types
used and the data it handles. Moreover, the programmer can also decide when an update has to take place
and also mark some parts of the code that should not be interrupted by a dynamic update (see Section 5.4).

The framework is based on dynamic patching and applies different techniques, also found in other
papers.

To update the code of the program (i.e. the implementation of the functions) the authors consider two
approaches: code relinking and reference indirection. The first alternative consists in changing the function
invocations made by client code to the current implementation of the functions, forcing them to point to the
new implementations. The second alternative consists in adding an intermediary indirection level among
the new implementation of a function and the invocations to it (see Section 5.3), arguing that it would be
more expensive and more complex to implement. The alternative finally chosen was the first one.
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To update the type definitions, they also consider two options: replacement and renaming. The first
alternative consists in replacing the definition of a type with a new version, by means of some binary
rewriting mechanism (see Section 5.2). The second alternative consists in adding a new type definition
and patching the code client to use it, also by means of binary rewriting. The authors choose the second
alternative because they consider it is simpler and more portable.

To apply changes to the code and the type definitions, dynamic patches are used. Given a version of the
program to update and the next version to apply, some automated tool is used to compute the patches to ap-
ply (this technique is also used by other authors, see Sections 5.2 and 5.7). Besides creating regular patches
(like with the diff and patch UNIX commands), the transformation of the data is also considered. The
programmer can define transformation functions (see Section 5.6) to apply to the data any transformation
needed.

The authors have a prototype implementation of the proposed framework. They have also implemented
an updateable web server (FlashEd) and used it to test the operation of the dynamic update framework
implementation.

3.13 Handling Run-time Updates in Distributed Applications, Milazzo et al., 2005
Milazzo et al. [53] study the run-time update of distributed applications written in the Java programming
language. They propose the use of an intermediary layer that ideally should be independent of any partic-
ular version of the Java Virtual Machine and be usable with any Java application (see Section 5.3).

This layer includes a new Java class loader that uses some Java rewriting techniques (see Section
5.2) to modify the Java bytecode in loading time. Moreover, new intermediary interfaces and objects are
defined and created to intercept the regular method invocations and redirect them to the proper service
implementation. The client bytecode is also rewritten to use the new interfaces.

3.14 Modular Software Upgrades for Distributed Systems, Ajmani et al., 2006
Ajmani et al. [13] describe a methodology to dynamically update objects of a distributed application. Their
methodology allows an updater user to send, during the regular execution of the application, a number of
update requests. These consists of changes to the definition of the object types. Some of the changes are
compatible (they can be directly applied, without disturbing the normal operation of the application, like
adding methods or changing their implementation). Others are considered incompatible (they can pose
problems to the application, like removing methods or changing their signature). The proposal allows both
types of changes.

The proposed methodology includes the use of some special objects called simulation objects (see
Section 5.3) to represent past and future versions of the current objects. These simulation objects allow
the nodes of the distributed application to be updated in differents points in time. Each node can access
a different version of an object, just by transparently accessing a different simulation object. As a result,
there’s no need to update all the nodes simultaneously.

The proposal also allows the user to define scheduling options (see Section 5.12), to specify how to
schedule the update of the nodes (there are many alternatives: all the nodes simultaneously, half of the
nodes first and then, the rest, etc.). The user can also define transform functions (see Section 5.6) to specify
how to update the type of an object, from its current version to the next one. These functions are especially
important to decide how to perform the incompatible updates.

3.15 POLUS: A POwerful Live Updating System, Chen et al., 2007
Chen et al. [24] describe POLUS, a tool that offers support to dynamically update a software system.
Roughly speaking, to update a running program from version v to v + 1, the operation of the proposed
procedure is as follows. From the source code of both versions, a patch is generated and then compiled
into a dynamic library, which is injected into the running binary code (see Section 5.7 for other proposals
that use some sort of static analysis of the source code). For each function that changes in the new version,
POLUS inserts a jump instruction to redirect the program flow to the new implementation of the function,
which is provided by the patch (see Section 5.3 for other forms of level indirection).
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Moreover, POLUS is distinguished by the possibility to reverse this procedure (also see Section 5.13).
Given the version v+1 of a running program, it is possible to rollback it to version v by applying an inverse
patch. In Section 5.13 other examples of rollback-enabled mechanisms are given.

Another significant feature of POLUS is that it can be used to update multithreaded programs.
An extended version of this paper can be found in [25]. It includes an extended description of some

experiments made with POLUS to dynamically update three different systems: a FTP daemon (vsftp), a
SSH daemon (OpenSSH) and a web server (Apache httpd).

3.16 Mutatis Mutandis: Safe and Predictable Dynamic Software Updating, Stoyle et
al., 2007

Stoyle et al. [70] present Proteus, a formal system to model and apply dynamic updates in imperative
single-threaded programs, while ensuring a conn-freeness (type correctness) property. This property tries
to ensure that once some code is updated to a new version, the data used with the new version must be no
longer used with a previous version.

This system includes its own programming language and compiler and runtime, among other tools and
resources.

The basic idea consists in statically analyzing the source code of the program to update and identify
points in which the updates can be applied while preserving the conn-freeness property. For each point, it
identifies which data types are not conn-free, this is, which ones should not be updated in order to keep the
conn-freeness property. In run-time, Proteus performs the necessary checks and ensures that none of those
types are updated.

See Section 5.7 for other references that use some sort of (static) analysis of the source code.

3.17 R-OSGi: Distributed Applications Through Software Modularization, Reller-
meyer et al., 2007

Rellermeyer et al. [60] propose R-OSGi, an extension of OSGi [7, 14] that works with distributed systems.
A standard implementation of OSGi allows to build a Java application from a number of bundles, that run
in the same Java Virtual Machine. With R-OSGi, each bundle can run in a different Java Virtual Machine.
Moreover, R-OSGi hides the distributed nature of the bundles, which means that the bundles do not need
to know if the other bundles are local or remote. This transparency level is more or less similar than the
one provided by other middleware platforms like RMI or CORBA. In addition, R-OSGi is even able to
hide some remote errors and encapsulate them in form of regular OSGi disconnection events, so the local
bundle can go on being strictly OSGi compliant.

In [60], they present a comparison among R-OSGi, RMI and UPnP and show that R-OSGi can yield
better performance numbers.

See Section 5.9 for additional references about OSGi.

3.18 Consistently Applying Updates to Compositions of Distributed OSGi Modules,
Rellermeyer et al., 2008

Rellermeyer et al. [62] consider the problem of guaranteeing the consistency among the bundles of an
R-OSGi application (see Section 3.17).

The problem is tackled from a syntactic point of view and can be summarized as follows. In a regular
OSGi (and R-OSGi) application each bundle has a metadata manifest file in which it declares some static,
syntactic relationships: which packages it exports and which packages it imports from other bundles (this
is, packages it depends upon). Thus, when a bundle A imports a package from a bundle B, then there is a
dependency of A upon B. The problem appears when B has to be updated, since there are some types of
updates that may cause inconsistencies (for instance, just uninstalling B).

The solution proposed in [62] consists in offering some sort of deferred updates. For instance, if the
bundle B has to be uninstalled, R-OSGi first checks if some other bundle depends on B. In such a case, the
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operation is considered not safe. Then, the bundle is kept but only for those bundles that depend on it. For
the rest of the bundles, it appears as uninstalled.

If the bundle is not uninstalled but just updated, a similar solution is applied. The old version of the
bundle is kept for those bundles that declare a dependency on it while it appears as updated for the rest of
the bundles.

The pending (or deferred) changes made to the bundle B (its uninstallation or update) are finally made
effective when R-OSGi detects that no other bundles can use it any more. This happens when the bundles
that declared dependencies upon it are finally uninstalled or updated. In the later case, their new versions
automatically see the new version of B.

R-OSGi also offers the service PackageAdmin which is an official but optional part of OSGi. This
service can be used to force a package refresh, which forces one or several bundles to be reloaded. As a
result, a reloaded bundle forgets its old dependencies and starts seeing the new versions of their imported
bundles.

See Section 5.9 for additional references about OSGi.

3.19 Correctness of Request Executions in Online Updates of Concurrent Object Ori-
ented Programs, Murarka and Bellur, 2008

Murarka and Bellur [54] study how to correctly apply dynamic updates to multithreaded object-oriented
programs. Given an application composed of a number of objects and threads that communicate by sharing
data among the objects, the goal is to be able to apply run-time updates to the application so two major
properties are guaranteed: correctnetss (the program behaves correctly during and after the update) and
continuity (the program goes on providing its service during the update).

Due to the relationships among the threads it is not possible to apply any update to any class at any
moment. For instance, there may be ongoing invocations that must be left to finish (using the current class
definitions) while other requests might be executed with a new definition of the classes.

To know if an update to a class can be correctly applied, it is necessary to analyze the impact that change
may have upon the objects of that class. On one hand, there may be some changes in the source code that
may not change the state of the objects, like adding a new method to a class. On the other hand, there are
other types of changes that will cause changes in the state of the corresponding objects, like changing the
type of an attribute of a class.

Thus, when applying a change to update an old version to a new version, a) there may be objects created
with the old version that cannot be used with the new version of the class and viceversa, this is, b) there
may be objects created with the new version that cannot be used with the old version of the class.

Given an update of a class B from a version v1 to a version v2, then two types of compatibility can be
defined. First, B is backward state compatible if the objects created with version v1 of B can be used with
version v2. Classes that are not backward state compatible must be transformed by means of user-provided
transformation functions (see Section 5.6). On the other hand, B is forward state compatible if the objects
created with version v2 of B can be used with version v1.

The authors then define the following Request Execution Criteria2, to decide if an invocation of a
method of a class that is being concurrently updated must use either the old or the new definition of the
class.

• The Old Program Execution criterion is defined as follows: a request must use the old version of a
class if both constraints are fulfilled: a) the request does not access to any object with an old version
that cannot be used with the new version after the update is applied (in that case, it should use the
new version) and b) the request does not access to any object with a new version that cannot be used
with the old version after a new request has accessed the object (it should use the new version).

• The New Program Execution criterion is defined as follows: a request must use the new version of a
class if the request does not access any object with an old version that cannot be used with the new
version (in that case, it should use the old version).

2The idea behind these criteria is very similar to that of the conn-freeness property in [70].
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To check if these criteria are met, the proposal of the authors consists in analyzing the source code of the
classes of a program and building a graph that relate them, according to their use of shared objects. They
use some graph theory procedures and as a result, they identify points in the source code of the classes to
update, called update points in which it is possible to apply the update in a safe manner (without deadlocks
and guaranteing correcteness and continuity).

In Section 5.7 we surveyed some other references that use some sort of static analysis (for instance, of
the source code).

3.20 Dynamic Update of Java Applications—Balancing Change Flexibility vs Pro-
gramming Transparency, Gregersen and Jørgensen, 2009

Gregersen and Jørgensen [36] propose a mechanism to dynamically upgrade Java programs by successfully
saving the problem of the version barrier.

In short, the problem can be described as follows. One of the techniques to load new Java classes
consists in creating new classloaders and using them to load the new classes. Nevertheless, this solution
has the problem that the new classes are not easily accessible from code loaded by other classloaders (for
instance, by a parent classloader).

The mechanism proposed in [36] can save this barrier by using proxies that are defined dynamically.
The idea is to build dynamic proxies for the updateable classes and let them to act as intermediaries among
client classes and real service implementation classes. See Section 5.3 for other techniques based on adding
some indirection level.

They also need to manipulate the Java bytecode, in a number of ways to, generally speaking, prepare
both client and server code to use and be used by the update mechanism. Other authors also use some
binary-level rewriting techniques (see Section 5.2).

The update procedure also includes a lazy state migration that is used to transfer the state from an old
version of a component to a new version (also see Section 5.5). One of the most remarkable peculiarities
of this proposal is that the update mechanism in general and the state transfer mechanism in particular
are triggered lazily, on demand. When an update is requested, it is not immediately applied, but lazily.
Moreover, the state is not immediately transferred. Instead, the state of each field is transferred individually,
when it is accessed by the first time.

Their proposal also allows the rollback of applied updates (see Section 5.13 for other authors that also
offer some sort of rollback mechanism).

3.21 OSGi4C: Enabling OSGi for the Cloud, Schmidt et al., 2009
Schmidt et al. present OSGi for the Cloud (OSGi4C) [65], an OSGi implementation that offers some
improvements respect to the standard specification.

In particular, it is an extension of the regular OSGi specification, designed to offer the standard dynamic
update features to distributed and cloud systems. Basically, the idea is to offer the possibility to build up
distributed systems from OSGi bundles that are physically distributed. OSGi4C allows an application to
reference and download remote OSGi bundles.

It also allows the re-deploy of just a part of a node. When a node of a distributed or, specifically, a cloud
system has to be updated, instead of updating the whole node (for instance, by deploying a new version of
the whole node image, which could be extremely large), OSGi4C allows to specify and apply some kind
of patch which should be, generally speaking, much smaller than the whole node image.

OSGi4C is built on top of JXTA [35]. It is claimed to be a better solution than any others like Java
Web Start (which is actually nor a cloud neither a dynamic update solution), the standard OSGi Bundle
Repository service, and other non-standard solutions like SATIN [76]. Moreover, it is compatible with
other solutions like R-OSGi (see Section 3.17 and [60]).

In Section 5.9, other references related to OSGi are surveyed.
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3.22 Handling Consistent Dynamic Updates on Distributed Systems, Bannò et al.,
2010

Bannò et al. [17] analyze the problem of keeping the consistency during the dynamic update of a distributed
system.

First, they identify three levels of consistency that must be kept when updating a component from a
given version to the next one:

• Consistency of data. The data available to the first version must be somehow transformed and trans-
ferred to the next version (see Section 5.5).

• Consistency of flow. The update must not stop the flow of ongoing requests. If it gets interrupted
to apply the update, it must be resumed as if the change never had happened. This can be achieved
leading the system to some kind of quiescent status (see Section 5.1).

• Semantic consistency. There may be semantic relationships between different parts of the application
or system that must be preserved when applying a dynamic update. A typical example is a transaction
that involves computation in different components. If a dynamic update is performed during the
executing of a transaction, it should ensure that the result obtained is semantically consistent.

They argue that to keep the semantic consistency and guarantee the validity of the update procedure,
there must be some coupling between the application and the update mechanism. This coupling is actually
twofold. First, the application must be designed in some special way to consider dynamic changes. The
programmer must also need to provide some meta-information regarding each update to apply, including a
specification of which parts of the application may be interrupted by an update and which ones should not.
Second, in run-time, the application must offer some support to the update mechanism. Some other authors
also identify the need of such an intrusive coupling between the application and the update mechanism (see
Section 5.4).

In [17] they present the FREJA framework that supports transparent dynamic updates of distributed
systems written in the Java language. This framework is based on the use of specific class loaders, some
(centralized) update managers and some intermediary objects that control de execution of updateable com-
ponents (see Section 5.3). They also outline the key points of the procedure they use to update a component.
The first step is to lead the system to a some kind of quiescent state (see Section 5.1). This includes com-
puting the set of classes and methods that could invoke the component to replace (which is actually some
form of passive set as in [49]) and wait until the current executions end. Moreover, the start of new exe-
cutions is temporarily paused. The next step, consists in aplying the update, by means of code rewriting
techniques (see Section 5.2). Finally, the executing of the blocked components is resumed.

3.23 A Taxonomy of Live Updates, Giuffrida and Tanenbaum, 2010
Giuffrida and Tanenbaum [34] study the topic of dynamic software updates. Specifically they focus on the
updates of operating systems.

In their study they propose a taxonomy of live updates focusing on the nature of the update. The tax-
onomy is based on a rough classification of dynamic changes in the following set of classes, of increasing
complexity:

1. Changes to code. They are changes that only affect to the implementation of the program or services.

2. Changes to data. They can affect to both volatile and persistent data.

3. Resource-sensitive changes. They affect to basic resources (typically hardware, like main memory,
disk, etc.).

They also define the concept of structural unit as the minimal unit that is updateable. It could be a
function, an object or a whole process. The concept is used to define some of the classes of the proposed
taxonomy:

• Changes that affect to a single structure.
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• Changes (to code or data) that affect to the protocol among two or more structural units.

• Changes that affect to global data structures, shared among several structural units.

• Changes in global algorithms that affect to several structural units.

• Changes that affect to persistent data (for instance, data stored in disks).

• Changes that affect to the hardware resources (for instance, changes in the minimal hardware re-
quirements).

Moreover, the authors draw a number of conclusions. For instance, they conclude that dynamic updates
are not always feasible. In the context of operating systems, it may happen that the update is so complex
that a full reboot or the manual intervention of a human administrator is needed. By contrast, sometimes
the dynamic update although possible, is not desirable (for instance, when it causes a significant disruption
to the system).

The authors conclude by defending that the best approach to build updateable software is to design it so
it is aware of its updateable nature. Moreover, the update may include some meta-information to be used
by the update mechanism to perform the update. They also defend the need to have some kind of update
manager that controls the whole processs and is able to lead the system to a quiescent state before applying
the update (see Section 5.1). This approach certainly reduces the transparency of the dynamic update from
the point of view of both the programmer and the final user. However, on the other hand it simplifies the
design of updateable software and allows to get better results. See Section 5.4 for references of other types
of intrusion between the update mechanism and the managed application.

4 Additional Results
There are other papers that analyze some complementary issues to the dynamic software update problem
but are not centered on updating mechanisms. They analyze how to parameterize the resulting consistency
among different software pieces, the requirements set by different standards, etc. They are briefly discussed
in the sequel.

4.1 CONIC: an Integrated Approach to Distributed Computer Control Systems, Kramer
et al., 1983

Kramer et al. introduce CONIC [47, 48], a configuration language used to declarative describe both the
configuration of a software system and the changes to such configuration that may be dynamically applied.

CONIC uses plain-text configuration files to express the structure of the modules of a distributed sys-
tem. Each module has some input ports which are abstractions that represent the input of data into a
module and provides some output ports which are the corresponding abstractions to represent the output of
data out of a module. CONIC provides some syntactic constructions to connect the input port of a module
and the output port of another module. It can even allow one-to-n connections, under some constraints.

CONIC also provides a way to express changes to such a structural definition, like adding or removing
modules or modifying the connection among ports. It also allows to group modules and assign modules or
group of modules to physical nodes.

Once a CONIC specification is defined, it is compiled into some binary files. Change specifications are
also compiled and the result is a set of operating system-dependent commands whose execution causes the
desired change.

This kind of declarative configuration of the structure of an application reminds the idea behind some
Dependency Injection and Inversion of Control concepts and technologies like Spring’s Inversion of Control
(IoC) [8].
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4.2 Towards Flexible and Safe Technology for Runtime Evolution of Java Language
Applications, Dmitriev, 2001

Dmitriev [29] studies the mechanisms to dynamically update Java programs included in the standard Java
Virtual Machine.

For instance, the HotSpot Java Virtual Machine [27] has a mechanism to replace the Java bytecode in
runtime, although it was devised to be executed in debugging time (by means of the Java Debugger Wire
Protocol), as an aid to programmers, to speed their development and test processes. That mechanism only
allows to replace the implementation of the methods. It does not allow other changes, like changes to the
interfaces of the classes. Moreover, it requires some sort of quiescent state in which the methods to update
are not currently being executed (see Section 5.1 for other definitions of quiescence).

Future versions of the mechanism will include new features like the possibility to add new fields,
methods or constructors to existing classes or interfaces and deleting them as well as altering the type
hierarchies (for instance, adding a class or interface to an existing type hierarchy or removing an existing
one).

In Section 5.8 we list other references that study or use the facilities directly offered by other underlying
technologies, like programming languages, their standard libraries or any other base level.

4.3 Dynamic Service Update Based on OSGi, Chen and Huang, 2009
Chen and Huang [26] study the problem of updating a service bundle, in the context of OSGi applications,
that can be summarized as follows. In OSGi, services are usually defined by interfaces and it is possible to
have several implementations of a given interface. Moreover, it is possible to dynamically update a service
which is bound to a given name, by publishing a new version under the same name. From that moment, if
a client resolves the name it gets a reference to the new version. The main problem to solve is that when
updating a service, the state kept by the older version should be transferred to the new version (in Section
5.5 we review other issues related to the need to transfer existing states). There is a secondary problem
regarding to the previous clients, that still have references to the older version of the service. To consider
the update complete, the references should be somehow updated to point to the new version of the service.

They propose a first solution to solve both problems. First, the programmer must statically specify a
safe update point in the source code of the bundles. This point must be chosen so when the control flow of
the program reaches that point, it is guaranteed that the state of the bundle to replace is not being modified.
The choice of such points can be done manually or by means of some kind of source code analyzer. When
an update to a bundle is to be applied, the bundle is forced to transit to the safe update point, which actually
can be seen as a quiescent state (see Section 5.1).

Once reached that state, a state transfer may be performed, in order to update the state of the new
version of the bundle. Although it is not explicitly said, some transformation functions may be needed to
adapt the data to the possibly different format used by the new version of the bundle. Other references
related to state transfer and transformation functions are provided in Sections 5.5 and 5.6, respectively.

Finally, the old clients are forced to restart, so they can get references to the new versions of the updated
bundles. Although this last step is a practical one, it nevertheless reduces the transparency of the solution.

The authors suggest a second solution that may offer a better transparency level, at least from the point
of view of the application user. The solution consists in adding an indirection level, by means of dynamic
proxies that would act as intermediaries among the clients and the service bundles. These proxies may
wrap the current real references to the OSGi service bundles. If no updates have to be performed, the client
invocations to the service methods are simply forwarded to the service bundles. When a dynamic update
has to be applied, these proxies are notified and then, they refresh the references by disposing the old ones
and getting new updated ones, thus hiding the update from the point of view of client code. In Section 5.3
we review other references that use different types of indirection.

See Section 5.9 for additional references about OSGi.
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4.4 Automated Versioning in OSGi: a Mechanism for Component Software Consis-
tency Guarantee, Bauml and Brada, 2009

In [19] the authors propose a procedure to automatically deduce the version string (e.g. something like
”1.5.7”) of an update. The version strings considered are strings of the form a.b.c, where a, b and c are
the major, minor and micro version numbers, respectively.

As a starting point, a programmer has a given version of an application, whose version string is already
known and the following version of the application, whose version string has not been chosen yet. The
goal is to choose a proper string version for the new version of the application.

This has traditionally been done manually, according to some semantic criteria, choosen by the pro-
grammer. Instead, [19] shows a proposal to automate the election of the new string version. The idea is to
sintactically analyze the source code of both a given version of the application and the following version.
The procedure includes a number of rules to decide when to choose to alter the major, minor and micro
version numbers.

This procedure is originally proposed in the context of the dynamic update of OSGi [7] applications
(bundles), but it may be applied to any other application written in a regular current object-oriented pro-
gramming language.

The authors admit that the proposed procedure fails to recognize semantic changes between a version
of the application and the following one, so they cannot be considered to choose the new version string.
They reject the use of semantic analyzers due to their excessive computational cost.

We may suggest the use of some meta-data, added by the programmer. The simplest way is to include
some comments in the source code, with some specific syntax. If needed, a more elaborated mechanism
could be used. For instance, in Java (since version 5.0), programs can include Java Annotations and they
can be configured to be included in the bytecode generated by the compiler and retained by the Java
Virtual Machine, so they can even be read and used in runtime. By means of any of these mechanisms,
programmers may suggest changes to the major, minor or micro version numbers, according to semantic
criteria (or any other criteria they may consider).

4.5 An Application-Based Adaptive Replica Consistency for Cloud Storage, Wang et
al., 2010

Wang et al. [75] propose an adaptive mechanism to change the consistency mode used by the replicas of
a replicated system. They argue that the consistency needs of a replicated system can change in runtime,
during the regular execution, according to the observed rates of read and write operations. Thus, the system
may be in one of four modes, that range from a relaxed consistency mode to a strong consistency mode.

According to their proposal a replicated system may follow this organization. First, there is a central
node called master node. Then, there are a number of first-level replicas called deputy nodes (they use 3
nodes). Finally, there are a number of second-level replicas called child nodes.

The idea is to ensure that the master node and all the deputy nodes are up to date at any moment.
Depending on the current read and write rates, the transfer of the updates to the child nodes may be done
immediatelly or deferred.

The authors identify four operation modes, depending on the read and write rates. For each mode, a
read and write propagation scheme is proposed:

1. Case C=1: high read rate and low write rate. This is a strong consistency mode. A write operation
sent to any replica is redirected to the master, which redirects it to all the replicas, thus achieving full
consistency among all the replicas. When a replica receives a read, it can attend it directly.

2. Case C=2: high read rate and high write rate. This is a trade-off mode. A write operation sent to any
replica is redirected to the master. Then, the master compares the timestamp of the write operation
with the timestamp of the last write applied. If the difference is higher than a given threshold (this is,
if the last write was applied too long ago), then it is forwarded to all the replicas (because they are
considered to be outdatet). Otherwise, it is only resent to the deputy nodes. When a replica receives
a read operation, it is attended immediately (so an old value may be read).
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3. Case C=3: low read rate and high write rate. This is another trade-off mode, which tries to save
bandwidth. A write operation sent to a replica is resent to the master, who resends it to all the deputy
nodes. When the master or any of the deputy nodes receives a read request, it sends a response
immediatelly. When a child node receives a read request, it resends it to the closest deputy.

4. Case C=4: low read rate and low write rate. This mode is similar to the previous one. The only
different case is when a child node receives a read request. The child node compares the timestamp
of the read request against the timestamp of the last write operation applied locally. If the difference
is higher than a given threshold (this is, if the last write was applied too long ago), then the child
node retrieves the requested value from the closest deputy node and returns it to the client.

In initialization time, the system is set in a strong consistency mode. Then a master node and the deputy
nodes are chosen, according to their geographic position. Once the system is started, the read and write
operations issued by the clients are counted and the mode is switched periodically, according to the rules
shown above.

The mechanism considers the failure of the master node or a deputy node. If the master node fails, a
deputy node is promoted to master. If a deputy node fails, a child node is promoted to deputy.

In Section 5.11 we provide some other references that cover some topics related to the dynamic update
of replicated systems.

4.6 Dynamic Software Update for Component-based Distributed Systems, Panzica,
2011

In [52], Panzica proposes a classification of dynamic updates by means of an interface automata notation
[28]. His classification includes the following classes in which a component C is replaced by a component
C’:

• Class 1: ”Perfective Update”. C’ is a specialization or subtype of C.

• Class 2: ”Corrective Update”. C’ is at the same time a) a specialization of C and b) an improvement
of C.

• Class 3: ”Partial Compatibility”. C’ offers only a part of the interface offered by C and in addition,
it offers a new part.

• Class 4: ”Incompatibility”. C’ es completely different to C.

The author uses a simulation framework to perform a process of validation to assess the timeliness
and disruption produced by applying changes of the class 4 to an example application. The results are
compared against the results got when applying the same changes to a system in which the components to
be replaced must be quiescent [49] before being updated.

This classification and the subsequent analysis provided in [52] only considers the sintactical view of
the application. No semantic concerns are taken into account.

5 Important concepts and techniques
In this section we identify a number of concepts and techniques used and found in the surveyed references
and somehow related with dynamic software updating.

5.1 Quiescence
A number of papers use some form of quiescence. The basic idea is that before updating some component,
from a given version to the next one, the update mechanism must ensure that the update does not interrupt
any running processes (for instance, the invocation of a service). For this, different authors try to ensure
that the component to update reaches some stable state. Depending on the author, this stability requirement
is given a different name and described in different ways.
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One of the first works that shows an idea of quiescence is [49] by Kramer et al. (see Section 3.4), based
on a previous idea from [46]. Informally, a node is quiescent if it is not going to start a data exchange or
attending any data exchange with any other node. In [49], the authors argue that to apply an update that
affects some nodes, they must be in a quiescent state.

Segal and Frieder [66, 33] use the concepts of active process and inactive process (see Section 3.3).
They propose a criterion to decide when a process can be considered inactive and show that to apply a
dynamic update to a process in a safe manner, it must be inactive.

Gupta et al. [40], propose a dynamic update mechanism that uses a similar idea. Before updating a
function of a process, the execution stack is inspected to see if the function is present (i.e. if the funcion
is being executed). The update can only be applied if it is not present (i.e. if the function is not being
executed).

Chen and Huang [26], propose a mechanism to update bundles in an OSGi application that forces the
updateable bundles to reach some safe state, in which none of the to-be-updated bundles is currently being
executed.

Bannò et al. [17] also point out the need to lead the component to replace to a quiescent state, like in
[49], to fulfill a requirement known as consistency of control flow. They also state that, in general, it will
be necessary to guarantee some other properties, like some certain semantic consistency property. A way
to reach such a quiescent state is to wait until the current requests and invocations end up running, pause
the handling of incoming requests, apply the update and finally resume the handling of new requests.

Giuffrida and Tanenbaum [34] propose another update mechanism that uses an update manager com-
ponent. When a dynamic update has to be performed, this update manager notifies the components to
update. These transit, as soon as possible, to a controlled state (which is actually some form of quiescence,
like in [49]), save their state in a persistence place and send back an answer. When the update manager
receives all the answers, the update can be applied.

This idea of stable status or quiescence appears in many other references: [21, 18, 45, 20, 63, 15, 73,
43]. It can also be applied in other settings more or less related to dynamic software update but somehow
different from the work referenced above. For instance, Dmitriev [29] talks about the dynamic update of
methods of Java classes and the support offered by the HotSpot Java Virtual Machine (see Section 4.2). The
mechanism is still under development, but it already offers some limited dynamic update mechanism, to
ease the develoment and debugging processes and accessible by means the Java Debugger Wire Protocol
(JDWP). This mechanism is not mature enough to be considered production-ready yet. The mechanism
requires the collaboration of the programmer, which must ensure ”that the execution will actually reach the
point where there are no active old methods”, which can be seen as some kind of user-ensured quiescence.

On the other hand, the quiescence concept and especially its blocking requirements have been criticized
by some authors. For instance, Vandewoude et al. [74] argue that the quiescence concept in [49] is, in
general, stricter than necessary. They propose the concept of tranquility as a more relaxed alternative and
justify that it can be used as a stable state in a dynamic software update process.

5.2 Rewriting of Binary Code
There are some proposals that use some sort of rewriting of the binary code of the programs and applica-
tions to update.

One of the first authors to propose the use of binary rewriting was Fabry [30]. He proposes the addition
of a level of indirection (see Section 5.3) and the rewriting of low level binary instructions to update such
indirection level.

Milazzo et al. [53] use some bytecode rewriting of Java classes to build an intermediary level that
enables a regular Java application to be updated in runtime. Bytecode rewriting is also used to update the
clients accordingly (see Section 3.13).

Hicks and Nettles [44] use some binary rewriting techniques to modify the service implementation,
data types and the client code that accesses to the patched code (see Section 3.12).

Gregersen and Jørgensen [36] use the standard instrumentation facilities offered by the standard Java
Virtual Machine as part of their mechanism of dynamic update of Java programs (see Section 3.20).

Bannò et al. [17] also use some rewriting techniques in their FREJA framework, to apply updates to
the bytecode of Java classes (see Sections III.C and III.D of [17] and Section 3.22).
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Chen et al. [24, 25] propose their POLUS framework which is based on dynamic patches which are
applied dynamically by editing the binary code (see Section 2.2 of [24] and Section 3.15).

On the other hand, there are currently available a number of tools and libraries that offer services related
to bytecode manipulation (including runtime manipulations). For the Java programming language, there
are many alternatives like ObjectWeb ASM [56, 22, 50], CGLIB [9], Javassist [11, 71], Apache Commons
BCEL [32], Javeleon [10, 37], JRebel [77] and some others listed in [5].

5.3 Use of Proxies, Intermediaries and Indirection Levels
There are a large number of authors that propose dynamic update procedures, mechanisms and tools based
on the use of different sorts of proxies, intermediary objects and other indirection levels.

Fabry [30] is one of the first authors that propose the use of an indirection level, to be used in conjunc-
tion with some binary-level overwriting (see Section 5.2), that basically consists of jump instructions that
perform the proper redirection of a call made to a service function from some client code.

Bloom’s Ph. D. thesis [21], reuses the idea of redirecting the calls to the updateable code by remapping
some handlers, in the context of Argus programs (see Section 3.2).

Segal and Frieder [66, 33] use interprocedures, which are some intermediary procedures used to redi-
rect the client invocations to old version procedures to their new version counterparts (see Section 3.3).

Purtilo et al. [59, 58] propose the use of a software bus to connect software modules by means of proxies
that are automatically compiled from an additional declarative specification provided by the programmer.
The proxies and the bus itself intercept the conventional calls to the functions of the modules and implement
the functionality related to the dynamic reconfiguration of the modules (see Section 3.5).

The proposal in [69] includes de use of some intermediary objects called Service Facilities (see Section
3.9). These intermediaries encapsulate the objects that offer the real service and typically get replaced
whenever a dynamic update is performed. The indirection level offered by the intermediaries make the
update transparent to the client code.

In [53], Milazzo et al. propose a mechanism to dynamically update regular Java applications by means
of using an intermediary layer between the Java service classes and some client code that issues invocations
to the former. This layer includes some new interfaces and classes created and instantiated in loading time.
See Section 3.13 for additional details.

Ajmani et al. [13] use some intermediary objects called simulation objects used to represent past and
future versions of the updateable objects. These objects are offered to the client code as if they were the
real service objects. Internally, the simulation objects can manage and redirect the invocations issued by
the clients, to the real objects that implement the service.

In POLUS [24, 25], Chen et al. use an indirection level by inserting a jump instruction in an old-version
function, to redirect the invocations to the new version (see Section 3.15).

Gregersen and Jørgensen [36] use some intermediary proxies, that are dynamically generated, to man-
age the process of class loading and intercept and redirect the invocations to the service objects.

Chen and Huang [26] propose the use of intermediary dynamic proxies in the context of dynamic update
of OSGi applications. These proxies would be placed among the updateable service bundles and the client
code, this hiding to the later the existence of dynamic updates.

In their framework Freja, Bannò et al. [17] also use some specific Java class loaders and some interme-
diary objects to control the execution of updateable components (see Section 3.22).

5.4 Intrusion and Cooperation
The dynamic update mechanisms proposed by some authors identify the need of or depend on some level
of intrusion, thus making the managed programs and applications aware of the update mechanism. This
intrusion can take a number of different forms.

For instance, Kramer and Magee [49, Sections III and IV.B] identify a double relationship between an
update mechanism and the application to update: the former may need to invoke functions offered by the
later and this may notify the former, for instance, about state changes (see Section 3.4).

Hicks and Nettles [44] propose a mechanism that allows the programmer to mark places in the code
that should not be interrupted by a dynamic update (see Section 3.12).
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On the contrary, in Ginseng, by Neamtiu et al. [55], the programmer can identify safe update points in
the source code, in which an update may be safely performed.

Bannò et al. [17, Sections II.B and III.A] identify the need to design the updateable applications in a
special way and provide some meta-information to the update mechanism for this to be able to preserve the
semantic consistency of the application to update (see Section 3.22).

Giuffrida and Tanenbaum [34] argue that the best approach to build dynamically updateable systems
consists in making them aware of the dynamic update process and even ask the programmer to provide
some meta-information to help the update mechanism (see Section 3.23).

Finally, the use of state transfer functions (see Section 5.5) and transform functions (see Section 5.6)
can also be considered a type of intrusion.

5.5 State Transfer
Several authors identify the need to perform some sort of state transfer between the current version of
an updateable item (typically an object or component, but it may also be a function or procedure or even
the whole program or application, etc.) and the next version, in order not to lose it. Some of them use a
variation of the idea proposed by Liskov and Herlihy [42]. The basic idea consists in defining two accessor
functions like getState and setState to retrieve and set the state of a component. Before replacing
a component, the getState-like function may be called and some serializable representation of the state
may be got. This state may be transformed in some way (see Section 5.6) and then transferred to the new
version of the updateable item, by means of its setState-like function.

In his Ph.D. thesis, Bloom [21] identifies the need of transferring the volatile state managed by the part
of the program to be replaced, to the new implementation (see Section 3.2).

Purtilo et al. [59, 58] propose the use of an abstract representation of the data kept by the (dynamically
reconfigurable) modules of the systems and the use of functions to retrieve and set the state of a module.
This allows the migration of the state of a given version of a module to the next one, once updated (see
Section 3.5).

Gupta et al. [24] propose a dynamic update procedure that uses a state transfer step to transfer the state
of the original process to its updated version (see Section 3.6). The procedures proposed by Solarski et al.
in [68] and later in [67] for dynamically updating the replicas of a replicated system include a state transfer
step during the update of the replicas (see Section 3.10). The proposal by Sridhar et al. in [69] (see Section
4.1) includes a State Migration mechanism to transfer the state from an old proxy object to a new one.

Gregersen and Jørgensen [36] also use a state transfer step, which has the special feature of being
applied lazily, on demand (see Section 3.20).

Chen and Huang [26] include a step to transfer the state of an old version of an OSGi bundle to the new
version in the procedure they propose to dynamically update OSGi applications.

Bannò et al. [17] identify the need of the consistency of the data in a dynamic update and the transfer
of the data from the current component to the updated one.

5.6 Transformation Functions
One of the problems that may appear when updating a component from a version to the next one is that the
new version may have an incompatible state format. Several authors consider this problem and propose
the use of some kind of transformation functions to transform the state of a component in the format used
by a given version to the proper format. This functions are typically provided by the programmer, like in
[21, 33, 59, 44, 13, 70, 54, 26].

This topic is closely related to the use of state transfer functions (see Section 5.5).

5.7 Source Code Static Analysis
In a number of papers, some kind of static analysis of the application source code is performed, according
to different objectives.
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For instance, Stoyle et al. [70] and Murarka et al. [54] propose the static analysis of the source code
to identify points in which it is possible to dynamically apply updates to the classes while ensuring some
correctness property. For additional details, see Sections 3.16 and 3.19, respectively.

Neamtiu et al. propose Ginseng [55], a dynamic update solution for programs written in C. In their
solution, they depend on some static analysis of the source code to ensure that the updates are type-safe.
Moreover, they also use annotated source code to identify safe points in which the update can be applied, as
in the previous references, although in this case, these points must be explicitly marked by the programmer.
Altekar et al. propose OPUS [16] also depend on a similar analysis to detect unsafe dynamic updates.

Other authors, like Hicks and Nettles [44] and Chen et al. [24, 25] in their POLUS system also use
the source code of the old and new versions of a component to update to build a patch that will be applied
dynamically.

On the other hand, static analysis has also been used for other purposes. For instance, Bauml and
Brada [19] propose a procedure based on the static analysis of source code to automatically decide the
a.b.c-like version string of the next version of an application version (see Section 4.4).

5.8 Using Underlying Facilities
A number of authors base their proposal on features of a given programming language or infrastructure.

For instance, in his Ph. D. thesis, Bloom [21] proposes a dynamic update solution for programs written
with the Argus programming language ([51]). For the C programming languages there are some options,
like the proposal in Gupta’s Ph. D. thesis [39], Ginseng by Neamtiu et al. [55] and POLUS by Chen et al.
[24, 25].

Regarding the Java programming language and Virtual Machine, there are a large number of references.
First, some authors propose DSU solutions for Java programs (for instance, [63], [53], [36], and [17]).
Dmitriev [29] studies an existing mechanism available in the HotSpot Java Virtual Machine to allow the
dynamic update of Java code in debugging time (see Section 4.2). Some other authors like Gregersen and
Jørgensen [38] propose DSU mechanisms based on modifying the standard Java Virtual Machine (which
presents a number of drawbacks, as identified by Bannò et al. [17]). As a particular case of Java technology,
the OSGi standard offers a standard mechanism to dynamically reload the bundles that compose an OSGi
application (see Section 5.9 for additional references about OSGi).

Other authors propose solutions that are a bit more general and can be used with programs written in
imperative languages, like Hicks and Nettles [44].

There are also some authors who develop their proposal based on their own infrastructure. For instance,
Kramer and Magee base their proposal [48, 49] on their CONIC configuration language and infrastructure
[47]. In Proteus, Stoyle et al. [70] describe a DSU solution based on its own programming language and
compiler and runtime, among other tools and resources.

At a lower abstraction level, the solution proposed by Frieder and Segal [66, 33] needs that the hard-
ware architecture of the undelying machine offers an indirect addressing mode (available in the Motorola
MC68020 processor and the Intel’s 386 architecture). Gupta and Jalote’s proposal [40] was also designed
to work on a specific hardware and software platform (SunOS running on a Sun 3/60 workstation) and
also depends on a specific feature of the hardware architecture (specifically, the segment-based memory
addressing mode available in Motorola’s 68020 microprocessor, but actually available in other micropro-
cessors).

5.9 OSGi
OSGi [7, 14] is a platform to build Java applications from a number of modular, reusable and collaborative
components (called bundles), that can be dynamically reloaded. A short introduction to OSGi can be found
in [72].

There are a number of implementations of OSGi:

• Apache Felix [31], open source, by the Apache Software Foundation.

• Concierge [1], open source, especially designed for resource-constrained devices (see also [61]).
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• Equinox [3]

• KnopflerFish [4]

• Oscar [6]

Moreover, there are some other proposal that extend OSGi or are related to OSGi in some way. For
instance, Rellermeyer et al. propose R-OSGi [60], an extension of the standard OSGi specification to be
used to build distributed systems (see Section 3.17). Another alternative also focused on distributed and
cloud systems is OSGi4C [65] (see Section 3.21).

In [26] a proposal of a mechanism to dynamically update the bundles of an OSGi application is provided
(see Section 4.3).

5.10 Version coexistence
In many of the proposals reviewed, the dynamic update mechanism ensures that the new version of a
component will never coexist with an older version. Some of them ensure this behavior by asking the
program (or at least, the component to be replaced) to reach some stable or quiescent state (see Section
5.1), performing the update and uninstalling or otherwise preventing both versions to run at the same time.

On the other hand, there are systems that allow such multiple version coexistence. Thus, clients of such
multiple versions may execute concurrently, at least for a transitional interval that will end when all clients
are also updated, using then the interfaces of the latest version.

For instance, in the context of dynamic updating of functions and procedures, Segal and Frieder
[66, 33], define interprocedures, which are some sort of intermediary procedures that delegate on the real
implementations. These interprocedures may be called from old client code (this is, client code that only
knows the old version of the updated procedure) or from new client code, thus providing the ilusion that
different versions of the same procedure coexist. See Section 3.3 for additional details.

Ajmani et al. [13, 12] follow a similar approach, by defining simulation objects as proxies that wrap
the real service objects. For a given service object, it is possible to define proxies that represent the past
versions and even future versions and all of them can coexist and be called by different pieces of client
code that may be in different update stages. See Section 3.14 for additional details.

POLUS [24] and [25, Section 2.2] allows the coexistence of old and new versions of the same code as
well as old and new representations of data structures, after an update is applied. Moreover, it ensures that
old (new) code is only allowed to operate on the old (new) data, respectively.

Dmitriev [29] elaborates on different policies that may be implemented in the context of the dynamic
update mechanism included in the Java Virtual Machine (see Section 4.2).

5.11 Replication
Few papers have tackled the topic of applying dynamic updates to replicated systems. In this section, some
of them are surveyed.

For instance, Solarski and Meling [68] propose a procedure to dynamically update a distributed system
that uses active replication (see Section 3.8). This work is later extended by Solarski [67] in his Ph.D.
Thesis, by adding a procedure applicable to systems that use passive replication (see Section 3.10).

Wang et al. [75] propose a mechanism to dynamically change the consistency mode used by the replicas
of a replicated system, depending on the observed rates of read and write operations issued by the clients
(see Section 4.5).

5.12 Scheduling
In some of the dynamic update mechanisms surveyed, the programmer is allowed to decide about the
scheduling of the updates.

For instance, in Hicks and Nettles [44], the programmer can decide when an update has to take place
(see Section 3.12).

Another different example is [13], in which Ajmani et al. propose a number of scheduling functions,
the programmer can choose one from, to update the nodes of a distributed system.
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5.13 Rollbacks
Some mechanisms offer the possibility to rollback or undo an update.

For instance POLUS [24, 25] uses a mechanism based on the generation of dynamic patches to update
a running program from version v to v + 1. The mechanism can also be applied to rollback the update, just
applying a patch to update the program from version v + 1 to v (see Section 3.15).

Gregersen and Jørgensen [36] also allow the rollback of updates in their mechanism of dynamic update
of Java programs (see Section 3.20).

6 Conclusion
This paper reviews a set of references related to the dynamic software upgrading problem. The require-
ments being considered in these systems are identified and briefly discussed. A chronological review of
multiple solution proposals is given in Section 3, identifying different mechanisms that have been combined
in some of the reviewed papers. Such mechanisms are described in more detail in Section 5.

As a result, this work provides a basis to start the analysis of these mechanisms in order to design and
develop other frameworks for dynamic software upgrading. This field will require more efficient solutions
for the elastic applications to be developed onto IaaS and PaaS cloud systems. To this end, the current
paper provides a convenient set of references that explain those mechanisms.
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