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Abstract

Since the appearance of the first distributed databases until the conwdetn replication systems,
the research community has proposed multiple protocols to manage daifautden and replication,
along with concurrency control algorithms to handle transactions ruratiegery system node. Many
protocols are thus available, each one with different features andrpenfice, and guaranteeing differ-
ent consistency levels. To know which replication protocol is the mostogpiate, two aspects must
be considered: the required level of consistency and isolation (i.ecatiectness criterion), and the
properties of the system (i.e., the scenario), which will determine thie\atile performance. In order
for the administrator to select a proper replication protocol, the availab®gnls must be fully and
deeply known. A good description of each candidate is fundamentad, darhmon ground is mandatory
to compare the different options and to estimate their performance inba gtenario. This paper
proposes a precise characterization model that allows us to decomlgasithms into individual in-
teractions between significant system elements, as well as to define sderdying properties, and to
associate each interaction with a specific policy that governs it. We later igsmdlel as basis for a
historical study of the evolution of database replication techniques, tlowglprg an exhaustive survey
of the principal existing systems.

1 Introduction

Since traditional stand-alone database systems startbdctmme distributed and replicated in the mid
seventies, many different algorithms for concurrency amdica control have appeared thanks to the con-
tributions of many authors. These proposals came fromrdifttcommunities, each one based on different
assumptions and focused on the achievement of differems.gBach new distributed or replicated system
defined its own methods, followed its own naming conventiang presented its algorithms in different
ways: from descriptions in plain textual form to more or ldstailed specifications in its own pseudocode
language. In the midst of this abundance and disparity, stavificult to find an appropriate solution for a
given problem or to compare two apparently similar optianshoose the best one for a given scenario.
Some authors from the distributed systems community pmedrdifferent surveys and classifications
[26, 65, 67]. Gray et al. p6] made the first step to study the existing systems for databedication,
distinguishing between eager and lazy propagation siestegnd group and master ownership strategies,
which combine between them to produce four types of reptinaystems. Wiesmann et &.4 proposed a
classification based on three parameters, where repliciahniques are characterized with regard to their



server architecture (either primary-backup or updateysvieere), their server interaction (either constant
or linear) and their transaction termination (either vgtor non-voting). Both contributions aimed to
classify a broad set of non-related systems, accordingne switeria, generally coarse-grained in order to
reduce the complexity and the number of equivalence clagseh one of these criteria thus agglutinated
several individual pieces of behavior that were observgdttter in the studied systems. Another approach
was focusing on one set of similar systems, e.g., those ynhaged on a given general technique, and
characterize and classify them into disjoint subsets, raoeg to other used techniques. This is the case
of a work by Wiesmann and Schipeq], which is focused on replication systems based on totadrord
broadcast —namely, the three most relevant: active, catidin-based and weak voting replication— and
provides a performance comparison between them and two witlely used techniques —primary copy
and lazy replication— that do not rely on group communicatio

However, more and more systems appeared and those coainseelcriteria turned to be insufficient
when proposals became hybrid or explored new methodologieget categorized. A finer grain is thus
necessary to better characterize replication systemsogmavide a common ground to compare them all.
More than a set of disjoint equivalence classes, what iseteisda common and general framework where
different replication systems could be examined and coatparhis approach was followed by Bernstein
and Goodman in 19818, when they surveyed almost all concurrency control athams for distributed
databases published until then. In order to do so, they ficgigsed a framework consisting of a common
terminology and a problem decomposition. By unifying c@tseand splitting a complex process into
several subproblems, a rich characterization and congraaisiong systems is possible.

Important advances have emerged in the last 30 years siacedtk of Bernstein and Goodma8] [
was published, such as the development of group commuumricsyistems with more complex communica-
tion primitives, leading to the appearance of new techréqéenew framework for comparing replication
techniques was then proposed by Wiesmann e68]. [In this framework, five generic phases are iden-
tified within a replication protocol: request, server capation, execution, agreement coordination, and
response. According to this, authors then describe diffderhniques, analyzing how they perform each
phase.

Following a similar approach and trying to help researchacspractitioners to make their way through
the assorted plethora of database replication systensspéiier proposes a new characterization model
that provides even more detailed descriptions than thedwark by Wiesmann et al6p], by splitting
a replication system into a group of policies. This modebwa#i us to describe in detail the nature of
the interaction between significant system elements: tlienlying local database, the clients and their
transactions, and the group of system servers or comporierdsy time these elements interact, a specific
policy regulates the way on which this interaction is parfed. Thanks to the fine grain achieved by this
model, almost all existing systems can be fully charactekiZ he resulting detailed descriptions allow an
easier comparison between different database replicayistems.

The second contribution of this paper is an extensive hegtbsurvey of database replication systems,
based on the common description framework previously me@o This chronological survey describes
each proposal by detailing, for each policy, the followedtsyy, as well as the enforced correctness
criterion. As a result, it is highly valuable in order to coang and understand different proposals. This
survey provides not only an empirical proof of the usefutneSour model proposal but also a study of
the evolution of database replication systems and a refereranual for readers interested in this field,
regardless of their background. It will allow beginners tdaon a global and precise idea of the state of
the art of the database replication research field and gl pfovide a historical vision of the evolution of
these systems, allowing us to detect which strategies amntist used and which combinations guarantee
each correctness criterion. Moreover, this study makessiee to identify combinations of strategies that
are seldom used but might make sense if new goals are sepfmat@n protocols, such as the support of
either more relaxed or stricter consistency models, orrtheease of the system scalability. Furthermore,
this survey may enable us to identify which advances at whiats (in database management systems,
in group communication systems, in isolation levels andeminess criteria specifications, in replication
protocols, etc.) allowed the appearance of each descritmabgal, as well as to foresee which other
advances could have a relevant effect on this evolution.

The rest of the paper is structured as follows. SecB@resents all background concepts and def-
initions. Section3 proposes the characterization model for database replicaystems. The survey is



presented in Sectioh Finally, Sectiorb concludes the paper.

2 Background: Concepts and Definitions

Server, clients and failures. A distributed (and possibly replicated) database is aibigtd system
composed of databaservers also callechodesor sites N1, No, ..., N,, which store data, anclientsor
users that contact these servers to access the data. Serversoomigunicate by message passing, as they
do not have shared memory. Consequently, they neither hgl@bal clock. Depending on thiilure
modelassumed, failures are considered at different degreeshelorash-stopmodel, when servers fail
they permanently stop all their processing. In this caséedsscorrectif it never crashes, otherwise it is
faulty. Thecrash-recoverynodel allows failed servers to eventually recover afteraaler A more complex
failure model Byzantine failuresassumes that sites and their environment can behave imdragr way.

Distribution and replication. From the point of view of the client, databasés a collection of logi-

cal data items. Each logical data item is physically storeith@ servers. If the set of database items is
partitioned and distributed among the sites, the systerstitotes apurely distributed databasdf some
replication is introduced, so that different physical egpof the same logical data item are stored at dif-
ferent sites, the system israplicated databaseReplication is managed byraplication protocol The
number of physical copies of data itexris the degree of replicatiorof x. Depending on the degree of
replication of the data items and on the number of systems)@eomplete copy of the database may be
stored at each site. This is call@dl replication. When not all sites store the complete set of data items,
but only a subset, the replication partial. Each of the copies of a given data item is callegplica.

In full replication, the term replica is also used to referatty server, as they contain a copy of all data
items. When the system is fully replicated, we also denoés sitR;, Ry, ..., Ry, to highlight that they are
replicas.

Advantages of replication. Replication is a common solution to achiesailability: by storing multiple
copies, clients can operate even if some sites have faileted¥er, and despite the drawback of having
to update all copies of each data item, replication can atgoave performance, as clients are more likely
to access a copy close by. For these reasons, replicationsgynpreferred over pure distribution. Even
initial systems, which were fundamentally distributedraduced replication at some degree.

Desirable properties of replicated systems. Traiger et al. $4] suggested the concepts of one-copy
equivalence and location, replica, concurrency, and riaittansparencies, as desirable features for dis-
tributed systems. A system that provides transparencyeasysto use as a stand-alone, one-copy system.
This way, although the data is geographically distributed may move from place to place, users can act
as if all the data were in one node (location transparencyrelver, although the same data item may
be replicated at several nodes, users can treat the itenit ageife stored as a single item at a single node
(replication transparency). In addition, it appears abéfé were no concurrency in the system (concur-
rency transparency). Finally, the effects of confirmed apens survive hardware and software failures,
while all the effects of an in-progress operation are undomase of failure (failure transparency).

Local databases, transactions and sessionsA local Database Management SystemDBMS for short,
runs at each site and is responsible for the control of thee ddte DBMS allows clients to access the data
for reading and writing, through the use twnsactions Transactions are sequences of read and write
operations (e.g., sequences of SQL sentences) followedchynanit or an abort operation, and maintain
the ACID properties28]: atomicity, consistency, isolation and durability. Atarity requires the all-or-
nothing policy: either all the operations of a transactimn@erformed or none of the operations is reflected
in the final state of the database. Consistency requireg#udit successful transaction produces only legal
results. Isolation requires that the effects of runninggeections are hidden from other transactions running
concurrently. Durability requires that all the data chagede by a successful transaction are persistently

1We employ the ternuserto specifically refer to a human agent.



applied, which is done by means of tbemmitoperation. On the other hand, if a transactidorts all its
changes are undone. A transaction is callegharyor aread-only transactionf it does not contain any
write operation; otherwise it is called apdate transactionThe set of logical items a transaction reads is
called thereadset Similarly, thewritesetis the set of logical items written by a transaction, and liguta
also includes the updated or inserted values. rE€saltsetis compound by the results that will be returned
to the client.

Database users are provided with the concepes$ionin order to logically group a set of transactions
from the same user. Transactions from different users pellodifferent sessions. However, it can be left
to the user the decision of using one or multiple sessionsadieptheir transactions.

Transactions may be executed concurrently in a DBMS. Indage, the concurrency control of the
DBMS establishes which executions of concurrent transastare correct or legal.

Workload, delegate and remote nodes. The database workload is composed of transactibngy, . ..
Transactions from the same client session are submittateréglly, but may be addressed to different
servers, either by the client itself, by a load balancer,yoatother component or server that redirects the
request to another server. If the request is finally adddets®nly one server, this server is called the
delegatéefor that transaction and it is responsible for its executibhne rest of the system nodes are called
remotenodes for that transaction. When the database is purelybditgd (partitions of the data stored

at different nodes) or partial replication is used, if thextewted server does not store all the items the
transaction needs to access, other servers can be reqtestextute different portions of the transaction,
which is then called alistributed transaction In this case, the concepts of delegate and remote nodes
are no longer applicable: the client contacts to a serveravagoot transaction is started, and accesses
to data stored in other server involve the creation of a anisaction in that other node, which is also
calledcohort This way, each operation may involve a communication witbther node in the system.

If accessed items are replicated, subtransactions mustdoeited in all copies. To coordinate the local
subtransactions executed at each participating sitecedisses are managed by a distributed concurrency
control. In order to commit these distributed transacti@iemic commit protocols, explained below, are
used, acting the root transaction as coordinator.

Conflicts. Two transactiongonflictif they have conflicting operations. Two operations conifichey

are issued by different transactions, access the same tdataand at least one of the operations is a
write. Conflicts among transactions should be treated somginsuring that the conflicting operations are
executed at the same order at every replica. There are twoapproaches for treating conflicts. A system
is pessimisticor conservativef it avoids conflicts by establishing some locks, mutexesther barriers
over items accessed by a transaction, so that they cannohbarcently accessed by other transactions. On
the other hand, a systemasgtimisticif it lets transactions freely access items, resolving fs<onflicts
only when they appear or at the end of the transaction, dieimgination.

Server layers. Inside a server, different layers can be identified: the ngtwr communication layer, at
the bottom of the stack; the data layer; the replicationraged the application layer, on the top. These
general layers may appear merged together at differergragst For instance, in a system that manages
replication by embedding the necessary code into the DBNESnals, the data and the replication layer
are merged. On the other hand, we say a replication systbased on middlewargs] when it gathers all
replication mechanisms in a replication layer, i.e., awafe layer placed between the instance of the da-
tabase management system and the applications accessigatsh This provides an independence among
system components which leads to a high portability (eognigrate the middleware into an environment
based on a different DBMS).

Interactive execution vs. service request. A transaction can be submitted for execution either opamati
by operation, or in a single message. In the former casediateractive transactionthe client submits an
operation and waits for its results before sending the ngetation. The latter case, calledrvice request

is a call to a procedure stored in the database. When the ¢tarsa&s completed, the transaction outcome



is sent to the client. In the case of interactive transastitims outcome is a commit or abort confirmation.
For service requests, the outcome also includes the redulie request.

Active and passive replication. In a system withactivereplication, the same client request is processed
by every node. As opposed to this, each client requgsassivareplication is processed by only one node,
which later transfers the updates to the rest of serversvéplication is usually associated with service
request, while passive replication can be used for bothdntize execution and service request. Depending
on the node that can process a client request, the next twersschitectures for passive replication can
be distinguished.

Server architecture: primary-backup. Theserver architecturelefines where transactions are executed
in the first place. Common server architectures are prirbagkup and update-everywhere. Iprémary-
backupsystem, a specific node —callpdmary copyor master copy is associated to each data item. Any
update to that item must be first sent to the primary copy,the. primary copy is the delegate server for
any update transaction over that item. The rest of the sgrwdrich receive the updates from the primary,
are calledbackupsand serve only queries over that item. One possible settitggelect a single server as
the primary copy for all database items, although this caisea bottleneck.

Server architecture: update-everywhere. In anupdate-everywhergystem, every node is able to serve
client requests for updating any data item, so that it isiptesthat two concurrent updates arrive at different
copies of the same data item. In order to avoid inconsistsneisually some mechanisms are used to
propagate the updates and to decide which updates will lbessitl, aborting transactions when necessary.
These mechanisms are therver interactiorand thetransaction terminatiomrotocols.

Server interaction and writeset application. In the presence of replication, independently of the server
architecture, updates from a committed transaction muptdygagated to other copies of the affected data
items. This is achieved through a mechanisns@fver interactiorthat sends all write operations to the
appropriate sites. This propagation can be made on a peatapebasis, distributing writes immediately
to other nodes in Anear interaction[67] approach; or deferring communication until transactiod,én a
constant interactiorapproach. The former case requires more messages (usnallyeo write operation)
than the latter (one message per transaction). defierred updat@pproach 4] is a constant interaction
approach, where, once a transaction finishes its operaitsnsriteset is sent to the appropriate remote
nodes, which will thermpply the writeset.e., perform its updates, in their local database copypdbding

on when this propagation and application of updates is magsems can beageror lazy[26]. Eager
replication ensures that every node applies the updat&teitise transaction boundaries, i.e., before the
results are sent back to the client, so that all replicaspdated before such a response is sent. On the other
hand, lazy replication algorithms asynchronously propagadates to other nodes after the transaction
commits in its delegate node. A hybrid approach ensuresthagplicas have received the updates and the
delegate has committed them when the results are sent tdiehe cRemote nodes will later apply such
updates.

Update propagation: ROWA and ROWAA. With either type of server interaction, writes are propa-
gated and applied in remote copies of the affected data itArhasic approach iRead One Write A[l10],
where write operations are required to update all copiehiabread operations only need to access one
of the replicas. In case of a site failure, it may be impossiblwrite all replicas and thus the processing
must stop. As this is not desirable, the common approaBle#&l One Write All AvailablROWAA) [10].
According to ROWAA, each write operation over data itens applied at everavailablecopy ofx, i.e.,
replicas stored at sites that have not failed. Failed sitesgmored until theyrecoverfrom their failure.
Whenever a site recovers from a failure, all its copies mustrbeght up-to-date before the node can serve
read operations.



Update propagation: quorums. Another approach for write propagation is the usequbrums A
quorum is the minimum number of replicas that is requireccfampleting an operation. Each transaction
operation must then be successfully executed in a quorusptitas for being considered successful: read
operations are required to access a read quorum of replefasebreturning the read value to the client,
while write operations must update a write quorum of reglickn a system of siz#l, sizes for the read
guorum,R, and the write quorumy, are defined in such a way that they guarantee any requirgeiyo
For example, withR =1 andW = N, the previously presented ROWA approach is obtained. A more
common quorum configuration ensures that Bdth- W andR+W are greater thalN, so that each write
guorum has at least one replica in common with every readugu@nd every write quorum, thus ensuring
access to the last updated value and also detecting carglichnsactions. Including a majority of the
nodes into each quorum allows the system to avoid systentiairig and consequent divergence.

Transaction termination: voting, weak voting and non-voting termination. Whenever a transaction
ends, the transaction termination protocol is run to dettideoutcome of the transactionalidation) and,

in case of deciding to commit, take the necessary actionsiaagtee transaction durability. Two main
approaches can be distinguished: voting and non-votingitation. In avoting termination an extra
round of messages is required to coordinate the differ¢ées,sas in 2PCWeak votings a special case
of voting termination, where only one node decides the autof the transaction and sends its decision
to the rest of nodes. In@on-votingtermination, all sites are able to autonomously and detéstigally
decide whether to commit or to abort the transaction. In¢hise, this symmetrical validation process is
also calleccertification?

Validation and, thus, certification are usually based orflads. The ending transactioh is checked
for conflicts with concurrent and already validated (resipely, certified) transactions. If conflicts are
found, validation (certification) fails andl is said to be negatively validated (negatively certified] dris
aborted. Otherwise, validation (certification) succeaukTais said to be validated (certified), successfully
validated (successfully certified) or positively valida{gositively certified), and it has to be committed in
all affected nodes. When validation or certification are raseal on conflicts, the validation (certification)
succeeds or is positive if the decision taken ovés to commit it. Otherwise, the validation (certification)
fails or is negative.

System model. Aspects such as server architecture, server interactidriransaction termination are
part of thesystem modelhich defines the way in which a system operates.

Replica consistency and inversions. Applying the writesets and ensuring the same order for agimf{
operations are necessary actions for maintaining the nedjlével ofreplica consistency Replica con-
sistency measures the synchronization among the copid¢® &fame data item, i.e., the state of replicas
with regard to each other. While trerver-centric view of consistendgfines how consistency is in-
ternally enforced at the replicas of the system, uker-centric view of consistengythe perception that
users, individually or collectively, have about the cotesisy of the database replication system in use.
This perceived consistency is thser-centric consistenayf the system. Different levels of user-centric
replica consistency may be enforced, depending on the rmédlks clients. According to Ruiz-Fuertes and
Mufioz-Escd[55], the fact that allows to distinguish between differenelisvof user-centric consistency is
the presence or absence of inversions.iduersionoccurs when a transactidn, which was started by a
user after the commitment of a previous transacligrappears to take platefore T and thusl, commits
without having been able to see the update3;ofThree different levels of user-centric consistency can
then be defined. From stricter to more relaxed, they are:nalesef inversions, absence of inversions within
user sessions, and presence of inversions.

Regarding server-centric consistency, we say that a sggpeovidessequentialityif every replica goes
through the same sequence of database states. Some ofitintiza writeset application (e.g., letting
non conflicting transactions to commit in different ordergy break this sequentiality while still ensuring

2We will use the term validation to generically refer to thegess of deciding the outcome of a transaction. We will usésitme
certification to specifically refer to the validation prosgeerformed by each node in an independent, deterministicyanohstrical
manner. Other authors, however, consider both terms as syrsony



replica consistency. However, the lack of sequentiality manfuse users and thus it is concealed from
their user-centric view of consistency.

Serializable isolation. Transactions are executed under some isolation level hadgéines the visibility
among operations of different concurrent transaction® Aighest isolation level is theerializablelevel,
which guarantees a completely isolated execution of tiitses, as if they were serially performed, one
after the other. Changes made by transacTi@re only visible to other transactions after the commitment
of T. On the other hand, if aborts, then its changes are never seen by any other trenmsact

Read committed isolation. A more relaxed level is theead committedsolation. Under this isolation,
data read by a transactidnwas written by an already committed transaction, but it isprevented from
being modified again by other concurrent transactions. Timese data may have already changed when
T commits. For a complete discussion about isolation leydésse refer to Berenson et &).[

Correctness criterion. The combination of the replica consistency level and thestation isolation
level guaranteed by a system is called tioerectness criteriorof the database replication system. Bern-
stein et al. defined the criterion of one-copy serializapi(LSR) [L0]. According to it, the interleaved
execution of users’ transactions must be equivalent toialsstecution of those transactions on a stand-
alone database. As highlighted by Ruiz-Fuertes andddtEscd[55], 1SR does not impose any level of
replica consistency and thus it can be refined with two dffiésubcriteria.

Concurrency control: locks. Local isolation at a DBMS is enforced by the use of a lazahcurrency
control mechanism. Concurrency control manages the operatiohsuthén a database at the same time.
There are two main options for concurrency control: lockd amultiversion systems. In a lock-based
system, each data item hasoak that regulates the accesses to the item. Operations ovdatefmamust
previously obtain the corresponding lock. There siaredandexclusivelocks. Shared locks are com-
monly used for read operations. Several transactions ciainathared read locks and read the same item
at the same time. Write operations require an exclusive Ibltkkother operation, shared or exclusive, is
allowed over an item protected with an exclusive lock.

Concurrency control: multiversion.  In multiversion systems, on the other hand, simultaneocssses

to the same data item are resolved by using multiple versibrise item. Versions can be created and
deleted but the value they represent is immutable: updataslata item create a new version of the item.
Although there are several versions for each item, only enthe latest: the value written by the last
committed transaction that updated the item. More recersio@s correspond to transactions which are
still on execution and they are not visible to other transast Versions generated by aborted transactions
are never visible to other transactions. When a transadiotssa timestamp or a transaction ID is assigned
to it. Versions written by a transactidn are marked with the ID of . With this timestamp information,
the multiversion system can determine, for each trangaatibich state or snapshot (i.e., which version of
each data item) of the database it must read. Thus, a traorsélat started at a particular instdagthas
access, for each data item, to the version of that item whahthe latest at timgg, i.e., which was written

by the committed transaction with the highest ID which is Bendahan the ID of the reading transaction.
As versions are immutable, there is no need to manage lockedd operations. This way, multiversion
concurrency control lead to the appearance of a new trdnsasblation level callednapshot isolatios
Some mechanism is usually needed to delete obsolete version

Snapshot isolation. In snapshot isolatiorg], or Sl, transactions get a start timestamp and a snapshot of
the database when they start. Transactions are never blatiempting a read. Write operations are also
reflected in the snapshot of the transaction, so that it caesacthe updated versions afterwards. On the
other hand, updates by other transactions active afterahnsdction start are invisible to the transaction.

3Read committed isolation is also possible with a multiversiomoairrency control.



When the transaction is ready to commit, a commit timestanagsggned to it. A transactioR success-
fully commits only if no other transactiofy with a commit timestamp in the interval between the start and
the commit timestamps dk wrote data thal; also wrote. Otherwisély will abort. This feature is called
thefirst-committer-winsule.

Two phase locking. Serializability can be achieved by a basim-phase locking2PL) [10] protocol,
where each transaction may be divided into two phasgewingphase during which it obtains locks, and

a shrinkingphase during which it releases locks. Once a lock is releasedew locks can be obtained.
2PL forces all pairs of conflicting operations of two trartgats to be executed in the same order and so
it achieves serializability. However, using 2PLdaeadlockmay appear. This situation arises when two
transactions wait for each other to release a lock. Deadloukst be detected and one of the transactions
aborted in order to remove the deadlock.

Strong strict 2PL.  In order to avoid deadlocks and to provide other desiratipgties? a variant of 2PL
is commonly used: thstrong strict 2PL(presented by Bernstein et al(] asstrict 2PL but refined later).
In strong strict 2PL, all the locks obtained by a transactiononly released after transaction termination.

Atomic commit protocol: 2PC. To ensure consistent termination of distributed traneasti database
systems have traditionally resorted to an atomic commiiooa, where each transaction participant starts
by voting yes or no and each site reaches the same decisiam thiecoutcome of the current transaction:
commit or abort. A widely used atomic commit protocol is the{phase commit protocol (2PC4, 40|,
which involves two rounds of messages for reaching a comsems the termination of each transaction.
2PC can be centralized or decentralized. In the centralippdoach, the coordinator first sends a message
to the rest of nodes, with information about the ending tmatien. Each server must then reply to the
coordinator whether it agrees or not to commit the transactif all replies are positive, the coordinator
sends a commit message and waits for acknowledgments filaitmeahodes. If any of the replies was
negative, an abort message is sent in the second phase. déwrdéized version is similar but with any
server starting the process and with responses to every s¢inger. 2PC is a blocking protocol when
failures occur.

Atomic commit protocol: 3PC. To support failures, a non-blocking atomic commit proto@dB-AC)

[10, 62] must be used. In these protocols, each participant reackesision despite the failure of other
participants. A NB-AC protocol fulfills the following propes. (a) Agreement: no two participants
decide different outcomes. (b) Termination: every corpatticipant eventually decides. (c) Validity: if
a participant decides commit, then all participants havwed/ges. (d) Non triviality: if all participants
vote yes, and no participant fails, then every correct pi@dnt eventually decides commit. The three-
phase commit protocol (3PC§2] adds an intermediate phase to 2PC to become a non-blockitg$s.
This new (second) phase involves sendingracommitmessage when all nodes have agreed to commit
the transaction. After all servers sent their acknowledgsto thisprecommitmessage, the final commit
message is sent. Note that when a transaction needs to sindrta fact is identified at the end of the first
phase. On the other hand, agreement on the commitment iseeat the second phase and the commit
is completed in the third phase. Thus, failures in the firstgghlead to transaction abortion whilst failures
in the second or third ones do not block the protocol nor pretransaction commitment. The drawback
of 3PC is its higher cost due to the extra round of messagesolVe this, Jirenez-Peris et al. proposed
another NB-AC protocol that exhibits the same latency as PR

Atomic commit protocol: Paxos Commit. The Paxos Commit algorithn2§] runs a Paxos consensus
algorithm on the commit/abort decision of each particip@nbbtain an atomic commit protocol. The
result is a complete, decentralized and non-blocking &lgorwhich is proven to satisfy a clearly stated
correctness condition (that of the Paxos algoriti®) B8, 39, 41]).

4Recoverability, cascade abort avoidance and strictrigsgnd also commit orderingp].



Group communication systems and atomic broadcast. The communication among system compo-
nents is based on message passin@Gréup Communication Systegiv], or GCS for short, is commonly
used to accomplish communication tasks among servers,dnsioiy the communication primitive (point
to point messages, multicasts, broadcasts) with the apgpteguarantees (e.g., uniform guarantees will
be commonly necessary when failures must be tolerat#&mic broadcasfabcast for short) is a group
communication abstraction defined by the primitieadcastm) and deliverim). Abcast satisfies the
following properties 27]. (a) Validity: if a correct site broadcasts a messagé¢hen it eventually delivers
m. (b) Agreement: if a correct site delivers a messagéhen every correct site eventually delivens(c)
Integrity: for every messagm, every site deliversnat most once, and only ihwas previously broadcast.
(d) Total Order: if two correct sites deliver two messagesndnt, then they do so in the same order. Due
to this last property, atomic broadcast is also known a$ totker broadcast.

Optimistic abcast. Two optimistic variants of abcast are tbptimistic atomic broadcadi9] and the
more aggressivatomic broadcast with optimistic delivef$6], which allow processes to deliver messages
faster, in certain cases. They exploit the spontaneoukdatar message reception: with high probabil-
ity, messages broadcast in a local area network are recttatly ordered. An atomic broadcast with
optimistic delivery is defined by three primitives. Fir§Q-broadcasim) broadcasts the messageo all
nodes in the system. Theopt-delivefm) delivers a messagma optimistically to the application once it
is received from the network, intentative order Finally, TO-delivefm) deliversm to the application in
thedefinitive orderwhich is a total order. The following properties are satifi(a) Termination: if a site
TO-broadcastsn, then every site eventually opt-delivarsand TO-deliversn. (b) Global agreement: if

a site opt-deliversn (TO-deliversm) then every site eventually opt-delivers(TO-deliversm). (c) Local
agreement: if a site opt-delivensthen it eventually TO-delivers. (d) Global order: if two site®\; and

N; TO-deliver two messages andn, thenN; TO-deliversm before it TO-deliversn' if and only if N;
TO-deliversm before it TO-deliversn'. (e) Local order: a site first opt-delivensand then TO-deliversn.
With such an optimistic delivery, the coordination phasé¢hef atomic broadcast algorithm is overlapped
with the processing of messages. This optimistic procgssinmessages must be only undone when the
definitive total order mismatches the tentative one.

3 A Characterization Model for Database Replication Systems

In this section we present a policy-based characterizatiodel that allows us to decompose database
replication algorithms into individual interactions beten significant system elements, as well as to define
some underlying properties, and to associate each ini@nagith a specific policy that governs it. With this
characterization model, a replication system can be destias a combination of policies. This common
framework allows an easy understanding and comparisongeetygrotocols.

The rest of the section is structured as follows. Subse@&ibpresents the proposed characterization
model, and, next, Subsecti@®2 enumerates the different correctness criteria consideydtie surveyed
replication systems.

3.1 Interactions, Properties, Strategies and Policies: A Raracterization Model

A database replication system can be defined by means ofildiagcthe interactionsamong its main
components —hamely clients, local databases, serverber ®fstem components, and transactions being
executed— as well as some bas@havioral propertiesEach one of these interactions may be performed in
different ways. Similarly, each property may take diffarealues. All these options are callsttategies
A replication system must choose, for each interaction anggrty, one of the available strategies. The
selected strategy is thgolicy that such a system follows for such an interaction or bemataach system
will provide the necessary mechanisms for implementingtiected strategy. The set of policies a system
follows can be divided into four policy families, which gathrelated policies together: the client policy
family, the database policy family, the group policy famiyd the transaction policy family.

The client policies regulate the interaction between tientland the rest of the database replication
system, i.e., the communication from/to the user. fdtpiestpolicy specifies which servers in the system



must receive the client request, and tesponsgolicy establishes the number of replies that will arrive to
the client with the transaction results.

The interaction between the system and the local underlyatgbase management system is defined
by internal properties of the DBMS and regulated by the degalpolicies. These policies determine
two aspects: thésolation level used whenever the transaction operates in the databad the level of
replicationof the database, i.e., whether it is fully or partially replied.

The interaction among the servers or other system compnenmegulated by the group policies.
In order to globally coordinate the execution of transaxdiothe participation of more than one server
is required. Communication is established among the iostf the replication protocol running in
different nodes of the system group. These policies coatiglprocedure involving available replicas used
to coordinate them with regard to each transaction, i.g. sgnchronization (real or logical) between the
system nodes required for achieving replica consistenay.distinguish four intervals in the transaction
lifetime when different group policies may be appliestart (at the start of transaction, before the first
access)life (during the lifetime of the transaction, e.g., per-op@atommunicationsgnd(at the end of
transaction, before the commit operation), aftgr (after termination, i.e., after returning the results te th
client).

The interaction between the system and the user transadtiorgulated by the transaction policies.
The servicepolicy ensures that the necessary conditions (apart fremolivious resource requirements)
hold for the system to serve an incoming request, acceptitigrsaction for processing. Transaction
execution can be split into two phases: the local phase, ichnthey are only executed in the delegate
server (either interactively or not); and the remote phaseyhich their execution spans to the rest of
replicas, after some kind of coordination between the systedes. Right before starting the remote
execution, thelecisionpolicy determines the procedure followed to decide whiahgactions will commit
and which ones must be aborted. If the system decides to adimransaction, themotepolicy controls
the way the transaction is sent to the database to be applied.

Someglue procedures will be usually needed to chain the previougieslin a way that guarantees a
correct behavior and the isolation level promised by théicafion system.

According to our proposal, the lifetime of a transactiorhigg controlled by different policies depend-
ing on its current execution step (see FiglyeFirst, when the client sends its request to the systemn{ide
tified as interaction 1), the client-request policy deteresito which servers this request must be addressed.
Once in the appropriate server (or servers), the proceséitiige transaction is accepted as determined by
the transaction-service policy (interaction 2). Once thegaction is accepted for processing, the group-
start policy defines if some coordination must be done withrdst of replicas prior to transaction start
(interaction 3, e.g., broadcast the start of transactidhéaest of nodes in order to get a global common
starting point). After this starting coordination (if itisxs), the transactioantersthe database for the first
time, beginning its local execution phase. Database ptiegeaffect the transaction execution since this
moment on. The database-replication policy will define drthis a copy of the data in the current server
or whether the transaction must be distributed among sevedas. At each local DBMS, accesses to the
database are controlled by the database-isolation pabeying the local execution phase, a group-life
policy may apply, defining a linear coordination among sex\{@teraction 4). After all operations have
been completed, the client asks for the commitment of thestretior® Then, a new communication can
be established, following the group-end policy (interaicth). Prior to transaction termination, a decision
process controlled by the transaction-decision policpéuss the transaction and decides if it can be com-
mitted or not (interaction 6). If the decision is positiveettransaction enters its remote phase in all nodes.
The transaction-remote policy determines when the trdiagacan access the local database (interaction
7), where it will be applied according to the database-igmapolicy. After transaction completion, the
client-response policy regulates the sending of transactsults to the user (interaction 8). Finally, a
group-after policy may apply (interaction 9), as in lazytsyss.

The sequence of interactions presented above may be adapiffdrent ways of transaction execution,
by selecting the proper strategy to execute each interaotiby denoting that certain interaction will not
take place.

Sltis also possible that the client issues an abort operatiothat case, following steps aim to rollback all executpérations
instead of committing them.
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a. Start of transaction b. Life of transaction c. End of transaction

Figure 1: Policies applied during the lifetime of a transaction. Interactiana@amnbered following the
sequence of their first execution.

Table1 presents the entire classification of the strategies we foaw@l in existing systems for each
policy. Identifiers are given to each strategy. This way, ae easily say that a given replication system
follows, e.g., the group start policy GsO, to represent tltmtcommunication is established among the
group of servers before transaction start. Note that ag@relait in the identifier means a greater effort or
a stricter criterion. Now we offer a detailed descriptiondach policy, following the order on which they
regulate the transaction lifetime.

Client-request policy Firstly, the client should address its request to the systiénectly communicating
with one or more elements. Depending on the characteristitse system, this request may be forwarded
to other elements or redirected to a special component bysnagfaanother component acting as a proxy
(such as a load balancer or scheduler). This policy thus efefime set of servers that finally receive the
original user request for processing. When any server ishteud processing a user request (Cql), it is
commonly the client itself who selects the closest site amdls its request directly. If only one server can
process a given user request (Cg2) due, e.g., to some owmergkria (the primary copy in the system
or the server that controls the portion of the data that ther needs to access) or to the decision of a
non-trivial scheduler that selects one specific node (rsitthe least loaded one but one satisfying certain
condition), then the user request must be forwarded to pieisial server. If no kind of request redirection is
performed by the system, then the client itself must know tmselect the specific node. Itis also possible
that the user request must arrive to several servers in gteray either a quorum of nodes (Cqg3) or the
entire group (Cg4). In this last case, some ordering gueesninay be necessary (as in the group policies,
as explained below). Thus, a letter ‘t" appended to theegsatdentifier indicates that the multicast must
follow total order, which is a usual option for the procegsif active transactions. In any case, each system
will provide the required mechanisms for implementing fhadicy.

Transaction-service policy Once the transaction arrives to a node specified by the gigeptest policy,

it enters some sort of queueing system, where it waits foptb®col running in that node to start serving
it. This policy reflects the existence of any necessary, olmrieus condition for the node to continue
processing incoming requests in general, or this specifjoast in particular. Waiting for the necessary
computational resources (idle threads, available cororecto the database, etc.) is considered trivial
and included in the default bottom policy (TsO, immediatevise). When the necessary resources are
available but any other conditions temporarily preventsiygtem from processing a transaction, the service
is deferred (Ts1). This condition must be locally evaluabfi¢hout the participation of other nodes (when a
cooperation with the rest of nodes is required to start agetion, this is reflected in the group-start policy).
For example, there may be situations where the node muspgstall incoming requests, e.g., after
detecting some inconsistency on the data and until it ureesrgeconciliation; or postpone the processing
of a query until all pending remote transactions are apglethe node. In a more complex situation,
the data could be divided into conflict classes and incomeagiests appended to several conflict queues,
depending on the data they needed to access. In this scemalsiovhen the transaction were at the first
position in all its queues, it would fulfill the condition t@lprocessed by the system.
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Table 1: Available strategies for each policy

Policy family Policy Id Strategy

Cql any server

Cq2 special server
Cg3 quorum of servers
Cqg#  all servers

Request (q)
Client policies (C)

Crl one answer

Response (r) .
Cr2 multiple answers

Drl partial replication

Replication (r) o
r2 full replication

Di0 undefined

Dil read committed
Isolation (i) Di2 snapshot

Di3 serializable

Di4 customized

Database policies (D)

Start (s), Gx0 no communication
i b
Group policies (G) life (1), Gx1 one server [0..1]
end (e), Gx2  several servers [0..n]
after (a) Gx3  all servers

TsC immediate service
Service (s) Ts1l®  deferred service
Ts2 no local service

TdO no decision

Td14  one server
Decision (d) Td®  each server

Td3¥  quorum-based

Td4®  agreement-based

Transaction policies (T)

Tr0 no remote execution
Remote (r) Tr1® concurrent
Tr2 non-overlapping

a An appended indicates a broadcast in total order.
b n, no order requirements; FIFO ordert, total order.
For Gs and Gla, asynchronouss, synchronous.
¢ n, no interactivity.
dr, readset requiredy, writeset required.
€ p, controlled by the protocot], controlled by the database.

These two cases, the immediate and the deferred servicly, tapall transactions that have a local
execution in their delegate prior to their remote execugibase: either interactive transactions (where the
user sends each transaction operation separately to thigadat getting intermediate results as operations
are completed), or service requests (calls to stored pues}l In the case of interactivity, it is possible
that also intermediate operations of a transaction (not thd first one) are subjected to wait. We extend
the concept of deferred service to model also those casesdén to highlight the non-interactive cases, a
letter ‘n” will be appended to the strategy identifier.

In distributed (partitioned) and partially replicatedaladses, the transaction-service policy controls the
creation of local subtransactions in each of the partigigatodes.

Finally, there are also situations where a transaction idawally —individually— processed by any
node, but rather has an active execution in all sites at time $ane (generally, this precludes interactivity
and is mostly used for service requests). We therefore dentiiat an active transaction has ordynote
phase because, since its starting point, its executionsspldavailable servers, i.e., there is no previous
phase where it is locally executed by one delegate. Howghisrcould be also considered the other way
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around: as the remote execution of transactions is usuallgdon the application of logs or writesets
(previously created by a delegate node which carried odhaltransaction operations), we could say that
active transactions atecally executed by all nodes and thus have no remote phase. Howevselect the
first approach —only remote phase— and consider that, i tteeses, a policy of no local execution (Ts2)
applies. Note that the digit of this last identifier is gredtein the previous ones, as an active processing
of transactions, where all nodes must perform all operatiengenerally more costly than having a local
execution phase and a later writeset propagation and agiplic

The two last details, i.e., subtransactions of distributadsactions and active execution, are denoted
in Figure2. In this diagram, which provides a visual representatiothefapplied policies during the local
and the remote phases of the transaction lifetime, the dwatiék line is time and it increases rightward.

Cq T Gs Gl 1@ ®| Ge T ™ Ccr  Ga

' ' ' " ' o ' '

' ' ' Vo ' o ' '

' ' ' Vo ' o ' '

| | H - P | H

< local ;J + < remote _3 time
execution execution
local phase starts remote phase starts

transaction starts transaction ends

Figure 2: Interactions defining the local and remote portions of a trioeadon-distributed transactions
do not initiate subtransactions in multiple nodes (a). Active transactionstdmresent local phase (b).

Group-start policy Before starting a transaction, some coordination among@soaday be necessary.
This communication will commonly include some global id&et for the transaction, in order to establish
a synchronization point before any operation is executetth®yransaction. Client-request and group-start
policies may seem identical but they present a crucial idiffee: servers that receive the client request,
as expressed in the client-request policy, generally potieat request in the same way, i.e., they usually
have all the same role regarding to that transaction; weiteess contacted at transaction start, as defined
in the group-start policy, generally play a different ralerf that of the first set.

To perform this first coordination, the communication amaogles may or may not need to be syn-
chronous, halting or not the processing of the transactiit some condition holds (e.g., the message
is delivered or all replicas reply to the send®&rNetwork communication involves some cost, particu-
larly when some safety or ordering guarantees are requiiteas, an asynchronous communication allows
the overlap of the communication cost with the transactimt@ssing, while synchronous communica-
tion does not. To distinguish between both situations, aappended to the policy identifier will denote
asynchronous communication, while a ‘s’ will mean the nemdfnchrony.

All policies of the group family share a common set of stregsgwhich define the number of servers
or other system components the local node must contact \mitthe trivial case, no coordination is done
(Gx0, where ‘X' is ‘s’ for group-start strategies, ‘I' for gup-life ones, ‘e’ for group-end options, and ‘a’
for group-after strategies), e.g., in active replicatitiig synchronization point is at the beginning of the
transaction, so no further synchronization is needed atitlde Non-trivial strategies require the participa-
tion of at most another server (Gx1), of a subset of the egtwap (Gx2), or the participation of all system
nodes (Gx3). In order to implement group coordination,elléht communication primitives are used. A
simple option is the use of node-to-node messages, e.ge gossip, flooding or cascade mechanisms can
be implemented this way. This option was commonly used trairsystems, when GCSs were not yet used
for inter-node communication. More complex primitiveslute reliable multicasts and broadcasts, with or
without order requirements. Multicasts to a quorum are usgdorum-based systems. Reliable broadcast
is enough when only one node acts as a sender or when otheanm&uis already provide all the order
requirements of the system. FIFO or total ofderoadcasts may be necessary. When a specific ordering

6Note that although such wait is only necessary in the sermtée rit is also part of the required initial coordinationdahus, of
the group-start policy.

"Virtually all GCSs include FIFO guarantees in their total@rprimitives, so in practice it is assumed that abcast messasggect
FIFO ordering.
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guarantee must be provided, an ‘f’, for FIFO, or a ‘t, forabtis appended to the strategy identifier. An
‘n’ will denote that no ordering guarantees are needed.

Database-replication policy Apart from purely distributed systems with no replicatidaty, not consid-
ered in this work, replicated databases may enforce rejaitat different degrees. When each node stores
a complete copy of the database, the system features flitagpn (Dr2). Otherwise, a partial replication

is maintained (Dr1).

Database-isolation policy Whenever a transaction is being executed in a node (locahitttee phase,

local non-interactive execution, remote execution andeset application, and final commit phase), a
certain isolation level is enforced in the local databasadrcommitted (Dil), snapshot isolation (Di2),
serializable (Di3) or a customized level (Di4), achieved afithe DBMS by directly controlling the locks

or making any other management. An additional undefinedestya(DiO) represents that the isolation
level was not specified in the system description. Upon tbkation provided in the local database, the
replication system is able to enforce certgiabalisolation level for all transactions running in the system.

Group-life policy  During the lifetime of a transaction, while it submits opéras to the database, some
coordination among nodes may be required. When such a catiatirexists, it is usually done before
or after each single operation (e.g., each SQL statememtjlirsg information about it for, e.g., acquiring
locks in remote replicas. Similarly to the group-start cake execution flow of the transaction may or
may not be suspended until this coordination is completedagpended ‘a’ (‘s’) will denote asynchronous
(synchronous) communication.

Group-end policy When the transaction finishes submitting operations, anah upquest of commit-
ment, a global coordination is usually needed. During tbisimunication, transaction information, like
the readset, writeset and updated values, is commonly gameang system nodes. Sometimes, several
rounds are required for appropriate coordination. Thishés ¢ase of the two-phase or the three-phase
commit protocols.

Transaction-decision policy After the transaction has completed its operations and thepgend co-
ordination has been made, a validation process may be ruecidedthe final outcome of a transaction,
i.e., its abortion or commitment, depending on certain d@@s. This policy determines which server or
servers, if any, are responsible for taking this decisian, for running the decision process. When the
rest of the policies is enough —and especially for read-tmnalgsactions, which are usually immediately
committed in relaxed correctness criteria—, no decisiatgss is executed (Td0). Otherwise, the process
may be executed by only one server (Td1), commonly the deegdiich later sends the decision to the
rest of nodes; or be performed by each server (Td2) in a syrmanigtdependent and deterministic way
(certification). The process can involve also the collatbonaof multiple nodes. This is the case of de-
cisions based on a consensus among a quorum of nodes (Td3% edch server of the quorum informs
whether it agrees or not to commit the current transactind;decisions based on an agreement among all
the (available participating) sites (Td4). This latterippis used when performing a two- or a three-phase
commit, where each server says if it agrees to commit thentitransaction.

The decision about the final outcome of transactions is lysbaked on conflicts although it can be
also based on some other information (e.g., temporal @jtéVhen based on conflict checking, an ‘r’ (re-
spectively, a ‘w’) after the policy identifier will indicatide use of readsets (writesets) during the decision
process. It is important to note the possible different ugegadsets and writesets, which affect perfor-
mance at different degrees. Thus, decision may be basechflictobut delegated to the local DBMS (low
cost); or it may be necessary to collect those sets and in#pan at middleware level (medium cost); or
even to forward them to other servers (high cost).

A final consideration must be done about the decision procédthough normally it is run upon
writeset delivery in order to decide the outcome of such &eset based on the conflicts with previously
delivered transactions, in some systems it is the deliverii@set which, during the decision process run
upon its delivery, may cause the abortion of other (locals¢actions that, although already broadcast, will
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be delivered afterwards. Thus, a decision process is runddufor deciding the outcome of the current
writeset, but that of future writesets, in a sorteafrly decision.

Transaction-remote policy After completing the local execution phase and getting atipesdecision,
transactions start their remote execution. For this, &retign information must be somehow provided to
every system node. As this is usually done through a GCS, fee te this information as a delivered
transaction, a delivered writeset or, simply, a writesdtagiven node\;, when the delivered transaction
is local, i.e.,N; is its delegate node, only the commit operation is pendinghefise, the writeset is
remote and its updates must be applied in the local datatfdgepoior to final commitment. The access
to the local database is controlled by the transaction-terpolicy. Two main strategies are considered:
either multiple transactions are sent concurrently to taglthse (Trl), thus improving performance, or
they are sequentially sent, one at a time, following a noedapping policy (Tr2) where each delivered
transaction must wait for the completion of the previous.dnehe first case, conflicting operations must
be controlled in order to maintain replica consistencysTduntrol may be performed by the protocol (e.g.,
the protocol checks for conflicts between writesets befenel;ig multiple, non-conflicting transactions to
the database) or by the concurrency control of the databasagement system (e.g., transactions set write
locks in an appropriate sequence before accessing theadadald letter after the identifier specifies if the
control is made by the protocol (‘p’) or by the database (‘d’)

A third strategy represents the cases where no remote @xedsipperformed (Tr0), namely for read-
only transactions that are executed only in their delegatees.

Another aspect that should be mentioned here is the needotb labal transactions, in their local
execution phase, holding locks or otherwise preventingterransactions from being applied in the local
database. Such a process is required for protocol livendsdetails about its implementation are rarely
given in publications. Thiglearing process differs from the early decision commented abovkahthe
clearing process aborts transactions that were complietedy to the running node (i.e., other nodes had
no knowledge of their existence), while an early decisioly adaort transactions that, although local to the
running node, were already broadcast to other nodes. Tdreréh an early negative decision, it will be
necessary to broadcast this outcome to remote nodes.

Client-response policy After transaction completion, the client must receive thsuits of its request.
Either one or multiple replies can be sent to the client. Comigy only the delegate server (or some
special node or component in the system) replies, so thetckeeives only one answer (Crl). In other
cases, multiple replies arrive to the client (Cr2). Thididigion is important as, in the latter case, the
client has to perform some kind of procedure to select thé dinswer (the first received, a combination of
multiple replies, the most voted, etc.).

Group-after policy After sending the response to the client, once the trarmsabtis committed in one
or several nodes, a last coordination may be needed, e.gpdating remote nodes in lazy systems.

3.2 Correctness Criteria for Replicated Databases

Correctness in replicated databases comprises two chestics: (a) the isolation level, responsible for the
isolation among all concurrent transactions being execimehe system; and (b) the replica consistency,
or the degree of admissible divergence among the stated$ mpdicas B3]. The first characteristic is
provided by means of a local DBMS in each server and by usingiocevalidation rules at replication
protocol level. The second aspect is enforced by the rdjaitgrotocol and involves synchronization
among replicas, which can be made easy by means of a groupwuigation tool. Based on the concepts
and conclusions of Ruiz-Fuertes and faz-Escd [55], we consider the correctness criteria of TaBle
for one-copy equivalent systems. The user-centric cagigt(i.e., the replica consistency as perceived
by users as opposed to the server-centric consistency)vidnee inversions may arise is considered the
standard level, while precluding inversions requires ddigeffort. For criteria based on isolation levels

8In the case of partially replicated databases, only the tegdzorresponding to items stored in the node must be applied wh
processing the delivered writeset.
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other than serializability, we choose similar names to ehm®posed by Ruiz-Fuertes and z-Escd
[55]: e.g., in the case of snapshot isolation, 1ASI correspeodystems that preclude inversions, 1SI+
executions ensure the absence of inversions within sessaoid 1SI allows the appearance of inversions.
Note that in the context of snapshot isolation, an inversiaty occur if a transaction (either a query or an
update transaction) is provided with a snapshot which doesarrespond to the latest available snapshot
in the system, as created by the last committed transactionot precluded, either conservatively or
optimistically, inversions may appear and a committedsaationT may have read an old value of a data
item that was updated by a transaction that committed béfierstart ofT .

Table 2: Correctness criteria for one-copy equivalent replicatedadsés

Criterion  Isolation Consistency Short description

The effects of transactions are equivalent to a serial éi@tin only one

node. At each single moment, the committed information in evemese

is exactly the same from the point of view of clients: a usereatute a
1ASR serializable no inversions transaction in one node and change immediately to anothezrsehere

they will see the updates made by their previous transacgtmng se-

rializability [11, 17, 69] is another name used in the literature to refer to

this correctness criterion.

Consistency is more relaxed than in the previous case, betsions are
no inversions precluded within client sessions, so a user with a singlsiseperceives
on sessions an inversions-free view of the database. Strong sessi@iizability [17,

69 is also used in the literature to refer to this criterion.

1SR+ serializable

The effects of transactions are equivalent to those of alstécution in
one node. But at a given moment, effects of some transactions enay b
pending to commit in a server and, thus, a user moving betwegarser
may get inconsistent results.

1SR serializable inversions

Transactions are isolated following the snapshot levethEeansaction

T gets the latest snapshot of the entire system (consenegpeach)
or, at least, the latest snapshot as created by previousattions that
updated data items th@itreads (this allows an optimistic approach were
transactions are restarted if a conflict is detected). Evisllis also named
conventional snapshot isolation (CS20] or strong S| [Lg].

1ASI snapshot no inversions

Transactions are isolated under the snapshot level. Tipskagprovided
to a transactiorm corresponds to the latest snapshot created by transac-
no inversions tions on the same client session (conservative approach} @ast, by
on sessions transactions on the same client session that write data iteeh$ reads
(which allows an optimistic approach). This level is also ndreong
session SI18].

1S+ snapshot

Transactions are isolated following the snapshot levek tBel snapshot
provided to a transaction may be arbitrarily old, due to sormesactions
pending to commit in its delegate node (i.e., inversions gcduhis level
is also named generalized snapshot isolation (G3)) [Usually, transac-
tions get the latest snapshot of their delegate serverhwbialso known
as prefix-consistent snapshot isolation (PC20].[

1Sl shapshot inversions

Cursor stability is enforced in the nodes. This isolatiorel@revents lost

1CS cursor stability  inversions . . .
updates for rows read via a cursor. Inversions may arise.

The database replication system behaves as only one copdipgread
1ARC read committed  no inversions committed isolation. Transactions starting at differente®dt the same
time see the same database state.

1RC read committed  inversions A read committed isolation level is guaranteegersions may arise.
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4 A Comprehensive Survey of Database Replication Systems

In this section we present the research evolution and suheystate of the art of database replication
techniques. Our analysis is based on the policy-basedatBarmtion model presented in Secti@nOver
50 different systems are fully characterized followingthiodel.

The rest of the section is structured as follows. Subsedtibpresents the comprehensive and chrono-
logical survey of database replication systems. Subsedtcomments about the scope of the character-
ization model, as observed during the preparation of thigegu Finally, Subsectiod.3 discusses about
the insight the survey offers.

4.1 Replication Systems as Combinations of Strategies: A 8iey

Any replication system can be defined as a particular contiibimaf strategies, i.e., a set of specific poli-
cies. Obviously, not all combinations will create correctuseful replication systems. Some systems
proposed in the literature of database replication aremtiogically listed in Table3, detailing the fol-
lowed strategies, which are identified as shown in Tdbl€he correctness criterion is also specified (see
Table2). For simplicity, when detailing communication process®slving several rounds, only the most
demanding is showed in the table (and thus, e.g., a totat cedeirement signaled in the strategy may be
only needed in one of the rounds). In TaBJavhen a system (row) follows different strategies for a #jec
interaction (column) for different types of transactiothgse strategies appear at different lines within that
cell of the table (column-row). Those types of transactions tiensually the difference between read-only
and update transactions, or among the several correctriesgcsupported by a given systéhWhenever
multiple lines are present in a row, columns with only onaigahean that such a strategy is shared by all
transaction types.

A visual radial representation for each surveyed system is provided inr€®@jalso in chronological
order. Eactradius of a graph corresponds to a policy, labeled with its initetdrs. Concentricircles
(hendecagons, to be accurate), mark the scale from 0 (theimmes circle), to 4 (the most external one).
The digit associated with the strategy followed by the degicystem for each interaction of each different
transaction type is then represented in that scale. Whesewveral options are possible for a specific
policy (e.g., when users can choose between read committhpshot isolation), the least costly option
is the one that is represented in the graph (read committeddh a case), thus showing the minimum
requirements of the system. Those points are finally coedduy lines in order to create a figure for each
transaction type of the systeth Remember also that the more demanding the strategy, theegtiea digit
of its identifier (e.g., a group-start policy GsO denotesahsence of communication at transaction start,
while Gs3 requires a synchronization with all servers).sMaay, thebiggerthe resulting figure, the more
costly the execution of that transaction type. These reptasons allow us to visually compare different
systems as well as to get an idea of their cost. For examgarding communication costs, all policies
involving communication (Cq, Gs, Gl, Ge and Ga) are groupgéther in the eastern/northeastern zone of
the graph (from 12 until 4:30 in a clock). A figure widening duthat zone depicts a system which relies
on communication and thus its performance will depend or&@8& and the network. On the other hand,
regarding database requirements, the radius of Di (degabakation policy) allows a quick comparison
between the strictness in the local isolation level regliog the correct functioning of different systems.

Next we offer thorough descriptions for all the surveyedtpeols and systems. Letters in brackets
reference superindexes in the corresponding row of Table

Alsberg and Day [2] proposed a protocol following the single primary, mulégdackup model, where
backups are linearly ordered. The client can address iteestdo any replica in the system, which will

SWhen possible, the strategies at the same line representrtteetgpe of transaction, showing, e.g., the policies for realy-
transactions in the first line and those for updates in thersone. However, for more complex cases (e.g., systems dighigg
not only between queries and updates but also among diffeceréctness criteria), TabRstill depicts all followed strategies but
suchone-line-one-typelarification is not made. Please refer to the textual desoni@nd the visual representation of Figiref
those complex systems for a detailed distinction among thaisaction types.

10Those types are labeled ‘g’ for queries, and ‘u’ for updasmsactions. When different correctness criteria are peaic
distinction is made in parentheses.
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Table 3: Database replication systems expressed as combinationgegissa

c c c 2
2 28 8. g 8 9 2
— o E= 5} |5} sc
=8 88 g_ 288352 2 s 82 82 =5 9. 8¢
o5 Sz 8§ £5 g6 2o 2T &3 GE 23 88 58
o F8 O3 0% 09 0= O 3 £¢ O¢ 6% O5
Alsberg-Day{2] Cq2 TsO  GsO Dr2 Di Glo Gel-§ Tdo* Tr2e  crif Gal-9 1A
2PL & 2PC[24] Cql TsO Gs0 Drl Di8 Gl1-n-® Ge2-ff Td4-rve Tr0 Crl Ga0 1ASR
Gl2-n-¢ Tri-df
BTO & 2PC[7] Cgql TsO Gs0 Drl Di# Gll-n-s Ge2-n Td4-rw Tr0 Crl Ga0 1ASR
Gl2-n-s Tri-d
Bernstein- Cql TsO Gs0 Drl1 Di3 Gl1-n Ge2-n Td4-rw Tr0O Crl Ga0 1ASR
Goodmar({9] Gl2-n-$ Tri-d
OPT & 2PC[6]] Cql TsO Gs0 Drl Di# Gli-n-s Ge2-A Td4-rw¢ Tr0 Crl Ga0 1ASR
Tri-of
O2PL & 2PC[12] Cgql TsO  GsO Drl1 Di3 Gll-n-s GeZnTd4-rw Tr0O Crl Ga0 1ASR
Trl-d
Bcast all[1] Cgql TsO Gs0 Dr2 Di3 GI3-t-s Ge3-t TdO TrEdCrl Ga0 1ASR
Bcast writeq 1] Cgl TsO Gs0 Dr2 Di3 GI® Ge3t Tdl-rw Tr Crl Ga0 1ASR
GI3-t-s Trl-d
Delayed Cql TsO Gs0 Dr2 Di3 GIo Ge3-t Tdl-rw Tr0 Crl Ga0 1ASR
bcast wrtd1] Tri-d
Single bcast Cgl TsO Gs0 Dr2 Di3 Glo Ge0 Tdi1-rw® TrO Crl Ga0 1SR
txns[1] Ge3-t Td2-rw Trl-d
Lazy Txn Cql TsO Gs0 Dr2 Di2 GI0O Ge3-t Td2-rw Tr2 Crl Ga0 1SR
Reorderind50]
OTP-99[36] Cql* TsO-if GsO Dr2 DiG GIO Ge0  Tdo 6 Crl Ga0 1SR
Cq4-f TsA Tri-p?
Fast Refresh Cg® TsO Gs0 Drl1 Di8 GIO Ge0  Tdd Tro*® Crl Ga@ 1SR
Df-Im [45] cq? Tri-d' Gaz2-f
Fast Refresh Cgl TsO  GsO Drl1 Di3 GIb  Ged Tdo T0 Crl Ga0 1SR
Im-Im [45] Ccq2 Gl2-f-a  Ge2-t Tri-d
DBSM [47] Cgl TsO  GsO Dr2 Di3 GI0 GEé0 Tdo* Tr0 Crl Ga0 1SR
Ge3-P Td2-w Tri-&®
SER[35] Cql  TsO  GsO Dr2 Di& GIO Ge® Tdo? Tr0 Crl Ga0 1SR
Ge3-f Td1-rw® Tri-df
CS[35 Cgql TsO  GsO Dr2 Dia GIO Ge0 TdO Tro Crl Ga0 1CS
Ge3-t Tdl-rw Trl-d
S1[35] Cql TsO Gs0 Dr2 Di2 GIO GE0 TdC* TrO Crl Ga0 1SI
Ge3-P Td2-w!  Tri-¢®
Hybrid [35] Cgl TsO Gs0 Dr2 Di2 GIO GeC TdO® Tr0 Crl Ga0 1SR
Di4® Ge3-t! Tdi-w Tri-&P
NODO [46] Cql® TsI® GsO Dr2 Di2 Glo Geth Tdof Tr0Y Crl Ga0 1SR
Cq4-P Ge3-if Tri-p
REORDERING[46] Cql  Tsl Gs0 Dr2 Di2 GIO Ge0 TdO 0O Crl Ga0 1SR
Cqg4-t Ge3-f Trl-p
Pronto[48] Cg2® TsO  GsO Dr2 Di3 GO Ge3t TdX Tr2 cr® Ga0 1ASR
DBSM-RAC[63)] Cq2 TsO  GsO Drl Di3 Glo Ged  Tdo* Trof  Crl Ga0 1SR
Ge3-f Td4-rw* Trl-c®
Epidemic Cgql TsO Gs0 Drl1 Di3 GI0O Gé0 Tde* Tre®  Crl Ga0 1SR
restricted 3] Ge2-® Td2-rwf Tr2f
Epidemic Cql TsO Gs0 Drl Di3 GI2-n% Ge0O TdO Tr0 Crl Ga0 1SR

unrestrict[30]

Ge2-n Td2-rw Tr2

OTP[37]

Cga-8 Ts?® GsO Dr2 Di0 GIlO Ge0  TdO Trl-f Crl Ga0 1ASR

Continued on next page
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Table3 — continued from previous page
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OTP-Q[37] Cqle  Tsif  GsO Dr2 Di0 GO Ge0  Tdo TO Crl Ga0 1SR
g4-t Ts2 Trl-p
OTP-DQI[37] Cql Tsl GsO Dr2 Di0 GIo Ge0 Tdi-v Tr0 Crl Ga0 1SR
Cg4-t Ts2 Tdo Trl-p
OTP-SQ[37] Cql TsO GsO Dr2 Di0 Glo Ge0  Tdo Tr0 Crl Ga0 1SR
Cg4-t Ts2 Trl-p
RJDBC[23] Cql® TsO  GsO Dr2 Di GI3-t-& Ge3-f TdC* Tr2f cr1 Gao 19
RSI-PC[51] Cgl Tsl® GsO Dr2 Di2' GIo Ge0  Tdd T0  Cri" Gal 1ASI
Cq2® TsC Di1® Tr29 Gaz-f 1Sl
1ARC
1RC
SRCA[42] Cgl®@ TsO  GsO Dr2 Di2 Glo GED Tdo? T0 Crl Ga0 1Sl
Ge3-f Tdl-wf Tr2
SRCA-Rep[42] Cql TsP GsO Dr2 Di2 GIo Geb Td(? Tr0 Crl Ga0 1Sl
Ge3-f Td2-w?  Trl-p
DBSM* [68] Cql® TsO  GsO Dr2 Di3 Glo Ge0 TdO TT0 Crl Ga0 1SR
cq? Ge3-t Td2-w Trid
PCSI Cgql TsO  GsO Dr2 Di2 GIo GE0 TdC° Tr0 Crl Ga0 1Sl
Distr. Cert.[20] Ge3-P Td2-w!  Tr2
Tashkent-MW21] Cql TsO Gs0 Dr2 Di2 GIO Gé0 Tdo* Tro¢  Crl Ga@ 1Sl
Gel-® Td1-w! Tr2f
Tashkent-AP[21] Cgql TsO Gs0 Dr2 Di2 GIO GeO TdoO Tr0 Crl Ga0 1Sl
Gel-n Tdi-w Tri-d
DBSM-RO-opt[44] Cql TsO Gs0 Dr2 Di3 GIO Gedt Tdl-rw TrO Crl Ga0 1ASR
Td2-wP  Tri-d
DBSM-RO-cong44] Cql TsO  Gs3-t3 Dr2 Di3 GIO Ge§ TdC® TI0 Crl Ga0 1ASR
Gs@® Ge3-f Td2-rw! Tri-d
Alg-Weak-SI[18] Cgl TsO Gs0 Dr2 Di2 GI0 GEd TdO* Tr0 Crl GaG 1SF
Cq2 Tri-pf Ga3-f
Alg-Str.-SlI/ Cgql Ts® GsO Dr2 Di2 GIO Ge0  Tdo Tr0 Crl Ga0 1ASI
Alg-Str.Ses.-S[18] Cg2  TsQ Trl-p Ga3-f 1SI+
One-at-a-timé CgZ2 TsO Gs0 Drl Di8 Glo GeG TdO® Tr0? Crl Ga0 1SR
Many-at-a-time/58] Ge3-f Td3-rwf Tr2"
k-bound GSI[4] Cgl TsO Gs3-t4 Dr2 Di2 GI0 Ge Td? Tr0 Crl Ga0 1SR
Ge3-f Td2-wf  Tr2 1ASI
Td1-rwf 1Sl
Tashkent+{22] Cgq2 TsO  GsO Dr® Di2 Glo Ge0 TdO T0 Crl Ga0 181
Gel-n Tdi-w Tr2
Mid-Rep[33] Cgl TsG GsO Dr2 Di2 GI0O Ge0 Tdo TrO Crl Ga0 1SR
Tsl?  Gs3-t-§ Ge3-t Tdil-rw Tr2d 1ASI
18l
SIRC[56] Cql TsO  GsO Dr2 Dil GIo Ge® Tdo* TT0 Crl Ga0 1Sl
Di2? Ge3-f Td2-wf  Tr2 1RC
Serrano et al60] Cq2 Tsl? GsO Drl Di2 Gl1-n-§ Ge2-§ Tdof 0" Crl Ga0 1Sl
Ge3-£ Td2-ws Tr2
MPF/MCF[70] Cgl®2 TsO  GsO Dr2 Di3 GIo Ge0 Tdo Tr0  Crl Ga0 1SR
cq? Ge3-t Td2-rw Tri-d
WCRQ[53] Cql TsO  GsO Dr2 Di& GIo Ge2-® Td3-w? Tr0  Crif Ga0 1ASR
Ge3-f Tr2e
AKARA [16] Cgl TsO-n Gs3-t& Dr2 Di2 Glo Ge3-fi TdO Tr2 Crl Ga0 1Sl
Ts2 Ged
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BaseCON for Cq®® TsC¢* GsO Dr2 Di3 GIO Ge0  Tdd Tr0 cri" Ga0 1SR
1SR[69] Cga-P TsH Tri-p?
BaseCON for Cq2 Ts¢ GsO Dr2 Di% Glo Ge0  Tdd Tr0  Cri" Ga0 1SR+
SC[69] Cq4-f TsA Tri-p?
BaseCON for Cg4-f TsO Gs0 Dr2 Di3 GIO Ge0  Tdo Tr0 Crl Ga0 1ASR
strong 1SH69 Ts2 Trl-p
gB-SIRC[57] Cql TsO Gs3-t4 Dr2 Dil GIo GeG TdCO® TrO Crl Ga0 1ASI
Di2b Ge3-fl Td2-w' Tr2 1SlI
Td1-rm@ 1RC

then forward it to the primaryd]. The proposed system aims at offering a resilient sharfrdjstributed
resources but it is not specially tailored to any serviceparticular, it is not tailored for database repli-
cation. Thus, some database-related points are not deiaitee paper, such as the database-isolatpn [
or the transaction-remote policg][(for which a conservative, non-overlapping option is assd in our
survey). Authors focus on requests that change the stateakplicas, which can be regarded as update
transactions. Processing is slightly different dependingvhether the client directly addresses to the pri-
mary or not. In any case, a two-host resiliency is always ieusurhe first backup receives the updates at
the end of the transactio][ before a unique reply is sent to the cliefik [After this, the rest of backups
are updated in a cascade modg whenever a backup commits its new state, it forwards traatgs to
the following backup. As all transactions are executed eghmary (the rest of nodes only act as back-
ups), the concurrency control of the primary server is ehoaigd no decision process is necessally [
The resulting correctness criterion includes one-copyvatgnce and the guarantee of no inversions (from
the user point of view, there is only one centralized seriat tuns all requests). The exact correctness
criterion directly depends on the local isolation of thenpaiy replica f]. If, for example, the isolation in
the primary node is serializable, the correctness critenitl be 1ASR.

2PL & 2PC (Distributed Two-Phase Locking with Two-Phase Commit) waginally described by Gray
[24]. 2PL is an algorithm for distributed concurrency contriotended for distributed databases where
some degree of replication is also probable. This involliesuse of distributed transactions. The under-
lying database provides a serializable level of isolatisith long read and write locks]. Once in the
appropriate cohorth], read operations set a read lock on the local copy of the @adchread the data,
but updates must be approved at all replicas before theartioe proceedsc]. Thus, write locks are re-
quired on all copies in a pessimistic way. All locks are haidluhe transaction has committed or aborted.
Deadlocks can appear and are solved by aborting the youmgesaction. A snoop process periodically re-
guests waits-for information from all sites, detecting a@sblving deadlocks. This process rotates among
the servers in a round-robin fashion. A two-phase comdiiis[executed for each transaction that requests
commitment. The initiating server (coordinator) sendseparemessage to all nodes. Each server then
replies with a positive or negative message. If all messagepositive, then the coordinator sends a com-
mit message. Every server confirms with another messageitivess of the commitment. If any of the
replies in the first phase is negative, the coordinator sand®ort message and all servers report back to
the coordinator once the abortion is complete. Decisiothiss, agreement-baseg]:[aborts are possible
due to deadlocks, node or disk failures, problems in the ébg, so the first phase of 2PC achieves an
agreement among the servers about the decision for thenturamsaction. In nodes holding copies of
replicated items, subtransactions are initiated as intshlout only for update transactions. Locks ensure
that conflicting operations are not concurrently meadeThe correctness criterion is 1ASE][

A similar protocol is Wound-Wait (WW), which was proposed byseokrantz et al.54]. The only
difference with regard to distributed 2PL is the way in whatdadlocks are handled. In WW, deadlocks
are prevented by the use of timestamps. When a transactiaesisga lock which is held by a younger
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transaction (with a more recent initial start-up time), ybengest transaction is immediately aborted unless
it is already in the second phase of its 2PC.

BTO & 2PC (Basic Timestamp Ordering with Two-Phase Locking) wasinétly proposed by Bernstein
and Goodman7]. BTO is identical to distributed 2PL except for the facttthacal isolation is based on
start-up timestamps]. Each data item has a read timestamp corresponding to teerewent reader, and

a write timestamp corresponding to the most recent writerei\éntransaction requests a read operation,
it is permitted if the timestamp of the requester exceedsutite timestamp of the object. A write request
is permitted if the timestamp of the requester exceeds the timestamp of the item. In this case, if the
write timestamp of the item is greater than the timestammefrequester, the update is simply ignored.
Write locks must be granted in all remote copies before pricgewith update operations, which are kept
in private workspaces until commit time so that other watare not blocked. On the other hand, approved
read operations must wait until the precedent writes aréiexpm order during the commit operation of
previous transactions. The used mechanisms enforce 1ASR.

Bernstein and Goodmanlater proposed a concurrency control algoritt8hfpr achieving 1ASR in repli-
cated distributed databases. This algorithm, which algd@&ys 2PL and 2PC (and so the strategies of both
algorithms match), is specially enforced to tolerate faifuand recover nodes. Each data itehas one or
more copiesxa, Xy, ...). Each copy is stored at a site. Site failures are cledren a site fails, it simply
stops running (Byzantine failures are not considered);nwheecovers, it knows that it failed and starts a
recovery phase. Other sites in the system can detect whéea ia siown. Neither network partitions nor
network failures are considered.

Each data itenx has an associated directaiyx), which can be replicated. Each copy of a directory
contains two kinds of information: a list of the available@s ofx, and a list of the available copiesa(x).
Special status transactions change the contents of thetaties to reflect site failures. User transactions
perform read and write operations over data items. Bothstyfidransactions require an available copy
of d(x) for each access over Access to data items and directories are both protecteddiynly. Read
and write locks over data items conflict in the usual way. Negks$ are created for accessing directories:
din-locks, in-locks, ex-locks and user-locks. The threst fare all conflicting among them. The last one,
user-lock, is set by user transactions and it conflicts ontl im-locks, being compatible with the rest of
directory locks. Two-phase locking (2PL) is used for comency control.

There are three types of status transactions: directatyde, include and exclude. A directory-include
transactionDIRECTORY-INCLUDH} ), makes directory copgh available. It initializess; to the “current
value” of d(x) and addg; to the directory list of every available copy dfx) (din-locks are required in
the original copy of the directory, in the new one and in adl tipdated copies). An include transaction,
INCLUDE(x5), makes data item copy available. It first initializes, to the current value af and then
it addsx, to the data-item list of every available copyadiix) (in-locks are requested in the local available
copy and in all the updated copies @fx); also, a read-lock is set on the original data item copy of
and a write-lock protects the access to the new ogpyFinally, an exclude transactioBEXCLUDEx,),
makes data item copxy unavailable (ex-locks are required in the original and irtfe# updated copies
of d(x)). When executing any of these status transactions, if it isaded that some directory cojl
has become unavailable, the transaction also remdy&®m the directory list of every available copy
of d(x). The distributed database system invokes exclude traosaavhen a site fails, and include and
directory-include transactions when a site recovers. § igeno directory-exclude transactialh;becomes
unavailable the instant its site fails.

User transactions access data items in read and write aperaiVhen a read operation is requested,
the corresponding directory is accessed to find an availedyby of x to read, which is then protected
with a read-lock §]. For a write operation, a user-lock is set dnthe local available copy af(x) (step
1). For each available data-item coxy a write-lock is setlj] (step 2). Finally, all still available copies
which were locked in the previous step are written (step 3)sifes may fail at any point in time, exclude
transactions can be applied concurrently with user traimsec Copies that could be locked in step 2 but
become unavailable before step 3 are ignored. Finally, whemser transaction reaches its locked point
(when it owns all of its locks), the following procedure iseexted: (1) for each read itexy, if x5 is not in
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Figure 3: Visual radial representations of the surveyed systems

the data-items list of local directory coply, or if EXCLUDEx,) has an ex-lock od, then the transaction
is aborted. (2) In parallel, all user-locks and read-lodlksraleased, and the step 3 of the write procedure
is finished and all write-locks are also released.

A two-phase commit (2PC) procedure is used to commit traitgec The first phase of 2PC can run
before the transaction reaches its locked point. Howevers@ 2 must wait until the end of the step 1 of
the locked-point procedure. Phase 2 of 2PC and step 2 of thedepoint procedure can use the same
messages. Due to the use of 2PL and 2PC, 1ASR is guaranteed.

OPT & 2PC (Distributed Certification with Two-Phase Commit) corresgs to the first of the two dis-
tributed concurrency control protocols proposed by Sinthal.g61]. As in BTO, all data items have a
read and a write timestamp corresponding to the most reeader and writer, respectivelg][ However,
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in OPT, transactions are allowed to proceed freely, stoaimgupdates in private workspaces. For each
read operation, the transaction must remember the writestiamp of the read item. Before starting the
two-phase commitd], a unique timestamp is assigned to the transaction. Aficattibn is then performed
for each transaction in each cohort. If there is some refbicaremote updaters (which store copies of the
written objects) receive the writeset in theeparemessage of 2PC and take also part in the certification
process. A read request is certified if the version that waa istill the current version and no write with
a newer timestamp has been already certified. A write redgiesttified if no later reads have been locally
certified or committed. The tertater refers to the timestamp assigned at the start of the 2PC.n&-tra
action is certified globally if local certification succedds all its cohorts and all its remote updatec [
This certification process is run inside the local DBMS, vilhidlows a concurrent execution of writesets
in remote updaters while ensuring a right concurrency cbfpd]. The optimism of this algorithm, which
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lets read operations proceed without getting any lockswalthe appearance of potential inversions during
the execution of transactions. These potential inversiwasater detected and aborted during certification,
based on the total order of the timestamps assigned to thgardons, thus providing 1ASR.

O2PL & 2PC (Distributed Optimistic Two-Phase Locking with Two-PhaSemmit) was proposed by
Carey and Livny 12] as an optimistic version of distributed 2PL. Both algamith are identical in the
absence of replication. However, O2PL handles replicatdd ds OPT does: when a cohort updates a
replicated data item, a write lock is requested on the loopy ©f the item, but the request of write locks
in remote copies is delayed until commit time. During 2R(; femote nodes must acquire the write
locks required by the transaction (this info is in fhreparemessage of the 2PC) before answering to the
coordinator. As read operations are required to first getid keck and certified transactions get all write
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locks at all replicas before committing, the correctnegsgon of 1ASR is ensured.

Agrawal et al. 1] propose the use of atomic broadcast to simplify the desigamication protocols, thus
eliminating the need for acknowledgments, global syncizadion or two-phase commitment protocols.
Four protocols are proposeddroadcast all is a naive solution that follows the state machine approach
[59] broadcasting each operation, read or write, in total otdetl replicas and waiting until its delivery to
execute it. A final commit operation is also broadcast andieghpn the nodesd]. Thus, every site delivers

all operations in the same order: independent transaatiayscommit at different orders while conflicting
operations are ensured to be executed at their delivery.ofea result, a 1ASR correctness criterion
is enforced.Broadcast writes, optimizes previous algorithm by sparing the broadcaseafiroperations
[a]. A delegate node sends a commit or abort message for itsactionT, as it is the only node where
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the read operations of were performed. Read-only transactions are committed ionthieir delegate
[b], while update transactions are committed at every replicaSR is guaranteedDelayed broadcast
writes, packs all write operations in a single broadcast at the émcosactionT. When this message is
delivered, nodes request write locks and execute writes.Wheommits in its delegate node, a commit
operation is broadcast to all sites. Assuming that reagl-wahsactions are also broadcast at the end and
a validation is performed for them, 1ASR is guaranteed. IBinsingle broadcast transactionsreduces
all communication down to a single broadcast at the end ofrtresaction, only for update transactions
(the decision to commit a read-only transaction is donellp§a] and, as a result, inversions may occur).
Readset and writeset information is contained in this ngessar each node to be able to independently
certify transactions and grant all write locks. The resgjttorrectness criterion is 1SR.

These four protocols are referenced to as protocols Al, B2ad A4 and their performance is evalu-
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ated by Holliday et al.Z9], who claim that the usage of atomic broadcast in databasiea&on protocols
simplifies message passing and conflict resolution, thusngakplication efficient, even when providing
full replication and update-everywhere capability.

The Lazy Transaction Reordering protocol was proposed by Pedone et &0] [as a replication protocol
able to reduce the abort rate of existing lazy approdéh®sreordering transactions during certification
when possible. Traditional Kung-Robinson’s certificatiorhere a delivered transactidnis aborted if
its readset intersects with the union of the writesets ofcaarnt and previously delivered committed
transactions, is thus changed for a new one where serial dodés not necessarily have to match up with
that of the atomic broadcast used to send the certificatisssatge. The reordering protocol tries to find
a position in the serial order whefecan be inserted without violating serializability. If nogition can
be found,T is aborted. The reordering nature of the protocol may irsgeaversions. As local write
operations are tentative and are only confirmed in a nonlagyging manner after certification, a serial
execution is achieved despite not using local serializedolation. As a result, the correctness criterion is
1SR.

OTP algorithm, Optimistic Transaction Processing, wappsed by Kemme et al3f] and later refined
[37]. In order to distinguish between both versions, we denwdrtitial one with the year of publication
OTP-99. In OTP-99, all accesses to the database are assumed todthdongh the use of stored proce-

n such a paperd0], an approach is identified as lazy if it locally executesmsactions and sends certification information to
the rest of the system at commit time, as opposed to eager appsaghich are identified in the paper as those that syncteoni
each data access by communicating with other nodes duringairtion execution. Note that these definitions do not matbetiof
Section2, where eager approaches broadcast the writeset and agplglitnodes before replying to the client, as opposed to lazy
approaches that send and apply writesets at remote nodesafimitting in the delegate.
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dures. Each stored procedure accesses only one of a sejoaftdienflict classes into which the database
is divided. Each node maintains a queue per conflict classder to serialize conflicting transactions at
middleware level, and has a mechanism that maintains éifferersions of the data of each conflict class
[€]. Read-only transactions can be executed at any reicai§ing the corresponding snapshat gnd
committing locally without further processing][ To provide consistent snapshots for queries, the difftere
maintained versions of the data are labeled with the indexgbsition inside the definitive total order) of
the transaction that created the versionTlfvas the last processed TO-delivered transaction at the time
a queryQ starts, then the index fdD is i.5 (adecimalindex). WhenQ wants to access some data, it is
provided with the data corresponding to the maximum vergibith is lower than the index of the query.

Update transactions are broadcast in total order to allitee p], where they will be executed in an
active way fl]. An optimistic atomic broadcast is used, so first transectiare opt-delivered in a tentative
order to be later TO-delivered in the definitive total ord&hen a transaction is opt-delivered, it is inserted
in the corresponding queue. All transactions at the heatteafueues can be executed concurreflyds
they do not conflict. When a transactions finally TO-delivered, any conflicting transactidhtentatively
ordered beford and not yet TO-delivered must be reordered (as the defirtiizé order is used as the
serialization order for conflicting transactions) Ttfalready started execution, it must be aborted and later
re-executed.T is then rescheduled before all non-TO-delivered transastin its corresponding queue.
On the other hand, when the definitive order matches thetiemtane, T can be committed as soon as it
is fully executed. After commitmen, is removed from its queue and the following transaction can b
submitted to execution.

Regarding the correctness criterion, if we consider eadiflicoclass, i.e., each division of the data-
base, as a logically different database, transactionsmgnn any of those divisions are guaranteed a 1SR
correctness criterion, as the snapshots used by quem@siallersions.

Pacitti et al. fi5] proposeFast Refresh Deferred-ImmediateandFast Refresh Immediate-Immediate

two refreshment algorithms for a lazy master replicatiostesm. In those systems, each data item has a
primary copy stored in a master node, and updates to thaitdatare only allowed in that nodé]| while
read operations are allowed in any repliah(jnversions may arise). A transaction can commit afteraipd
ing one copy. The rest of replicas are updated in separatshefransactions. Partial replication is used in
this work, but all transactions are assumed to access otdy ttata (there are no distributed transactions).
Secondary copies are stored in other servers. Write opesadice propagated to the secondary copies,
which are updated in separate refresh transactions. Tves typpropagation are considered: deferred (all
the update operations of a transactibrare multicast within a single message after the commitmént o
T) [h], and immediate (each write operation is immediately makt inside an asynchronous message,
without waiting for the commitment of) [j, I]. Read operations are not propagatedd, i, . Refresh
transactions can be triggered in the secondaries in thfesratit ways: deferred, immediate and wait.
The combination of a propagation parameter and a triggeniode defines a specific update propagation
strategy. In the deferred-immediate algorithm, a refreshsaction is started as soon as the corresponding
message is received by the node; while in the immediate-ufiate= one, a refresh transaction is started
as soon as the first message corresponding to the first aperatieceived, thus achieving higher replica
freshness. Finally, the ordering parameter defines the d¢oborder of refresh transactions. Depending
on the system topology, this ordering must be refined in a@enaintain replica consistency (secondary
copies are updated and no inconsistent state is observatie imeantime). A FIFO reliable multicast
with a known upper bound is used. This upper bound, timestaangd drift-bounded clocks in nodes al-
low the protocol to achieve a total ordering among messagesn necessary, letting refresh transactions
to run concurrentlyf]] but forcing them to wait before their final commit operatiam order to perfectly
correspond with the commitment order in the master nodegrializable isolation level in local databases
[c] allows the system to ensure 1SR. No decision phase is estjuds local concurrency control in master
nodes is enougtd].

DBSM (Database State Machine Replication)47] applies the state machine model to the termination
protocol of a database replication system. Read-only acimns are directly committed when the user
requests to, i.e., no communication is established witkratiodes and no decision process is performed
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[a, d. Update transactions atomically broadcdgtheir information (readset, writeset, updates) to the res
of nodes, where a certificatiod][is performed, checking for write-read conflicts. Succekgfcertified
transactions request all their write locks and, once theygaanted, the updates are performeld [To
make sure that each database site will reach the same stitieconflicting transactions must request
their locks (and be applied to the database) in the same thdgrwere delivered. On the other hand,
transactions that do not conflict are commutable: they dmeet to be applied to the database in the same
order they were delivered. Although different sites mayjofoldifferent sequences of states (depending on
such commutable transactions), write locks —held fromifezation to final commitment—, prevent users
from perceiving such inconsistency. On the other hand, ad-oaly transactions are not certified (they
are locally and immediately committed upon request), isiegrs are possible. The ensured correctness
criterion is 1SR.

During remote writeset application, conflicting local tsantions are aborted. Establishing a trade-off
between consistency and performance, Correia el 8|l rglax the consistency criteria of the DBSM with
Epsilon Serializability. Read-only transactions can de=éidimit in the inconsistency they import, i.e., the
aggregated amount of staleness of read data. Update ttiansadefine a limit in the inconsistency they
export to concurrent transactions. This way, during locguggition before writeset application, a local
mechanism verifies if the inconsistencies introduced byctimemitting writeset do not force a local query
to exceed its limits, or the remote update to exceed its dimit both limits are not exceeded, the local
guery can continue and the remote writeset can be applidetr®ise, the local query is aborted.

SER[35] is a protocol for serializable databases, where long loeadl locks are requested for read op-
erations, while write operations are delayed until the ehthe reading phasea]. When a read-only
transaction finishes its operations and requests commifriteis immediately committed, without any
communication with the rest of the systelm fll. On the other hand, update transactions are broadcast in
total order ]. When delivered, a validation mechanism is performgd[it not for deciding about this
transaction but about local ones not yet delivered. Thislatibn is based on locks. All write locks for the
delivered writeset are atomically requested. If there idook on the object, the lock is granted. If there
is a write lock or all the read locks are from transactionsadly delivered, then the request is enqueued.
If there is a read lock from a transactidnnot yet deliveredT; is aborted and the write lock is granted.
If T; was already broadcast, an abort message is sent. Afteottkgphase, if the delivered transaction
was local, a commit message is sent. Thus, a second messdgeel@mble, is sent for every broadcast
transaction with its final outcome, following a weak votingpaoach (the commit vote for a transaction
T¢ is sent after the delivery of the writeset &, the abort vote for a transactidn is sent before the de-
livery of the writeset ofT;). Whenever a write lock is granted, the corresponding ojmerad performed.
The queues of requested locks ensure that conflicting opesaare serially performed]. Updates of
non-conflicting transactions can be committed at diffe@uers, but the write locks prevent users from
perceiving the lack of sequentiality. Nevertheless, isi@rs may arise. The correctness criterion is 1SR.
A PostgreSQL implementation of the SER protocol, Postireaas published and further discussed by
Kemme and Alonso34).

CS[35] is a version of SER for databases where read locks are eglegfter the read operation if the
transaction will not update the object later @h. [The algorithm is identical to that of SER, except for the
decision phase, where transactions holding short read lmeknot aborted when the delivered transaction
requests a write lock in the same object. Instead, the detiveansaction waits for the short locks to be
released. This way, read operations are less affected bgsybut inversions may increase and the resulting
execution may be non-serializable. The update applicatienhanism, as in SER, allows independent
transactions to commit in a different order to that of thedlivery, although this is concealed to users by
holding write locks from decision time. Therefore, the ersucorrectness criterion is 1CS.

S1[35] is deployed upon a local database providing snapshottisnleOn request, read-only transactions
are immediately committed without any communication whk test of the systena] d, while update
transactions must be atomically broadcdgt [The sequence number of their writesets is used as end-
of-transaction (EOT) timestamp. The begin-of-transac(®OT) timestamp ofT; is set to the highest
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sequence number EQ3uch thafl; and all transactions with lower sequence numbers haverated in
the replica at the starting time @f. Certification ] is made by checking the EOT timestamp of the last
transaction currently holding or waiting to acquire a widek on an objecX with the BOT timestamp
of the delivered transaction wanting to write If both transactions are concurrent (EGTBOT), the
delivered transaction is aborted. If there is no write lockabjectX, the comparison is made with the
EOT of the transaction that wrote its current version. Nborged transactions request their write locks in
delivery order. As soon as a lock is granted, the corresmgndperation is performeds]. Again, write
locks prevent users from perceiving the lack of sequetyimlhen non-conflicting transactions are applied
at different orders in different replicas. The correctna#erion is 1SI, as inversions are not precluded.

Hybrid [35] is a combination of previous protocols SER and Sl. Reag-tnansactions are executed in
shapshot isolation mode]f they get a version of the database at their delegate gmnekng to their start
time (inversions may arise). Update transactions are ¢zddilie in SER p]. Read-only transactions com-
mit immediately without any communication with the restloé hodesd, €, whereas update transactions
are broadcast in total orded][ A validation phase based on locks is performed whenevearsgsaction

is delivered f]. Only the delegate of the transaction is able to decide ti@ Gutcome, which is reliably
broadcast at the end of the lock phase. As in SER, only logas#actions not yet delivered can be aborted.
Thus, the decision is not for the delivered transactionftrutransactions that would be subsequent in the
total order. Whenever the delivered transaction gets a Vate the corresponding operation is performed
[g], which can produce the reordering of independent trafmaxt The guaranteed correctness criterion is
1SR.

NODO (NOn-Disjoint conflict classes and Optimistic multicas@syproposed by Péi-Marinez et al.

[46] as a middleware-based replication protocol that aims tmeoe scalability of existing systems reduc-
ing the communication overhead. Data is partitioned ingjoifit basic conflict classes, which are then
grouped into distinct compound conflict classes. Each camgaonflict class has a master or primary
site, which allows the protocol to rely on the local concamgcontrol for deciding the outcome of trans-
actions f]. A transaction accesses any compound conflict class, whikhown in advance. Read-only
transactions can be executed in any nagleds a complete copy of the database is stored at each node.
Update transactions, however, are broadcast in total ¢od#l sites p]. An optimistic delivery allows the
overlap of the time needed to determine the total order Wwighttime needed to execute the transaction. For
concurrency purposes, each site has a queue associatathtbaesic conflict class. When a transaction

is optimistically delivered (opt-delivered), all sitesege it in all the basic conflict classes it accesses. At
the master site of , wheneveiT is the first transaction in any of its queues, the correspandperation is
executed ¢]. WhenT is delivered in total order (TO-delivered), if the tentatiorder was correct] can
commit as soon as it finishes execution. Then, its writesetligbly broadcast in a commit message to
all sites f], where updates are applied affeiis TO-delivered and as soon as it reaches the head of each
corresponding queué]. When all updates are applied,commits. Committed transactions are removed
from the queues. If messages get out of order, any conflittargsactionT’ opt-delivered beford and

not yet TO-delivered is incorrectly ordered befdren all the queues they have in commoRh.must be
reordered before the transactions that are opt-deliveneddt yet TO-delivered. IT’ already started its
execution, it must be aborted at the master site. Read-tantgactions are queued at their delegate node
after transactions that have been TO-delivered and bafamsdctions that have not yet been TO-delivered
[c]. Once a read-only transaction ends, it is locally comrdittéth no further communicatiord] ¢]. A
performance evaluation of an implementation of this proteeas conducted by Jiemez-Peris et al3p).

A drawback of NODO is that a mismatch between the tentativetha definitive orders may lead to an
abortion. Taking advantage of the master copy nature ofpifutcol, a new version was also proposed
in that paper 46]: the REORDERING algorithm, where a local site can unilaterally decide tongea
the serialization order of two local transactions follog/the tentative order instead of the definitive one in
order to avoid such aborts. Remote nodes must be informad Hignew execution order (this information
is added to the commit message). Restrictions apply, adegng is only possible if the conflict class of
the reordered transaction, the first one in the local temtairder, is a subset of the conflict class of the
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so-called serializer transaction, the one that comes firte definitive total order. The commit message
of REORDERING contains the identifier of the serializer saction and follows a FIFQ][order (several
transactions can be reordered with respect to the samdéizarisansaction, and their commit order in all
sites must be the same). When a transacijas TO-delivered at its master site, any non-TO-delivered
local transactiorT; whose conflict class is a subset of thaflpfs now committable (it will be committed
when it finishes execution, as if it were TO-delivered in th@eID algorithm). Local non-TO-delivered
conflicting transactions that cannot be reordered and haveed execution must be aborted. At remote
sites, reordered transactions are only committed whemwitalizer transaction is TO-delivered at that site.
Both NODO and REORDERING allow inversions and ensure theectmess criterion of 1SR.

Pronto [48] follows the primary-backup approach, so transactionstrhasaddressed to the primarg]|
Clients do not need to know which node is the primary at any erdres the first part of their algorithm
is devoted to find the current primary by consecutively agkifi the replicas. After transaction execu-
tion in the primary, Pronto sends to the backups the ordexgdenice of all its SQL sentencdyq.[ This
allows heterogeneity in the underlying DBMS as long as thapiv the same SQL interface. Possible
non determinism is said to be solved by introducing ordeirfigrmation that allows the backups to make
the same non-deterministic choices as the primary. As plicas completely execute each transaction,
Pronto assimilates to an active approach. But unlike actpéication, backups process transactions af-
ter the primary, allowing the primary to make non-detersticichoices and export them to the backups.
The certification procesg][does not consider the conflicts between transactionseddst simple integer
comparison is performed to check if the transaction wasgrelcin the same epoch where it is trying
to commit. A change in the epoch, which results in anotheresdoeing the primary, occurs when any
backup suspects the primary to have failed and broadcdstsiathe total order used for broadcasting
transactions) a new epoch message. As these suspicionsenfals®, the primary may be still running
and so it aborts all transactions in execution upon the elsliof the new epoch message. However, due to
the time it takes for the message to be delivered, it is plesHilat multiple primaries process transactions
at the same time. To prevent possible inconsistencies/edetl transactions are committed in backups
only if they were executed in the current epoch (by the cirpeimary). After termination, all replicas
(primary and backups) send the transaction results to thet§t]. As inversions are precluded by serving
all transactions in the primary, the correctness criteisdbASR.

DBSM-RAC, Database State Machine with Resilient Atomic Commit anst Pdomic Broadcast, was
proposed by Sousa et abJ] as an adaptation of DBSM for partial replication. In pdrtieplication,
nodes maintain only the transaction information that seferdata items replicated in that node. Due to
this, certification is no longer ensured to reach the samsidacat all nodes. Instead, a non-blocking
(to tolerate failures) atomic commit protocol must be runprder to reach a consensus on transaction
termination g]. But atomic commit protocols can abort transactions as $®oa participant is suspected
to have failed. This goes against the motivation for repilica as the more replicas an item has, the higher
the probability of a suspicion, and the lower the probapdita transaction accessing that item to be finally
committed. Resilient atomic commit solves this problem lgveing participants to commit a transaction
even if some of the other servers are suspected to have, failaghich it requires a failure detector oracle.
The second abstraction presented is Fast Atomic Broadc#stal order broadcast which can tentatively
deliver (FST-deliver) multiple times a message beforedlagion the final total order (FNL-deliver). This
optimistic behavior allows the overlap of the time neededéoide the total order with the time needed
to run the resilient atomic commit, thus overcoming the pigref the latter. A transactiofl must start

in a node that replicates all the items accessed pg]. Read-only transactions are locally committéd [
d, f]. Update transactions spread their information using &st &tomic broadcast]] As soon asT is
first FST-delivered, all participating sites (those regicg any item accessed By certify T and send the
certification result as their vote for the resilient atomieronit protocol. WherT is FNL-delivered, if the
tentative order was correct, the result of the resilientrd¢accommit is used to decide the final outcome of
T. If T can commit, its write locks are requested and its operagasuted as soon as they are granggd [
Whenever the orders mismatch, the certification and resigigmmic commit started fof are discarded
and the process is repeated for the final order. As in DBSMevocks prevent users from perceiving the
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lack of sequentiality caused by independent transactionsitting in different orders in different nodes.
As inversions are not precluded, the correctness critésiaSR.

Holliday et al. BQ] propose a pair of partial database replication protocaofsperting multi-operation
transactional semantics and aimed to environments wherersere connected by an unreliable network,
subject to congestion and dynamic topology changes, whessages can arrive in any order, take an
unbounded amount of time to arrive, or be completely lostvgwer, messages will not arrive corrupted).
Each site maintains an event log of transaction operatishsre the potential causality among events is
preserved by vector clocks. Records of this log are excliangh the rest of servers in an epidemic way
with periodic point-to-point messages. This exchange mssthat eventually all sites incorporate all the
operations of the system. A nodig also maintains a tablg; that contains the most recent knowledge of
N; of the vector clocks at all sites. This time-table, alsouded in the epidemic messages, ensures the
time-table property: if7[k, j] = v thenN; knows thatN, has received the records of all eventNaup to
time v (which is the value of the local clock &f;).

Transactions are executed locally. In the restricted acapgroachizpidemic restricted, a transaction
T can access only those data items that are permanently stdheddelegate node of the transaction. When
T finishes, if it is read-only it is immediately committed watht further processingg] c, §. Otherwise, its
readset, writeset (with the updated values) and timestaegtared in a pre-commit record in the delegate
node to be epidemically spread]|[ The timestamp used is tH& row of the time-table oN;, .Z[i, |,
with thei™ component incremented by one (the clock value at each naderamented every time a new
record is inserted into the log). This timestamp allows thetqrol to determine concurrency between
transactions in order to certify them. Whisihknows, by the clock information from epidemic messages,
that this record has reached all sitBs must have received any concurrent transactions initiatexther
nodes and thus has all the required information to cefifjd]. As there is no order guarantee, when
a conflict is found between two concurrent transactiond) r@insactions must be aborted. Not aborted
transactions are applied and committed at each nidde [

In the remote access approaéipidemic unrestricted, remote objects can be read and written by main-
taining a local temporary database in memory. When a locaséetion wants to read a remote data item,
the temporary database and pre-commit records from ottesr aie inspected trying to get a valid version
of the item. If no valid version is available, a request relcisradded to the event log and epidemically
transmitted §]. A site replicating that item would be able to turn that netmto a response one, storing it
at its log and transmitting it later. On the other hand, whégtal transaction wants to write a remote data
item, the current value of the item is not required and thesization can perform the write operation and
continue.

Both the restricted and the unrestricted versions of tlgserghm allow inversions of read-only trans-
actions. The updates to the local database are appliedvfoticthe causal order of the log. As a result,
1SR is guaranteed.

OTP was proposed by Kemme et aB7 (along with OTP-Q, OTP-DQ and OTP-SQ) to achieve high
performance by overlapping communication and transagirocessing in database replication systems
providing full replication and one-copy serializabili@TP is a more refined version of OTP-3%[, where
transactions were restricted to access only one conflisscl@TP only considers update transactions,
issued by clients that invoke stored procedures. Whenevéerst sends a request to a node, this node
forwards it to all sites in an atomic broadcast with optimgisielivery [a]. This primitive allows the overlap

of the time needed to determine the total order with the [msiog of the message. To this end, a message is
optimistically delivered (opt-delivered) in an initiakteative order. When the order is agreed, the message is
delivered in total order (TO-delivered). Tentative an@torders may differ. The processing of transactions
is then done in an active way: all sites execute all operstipe., there is no delegate nod#. [When the
request is opt-delivered, all required locks are requestad atomic step. This consists in queueing a read
or write lock entry in the queue corresponding to the acakdsga item. These queues are maintained by
the protocol, so concurrency control is done at middlewevell[c], deferring the execution of operations
until the corresponding lock is granted][ This way, transactions are executed optimistically, tet
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commit operation is not performed until the total order isided. If a transactiof is already executed
when it is TO-delivered, or is already TO-delivered whemnrisihes execution, this means that the tentative
order was correcflT commits and releases all its locks. On the other hand, ifsé&etionT is TO-delivered
before it finishes execution, all its lock entries are inspecAny transactiofi’ not yet TO-delivered with

a conflicting granted lock is aborted: all its operationsuaréone, all its locks are released and its execution
will be restarted later, as the tentative order was not coaadT must be executed before. Finally, all
the locks of T are scheduled before the first lock corresponding to a tctiesanot yet TO-delivered.
Independent transactions may commit at different ordersreldver, as OTP does not consider read-only
transactions and update transactions are strictly seg@linversions are avoided and 1ASR is guaranteed.

OTP-Q, OTP-DQ andOTP-SQ complement OTP with the management of read-only transztim all
these protocols requests must be declared in advance desjaeupdate transactions. Queries are only
locally executed with no communication overheadd. A basic approach is taken in OTP-Q, a qué€y

is treated as if it were an update transaction being TO-eledi: any transaction not yet TO-delivered with
conflicting granted locks is aborted and the lockQadre inserted before the first lock entry corresponding
to a not yet TO-delivered transaction. Operations are dedamtil the corresponding lock is grantedi [

Although simple, OTP-Q requires that queries know in adeaaltthe data items they want to access,
which might not be feasible due to their usual ad hoc charagtereover, queries may access many items
and run for a long time. Locking all data at the beginning Wills lead to considerable delay for update
transactions. In order to overcome these disadvantagdsraipropose OTP-DQ, which treats queries
dynamically, allowing queries to request their locks whemehey want to access a new item. To avoid
violations of the one-copy serializability, data items keeled with version numbers corresponding to
the position inside the total order of the last transactlwat tipdated them. Each update transaction is
also identified with such a version number. Queries maintaintimestamps corresponding to the version
numbers of a pair of transactions between which the quenpeasafely serialized. Each time an update
transaction requests a lock on an item read by a query, oreviethe query reads an item, timestamps
are adjusted in order to ensure that the query does not estleserial order established by the total order.
In case that it is detected that the order has been reveleeduery is aborted].

Both OTP-Q and OTP-DQ place read-only transactions prgpeside the serial order but, as queries
are not enforced to respect real-time precedence (thetepsing is local and the validation rules merely
aim for serializability), the correctness criterion is 1SR

Finally, OTP-SQ uses multiversioning for providing eachd@nly transaction with appropriate ver-
sions of all data items it wants to access, i.e., with a snatpshhis way, queries do not acquire locks,
do not interfere with updates and can be started immedififelffhe correctness criterion is the same of
OTP-Q and OTP-DQ.

RJDBC [23] is a simple and easy to install middleware that requires ndifitation in the client applica-
tions nor in the database internals. A client request aitiwe system node], which, for each operation
of the transaction, and depending on the underlying dagabascurrency control in usé]| decides to
broadcast the operation in total order to all replicelsor not (e.g., read operations in a multi-version
concurrency control providing snapshot isolation are equired to be broadcast). If not broadcast, the
operation is executed locally. Otherwise, it is sequelgt@atecuted upon delivery (the same applies for the
final commit operationd, f]). As all nodes execute all significant operations in the es@ander, no deci-
sion phase is necessamg].[ The guaranteed correctness criterion depends on thelyimdeconcurrency
control and on the decision to broadcast operatighdf serializability is used for local isolation but read
operations are not broadcast, then 1SR is provided. On tiez band, broadcasting also read operations
allows the system to achieve 1ASR. Similarly, if snapsholaion is provided, then 1SI can be achieved
without broadcasting read operations, while 1ASI requstesh a broadcast.

RSI-PC (Replicated Snapshot Isolation with Primary Copy) was psag by Platther and Alons&1]

as a scheduling algorithm for their middleware-based cafitin platform, Ganymed, where there is a
master node and slave nodes. RSI-PC takes advantage of the non-blockingenaf read operations
in snapshot isolation (read operations are never blockedritg operations nor cause write operations to
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wait for readers) by treating read-only and update traiwasin different ways, thus providing scalability
without reducing consistency. All client requests are adsed to the scheduler, which forwards update
transactions to the master node and performs load balandéihgead-only transactions among the slaves
[a]. Updates are started in the master without any dethaiid handled under snapshot (actually, under
the serializable mode of the underlying Oracle or Postgte8&abases, which is a variant of snapshot
isolation where conflict detection is performed progreslgiby using row write locks, ensuring that the
transaction sees the same snapshot during its whole lggtimread committed isolatior][ No decision
phase is necessarfj] as the local concurrency control of the master replicanisugh. After an update
transaction commits in the master, its writeset is sentecsttheduler, which has, for every slave, a FIFO
update queue and a thread that applies the contents of tbaé da its assigned replicg.[ Although this
constitutes a lazy behavior (update propagation is donefdbe transaction boundaries), this algorithm is
equivalent to an eager service as strong consistency cadwagsaguaranteed.

Read-only transactions are processed in the slaves usapgtsot isolationd], thus no conflicts appear
between writeset application and query processing in tiees| as readers are never blocked by writers
in snapshot isolation. However, to ensure strong congigtéar read-only transactions, they are delayed
until all pending writesets are applied in the selectedes[b) thus providing read-only transactions with
the latest global database snapshot. For read-only trémssithat cannot tolerate any delay there are two
choices: to be executed in the master replica (thus redticengvailable capacity for updates), or to specify
a staleness threshold. No group communication is est&libiz read-only transactions.|

As transaction-remote and client-response strategiesadr@etailed in the paper, we assume the most
plausible choiced, h. The ensured correctness criterion depends on the igolatbde of update trans-
actions and the staleness toleration of read-only traiosesctif queries do not tolerate staleness, they are
provided with inversions-free consistency.

SRCA[42] is a centralized protocol, where all transaction operetimust be addressed to the centralized
middleware, which redirects the operations to any rephtafead-only transactions are locally committed
without any global communicatior| d]. For update transactions, the group end coordinatibis[made
after the decision €] is taken by the centralized middleware. The sequentialiggtpn of writesets,
combined with snapshot isolation at database level and riamésms for inversion preclusitresults

in the correctness criterion of 1SI.

SRCA-Repwas proposed by Lin et al4P] as a middleware protocol that guarantees one-copy snapsho
isolation in replicated databases. Each replica in theegyss locally managed by a DBMS providing
shapshot isolation. The database is fully replicated, @ustictions can be executed in a delegate replica
until the commit operation is requested. Then, read-orlggactions are locally committed without any
communicationlp, d], whereas writesets from update transactions are broaticése rest of replicas in
uniform total order §]. Each replica performs a certificatiog] ffor each writeset, following the delivery
order. Successfully certified writesets are then enquend¢heitocommitqueue, to be later applied and
committed in the local copy of the database, and inviBést, which contains all the transactions applied
in the system.

To reduce the overhead of the certification, it is performetinio steps. Each successfully certified
transaction receives a monotonically increasing identifééledtid. When a transactiof requests com-
mitment in its delegate nodey, a local validation is performed: its writeset is compargéiast those of
the transactions in thecommitqueue ofRy. If any conflict is found (non-empty intersection of writege
T is aborted. Otherwise, thal of the last certified transaction Ry is set as theertvalue of T. WhenT
is delivered at remote replida, its writeset is compared against those of wedist whosetid is greater
than thecert of T. Any conflict leads to the abortion df. OtherwiseT receives itgid and is enqueued in
both thetocommitqueue and thesslist of each of the replicas.

To improve performance, a concurrent writeset applicatiorllowed. When some conditions are

12Remember that, in snapshot isolation, inversions are comtbezly precluded if the snapshot provided to transactaingys
corresponds to the latest available snapshot in the entiters. Optimistically, transactions may get an older snapkhbbe
restarted (getting a new snapshot) when the inversion ectist.
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satisfied'® several non-conflicting transactions from tteeommitqueue are sent to the database to be
applied and committed. This can alter the commit order, iogusolesand breaking the sequentiality.
Thus, new local transactions must be prevented from stpfdijnas long as there are holes in the commit
order. The correctness criterion is 1Sl, as inversions argmecluded.

DBSM* was proposed by Zuikeiute and PedonebB] as a readsets-free version of DBSM. Local isola-
tion is still managed with 2PL, but the certification testaugs the first-committer-wins rule of snapshot
isolation. In order to maintain the original 1SR, a conflictarialization technique is used. The database
is logically divided into disjoint sets, and each one is gisad to a different node, which is responsible
for processing update transactions that access thabjséR¢ad-only transactions, on the other hand, are
scheduled independently of data items accesapdAn additional control table containing one dummy
row for each logical set allows the materialization of waigad conflicts, in order to be detected in the cer-
tification. This way, a transaction that reads data from eaoterfogical set is incremented with an update
to the corresponding row in the control table. As inversiares not precluded, the resulting correctness
criterion is 1SR.

PCSI Distributed Certification [20] provides prefix consistent snapshot isolation (PCSI) ranfof gen-
eralized snapshot isolation (GSl), which is equivalent3t In this distributed certification protocol, read-
only transactions directly commit] without communicating with the rest of nodes pnd update trans-
actions broadcast their writeset in total ordef &nd are later certifiedd] and applied at each replica.

Tashkent-MW and Tashkent-API were proposed by Elnikety et aR]] with the goal of uniting both
transaction ordering and durability, whose separatiommrmmon database replication systems is claimed by
these authors as being a major bottleneck due to the highssastiated to sequential disk writes required to
ensure in the database the same commit order decided in dlidenvare. The replication system proposed
is compound of a set of database replicas and a replicatéfiereresponsible for validating transactions
[d] and providing replicas with remote writesets. A snapskotated database is used in each replica,
where read-only transactions are locally committed (nadedibn nor communication needed, [c, §).
When an update transactidnfinishes in its delegate, it is sent to the certifigl; Wwhich replies with the
validation result, the writesets generated in remote ecapliand the commit order to be enforced in all
nodes. The delegate then applies remote writesets and ¢smmabortsl, depending on the validation
result and respecting the global order imposed by the aartifi

In Tashkent-MW, durability is moved to the middleware anus, commit operations are fast in-
memory operations, which are done serially to ensure thessglobal order at each replica. Writesets
are also serially sent to the databafe lput synchronous writes to disk are disabled. On the coptia
Tashkent-API, commit ordering is moved to the underlyintalase management system, which is modi-
fied to accept a commit order, so multiple non-conflicting@sgets can be sent concurrently to the database
[h] while ensuring the correct commit order. This way, the Hate can group the writes to disk for ef-
ficient disk 10. In both protocols, the transmission of ws#s to remote nodes is completely decoupled
from transaction execution, as it is done as part of the repthe certifier to the requests of other nodes
[d]-

Both in Tashkent-MW and Tashkent-API, the commit orderdietd by replicas is the same. However,
the state of the underlying database replicas is updatedduping multiple commit operations into one
single disk write. As this grouping is not forced to be the samall replicas, servers will not follow
the same exact sequence of states: some of them may omit smmaediate states that were present at
other servers? Nevertheless, this does not impair consistency and 1Shyassions are not precluded) is
guaranteed.

13The conditions that must hold to send a writéBéb the database of repli¢are: (a) no conflicting writeset is ordered befdre
in thetocommitqueue; and (b) eithér is local or there are no local transactions waiting to staR or T does not start a new hole.
4magine a Tashkent system with an initial state, or versign, There are three nodes in the system and each one starts the
execution of a local update transactidty:executed:, Ry, executed, andR; executeds. If all the transactions are independent, they
will all positively pass their validation at the certifierufgoseT; finishes the first. The certifier responds with the positiveisien
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DBSM-RO-opt [44] aims to extend the DBSM replication in order to provide isiens-free consistency
[c] among the nodes. To do so, an optimistic approach is followead-only transactions are locally
executed in their delegate replica but are also atomicadigdicast when the user requests to comajjtgo
both read-only and update transactions are checked, lp&inwvrite-read conflicts: read-only transactions
are inspected only by their delegate replica, while updatesactions are certified by each replica in the
system p]. This avoids inversions and, as a result, the correctritesion is 1ASR.

DBSM-RO-cons[44] also aims to extend the DBSM replication in order to provildesrsions-free con-
sistency but, in this case, a conservative (pessimistipjageh is followed: read-only transactions are
atomically broadcast when they begaj fnd are executed only when all update transactions ordered
fore are committed in the executing replica. This meanstbabnly the group-start communication is
synchronous but the query must also wait for all pendingeséts to be applied (this extra waiting time
could be considered as a late occurrence of a deferred ttaosaervice, Tsl). Update transactions do not
need to be broadcast at start tinbg When finished in its delegate replica, a read-only transactoes not
need any further communicatiog] [nor any certification €], but update transactions must broadcast their
information in total orderd] and undergo the usual conflict checking procégsihe resulting correctness
criterion is the same than in DBSM-RO-opt.

Alg-Weak-SI [18], as well as Alg-Strong-Session-Sl and Alg-Strong-Sl.gediin a system with a primary
replica and several secondary nodes, where clients serghtgons to any replica. Read-only transactions
can be executed in the secondaries (without any further aorimation with the rest of nodesg]], but
update transactions are forwarded to the primatyThis protocol follows a lazy propagation of updates,
S0 no communication is established during the lifetime ahsactionst]. Instead, local concurrency
control in the primary replica is the only responsible fociding the outcome of update transactiook [
whose start, updates and final operation (commit or aba@t)egistered in a log which is later used to lazily
propagatef]] these operations in order (a FIFO order is required, whicivides a total order broadcast
as there is only one sender) to the secondary replicas. Tiangeprocess inspects each log entry: a start
operation is immediately propagated; update operatiamaerted in the update list of the transaction they
belong to; a commit entry for transactidncauses the broadcast of this operation along with the ufidate
of T; an abort entry of transactioh is also propagated, discarding in this case the correspgngidate
list. In the secondaries, delivered messages are bufferthé updatequeue and processed in order. When
the start message @ is processed —after waiting for tpendingqueue to be completely empty—, a refresh
transactionl; is started. When the commit messageTofwith the updates associated) is processed, a
new thread is created to apply the updatediafsing transactiof;’, and the commit operation & is
appended to thpendingqueue. This allows the protocol to concurrently apply veetis while ensuring
the same commit order of transactio. [As read-only transactions are executed in secondarjcespl
without inversion preclusion, inversions may occur (qegmay get an old snapshot). Thus, the correctness
criterion is 1Sl p].

Alg-Strong-Sl andAlg-Strong-Session-S[ 18] guarantee strong snapshot isolation (1ASI) and strong ses
sion snapshot isolation (1SI+), respectivadly While 1ASI avoids all inversions, 1SI+ prevents inverson
within the same user session. In order to provide 1Sl+, aiarenrsumber is assigned to each session,
corresponding to the version installed by the last updatestiction in that session. When a read-only
transaction of the same session wants to start, all wriesith version numbers inferior to the session

but it does not have any pending writesetiRar so this node commif§;, reaching (from versioxp) versionv; (corresponding to the
updates ofT1). Now R; finishes the execution df and sends it to the certifier, which responds with the pasiiecision and with
the writeset ofT;. As transactions are independeRg, sends them together to the database, which writes their cenmmét single
disk write, thus moving from versiow, directly to versionv, (corresponding to the updatesBf andT,). Finally, R; finishes the
local execution offs and sends it to the certifier, which responds with the pasitiecision and with the writesets of andT,. Rs
applies the three transactions in a single disk write, trassing from versiong to versionvs (corresponding to the updates of the
three transactions). This way, the three replicas end Wigtsame final state and no other possible transaction has blecto @ee
any inconsistent state, but the sequences of database diféee from replica to replica.
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version number must be applied in the secondary replica frithe start of the read-only transactiaj. [

If, instead of having one session per client, there is a siagksion for the system, then 1ASI is provided.
Update transactions can start immediately as they are etluted in the same primary replidal.[ Apart
from this, these protocols are identical to Alg-Weak-SlI.

One-at-a-time and Many-at-a-time [58] are two termination protocols that extend DBSM to provide a
guasi-genuine partial replication, where a node perménstares not more than the transaction identifier
for those transactions that do not access any item repligatdat node. To avoid consequent unnecessary
abortions, a non-trivial validation is performed, basedjoorums. A transactiom can only be executed
on a site that replicates all items accessedry]. Read and write operations are executed locally ac-
cording to the strict two-phase locking rulgl[ When a read-only transaction requests commitment, it is
locally committed €, e, d. In the case of an update transaction, the transactiomt{fée, delegate site,
readset, writeset with updates, and the logical timestafripeotransaction submission) is broadcafit [

in aweak ordering reliable broadcasan optimistic primitive that takes advantage of networkdiasare
characteristics to deliver messages in total order with Ipigobability. A consensus procedure is used to
decide the total order of delivered transactions. The mierat validation consists in a voting phase where
each site sends the result of its validation test to the fesbdes. Each site can then safely decide the
outcome of a transactioh when it has received votes from a voting quoruniroff], i.e., a set of sites
such that for each data item read Bythere is at least one site that replicates this item. ldstédirst
using consensus to determine the next transadtiand then executing the voting phase Tqra different
approach is taken, overlapping both processes. In the badhae algorithm, each site votes for its next
undecided transactioh and proposes it for consensus. By the time the consensuseddor transaction

T, luckily every site will already have received the votesTorlf consensus decides a transaction differ-
ent from that voted by a site, a vote message is sent for theetbtransaction. When a transaction is
successfully validated, it is applied in the sitg &nd the global version counter used to timestamp trans-
actions is increased. This algorithm validates one traimsaat a time, which can be a bottleneck if many
transactions are submitted. The many-at-a-time algorithinch does not rely on spontaneous total order,
tries to solve this by proposing sequences of transactiodshanging the validation test accordingly. As
inversions are not precluded, the correctness criteriaSR.

k-bound GSI [4] is able to bound the degree of snapshot outdatedness frataxed GSI (1SI) to a
strong SI (1ASI), while optimistically executing transacis; and it also provides a serializable level for
those transactions requiring higher isolation (1SR). Asl®BMSs are only required to provide snapshot
isolation, serializable transactions are parsed in oméransformSELECT statements intGELECT FOR
UPDATE ones. This simplifies the detection of write-read conflietkich are then governed by the first-
committer-wins rule.

Two snapshots taken at the sameal time in different replicas may be different, as only states a
the samdogical time are guaranteed to be consistent. To allow an optiméstcution, before the first
operation of each transactidn an asynchronous.ID message is broadcast in total orda); fo that the
logical starting time ofl can be established. Then, the optimistic executioi overlaps with the time
required to complete such initial communication. MoreoVespecifies a valuk as the maximundistance
between the snapshot it took (corresponding to the realdirite start operation) and the snapshot created
by the last transaction that committed in any system noderedf started (corresponding to the logical
time of the start operation df). This distance is measured as the number of colliding settethat are
applied in the delegate node Bffrom the real starting time of until its logical starting time (the delivery
of T.ID). A colliding writeset is a writeset that has a non-emptyeisection with the intended readset
of T, which has to be declared in advance. When the number of icglidritesets is greater thdqg T
is aborted and will be restarted whanD is processed. Thus, witk= 0, the transaction is executed
under 1ASI; withk > 0, the achieved correctness criterion is 1Sl (authors, dblight the possibility of
defining different staleness levels, refer to the diffetsmind valuedor the GSI criterion, as opposed to
the standard GSI, which occurs with an infinite valu&jpfOverloading the meaning &f a value of—1
indicates thall requires serializability.

When a read-only transaction finishes its operations, itdallp committed (after receiving its own
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T.ID message and as long as it has not been aborted in the meafatinransactions with G k < o)
without any communication with the rest of nodés {l], whereas the writeset of an update transaction is
broadcast in total order to the rest of replicek A certification processd] is performed in every replica
for each delivered writeset. In order to avoid sending retajshe decision for serializable transactions is
taken in their delegate nodg and then broadcast to the rest of nodes.

Tashkent+[22] was proposed as an evolution of Tashkent-MW where a meraagre load balancing is
performed in order to further minimize the disk 10 requirense Changes to the previous system include
the addition of a scheduler, with different scheduling althpons, and an optimization, called update filter-
ing, for reducing the update propagation load. Transadipes are predefined and the scheduler is able to
estimate the amount of memory, called working set, that ggahwill need. With this information, authors
use a bin packing heuristic to group transaction types datle& combined working sets fit together into
the available memory, thus avoiding memory contention at$equent disk 10. Servers are assigned to
transaction groups and this allocation can be dynamic fangimg workloads. Different proposed sched-
uling algorithms differ in the way the working sets are estied. This way, each transaction is dispatched
to a server assigned to its transaction graajp [

Update filtering consists in identifying unused tables iep@lica (those not accessed by the transaction
group to which the replica is assigned) and filtering out thdates to those tables, thus reducing the
overhead of update propagation. This optimization is omgsible under stable workloads, i.e., when
the assignment of replicas to transactions groups is pemtaithis way, Tashkent+ is essentially a fully
replicated design but may, under some conditions, prelerddvantages of partial replicatid].[

Apart from the changes explained above, the rest of the myaterks as in Tashkent-MW. Authors
claim that the correctness criterion is 1SI+ (inversiorecprded within sessions), as a given connection
can execute only one specific transaction type and will bes,thlways assigned to the same group of
replicas. But no details are provided about how all replicathe same group are atomically updated or
how they provide transactions with updated snapshotsdtzsar of the replica where the transaction starts.
Thus, the correctness criterion is here considered to bgclSI

Mid-Rep is a pessimistic weak voting protocol proposed bgréa et al. 3] that provides three different
correctness criteria on top of a DBMS supporting SlI: 1SR, [1a&f8l 1SI. Transactions define the criterion
they require. For 1SR transactions, 8fLECT statements are turned INBELECT FOR UPDATEONeS.

For 1ASI transactions, a start message is sent in total ¢cfl@nd the transaction must wait for its de-
livery to proceed. When a read-only transaction finishespesations, it is immediately committed at its
delegate replica and no further processing is required. h@rother hand, update transactions broadcast
their writeset in total order to all available replicas, ahwill apply them sequentiallyd] and terminate
(commit or abort) each transaction according to the votimgsage sent by the master site (the delegate)
of the transaction. During writeset application, no otheteptially conflicting local operation is allowed

to start: all write operations and also read operationsoperdd by 1SR transactions are thus disablidd [
(read operations from 1ASI or 1SI transactions are not dedda]).

SIRC [56] concurrently supports snapshot and read committed isalas long as both levels are provided
by the local DBMS §]. Read-only transactions are locally committed withowy aammunication with
the rest of replicash], d], while update transactions are broadcast in total orderHor S| transactions,

a certification based on write-write conflicts is performefd RC transactions do not need any decision
phase {l]. Writeset application follows the delivery order.

Serrano et al.[60] propose a replication protocol aimed to increase scdtiatof traditional solutions,
commonly based on full replication and on a 1SR correctnégsrion. These two characteristics are
claimed to introduce an important overhead and to limit corency. Consequently, their proposal is to
use partial replication and a more relaxed correctnesaricnit, 1SI, where inversions are not precluded
and underlying databases are snapshot-isolated. Thé¢ @tienects to a siteg] that at least stores the data
accessed in the first operation of the transactio his node acts as the coordinator, assigning a starting
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timestamp tal' and redirecting operations][to other nodes when necessary. In those other ndGdesjst

use the same snapshot, the one corresponding to its stimegfamp. To this end, each node starts dummy
transactions each time that a transaction commits. Wherethieected operation is the first operationtof

in the forwarded node, the corresponding dummy transadiassociated td (later operations will use
the same transaction). Prior to execute each redirectedtop® the changes previously producedTby
are applied at the forwarded site (naturally, only thoseaiig data stored at that nodé)] [remember
that the transaction-service policy applies at each ppatimg node in the case of distributed transactions).
After execution, the forwarded site propagates the resutieoperation and all the new changes to the
coordinator, which applies these changes before exectlimgext operation. When the client requests
commitment of a read-only transaction, the coordinatorticadts a commit message to all participating
sites M] (there is no need for validatiori] nor execution in remote nodek]]. In the case of an update
transaction, the coordinator broadcasts its writesettad twder E]. All sites perform then a certification
[g]. If certification succeeds, all nodes apply the writesebge nodes that have already performed some
operations ofl apply only the missing updates) in a non-overlapping whgrd T can commit.

Zuikeviciute and Pedonér[] proposed a scheduling algorithm for the DBSM replicatiootpcol. Aborts
can be reduced if conflicting transactions are executeddrséime node, thus letting the local concur-
rency control appropriately serialize them. On the othedhaarallelism improves performance, reducing
response times. Considering this trade-off, a hybrid laddring technique is proposed, which allows da-
tabase administrators to give more or less significance minmiing conflicts or maximizing parallelism.
Maximizing Parallelism FirstMPF, prioritizes parallelism and so it initially assigns transons to nodes
trying to keep the load even. If more than one option exibem it tries to minimize conflicts. Minimizing
Conflicts First MCF, avoids assigning conflicting transactions to differerdes If there are no conflicts,

it tries to balance the load among the replicas. A comproinég@een the two opposite schemes can be
achieved by a factdt This way, update transactions are analyzed and a spegificaés chosen to be the
delegatep]. On the other hand, both techniques assign read-onlydcioss to the least loaded replica
[a]. Apart from this novel scheduling, the followed strategere the same as in DBSM and, thus, the
correctness criterion is also the same.

WCRQ [53] is a bridge between consensus-based and quorum-basézatiepl. Underlying databases
provide serializability, using long read locks for readimgerations and deferring write operations until
the end of the reading phasal.[ When an update transactidnfinishes in its delegate replica, a uniform
total order broadcast] is sent to the rest of replicas with the transaction write¥&hen it is delivered,
each replica tries to get write locks for each item in the egétt ofT. If there was one or more read locks
on an object, every transaction holding them which is notsgeialized is aborted (by sending an abort
message in uniform total order if it was already broadcastyl the write lock is granted 6. If there
was a write lock in the object, or if some read locks are froams$actions serialized befoflg T waits
until those locks are released. When a replica gets all tHeslota transaction, it sends a point-to-point
acknowledgment message to the delegate. When the dele¢gstldle write locks of the transaction and
receives acknowledgment from a write-quorum of replidasemds a commit message in a uniform reliable
broadcast. When this message is delivered, every replicangsrthe transaction. As these messages are
not ordered, independent transactions may commit at difterders in different nodes. When a transaction
commits, all other transactions waiting to get write loakstie updated objects are aborted (their delegate
sends an abort message in a uniform reliable broadcast). \Whead-only transaction finishes in its
delegate replica, a message with the readset is sent to @ueadm of replicaslf]. When this message

is delivered, replicas try to get read locks for the items los readset. When the locks are acquired, if
the version is the same as the one read in the delegate, fi@mregnds back a positive acknowledgment
message. Otherwise, a negative acknowledgment messagpt.isls any case, read locks are released
as soon as this validation is done. When the delegate recedstve acknowledgments from a read-
quorum of replicas, it commits the transaction. Otherwicany negative acknowledgment is received,
the transaction is aborted. For both read-only and updatesactions, a quorum of replicas is required to
get locks on the items and check that the current versionscaral to the accessed versions in the delegate
[d]. As transaction-remote and client-response strategees@ detailed in the paper, we assume the most
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plausible choiced, f]. Inversions are avoided by ensuring that queries do nat o&hvalues. As a result,
the 1ASR correctness criterion is guaranteed.

AKARA [16] allows transactions to be executed either in an active arpassive manner (in both cases,
interactivity is precluded). Upon transaction submisstbe type (either active or passive) and the conflict
classes of the transaction are computed, and an initidldatar broadcast is sent with transaction informa-
tion. After delivery, and once the transaction is the firsthe processing queue, the transaction is started
[b] (this introduces an additional wait to the synchronoussage transmission, for both active and passive
transactions). For passive transactions, a local exetptiase is performed and afterwards the writeset is
reliably sent to the rest of replicag] [to be applied following the total order established by theaolcast
sent at transaction start. For active transactions, nd fit@se existsd]: transactions are initiated, exe-
cuted and committed in all nodes at the same logical time: ¢dhtheir slot inside the total order). No extra
communication is needed for these transacticiisAs isolation corresponds to the snapshot level and no
mechanisms avoid inversions, the ensured correctness@iig 1SI.

Zuikeviciute and PedonesP] characterized different correctness criteria for regilicl databases and pre-
sented three variants of BaseCON, one for each of the disdussrectness criteria. WitBaseCON for
1SRtransactions are serialized but the causal order may notdsegved. IrBaseCON for SC(session
consistency), transactions are serialized and the maal-trder of those belonging to the same user session
is also preserved and, thus, clients can always read theirpsevious updates (this corresponds to the
1SR+ correctness criterioB9]). These two variants are identical except for the way theedaler selects
the executing replica for read-only transactioals [n BaseCON for 1SR, all replicas are considered and
the transaction is forwarded to the least loaded one; in®@séfor SC, the scheduler considers only those
replicas where previous update transactions of the sanseordsave been already applied. Once in the
executing replica, read-only transactions start as sodhegsare receivedc] and are committed locally.
On the other hand, update transactions are broadcast Irotd&x to every replica in the systerb][and
executed in active manner, so no local phase exi$tsStrict two-phase locking is used to achieve serial-
izability [€]. No decision phase is requiref] Bs all transactions can commit, but update transactiorss mu
wait [g] for all previously delivered conflicting update transaat to commit in this replica before starting.
The commit order of all update transactions is required tthbesame as their delivery order. Transaction
results are sent from each executing replica to the scheduéh sends to the client only the first of the
replies h].

The third version of the protocol by Zuikeiute and PedonebP)] is BaseCON for strong 1SR which
always preserves the real-time (or causal) order of trdiogecin their serialization. To this end, some
changes are applied to previous systems: read-only trémsa@re directed to the scheduler but also
broadcast in total order to all replicas, like update tratisas p].1® The scheduler then determines, for
the read-only transaction, the set of replicas where piegeghdate transactions of any client have already
been committed. From this set, the scheduler selects theltealed server, where the query immediately
starts its optimistic execution. When this transaction ié/deed in the chosen replica by the total order
broadcast, a test is performed to check if the schedulerhsged since this transaction was scheduled.
In this case, the transaction is aborted and restarted. chask allows the system to tolerate failures
and cannot be considered as a decision, as the transactiapsatommits. Inversions are precluded by
scheduling read-only transactions to updated replicas, dlchieving 1ASR correctness criterion.

gB-SIRC [57] is deployed upon a database offering both read committeldsaapshot isolation levels
[b]. This protocol provides several correctness criterize based on the read committed isolation (1RC)
and another based on snapshot isolation, with a configulamé of staleness, defined by factprfrom
1ASI (or strong Sl) withg = 0, to 1Sl (or standard GSI) with an infinite valuegflntermediate values of
factorg allow transactions to define the exact amount of outdatesthey can tolerate (authors refer to this

ISHowever, unlike update transactions and despite beingligiet cequest addressed to all replicas in the system, oelythule
chosen by the scheduler will execute the transaction, g the client request.
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non-standard criterion @asBound). Similarly tok-bound GSI, all SI-based transactions (those providing a
value forg) broadcast an asynchronolisD message in total order when they stait {vhich allows their
optimistic execution while establishing a global startpajnt that would be enforced when transactions
abort due to a number of conflicts greater tigaiRRead-only transactions can be locally committed without
any global communicatiorc| €: RC queries commit as soon as they finish their operatiohdevél ones
must wait to the processing of thdirlD message and, if they have not been aborted during the meantim
they can be locally committed. Regarding update transastionce they finish their operations, their
writesets are broadcast in total ordd}.[For 1RC update transactions, no decision phase is impitade
[€]. All other update transactions are certified in search foteawrite conflicts f]. Whenever a writeset

is committed in a replica, local Sl-based transactions alidated in search for write-read conflicts with it
[g], which are tolerated in a number upgoWritesets are applied in a non-overlapping manner. InvBssi
are precluded only for 1ASI transactions.

4.2 Scope of the Proposed Model

The policy-based characterization model proposed in @e8tand used for this survey is intended to be
general enough to cover all possibilities in replicatioatsyns, thus providing a tool able to represent their
basic skeleton. The set of strategies followed by a reptinatystem constitutes its operational basis and
allows an adequate comparison between systems.

Obviously, many finest-grained details, like optimizaan concurrency control rules, are not covered
by this characterization, as intending otherwise wouldltés an extremely complex model. Thus, there
is a trade-off between simplicity and completeness.

Moreover, and despite our efforts, this model is not validdi replication systems. This is the case
of distributed versioning3], a replication protocol tailored to back-end databasetyafimic content web
sites, characterized by presenting a low rate of updateatipes. This protocol aims to achieve scalability
while maintaining serializability. The cluster architei for distributed versioning consists of an appli-
cation server, a scheduler, a sequencer and a set of dataiptisas. In order to achieve serializability,
a separate version number is assigned to each table. Easladtion issued by the application server is
sent to the scheduler, specifying all the tables that areggtm be accessed in the whole transaction and
whether these accesses are for reading or for writing. Thedsder forwards this information to the se-
guencer, which atomically assigns table versions to besaeckby the operations in that transaction. This
assignment establishes the serial order to be enforcedllamd @aransactions to concurrently execute op-
erations that do not conflict. All transactions can commdd); those conflicting will follow the serial
order dictated by the sequencer. New versions become bleilen a previous transaction commits or
as a result of last-use declarations (an optimization fduecang conflict duration). After the assignment
for transactionT is completed, the application server can start to submibgiegations off . The conflict-
aware scheduler is able to forward a read operation to tiselle@ded updated replica. Write operations are
broadcast to all replicas and actively executed. This adiregicould be interpreted as a Cqz2 for reads and
Cq4 for writes. However, in this case it is not the whole tesnti®n which is scheduled but each single op-
eration inside the transaction. It could also be represeades|3 and Ge3 for write and commit operations,
but the communication initiative is not taken by a servercexieg the affected transaction. Indeed, no
communication is ever established among replicas. Insesauth operation sent from the application server
is forwarded by the scheduler to the corresponding redjcahich execute them independently. Thus,
communication is done only between the application semdrthe scheduler, and between the scheduler
and the replicas. Once in a replica, an operation must wadlfds version numbers to be available, which
could be represented as Ts1 or Trl-p (although, again, itithe transaction start which is deferred but
the start of each single operation inside the transacti@ohcurrency control is thus made at middleware
level (the database isolation level is not detailed in theepa Once a replica executes the operation, it
returns its results to the scheduler. The first reply reckEbsethe scheduler is sent back to the application
server (Crl). As read operations must wait also for thesieernumbers to be available before starting, the
correctness criterion is 1ASR. In summary, the main prolftardescribing distributed versioning with our
model is that this system divides transactions into thalividual operations and, while the management
of each of these operations can be represented with ouegieat the handling of the whole transaction
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cannot be depicted by our model.

A similar middleware-based system is presented by Cecthéef@3] for clustering back-end databases
of large web or e-commerce sites. C-JDBC also features alatdrethat sends update operations to all
involved servers while performing load balancing for regemtions. But in this case, client requests
contact a server and each server contains a scheduler centp@+JDBC supports both full and partial
replication, while ensuring inversions-free consistebeyween replicas: at any single moment, only one
updating operation (write, commit or abort operation) ipingress in the virtual database, and responses
are returned to the client only once all servers have precesgse request. The correctness criterion will
then depend on the isolation level offered by the underlylatabases. As for the previous system, the
processing of each single operation can be depicted withmmdel, but that of the whole transaction
would constitute a loop of such a representation of singeratmons.

4.3 Discussion

Chronologically ordered characterizations of TaBummarize the evolution of database replication sys-
tems since their appearance. Earlier systems —distrilasitsthases with some degree of replication— were
devoted to provide the highest correctness criterion, LABRg to this end the serializable isolation level
in local databases and rigid synchronization mechanisrhsyited from standalone database management
systems, such as distributed locking for concurrency ob(irhich involves a linear communication with
other servers), or an atomic commit protocol like 2PC (whietjuires several rounds), in order to reach
a consensus among participants about transaction teforiretd thus ensure consistency. Examples of
these earlier systems are 2PL & 2PZ3][ BTO & 2PC [7], Bernstein-Goodmarf], OPT & 2PC B1] and
O2PL & 2PC [L2]. However, these mechanisms restricted concurrencysewesely reducing performance
and scalability.

Research efforts focused then on improving these factgirggtto reduce communication and replica-
tion overhead with new concurrency control algorithms amtewefficient termination management, local-
izing the execution of operations in delegate or mastes s$ienplifying termination with the use of group
communication systems, using optimistic communicatiomipives, considering different topologies, re-
laxing isolation and consistency or introducing partigdli@ation schemas. One example of such relaxed
isolation, which is still valid for a wide range of applicatis, is the snapshot isolation level. An interesting
feature of snapshot isolation is that read operations arertdocked by write operations, nor cause write
operations to wait for readers. S| became popular and matapase replication systems started to pro-
vide this isolation. Some systems exploiting this level affdring correctness criteria based on snapshot
isolation are SI35], RSI-PC b1], SRCA and SRCA-Rep42], PCSI Distr. Cert. 20], Tashkent-MW and
Tashkent-API 21], Alg-Weak-SI, Alg-Str.-SI and Alg-Str.Ses.-S1§], k-bound GSI #l], Tashkent+ 22,
Mid-Rep [33], SIRC [56], Serrano et al.§0], AKARA [ 16] andgB-SIRC [57].

Other proposals aimed at adaptability, designing systdnesta provide different consistency guaran-
tees that would fit better the requirements of modern apics, which usually include different types of
transactions that require different levels of isolatiornisTled to a new generation of protocols that sup-
port different correctness criteria at the same time (sscdR@I-PC 1], k-bound GSI §], Mid-Rep [33],
SIRC [56] andgB-SIRC [57]), which improved performance by executing each transadt the minimum
required level of isolation.

Considering each policy separately, it is clear that in soases there is a majority strategy with very
few exceptions, while in other policies there is no pronashtrend towards any specific strategy. Some
choices may have strong implications in consistency orgperance, and this may make systems favor
ones against others. Let us analyze each policy in detalil.

The most used client-request (Cq) strategy is Cql: any seaveprocess a request. This policy allows
an easy management of requests and load balancing, altliotegfuires a correct global concurrency
control in order to avoid inconsistencies. On the other haydtems that use primaries or master sites
may rely on the local concurrency control of such nodes batire client requests to be addressed or
forwarded to such servers (Cg2). This is the case of AlsBerg{2], Fast Refresh Df-Im and Fast Refresh
Im-Im [45], Pronto §8], RSI-PC F1], DBSM* [68], Alg-Weak-SI, Alg-Str.-SI and Alg-Str.Ses.-S1],
and Tashkent+72]. Cq2 is also used by systems that provide partial repboadind need to address client
requests to a server containing the data required by thetpe(DBSM-RAC B3], One-at-a-time and
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Many-at-a-time $8], Serrano et al.g0]). Other systems also use Cq2 because they require traorsatd

be addressed to updated replicas, in order to provide strampsistency, such as BaseCON for $9]
Finally, scheduling algorithms MPF and MCF(J] may also select a specific server in order to minimize
abortions by executing conflicting transactions at the saoge, thus relying on local concurrency control
to appropriately serialize transactions.

Forwarding the client request to all system nodes (Cqg4) atad order broadcast is a possible approach
for establishing an early synchronization point. Systeohsas NODO and REORDERINGI§], and
the families of OTP 36, 37] and BaseCON{9] implement such a client-request policy. Systems that
require total order guarantees for synchronizing tramsaexecution must wait for such a communication
primitive to agree on the delivery order. NODO and REORDERIMove their synchronization point to
the start of the transaction and use an optimistic delivérgkvallows the system to overlap the time needed
by the GCS for the agreement with the time needed to execatgahsaction. By the time the delivery
order is decided, the transaction has already progresdbdta/operations in its delegate server. On the
other hand, both OTP and BaseCON families follow a Cg4 pafioyrder to execute update transactions
in an active manner, while queries are executed at only averse

Surveyed systems mainly follow, in their transaction-gan\policies (Ts), the strategy of immediate
service (Ts0), under which transactions are started as a®dhe server has enough free resources. In
some cases, it is necessary to block the processing of tt@orsswuntil some condition holds (Ts1). This is
the case of several systems: NODO, REORDERINMG,[OTP-Q and OTP-DQJd7], where concurrency
control is done at middleware level and thus transactionstwait for the end of previous conflicting
operations in order to be started; RSI-F81][ Alg-Str.-SI and Alg-Str.Ses.-SlLB], where the service of
transactions is deferred to guarantee stronger consyst8RCA-Rep f2], where local transactions must
be prevented from perceiving the lack of sequentiality; {Rielp [33], where potentially conflicting local
operations are disabled during writeset application; &edatgorithm by Serrano et ab(], where cohorts
of distributed transactions must apply the updates of pts/operations of the transaction (served by other
nodes) before executing the requested operation in theaf tatabase.

Systems that actively execute transactions (OTP3&p OTP, OTP-Q, OTP-DQ and OTP-S@T],
AKARA [ 1€], BaseCON for 1SR, BaseCON for SC and BaseCON for strong 69JRdre said to imple-
ment the strategy of no local service (Ts2) for those actaesactions.

Regarding group-start (Gs) strategies, only few systemgime to make a communication at transac-
tion start, thus establishing a global starting point fangactions. That is the case of DBSM-RO-cons
[44], which totally orders queries to provide 1ASRpound GSI ], Mid-Rep [33] and gB-SIRC [57],
which guarantee 1ASI by totally ordering transaction steahd AKARA [L6], which moves the required
synchronization point to transaction start and allowsvacind passive transaction processing.

With regard to the degree of replication (Dr), earlier sysie(2PL & 2PC p4], BTO & 2PC [7],
Bernstein-GoodmargQ[, OPT & 2PC B1], O2PL & 2PC [L2]) were mostly distributed databases where
replication was not widely used (Drl). After the generdl@aof full replication (Dr2), only few systems
(Fast Refresh Df-Im and Fast Refresh Im-14%5], DBSM-RAC [63], Epidemic restricted and Epidemic
unrestricted 30], One-at-a-time and Many-at-a-timé§], Serrano et al.g0]) feature partial replication
(Dr1), mainly to minimize the cost of update propagation apglication, although other mechanisms or
constraints must be applied for the correct managemenduegaction execution.

To alleviate their complexity and allow replication protégto focus on their native purpose of ensuring
replica consistency, systems usually delegate local cogrmey control to the DBMS with the appropriate
isolation level (Di) for which the protocol has been conee€iv Depending on the correctness criterion,
systems require local DBMSs to provide different isolat®rels. Thus, earlier systems and those requiring
a high level of isolation (2PL & 2PC2M], Bernstein-Goodmarg], O2PL & 2PC [L2], Bcast all, Bcast
writes, Delayed bcast writes and Single bcast transacfitingast Refresh Df-Im and Fast Refresh Im-
Im [45], DBSM [47], Pronto B8], DBSM-RAC [63], Epidemic restricted and Epidemic unrestrict&a][
DBSM* [68], DBSM-RO-opt and DBSM-RO-congfl], One-at-a-time and Many-at-a-timgg], MPF and
MCF [70], BaseCON for 1SR, BaseCON for SC and BaseCON for strong &SJ[Rrely on the serializable
isolation level (Di3) of their underlying databases, whartequately serializes transactions executed at
each server. Other systems relax their correctness eriberare able to increase the locally provided
guarantees, and thus also relax the isolation level of theal databases. Snapshot (Di2) isolation (Lazy
Txn Reordering $0], SI and Hybrid B5], NODO and REORDERING46], RSI-PC p1], SRCA and
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SRCA-Rep 2], PCSI Distr. Cert. 20], Tashkent-MW and Tashkent-AP21]], Alg-Weak-SI, Alg-Str.-SlI
and Alg-Str.Ses.-SI18], k-bound GSI #}], Tashkent+ 22], Mid-Rep [33], SIRC [56], Serrano et al.g0],
AKARA [16], gB-SIRC [57]) or, more rarely, read committed (Dil) isolation (RSI-P&1][ SIRC [56],
0B-SIRC [B7]) are requested by such systems.

Among those systems not specifying a concrete level of tisplgDi0), two of them (Alsberg-Day
[2] and RIDBC 23]) are based on the local concurrency control of their DBM&d may function with
different isolation levels at their local databases. Th& of the systems with a DiO strategy perform
concurrency control at the protocol layer and thereforg tleenot require any specific underlying isolation.
This is the case of OTP-93§], which uses a queue per conflict class and allows transectmproceed
when they are at the head position of their queue. OTP, OTPA®-DQ and OTP-SQ protocolST]
follow a similar approach but, in this case, there is a quesredata item and so transactions are not
restricted to access only one conflict class.

Finally, there are few systems that require some custoinizgDi4) of their underlying databases.
Thus, BTO & 2PC 7] and OPT & 2PC 1] require the maintenance of read and write timestamps fdr ea
data item; and SER, CS, Hybri8%] and WCRQ p3] delay the acquisition of write locks until the remote
phase of transactions.

Regarding group-life (Gl) communications, as linear iattion is costly, only few systems make such
synchronization. While most of the systems follow a GIO siggt(no communication during local transac-
tion execution), systems such as 2PL & 2Rd][ BTO & 2PC [7], Bernstein-Goodmarg], OPT & 2PC
[61], O2PL & 2PC [L2], Epidemic unrestricted3d0] or the protocol by Serrano et ab(] are obliged to use
linear interaction due to their partial replication and to@sequent distributed nature of their transactions,
which may potentially require to access data items at otbdes. Bcast all, Bcast writeg][and RIDBC
[23] execute their significant operations in an active modegisgna message for each of such operations
to all servers (GI3). Finally, Fast Refresh Im-145] uses a GI2 strategy to immediately propagate updates
to secondary copies in order to increase their freshness.

Regarding the group-end (Ge) policy, as most of the systermotlapply read-only transactions at re-
mote nodes, they neither broadcast them to the group upomitaeguest (Ge0). However, in some cases,
read-only transactions require a synchronization poimto ®f the surveyed systems are able to identify
read-only transactions and manage them differently frodmatgtransactions while they still require cer-
tain synchronization at group-end for queries. This is theecof WCRQ $3], which sends queries to a
read-quorum of replicas (Ge2) in order to provide thoseiggevith strong consistency. The algorithm by
Serrano et al.g0] also applies a Ge2 strategy for queries, in order to commitistributed transaction at
all participating sites.

In order to ensure replica consistency, a synchronizasoalways needed for update transactions,
either at the beginning, at the end or after the executiom®fttansaction in its delegate node. OTP-99
[36], OTP, OTP-Q, OTP-DQ and OTP-S@1], the active processing of AKARAI[G], BaseCON for 1SR,
BaseCON for SC and BaseCON for strong 188 make the synchronization point of update transactions
at the beginning (either with the client-request or the gretart policies), thus rendering unnecessary to
synchronize with a group-end strategy (Ge0). Systems sElast Refresh Df-Im4b], RSI-PC B1], Alg-
Weak-SI, Alg-Str.-Sl and Alg-Str.Ses.-3Ig] choose a lazy synchronization after transaction commitme
and thus they also follow a GeO strategy.

Apart from the systems synchronizing update transactibtigeebeginning or after the commitment in
the delegate, the rest of the systems make such synchionizathe end of the transaction in the delegate
server, i.e., before the final commit operation, with a nali-group-end strategy. Alsberg-Dag][ which
makes an update propagation in cascade mode, and the Tafdrkéy (Tashkent-MW and Tashkent-API
[21], Tashkent+ 22]), which sends the writeset to a central certifier, follow tBel strategy that requires
the communication with only one server or component in theesy. Among the remaining surveyed
systems, some of them, based on partial replication, nesen transaction information only to a subset
of system nodes (Ge2). This is the case of 2PL & 224, BTO & 2PC [7], Bernstein-Goodmarg], OPT
& 2PC [61], O2PL & 2PC [12], Fast Refresh Im-Im45], Epidemic restricted and Epidemic unrestricted
[30]. The rest of the systems follow a Ge3 strategy, where theséetion information is broadcast to all
nodes of the system.
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In order to agree on the outcome of a broadcast transattigystems run the decision process. Weak
voting, where a single node decides (Td1) and later comratesdt decision to the rest of servers, as well
as certification, where all nodes deterministically rediehdame decision (Td2) are the preferred strategies.
Only three of the surveyed systems base their decisionseoagleement of a quorum (Td3): One-at-a-
time and Many-at-a-time5g], and WCRQ b3]. In One-at-a-time and Many-at-a-time, partial replioati
is used and nodes store information only about transactim@tsaccess items replicated at that node. To
perform the decision process, nodes vote and then safelgediee outcome of a transactidnonce they
have received the votes of a voting quorumlofin WCRQ [53], a read-quorum decides the outcome of
a read-only transaction in order to ensure strong consigterhile write-quorums decide the commitment
of update transactions. Finally, there are systems that theesr decisions on the agreement of all servers
(Td4): 2PL & 2PC P4], BTO & 2PC [7], Bernstein-Goodmar®], OPT & 2PC B1] and O2PL & 2PC
[12], which all use the 2PC protocol; and DBSM-RAE3], which employs a non-blocking atomic commit
protocol.

The transaction-remote (Tr) policy defines the way transastare applied at remote nodes. Most
of the systems identify read-only transactions and do nplyafmem at remote servers (Tr0). The only
exceptions are: Alsberg-Dag][ which is not specially tailored for database replicatiml thus it does not
identify queries; Bcast alll], where all operations are broadcast and executed in aflehers; Lazy Txn
Reordering $0], where all transactions are broadcast and possibly reedde minimize abortions; Pronto
[48], which assimilates to an active approach by sending to #ukulps the SQL sentences instead of the
writeset; RIDBC23], where all significant operations (including the commiecgtion) are broadcast to all
replicas; and AKARA 16], which broadcasts all transactions at their starting fpdimall these systems, no
different treatment is given to read-only transactionstl@@mwother hand, the rest of the surveyed systems do
not execute queries at remote nodes, but only update tittmsadn order to increase performance, systems
usually apply remote transactions in a concurrent manméj,(by controlling, either at the protocol level
or inside the database, that conflicting transactions gokeapin the same order at all replicas. However,
to avoid the possible increase in complexity of such coptnalny systems apply writesets in a sequential,
non-overlapping manner (Tr2).

With regard to the client-response (Cr) policy, only onehdf surveyed systems, Pron#8], returns
multiple responses to the client (Cr2), whereas the restefiystems always opt for returning a single
answer (Crl). The Cr2 client-response policy may requiréh&r processing in the client to select or
compute a final result if multipldifferentanswers are sent.

Group-after (Ga) policies can seriously affect consisteimcthat update propagation outside the scope
of transactions may lead to inconsistent states in differeplicas. Thus, when using lazy propagation
special care must be taken to ensure that consistency isaimed or that some reconciliation mechanisms
are able to restore the system to a consistent state. Onlpfféhe surveyed systems follow a non-null
group-after strategy: Alsberg-Dag][ Fast Refresh Df-Im45], RSI-PC B1], Alg-Weak-SlI, Alg-Str.-SlI
and Alg-Str.Ses.-SI1[g]. All these systems consider a primary copy configuratiohere updates are
made at only one node (the primary copy of the system or théamsite of the updated data) and are later
lazily propagated to the slaves or secondary nodes. As o@ynode processes updates, no inconsistencies
are introduced.

5 Conclusion

In this paper we present a characterization model that gesva common framework to describe and
compare different database replication systems. This medee result of a careful analysis of different
community proposals made since the beginning of this rebdald. In this study, we identify the relevant
steps that are common to all replication protocols, andifferent approaches that protocols follow in such
steps. A policy is associated with each step, and the diffexpproaches or options are called strategies.
Policies are grouped into families, according to the retaimong the interactions they regulate. With this
model, we can detail the strategy that each protocol follmveach of its main steps.

16Those systems that locally commit queries without any commuinitatith the rest of the nodes usually employ the bottom
strategy (TdO) for such read-only transactions: no decipi@cess is run for them.
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This model is then used in order to characterize more thanab@bdse replication systems, in an
extensive survey that reviews the chronological evolutbithis research field. While many different
strategies have been followed in order to accomplish theired system interactions, some of them seem
to have been preferred over others, due to several reasomspérformance issues, to easiness of protocol
design and implementation.
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