
A Policy-Based Characterization Model and a

Comprehensive Survey of Database Replication Systems

M. I. Ruiz-Fuertes1, A. Schiper2, R. C. Oliveira3, F. D. Muñoz-Escóı1

1Instituto Tecnoĺogico de Inforḿatica
Universidad Polit́ecnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

2École Polytechnique F́ed́erale de Lausanne, 1015 Lausanne, Switzerland
3HASLab / INESC TEC, Universidade do Minho, Braga, Portugal

miruifue@iti.upv.es, andre.schiper@epfl.ch, rco@di.uminho.pt, fmunyoz@iti.upv.es

Technical Report ITI-SIDI-2012/002

M
.I

.R
ui

z-
F

ue
rt

es
e

ta
l.:

A
P

o
lic

y-
B

a
se

d
C

h
a

ra
ct

e
ri

za
tio

n
M

o
d

e
la

n
d

a
C

o
m

p
re

h
e

n
si

ve
S

u
rv

ey
o

fD
a

ta
b

a
se

R
e

p
lic

a
tio

n
S

ys
te

m
s

IT
I-

S
ID

I-
20

12
/0

02

A Policy-Based Characterization Model and
a Comprehensive Survey of Database Replication Systems

M. I. Ruiz-Fuertes1, A. Schiper2, R. C. Oliveira3, F. D. Muñoz-Escóı1

1Instituto Tecnoĺogico de Inforḿatica
Universidad Polit́ecnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

2École Polytechnique F́ed́erale de Lausanne, 1015 Lausanne, Switzerland
3HASLab / INESC TEC, Universidade do Minho, Braga, Portugal

Technical Report ITI-SIDI-2012/002

e-mail: miruifue@iti.upv.es, andre.schiper@epfl.ch, rco@di.uminho.pt, fmunyoz@iti.upv.es

January, 2012

Abstract

Since the appearance of the first distributed databases until the currentmodern replication systems,
the research community has proposed multiple protocols to manage data distribution and replication,
along with concurrency control algorithms to handle transactions runningat every system node. Many
protocols are thus available, each one with different features and performance, and guaranteeing differ-
ent consistency levels. To know which replication protocol is the most appropriate, two aspects must
be considered: the required level of consistency and isolation (i.e., thecorrectness criterion), and the
properties of the system (i.e., the scenario), which will determine the achievable performance. In order
for the administrator to select a proper replication protocol, the available protocols must be fully and
deeply known. A good description of each candidate is fundamental, buta common ground is mandatory
to compare the different options and to estimate their performance in the given scenario. This paper
proposes a precise characterization model that allows us to decomposealgorithms into individual in-
teractions between significant system elements, as well as to define some underlying properties, and to
associate each interaction with a specific policy that governs it. We later use this model as basis for a
historical study of the evolution of database replication techniques, thus providing an exhaustive survey
of the principal existing systems.

1 Introduction

Since traditional stand-alone database systems started tobecome distributed and replicated in the mid
seventies, many different algorithms for concurrency and replica control have appeared thanks to the con-
tributions of many authors. These proposals came from different communities, each one based on different
assumptions and focused on the achievement of different goals. Each new distributed or replicated system
defined its own methods, followed its own naming conventionsand presented its algorithms in different
ways: from descriptions in plain textual form to more or lessdetailed specifications in its own pseudocode
language. In the midst of this abundance and disparity, it was difficult to find an appropriate solution for a
given problem or to compare two apparently similar options to choose the best one for a given scenario.

Some authors from the distributed systems community performed different surveys and classifications
[26, 65, 67]. Gray et al. [26] made the first step to study the existing systems for database replication,
distinguishing between eager and lazy propagation strategies, and group and master ownership strategies,
which combine between them to produce four types of replication systems. Wiesmann et al. [67] proposed a
classification based on three parameters, where replication techniques are characterized with regard to their

1

server architecture (either primary-backup or update-everywhere), their server interaction (either constant
or linear) and their transaction termination (either voting or non-voting). Both contributions aimed to
classify a broad set of non-related systems, according to some criteria, generally coarse-grained in order to
reduce the complexity and the number of equivalence classes. Each one of these criteria thus agglutinated
several individual pieces of behavior that were observed together in the studied systems. Another approach
was focusing on one set of similar systems, e.g., those mainly based on a given general technique, and
characterize and classify them into disjoint subsets, according to other used techniques. This is the case
of a work by Wiesmann and Schiper [65], which is focused on replication systems based on total order
broadcast –namely, the three most relevant: active, certification-based and weak voting replication– and
provides a performance comparison between them and two other widely used techniques –primary copy
and lazy replication– that do not rely on group communication.

However, more and more systems appeared and those coarse-grained criteria turned to be insufficient
when proposals became hybrid or explored new methodologiesnot yet categorized. A finer grain is thus
necessary to better characterize replication systems and to provide a common ground to compare them all.
More than a set of disjoint equivalence classes, what is needed is a common and general framework where
different replication systems could be examined and compared. This approach was followed by Bernstein
and Goodman in 1981 [8], when they surveyed almost all concurrency control algorithms for distributed
databases published until then. In order to do so, they first proposed a framework consisting of a common
terminology and a problem decomposition. By unifying concepts and splitting a complex process into
several subproblems, a rich characterization and comparison among systems is possible.

Important advances have emerged in the last 30 years since the work of Bernstein and Goodman [8]
was published, such as the development of group communication systems with more complex communica-
tion primitives, leading to the appearance of new techniques. A new framework for comparing replication
techniques was then proposed by Wiesmann et al. [66]. In this framework, five generic phases are iden-
tified within a replication protocol: request, server coordination, execution, agreement coordination, and
response. According to this, authors then describe different techniques, analyzing how they perform each
phase.

Following a similar approach and trying to help researchersand practitioners to make their way through
the assorted plethora of database replication systems, this paper proposes a new characterization model
that provides even more detailed descriptions than the framework by Wiesmann et al. [66], by splitting
a replication system into a group of policies. This model allows us to describe in detail the nature of
the interaction between significant system elements: the underlying local database, the clients and their
transactions, and the group of system servers or components. Every time these elements interact, a specific
policy regulates the way on which this interaction is performed. Thanks to the fine grain achieved by this
model, almost all existing systems can be fully characterized. The resulting detailed descriptions allow an
easier comparison between different database replicationsystems.

The second contribution of this paper is an extensive historical survey of database replication systems,
based on the common description framework previously proposed. This chronological survey describes
each proposal by detailing, for each policy, the followed strategy, as well as the enforced correctness
criterion. As a result, it is highly valuable in order to compare and understand different proposals. This
survey provides not only an empirical proof of the usefulness of our model proposal but also a study of
the evolution of database replication systems and a reference manual for readers interested in this field,
regardless of their background. It will allow beginners to obtain a global and precise idea of the state of
the art of the database replication research field and will also provide a historical vision of the evolution of
these systems, allowing us to detect which strategies are the most used and which combinations guarantee
each correctness criterion. Moreover, this study makes it easier to identify combinations of strategies that
are seldom used but might make sense if new goals are set for replication protocols, such as the support of
either more relaxed or stricter consistency models, or the increase of the system scalability. Furthermore,
this survey may enable us to identify which advances at whichfields (in database management systems,
in group communication systems, in isolation levels and correctness criteria specifications, in replication
protocols, etc.) allowed the appearance of each described proposal, as well as to foresee which other
advances could have a relevant effect on this evolution.

The rest of the paper is structured as follows. Section2 presents all background concepts and def-
initions. Section3 proposes the characterization model for database replication systems. The survey is

2

presented in Section4. Finally, Section5 concludes the paper.

2 Background: Concepts and Definitions

Server, clients and failures. A distributed (and possibly replicated) database is a distributed system
composed of databaseservers, also callednodesor sites, N1, N2, . . . , Nn, which store data, andclientsor
users1 that contact these servers to access the data. Servers only communicate by message passing, as they
do not have shared memory. Consequently, they neither have aglobal clock. Depending on thefailure
modelassumed, failures are considered at different degrees. In the crash-stopmodel, when servers fail
they permanently stop all their processing. In this case, a site is correct if it never crashes, otherwise it is
faulty. Thecrash-recoverymodel allows failed servers to eventually recover after a crash. A more complex
failure model,Byzantine failures, assumes that sites and their environment can behave in an arbitrary way.

Distribution and replication. From the point of view of the client, adatabaseis a collection of logi-
cal data items. Each logical data item is physically stored at the servers. If the set of database items is
partitioned and distributed among the sites, the system constitutes apurely distributed database. If some
replication is introduced, so that different physical copies of the same logical data item are stored at dif-
ferent sites, the system is areplicated database. Replication is managed by areplication protocol. The
number of physical copies of data itemx is thedegree of replicationof x. Depending on the degree of
replication of the data items and on the number of system nodes, a complete copy of the database may be
stored at each site. This is calledfull replication. When not all sites store the complete set of data items,
but only a subset, the replication ispartial. Each of the copies of a given data item is called areplica.
In full replication, the term replica is also used to refer toany server, as they contain a copy of all data
items. When the system is fully replicated, we also denote sites asR1, R2, . . . , Rn, to highlight that they are
replicas.

Advantages of replication. Replication is a common solution to achieveavailability: by storing multiple
copies, clients can operate even if some sites have failed. Moreover, and despite the drawback of having
to update all copies of each data item, replication can also improve performance, as clients are more likely
to access a copy close by. For these reasons, replication is mostly preferred over pure distribution. Even
initial systems, which were fundamentally distributed, introduced replication at some degree.

Desirable properties of replicated systems. Traiger et al. [64] suggested the concepts of one-copy
equivalence and location, replica, concurrency, and failure transparencies, as desirable features for dis-
tributed systems. A system that provides transparency is aseasy to use as a stand-alone, one-copy system.
This way, although the data is geographically distributed and may move from place to place, users can act
as if all the data were in one node (location transparency). Moreover, although the same data item may
be replicated at several nodes, users can treat the item as ifit were stored as a single item at a single node
(replication transparency). In addition, it appears as if there were no concurrency in the system (concur-
rency transparency). Finally, the effects of confirmed operations survive hardware and software failures,
while all the effects of an in-progress operation are undonein case of failure (failure transparency).

Local databases, transactions and sessions.A local Database Management System, or DBMS for short,
runs at each site and is responsible for the control of the data. The DBMS allows clients to access the data
for reading and writing, through the use oftransactions. Transactions are sequences of read and write
operations (e.g., sequences of SQL sentences) followed by acommit or an abort operation, and maintain
the ACID properties [28]: atomicity, consistency, isolation and durability. Atomicity requires the all-or-
nothing policy: either all the operations of a transaction are performed or none of the operations is reflected
in the final state of the database. Consistency requires thateach successful transaction produces only legal
results. Isolation requires that the effects of running transactions are hidden from other transactions running
concurrently. Durability requires that all the data changes made by a successful transaction are persistently

1We employ the termuserto specifically refer to a human agent.

3

applied, which is done by means of thecommitoperation. On the other hand, if a transactionaborts, all its
changes are undone. A transaction is called aqueryor a read-only transactionif it does not contain any
write operation; otherwise it is called anupdate transaction. The set of logical items a transaction reads is
called thereadset. Similarly, thewritesetis the set of logical items written by a transaction, and usually it
also includes the updated or inserted values. Theresultsetis compound by the results that will be returned
to the client.

Database users are provided with the concept ofsession, in order to logically group a set of transactions
from the same user. Transactions from different users belong to different sessions. However, it can be left
to the user the decision of using one or multiple sessions to group their transactions.

Transactions may be executed concurrently in a DBMS. In thiscase, the concurrency control of the
DBMS establishes which executions of concurrent transactions are correct or legal.

Workload, delegate and remote nodes. The database workload is composed of transactions,T1, T2, . . .

Transactions from the same client session are submitted sequentially, but may be addressed to different
servers, either by the client itself, by a load balancer, or by another component or server that redirects the
request to another server. If the request is finally addressed to only one server, this server is called the
delegatefor that transaction and it is responsible for its execution. The rest of the system nodes are called
remotenodes for that transaction. When the database is purely distributed (partitions of the data stored
at different nodes) or partial replication is used, if the contacted server does not store all the items the
transaction needs to access, other servers can be requestedto execute different portions of the transaction,
which is then called adistributed transaction. In this case, the concepts of delegate and remote nodes
are no longer applicable: the client contacts to a server where a root transaction is started, and accesses
to data stored in other server involve the creation of a subtransaction in that other node, which is also
calledcohort. This way, each operation may involve a communication with another node in the system.
If accessed items are replicated, subtransactions must be executed in all copies. To coordinate the local
subtransactions executed at each participating site, all accesses are managed by a distributed concurrency
control. In order to commit these distributed transactions, atomic commit protocols, explained below, are
used, acting the root transaction as coordinator.

Conflicts. Two transactionsconflict if they have conflicting operations. Two operations conflictif they
are issued by different transactions, access the same data item and at least one of the operations is a
write. Conflicts among transactions should be treated somehow, ensuring that the conflicting operations are
executed at the same order at every replica. There are two main approaches for treating conflicts. A system
is pessimisticor conservativeif it avoids conflicts by establishing some locks, mutexes orother barriers
over items accessed by a transaction, so that they cannot be concurrently accessed by other transactions. On
the other hand, a system isoptimisticif it lets transactions freely access items, resolving possible conflicts
only when they appear or at the end of the transaction, duringtermination.

Server layers. Inside a server, different layers can be identified: the network or communication layer, at
the bottom of the stack; the data layer; the replication layer; and the application layer, on the top. These
general layers may appear merged together at different systems. For instance, in a system that manages
replication by embedding the necessary code into the DBMS internals, the data and the replication layer
are merged. On the other hand, we say a replication system isbased on middleware[6] when it gathers all
replication mechanisms in a replication layer, i.e., a software layer placed between the instance of the da-
tabase management system and the applications accessing the data. This provides an independence among
system components which leads to a high portability (e.g., to migrate the middleware into an environment
based on a different DBMS).

Interactive execution vs. service request. A transaction can be submitted for execution either operation
by operation, or in a single message. In the former case, calledinteractive transaction, the client submits an
operation and waits for its results before sending the next operation. The latter case, calledservice request,
is a call to a procedure stored in the database. When the transaction is completed, the transaction outcome

4

is sent to the client. In the case of interactive transactions, this outcome is a commit or abort confirmation.
For service requests, the outcome also includes the resultsof the request.

Active and passive replication. In a system withactivereplication, the same client request is processed
by every node. As opposed to this, each client request inpassivereplication is processed by only one node,
which later transfers the updates to the rest of servers. Active replication is usually associated with service
request, while passive replication can be used for both interactive execution and service request. Depending
on the node that can process a client request, the next two server architectures for passive replication can
be distinguished.

Server architecture: primary-backup. Theserver architecturedefines where transactions are executed
in the first place. Common server architectures are primary-backup and update-everywhere. In aprimary-
backupsystem, a specific node –calledprimary copyor master copy– is associated to each data item. Any
update to that item must be first sent to the primary copy, i.e., the primary copy is the delegate server for
any update transaction over that item. The rest of the servers, which receive the updates from the primary,
are calledbackupsand serve only queries over that item. One possible setting is to select a single server as
the primary copy for all database items, although this can cause a bottleneck.

Server architecture: update-everywhere. In anupdate-everywheresystem, every node is able to serve
client requests for updating any data item, so that it is possible that two concurrent updates arrive at different
copies of the same data item. In order to avoid inconsistencies, usually some mechanisms are used to
propagate the updates and to decide which updates will be successful, aborting transactions when necessary.
These mechanisms are theserver interactionand thetransaction terminationprotocols.

Server interaction and writeset application. In the presence of replication, independently of the server
architecture, updates from a committed transaction must bepropagated to other copies of the affected data
items. This is achieved through a mechanism ofserver interactionthat sends all write operations to the
appropriate sites. This propagation can be made on a per operation basis, distributing writes immediately
to other nodes in alinear interaction[67] approach; or deferring communication until transaction end, in a
constant interactionapproach. The former case requires more messages (usually one per write operation)
than the latter (one message per transaction). Thedeferred updateapproach [64] is a constant interaction
approach, where, once a transaction finishes its operations, its writeset is sent to the appropriate remote
nodes, which will thenapply the writeset, i.e., perform its updates, in their local database copy. Depending
on when this propagation and application of updates is made,systems can beeageror lazy [26]. Eager
replication ensures that every node applies the updates inside the transaction boundaries, i.e., before the
results are sent back to the client, so that all replicas are updated before such a response is sent. On the other
hand, lazy replication algorithms asynchronously propagate updates to other nodes after the transaction
commits in its delegate node. A hybrid approach ensures thatall replicas have received the updates and the
delegate has committed them when the results are sent to the client. Remote nodes will later apply such
updates.

Update propagation: ROWA and ROWAA. With either type of server interaction, writes are propa-
gated and applied in remote copies of the affected data items. A basic approach isRead One Write All[10],
where write operations are required to update all copies so that read operations only need to access one
of the replicas. In case of a site failure, it may be impossible to write all replicas and thus the processing
must stop. As this is not desirable, the common approach isRead One Write All Available(ROWAA) [10].
According to ROWAA, each write operation over data itemx is applied at everyavailablecopy ofx, i.e.,
replicas stored at sites that have not failed. Failed sites are ignored until theyrecoverfrom their failure.
Whenever a site recovers from a failure, all its copies must bebrought up-to-date before the node can serve
read operations.

5

Update propagation: quorums. Another approach for write propagation is the use ofquorums. A
quorum is the minimum number of replicas that is required forcompleting an operation. Each transaction
operation must then be successfully executed in a quorum of replicas for being considered successful: read
operations are required to access a read quorum of replicas before returning the read value to the client,
while write operations must update a write quorum of replicas. In a system of sizeN, sizes for the read
quorum,R, and the write quorum,W, are defined in such a way that they guarantee any required property.
For example, withR= 1 andW = N, the previously presented ROWA approach is obtained. A more
common quorum configuration ensures that bothW+W andR+W are greater thanN, so that each write
quorum has at least one replica in common with every read quorum and every write quorum, thus ensuring
access to the last updated value and also detecting conflicting transactions. Including a majority of the
nodes into each quorum allows the system to avoid system partitioning and consequent divergence.

Transaction termination: voting, weak voting and non-voting termination. Whenever a transaction
ends, the transaction termination protocol is run to decidethe outcome of the transaction (validation) and,
in case of deciding to commit, take the necessary actions to guarantee transaction durability. Two main
approaches can be distinguished: voting and non-voting termination. In avoting termination, an extra
round of messages is required to coordinate the different sites, as in 2PC.Weak votingis a special case
of voting termination, where only one node decides the outcome of the transaction and sends its decision
to the rest of nodes. In anon-votingtermination, all sites are able to autonomously and deterministically
decide whether to commit or to abort the transaction. In thiscase, this symmetrical validation process is
also calledcertification.2

Validation and, thus, certification are usually based on conflicts. The ending transactionT is checked
for conflicts with concurrent and already validated (respectively, certified) transactions. If conflicts are
found, validation (certification) fails andT is said to be negatively validated (negatively certified) and it is
aborted. Otherwise, validation (certification) succeeds andT is said to be validated (certified), successfully
validated (successfully certified) or positively validated (positively certified), and it has to be committed in
all affected nodes. When validation or certification are not based on conflicts, the validation (certification)
succeeds or is positive if the decision taken overT is to commit it. Otherwise, the validation (certification)
fails or is negative.

System model. Aspects such as server architecture, server interaction and transaction termination are
part of thesystem model, which defines the way in which a system operates.

Replica consistency and inversions. Applying the writesets and ensuring the same order for conflicting
operations are necessary actions for maintaining the required level ofreplica consistency. Replica con-
sistency measures the synchronization among the copies of the same data item, i.e., the state of replicas
with regard to each other. While theserver-centric view of consistencydefines how consistency is in-
ternally enforced at the replicas of the system, theuser-centric view of consistencyis the perception that
users, individually or collectively, have about the consistency of the database replication system in use.
This perceived consistency is theuser-centric consistencyof the system. Different levels of user-centric
replica consistency may be enforced, depending on the needsof the clients. According to Ruiz-Fuertes and
Muñoz-Escóı [55], the fact that allows to distinguish between different levels of user-centric consistency is
the presence or absence of inversions. Aninversionoccurs when a transactionT2, which was started by a
user after the commitment of a previous transactionT1, appears to take placebefore T1 and thusT2 commits
without having been able to see the updates ofT1. Three different levels of user-centric consistency can
then be defined. From stricter to more relaxed, they are: absence of inversions, absence of inversions within
user sessions, and presence of inversions.

Regarding server-centric consistency, we say that a systems providessequentialityif every replica goes
through the same sequence of database states. Some optimizations in writeset application (e.g., letting
non conflicting transactions to commit in different orders)may break this sequentiality while still ensuring

2We will use the term validation to generically refer to the process of deciding the outcome of a transaction. We will use theterm
certification to specifically refer to the validation process performed by each node in an independent, deterministic and symmetrical
manner. Other authors, however, consider both terms as synonyms.

6

replica consistency. However, the lack of sequentiality may confuse users and thus it is concealed from
their user-centric view of consistency.

Serializable isolation. Transactions are executed under some isolation level, which defines the visibility
among operations of different concurrent transactions. The highest isolation level is theserializablelevel,
which guarantees a completely isolated execution of transactions, as if they were serially performed, one
after the other. Changes made by transactionT are only visible to other transactions after the commitment
of T. On the other hand, ifT aborts, then its changes are never seen by any other transaction.

Read committed isolation. A more relaxed level is theread committedisolation. Under this isolation,
data read by a transactionT was written by an already committed transaction, but it is not prevented from
being modified again by other concurrent transactions. Thus, these data may have already changed when
T commits. For a complete discussion about isolation levels,please refer to Berenson et al. [5].

Correctness criterion. The combination of the replica consistency level and the transaction isolation
level guaranteed by a system is called thecorrectness criterionof the database replication system. Bern-
stein et al. defined the criterion of one-copy serializability (1SR) [10]. According to it, the interleaved
execution of users’ transactions must be equivalent to a serial execution of those transactions on a stand-
alone database. As highlighted by Ruiz-Fuertes and Muñoz-Escóı [55], 1SR does not impose any level of
replica consistency and thus it can be refined with two different subcriteria.

Concurrency control: locks. Local isolation at a DBMS is enforced by the use of a localconcurrency
control mechanism. Concurrency control manages the operations that run in a database at the same time.
There are two main options for concurrency control: locks and multiversion systems. In a lock-based
system, each data item has alock that regulates the accesses to the item. Operations over that item must
previously obtain the corresponding lock. There aresharedandexclusivelocks. Shared locks are com-
monly used for read operations. Several transactions can obtain shared read locks and read the same item
at the same time. Write operations require an exclusive lock.No other operation, shared or exclusive, is
allowed over an item protected with an exclusive lock.

Concurrency control: multiversion. In multiversion systems, on the other hand, simultaneous accesses
to the same data item are resolved by using multiple versionsof the item. Versions can be created and
deleted but the value they represent is immutable: updates to a data item create a new version of the item.
Although there are several versions for each item, only one is the latest: the value written by the last
committed transaction that updated the item. More recent versions correspond to transactions which are
still on execution and they are not visible to other transactions. Versions generated by aborted transactions
are never visible to other transactions. When a transaction starts, a timestamp or a transaction ID is assigned
to it. Versions written by a transactionT are marked with the ID ofT. With this timestamp information,
the multiversion system can determine, for each transaction, which state or snapshot (i.e., which version of
each data item) of the database it must read. Thus, a transaction that started at a particular instantt0 has
access, for each data item, to the version of that item which was the latest at timet0, i.e., which was written
by the committed transaction with the highest ID which is smaller than the ID of the reading transaction.
As versions are immutable, there is no need to manage locks for read operations. This way, multiversion
concurrency control lead to the appearance of a new transaction isolation level calledsnapshot isolation.3

Some mechanism is usually needed to delete obsolete versions.

Snapshot isolation. In snapshot isolation [5], or SI, transactions get a start timestamp and a snapshot of
the database when they start. Transactions are never blocked attempting a read. Write operations are also
reflected in the snapshot of the transaction, so that it can access the updated versions afterwards. On the
other hand, updates by other transactions active after the transaction start are invisible to the transaction.

3Read committed isolation is also possible with a multiversion concurrency control.

7

When the transaction is ready to commit, a commit timestamp isassigned to it. A transactionT1 success-
fully commits only if no other transactionT2 with a commit timestamp in the interval between the start and
the commit timestamps ofT1 wrote data thatT1 also wrote. Otherwise,T1 will abort. This feature is called
thefirst-committer-winsrule.

Two phase locking. Serializability can be achieved by a basictwo-phase locking(2PL) [10] protocol,
where each transaction may be divided into two phases: agrowingphase during which it obtains locks, and
a shrinkingphase during which it releases locks. Once a lock is released, no new locks can be obtained.
2PL forces all pairs of conflicting operations of two transactions to be executed in the same order and so
it achieves serializability. However, using 2PL adeadlockmay appear. This situation arises when two
transactions wait for each other to release a lock. Deadlocks must be detected and one of the transactions
aborted in order to remove the deadlock.

Strong strict 2PL. In order to avoid deadlocks and to provide other desirable properties,4 a variant of 2PL
is commonly used: thestrong strict 2PL(presented by Bernstein et al. [10] asstrict 2PLbut refined later).
In strong strict 2PL, all the locks obtained by a transactionare only released after transaction termination.

Atomic commit protocol: 2PC. To ensure consistent termination of distributed transactions, database
systems have traditionally resorted to an atomic commit protocol, where each transaction participant starts
by voting yes or no and each site reaches the same decision about the outcome of the current transaction:
commit or abort. A widely used atomic commit protocol is the two-phase commit protocol (2PC) [24, 40],
which involves two rounds of messages for reaching a consensus on the termination of each transaction.
2PC can be centralized or decentralized. In the centralizedapproach, the coordinator first sends a message
to the rest of nodes, with information about the ending transaction. Each server must then reply to the
coordinator whether it agrees or not to commit the transaction. If all replies are positive, the coordinator
sends a commit message and waits for acknowledgments from all the nodes. If any of the replies was
negative, an abort message is sent in the second phase. The decentralized version is similar but with any
server starting the process and with responses to every other server. 2PC is a blocking protocol when
failures occur.

Atomic commit protocol: 3PC. To support failures, a non-blocking atomic commit protocol(NB-AC)
[10, 62] must be used. In these protocols, each participant reachesa decision despite the failure of other
participants. A NB-AC protocol fulfills the following properties. (a) Agreement: no two participants
decide different outcomes. (b) Termination: every correctparticipant eventually decides. (c) Validity: if
a participant decides commit, then all participants have voted yes. (d) Non triviality: if all participants
vote yes, and no participant fails, then every correct participant eventually decides commit. The three-
phase commit protocol (3PC) [62] adds an intermediate phase to 2PC to become a non-blocking process.
This new (second) phase involves sending aprecommitmessage when all nodes have agreed to commit
the transaction. After all servers sent their acknowledgments to thisprecommitmessage, the final commit
message is sent. Note that when a transaction needs to abort,such a fact is identified at the end of the first
phase. On the other hand, agreement on the commitment is reached at the second phase and the commit
is completed in the third phase. Thus, failures in the first phase lead to transaction abortion whilst failures
in the second or third ones do not block the protocol nor prevent transaction commitment. The drawback
of 3PC is its higher cost due to the extra round of messages. Tosolve this, Jiḿenez-Peris et al. proposed
another NB-AC protocol that exhibits the same latency as 2PC[31].

Atomic commit protocol: Paxos Commit. The Paxos Commit algorithm [25] runs a Paxos consensus
algorithm on the commit/abort decision of each participantto obtain an atomic commit protocol. The
result is a complete, decentralized and non-blocking algorithm which is proven to satisfy a clearly stated
correctness condition (that of the Paxos algorithm [19, 38, 39, 41]).

4Recoverability, cascade abort avoidance and strictness [10], and also commit ordering [52].

8

Group communication systems and atomic broadcast. The communication among system compo-
nents is based on message passing. AGroup Communication System[14], or GCS for short, is commonly
used to accomplish communication tasks among servers, by choosing the communication primitive (point
to point messages, multicasts, broadcasts) with the appropriate guarantees (e.g., uniform guarantees will
be commonly necessary when failures must be tolerated).Atomic broadcast(abcast for short) is a group
communication abstraction defined by the primitivesbroadcast(m) anddeliver(m). Abcast satisfies the
following properties [27]. (a) Validity: if a correct site broadcasts a messagem, then it eventually delivers
m. (b) Agreement: if a correct site delivers a messagem, then every correct site eventually deliversm. (c)
Integrity: for every messagem, every site deliversmat most once, and only ifmwas previously broadcast.
(d) Total Order: if two correct sites deliver two messagesmandm′, then they do so in the same order. Due
to this last property, atomic broadcast is also known as total order broadcast.

Optimistic abcast. Two optimistic variants of abcast are theoptimistic atomic broadcast[49] and the
more aggressiveatomic broadcast with optimistic delivery[36], which allow processes to deliver messages
faster, in certain cases. They exploit the spontaneous total order message reception: with high probabil-
ity, messages broadcast in a local area network are receivedtotally ordered. An atomic broadcast with
optimistic delivery is defined by three primitives. First,TO-broadcast(m) broadcasts the messagem to all
nodes in the system. Then,opt-deliver(m) delivers a messagem optimistically to the application once it
is received from the network, in atentative order. Finally, TO-deliver(m) deliversm to the application in
thedefinitive order, which is a total order. The following properties are satisfied. (a) Termination: if a site
TO-broadcastsm, then every site eventually opt-deliversm and TO-deliversm. (b) Global agreement: if
a site opt-deliversm (TO-deliversm) then every site eventually opt-deliversm (TO-deliversm). (c) Local
agreement: if a site opt-deliversm then it eventually TO-deliversm. (d) Global order: if two sitesNi and
Nj TO-deliver two messagesm andm′, thenNi TO-deliversm before it TO-deliversm′ if and only if Nj

TO-deliversmbefore it TO-deliversm′. (e) Local order: a site first opt-deliversmand then TO-deliversm.
With such an optimistic delivery, the coordination phase ofthe atomic broadcast algorithm is overlapped
with the processing of messages. This optimistic processing of messages must be only undone when the
definitive total order mismatches the tentative one.

3 A Characterization Model for Database Replication Systems

In this section we present a policy-based characterizationmodel that allows us to decompose database
replication algorithms into individual interactions between significant system elements, as well as to define
some underlying properties, and to associate each interaction with a specific policy that governs it. With this
characterization model, a replication system can be described as a combination of policies. This common
framework allows an easy understanding and comparison between protocols.

The rest of the section is structured as follows. Subsection3.1 presents the proposed characterization
model, and, next, Subsection3.2 enumerates the different correctness criteria consideredby the surveyed
replication systems.

3.1 Interactions, Properties, Strategies and Policies: A Characterization Model

A database replication system can be defined by means of describing the interactionsamong its main
components –namely clients, local databases, servers or other system components, and transactions being
executed– as well as some basicbehavioral properties. Each one of these interactions may be performed in
different ways. Similarly, each property may take different values. All these options are calledstrategies.
A replication system must choose, for each interaction and property, one of the available strategies. The
selected strategy is thepolicy that such a system follows for such an interaction or behavior. Each system
will provide the necessary mechanisms for implementing theselected strategy. The set of policies a system
follows can be divided into four policy families, which gather related policies together: the client policy
family, the database policy family, the group policy family, and the transaction policy family.

The client policies regulate the interaction between the client and the rest of the database replication
system, i.e., the communication from/to the user. Therequestpolicy specifies which servers in the system

9

must receive the client request, and theresponsepolicy establishes the number of replies that will arrive to
the client with the transaction results.

The interaction between the system and the local underlyingdatabase management system is defined
by internal properties of the DBMS and regulated by the database policies. These policies determine
two aspects: theisolation level used whenever the transaction operates in the database, and the level of
replicationof the database, i.e., whether it is fully or partially replicated.

The interaction among the servers or other system components is regulated by the group policies.
In order to globally coordinate the execution of transactions, the participation of more than one server
is required. Communication is established among the instances of the replication protocol running in
different nodes of the system group. These policies controlany procedure involving available replicas used
to coordinate them with regard to each transaction, i.e., any synchronization (real or logical) between the
system nodes required for achieving replica consistency. We distinguish four intervals in the transaction
lifetime when different group policies may be applied:start (at the start of transaction, before the first
access),life (during the lifetime of the transaction, e.g., per-operation communications),end(at the end of
transaction, before the commit operation), andafter (after termination, i.e., after returning the results to the
client).

The interaction between the system and the user transactions is regulated by the transaction policies.
The servicepolicy ensures that the necessary conditions (apart from the obvious resource requirements)
hold for the system to serve an incoming request, accepting atransaction for processing. Transaction
execution can be split into two phases: the local phase, in which they are only executed in the delegate
server (either interactively or not); and the remote phase,in which their execution spans to the rest of
replicas, after some kind of coordination between the system nodes. Right before starting the remote
execution, thedecisionpolicy determines the procedure followed to decide which transactions will commit
and which ones must be aborted. If the system decides to commit the transaction, theremotepolicy controls
the way the transaction is sent to the database to be applied.

Someglueprocedures will be usually needed to chain the previous policies in a way that guarantees a
correct behavior and the isolation level promised by the replication system.

According to our proposal, the lifetime of a transaction is thus controlled by different policies depend-
ing on its current execution step (see Figure1). First, when the client sends its request to the system (iden-
tified as interaction 1), the client-request policy determines to which servers this request must be addressed.
Once in the appropriate server (or servers), the processingof the transaction is accepted as determined by
the transaction-service policy (interaction 2). Once the transaction is accepted for processing, the group-
start policy defines if some coordination must be done with the rest of replicas prior to transaction start
(interaction 3, e.g., broadcast the start of transaction tothe rest of nodes in order to get a global common
starting point). After this starting coordination (if it exists), the transactionentersthe database for the first
time, beginning its local execution phase. Database properties affect the transaction execution since this
moment on. The database-replication policy will define if there is a copy of the data in the current server
or whether the transaction must be distributed among several nodes. At each local DBMS, accesses to the
database are controlled by the database-isolation policy.During the local execution phase, a group-life
policy may apply, defining a linear coordination among servers (interaction 4). After all operations have
been completed, the client asks for the commitment of the transaction.5 Then, a new communication can
be established, following the group-end policy (interaction 5). Prior to transaction termination, a decision
process controlled by the transaction-decision policy inspects the transaction and decides if it can be com-
mitted or not (interaction 6). If the decision is positive, the transaction enters its remote phase in all nodes.
The transaction-remote policy determines when the transaction can access the local database (interaction
7), where it will be applied according to the database-isolation policy. After transaction completion, the
client-response policy regulates the sending of transaction results to the user (interaction 8). Finally, a
group-after policy may apply (interaction 9), as in lazy systems.

The sequence of interactions presented above may be adaptedto different ways of transaction execution,
by selecting the proper strategy to execute each interaction or by denoting that certain interaction will not
take place.

5It is also possible that the client issues an abort operation. In that case, following steps aim to rollback all executed operations
instead of committing them.

10

a. Start of transaction b. Life of transaction c. End of transaction

Figure 1: Policies applied during the lifetime of a transaction. Interactions are numbered following the
sequence of their first execution.

Table1 presents the entire classification of the strategies we havefound in existing systems for each
policy. Identifiers are given to each strategy. This way, we can easily say that a given replication system
follows, e.g., the group start policy Gs0, to represent thatno communication is established among the
group of servers before transaction start. Note that a greater digit in the identifier means a greater effort or
a stricter criterion. Now we offer a detailed description for each policy, following the order on which they
regulate the transaction lifetime.

Client-request policy Firstly, the client should address its request to the system, directly communicating
with one or more elements. Depending on the characteristicsof the system, this request may be forwarded
to other elements or redirected to a special component by means of another component acting as a proxy
(such as a load balancer or scheduler). This policy thus defines the set of servers that finally receive the
original user request for processing. When any server is capable of processing a user request (Cq1), it is
commonly the client itself who selects the closest site and sends its request directly. If only one server can
process a given user request (Cq2) due, e.g., to some ownership criteria (the primary copy in the system
or the server that controls the portion of the data that the user needs to access) or to the decision of a
non-trivial scheduler that selects one specific node (not just the least loaded one but one satisfying certain
condition), then the user request must be forwarded to this special server. If no kind of request redirection is
performed by the system, then the client itself must know howto select the specific node. It is also possible
that the user request must arrive to several servers in the system: either a quorum of nodes (Cq3) or the
entire group (Cq4). In this last case, some ordering guarantees may be necessary (as in the group policies,
as explained below). Thus, a letter ‘t’ appended to the strategy identifier indicates that the multicast must
follow total order, which is a usual option for the processing of active transactions. In any case, each system
will provide the required mechanisms for implementing thispolicy.

Transaction-service policy Once the transaction arrives to a node specified by the client-request policy,
it enters some sort of queueing system, where it waits for theprotocol running in that node to start serving
it. This policy reflects the existence of any necessary, non-obvious condition for the node to continue
processing incoming requests in general, or this specific request in particular. Waiting for the necessary
computational resources (idle threads, available connections to the database, etc.) is considered trivial
and included in the default bottom policy (Ts0, immediate service). When the necessary resources are
available but any other conditions temporarily prevent thesystem from processing a transaction, the service
is deferred (Ts1). This condition must be locally evaluable, without the participation of other nodes (when a
cooperation with the rest of nodes is required to start a transaction, this is reflected in the group-start policy).
For example, there may be situations where the node must postpone all incoming requests, e.g., after
detecting some inconsistency on the data and until it undergoes reconciliation; or postpone the processing
of a query until all pending remote transactions are appliedin the node. In a more complex situation,
the data could be divided into conflict classes and incoming requests appended to several conflict queues,
depending on the data they needed to access. In this scenario, only when the transaction were at the first
position in all its queues, it would fulfill the condition to be processed by the system.

11

Table 1: Available strategies for each policy

Policy family Policy Id Strategy

Client policies (C)

Request (q)

Cq1 any server

Cq2 special server

Cq3 quorum of servers

Cq4a all servers

Response (r)
Cr1 one answer

Cr2 multiple answers

Database policies (D)

Replication (r)
Dr1 partial replication

Dr2 full replication

Isolation (i)

Di0 undefined

Di1 read committed

Di2 snapshot

Di3 serializable

Di4 customized

Group policies (G)

Start (s), Gx0 no communication

life (l), Gx1b one server [0..1]

end (e), Gx2b several servers [0..n]

after (a) Gx3b all servers

Transaction policies (T)

Service (s)
Ts0c immediate service

Ts1c deferred service

Ts2 no local service

Decision (d)

Td0 no decision

Td1d one server

Td2d each server

Td3d quorum-based

Td4d agreement-based

Remote (r)
Tr0 no remote execution

Tr1e concurrent

Tr2 non-overlapping

a An appendedt indicates a broadcast in total order.
b n, no order requirements;f , FIFO order;t, total order.

For Gs and Gl:a, asynchronous;s, synchronous.
c n, no interactivity.
d r, readset required;w, writeset required.
e p, controlled by the protocol;d, controlled by the database.

These two cases, the immediate and the deferred service, apply to all transactions that have a local
execution in their delegate prior to their remote executionphase: either interactive transactions (where the
user sends each transaction operation separately to the database, getting intermediate results as operations
are completed), or service requests (calls to stored procedures). In the case of interactivity, it is possible
that also intermediate operations of a transaction (not only the first one) are subjected to wait. We extend
the concept of deferred service to model also those cases. Inorder to highlight the non-interactive cases, a
letter ‘n’ will be appended to the strategy identifier.

In distributed (partitioned) and partially replicated databases, the transaction-service policy controls the
creation of local subtransactions in each of the participating nodes.

Finally, there are also situations where a transaction is not locally –individually– processed by any
node, but rather has an active execution in all sites at the same time (generally, this precludes interactivity
and is mostly used for service requests). We therefore consider that an active transaction has onlyremote
phase because, since its starting point, its execution spans all available servers, i.e., there is no previous
phase where it is locally executed by one delegate. However,this could be also considered the other way

12

around: as the remote execution of transactions is usually based on the application of logs or writesets
(previously created by a delegate node which carried out allthe transaction operations), we could say that
active transactions arelocally executed by all nodes and thus have no remote phase. However,we select the
first approach –only remote phase– and consider that, in these cases, a policy of no local execution (Ts2)
applies. Note that the digit of this last identifier is greater than the previous ones, as an active processing
of transactions, where all nodes must perform all operations, is generally more costly than having a local
execution phase and a later writeset propagation and application.

The two last details, i.e., subtransactions of distributedtransactions and active execution, are denoted
in Figure2. In this diagram, which provides a visual representation ofthe applied policies during the local
and the remote phases of the transaction lifetime, the horizontal line is time and it increases rightward.

Figure 2: Interactions defining the local and remote portions of a transaction. Non-distributed transactions
do not initiate subtransactions in multiple nodes (a). Active transactions do not present local phase (b).

Group-start policy Before starting a transaction, some coordination among nodes may be necessary.
This communication will commonly include some global identifier for the transaction, in order to establish
a synchronization point before any operation is executed bythe transaction. Client-request and group-start
policies may seem identical but they present a crucial difference: servers that receive the client request,
as expressed in the client-request policy, generally process that request in the same way, i.e., they usually
have all the same role regarding to that transaction; while servers contacted at transaction start, as defined
in the group-start policy, generally play a different role from that of the first set.

To perform this first coordination, the communication amongnodes may or may not need to be syn-
chronous, halting or not the processing of the transaction until some condition holds (e.g., the message
is delivered or all replicas reply to the sender).6 Network communication involves some cost, particu-
larly when some safety or ordering guarantees are required.Thus, an asynchronous communication allows
the overlap of the communication cost with the transaction processing, while synchronous communica-
tion does not. To distinguish between both situations, an ‘a’ appended to the policy identifier will denote
asynchronous communication, while a ‘s’ will mean the need for synchrony.

All policies of the group family share a common set of strategies, which define the number of servers
or other system components the local node must contact with.In the trivial case, no coordination is done
(Gx0, where ‘x’ is ‘s’ for group-start strategies, ‘l’ for group-life ones, ‘e’ for group-end options, and ‘a’
for group-after strategies), e.g., in active replication,the synchronization point is at the beginning of the
transaction, so no further synchronization is needed at theend. Non-trivial strategies require the participa-
tion of at most another server (Gx1), of a subset of the entiregroup (Gx2), or the participation of all system
nodes (Gx3). In order to implement group coordination, different communication primitives are used. A
simple option is the use of node-to-node messages, e.g., some gossip, flooding or cascade mechanisms can
be implemented this way. This option was commonly used in initial systems, when GCSs were not yet used
for inter-node communication. More complex primitives include reliable multicasts and broadcasts, with or
without order requirements. Multicasts to a quorum are usedin quorum-based systems. Reliable broadcast
is enough when only one node acts as a sender or when other mechanisms already provide all the order
requirements of the system. FIFO or total order7 broadcasts may be necessary. When a specific ordering

6Note that although such wait is only necessary in the sender node, it is also part of the required initial coordination, and thus, of
the group-start policy.

7Virtually all GCSs include FIFO guarantees in their total order primitives, so in practice it is assumed that abcast messages respect
FIFO ordering.

13

guarantee must be provided, an ‘f’, for FIFO, or a ‘t’, for total, is appended to the strategy identifier. An
‘n’ will denote that no ordering guarantees are needed.

Database-replication policy Apart from purely distributed systems with no replication at all, not consid-
ered in this work, replicated databases may enforce replication at different degrees. When each node stores
a complete copy of the database, the system features full replication (Dr2). Otherwise, a partial replication
is maintained (Dr1).

Database-isolation policy Whenever a transaction is being executed in a node (local interactive phase,
local non-interactive execution, remote execution and writeset application, and final commit phase), a
certain isolation level is enforced in the local database: read committed (Di1), snapshot isolation (Di2),
serializable (Di3) or a customized level (Di4), achieved out of the DBMS by directly controlling the locks
or making any other management. An additional undefined strategy (Di0) represents that the isolation
level was not specified in the system description. Upon the isolation provided in the local database, the
replication system is able to enforce certainglobal isolation level for all transactions running in the system.

Group-life policy During the lifetime of a transaction, while it submits operations to the database, some
coordination among nodes may be required. When such a coordination exists, it is usually done before
or after each single operation (e.g., each SQL statement), sending information about it for, e.g., acquiring
locks in remote replicas. Similarly to the group-start case, the execution flow of the transaction may or
may not be suspended until this coordination is completed. An appended ‘a’ (‘s’) will denote asynchronous
(synchronous) communication.

Group-end policy When the transaction finishes submitting operations, and upon request of commit-
ment, a global coordination is usually needed. During this communication, transaction information, like
the readset, writeset and updated values, is commonly spread among system nodes. Sometimes, several
rounds are required for appropriate coordination. This is the case of the two-phase or the three-phase
commit protocols.

Transaction-decision policy After the transaction has completed its operations and the group-end co-
ordination has been made, a validation process may be run to decide the final outcome of a transaction,
i.e., its abortion or commitment, depending on certain conditions. This policy determines which server or
servers, if any, are responsible for taking this decision, i.e., for running the decision process. When the
rest of the policies is enough –and especially for read-onlytransactions, which are usually immediately
committed in relaxed correctness criteria–, no decision process is executed (Td0). Otherwise, the process
may be executed by only one server (Td1), commonly the delegate, which later sends the decision to the
rest of nodes; or be performed by each server (Td2) in a symmetric, independent and deterministic way
(certification). The process can involve also the collaboration of multiple nodes. This is the case of de-
cisions based on a consensus among a quorum of nodes (Td3), where each server of the quorum informs
whether it agrees or not to commit the current transaction; and decisions based on an agreement among all
the (available participating) sites (Td4). This latter policy is used when performing a two- or a three-phase
commit, where each server says if it agrees to commit the current transaction.

The decision about the final outcome of transactions is usually based on conflicts although it can be
also based on some other information (e.g., temporal criteria). When based on conflict checking, an ‘r’ (re-
spectively, a ‘w’) after the policy identifier will indicatethe use of readsets (writesets) during the decision
process. It is important to note the possible different usesof readsets and writesets, which affect perfor-
mance at different degrees. Thus, decision may be based on conflicts but delegated to the local DBMS (low
cost); or it may be necessary to collect those sets and inspect them at middleware level (medium cost); or
even to forward them to other servers (high cost).

A final consideration must be done about the decision process. Although normally it is run upon
writeset delivery in order to decide the outcome of such a writeset based on the conflicts with previously
delivered transactions, in some systems it is the deliveredwriteset which, during the decision process run
upon its delivery, may cause the abortion of other (local) transactions that, although already broadcast, will

14

be delivered afterwards. Thus, a decision process is run butnot for deciding the outcome of the current
writeset, but that of future writesets, in a sort ofearlydecision.

Transaction-remote policy After completing the local execution phase and getting a positive decision,
transactions start their remote execution. For this, transaction information must be somehow provided to
every system node. As this is usually done through a GCS, we refer to this information as a delivered
transaction, a delivered writeset or, simply, a writeset. At a given nodeNi , when the delivered transaction
is local, i.e.,Ni is its delegate node, only the commit operation is pending. Otherwise, the writeset is
remote and its updates must be applied in the local database of Ni prior to final commitment.8 The access
to the local database is controlled by the transaction-remote policy. Two main strategies are considered:
either multiple transactions are sent concurrently to the database (Tr1), thus improving performance, or
they are sequentially sent, one at a time, following a non-overlapping policy (Tr2) where each delivered
transaction must wait for the completion of the previous one. In the first case, conflicting operations must
be controlled in order to maintain replica consistency. This control may be performed by the protocol (e.g.,
the protocol checks for conflicts between writesets before sending multiple, non-conflicting transactions to
the database) or by the concurrency control of the database management system (e.g., transactions set write
locks in an appropriate sequence before accessing the database). A letter after the identifier specifies if the
control is made by the protocol (‘p’) or by the database (‘d’).

A third strategy represents the cases where no remote execution is performed (Tr0), namely for read-
only transactions that are executed only in their delegate server.

Another aspect that should be mentioned here is the need to abort local transactions, in their local
execution phase, holding locks or otherwise preventing remote transactions from being applied in the local
database. Such a process is required for protocol liveness but details about its implementation are rarely
given in publications. Thisclearingprocess differs from the early decision commented above in that the
clearing process aborts transactions that were completelylocal to the running node (i.e., other nodes had
no knowledge of their existence), while an early decision may abort transactions that, although local to the
running node, were already broadcast to other nodes. Therefore, in an early negative decision, it will be
necessary to broadcast this outcome to remote nodes.

Client-response policy After transaction completion, the client must receive the results of its request.
Either one or multiple replies can be sent to the client. Commonly, only the delegate server (or some
special node or component in the system) replies, so the client receives only one answer (Cr1). In other
cases, multiple replies arrive to the client (Cr2). This distinction is important as, in the latter case, the
client has to perform some kind of procedure to select the final answer (the first received, a combination of
multiple replies, the most voted, etc.).

Group-after policy After sending the response to the client, once the transaction has committed in one
or several nodes, a last coordination may be needed, e.g., for updating remote nodes in lazy systems.

3.2 Correctness Criteria for Replicated Databases

Correctness in replicated databases comprises two characteristics: (a) the isolation level, responsible for the
isolation among all concurrent transactions being executed in the system; and (b) the replica consistency,
or the degree of admissible divergence among the states of all replicas [43]. The first characteristic is
provided by means of a local DBMS in each server and by using certain validation rules at replication
protocol level. The second aspect is enforced by the replication protocol and involves synchronization
among replicas, which can be made easy by means of a group communication tool. Based on the concepts
and conclusions of Ruiz-Fuertes and Muñoz-Escóı [55], we consider the correctness criteria of Table2
for one-copy equivalent systems. The user-centric consistency (i.e., the replica consistency as perceived
by users as opposed to the server-centric consistency) level where inversions may arise is considered the
standard level, while precluding inversions requires a higher effort. For criteria based on isolation levels

8In the case of partially replicated databases, only the updates corresponding to items stored in the node must be applied when
processing the delivered writeset.

15

other than serializability, we choose similar names to those proposed by Ruiz-Fuertes and Muñoz-Escóı
[55]: e.g., in the case of snapshot isolation, 1ASI correspondsto systems that preclude inversions, 1SI+
executions ensure the absence of inversions within sessions, and 1SI allows the appearance of inversions.
Note that in the context of snapshot isolation, an inversionmay occur if a transaction (either a query or an
update transaction) is provided with a snapshot which does not correspond to the latest available snapshot
in the system, as created by the last committed transaction.If not precluded, either conservatively or
optimistically, inversions may appear and a committed transactionT may have read an old value of a data
item that was updated by a transaction that committed beforethe start ofT.

Table 2: Correctness criteria for one-copy equivalent replicated databases

Criterion Isolation Consistency Short description

1ASR serializable no inversions

The effects of transactions are equivalent to a serial execution in only one
node. At each single moment, the committed information in every server
is exactly the same from the point of view of clients: a user canexecute a
transaction in one node and change immediately to another server where
they will see the updates made by their previous transaction.Strong se-
rializability [11, 17, 69] is another name used in the literature to refer to
this correctness criterion.

1SR+ serializable no inversions
on sessions

Consistency is more relaxed than in the previous case, but inversions are
precluded within client sessions, so a user with a single session perceives
an inversions-free view of the database. Strong session serializability [17,
69] is also used in the literature to refer to this criterion.

1SR serializable inversions

The effects of transactions are equivalent to those of a serial execution in
one node. But at a given moment, effects of some transactions may be
pending to commit in a server and, thus, a user moving between servers
may get inconsistent results.

1ASI snapshot no inversions

Transactions are isolated following the snapshot level. Each transaction
T gets the latest snapshot of the entire system (conservativeapproach)
or, at least, the latest snapshot as created by previous transactions that
updated data items thatT reads (this allows an optimistic approach were
transactions are restarted if a conflict is detected). This level is also named
conventional snapshot isolation (CSI) [20] or strong SI [18].

1SI+ snapshot no inversions
on sessions

Transactions are isolated under the snapshot level. The snapshot provided
to a transactionT corresponds to the latest snapshot created by transac-
tions on the same client session (conservative approach) or,at least, by
transactions on the same client session that write data items thatT reads
(which allows an optimistic approach). This level is also named strong
session SI [18].

1SI snapshot inversions

Transactions are isolated following the snapshot level. But the snapshot
provided to a transaction may be arbitrarily old, due to some transactions
pending to commit in its delegate node (i.e., inversions occur). This level
is also named generalized snapshot isolation (GSI) [20]. Usually, transac-
tions get the latest snapshot of their delegate server, which is also known
as prefix-consistent snapshot isolation (PCSI) [20].

1CS cursor stability inversions
Cursor stability is enforced in the nodes. This isolation level prevents lost
updates for rows read via a cursor. Inversions may arise.

1ARC read committed no inversions
The database replication system behaves as only one copy providing read
committed isolation. Transactions starting at different nodes at the same
time see the same database state.

1RC read committed inversions A read committed isolation level is guaranteed. Inversions may arise.

16

4 A Comprehensive Survey of Database Replication Systems

In this section we present the research evolution and surveythe state of the art of database replication
techniques. Our analysis is based on the policy-based characterization model presented in Section3. Over
50 different systems are fully characterized following this model.

The rest of the section is structured as follows. Subsection4.1presents the comprehensive and chrono-
logical survey of database replication systems. Subsection 4.2comments about the scope of the character-
ization model, as observed during the preparation of this survey. Finally, Subsection4.3 discusses about
the insight the survey offers.

4.1 Replication Systems as Combinations of Strategies: A Survey

Any replication system can be defined as a particular combination of strategies, i.e., a set of specific poli-
cies. Obviously, not all combinations will create correct or useful replication systems. Some systems
proposed in the literature of database replication are chronologically listed in Table3, detailing the fol-
lowed strategies, which are identified as shown in Table1. The correctness criterion is also specified (see
Table2). For simplicity, when detailing communication processesinvolving several rounds, only the most
demanding is showed in the table (and thus, e.g., a total order requirement signaled in the strategy may be
only needed in one of the rounds). In Table3, when a system (row) follows different strategies for a specific
interaction (column) for different types of transactions,these strategies appear at different lines within that
cell of the table (column-row). Those types of transactions denote usually the difference between read-only
and update transactions, or among the several correctness criteria supported by a given system.9 Whenever
multiple lines are present in a row, columns with only one value mean that such a strategy is shared by all
transaction types.

A visual radial representation for each surveyed system is provided in Figure 3, also in chronological
order. Eachradius of a graph corresponds to a policy, labeled with its initial letters. Concentriccircles
(hendecagons, to be accurate), mark the scale from 0 (the most inner circle), to 4 (the most external one).
The digit associated with the strategy followed by the depicted system for each interaction of each different
transaction type is then represented in that scale. Wheneverseveral options are possible for a specific
policy (e.g., when users can choose between read committed or snapshot isolation), the least costly option
is the one that is represented in the graph (read committed insuch a case), thus showing the minimum
requirements of the system. Those points are finally connected by lines in order to create a figure for each
transaction type of the system.10 Remember also that the more demanding the strategy, the greater the digit
of its identifier (e.g., a group-start policy Gs0 denotes theabsence of communication at transaction start,
while Gs3 requires a synchronization with all servers). This way, thebigger the resulting figure, the more
costly the execution of that transaction type. These representations allow us to visually compare different
systems as well as to get an idea of their cost. For example, regarding communication costs, all policies
involving communication (Cq, Gs, Gl, Ge and Ga) are grouped together in the eastern/northeastern zone of
the graph (from 12 until 4:30 in a clock). A figure widening outin that zone depicts a system which relies
on communication and thus its performance will depend on theGCS and the network. On the other hand,
regarding database requirements, the radius of Di (database-isolation policy) allows a quick comparison
between the strictness in the local isolation level required for the correct functioning of different systems.

Next we offer thorough descriptions for all the surveyed protocols and systems. Letters in brackets
reference superindexes in the corresponding row of Table3.

Alsberg and Day [2] proposed a protocol following the single primary, multiple backup model, where
backups are linearly ordered. The client can address its request to any replica in the system, which will

9When possible, the strategies at the same line represent the same type of transaction, showing, e.g., the policies for read-only
transactions in the first line and those for updates in the second one. However, for more complex cases (e.g., systems distinguishing
not only between queries and updates but also among differentcorrectness criteria), Table3 still depicts all followed strategies but
suchone-line-one-typeclarification is not made. Please refer to the textual description and the visual representation of Figure3 of
those complex systems for a detailed distinction among their transaction types.

10Those types are labeled ‘q’ for queries, and ‘u’ for update transactions. When different correctness criteria are provided, a
distinction is made in parentheses.

17

Table 3: Database replication systems expressed as combinations of strategies

C
lie

nt
re

qu
es

t

Tr
an

sa
ct

io
n

se
rv

ic
e

G
ro

up
st

ar
t

D
at

ab
as

e
re

pl
ic

at
io

n

D
at

ab
as

e
is

ol
at

io
n

G
ro

up
lif

e

G
ro

up
en

d

Tr
an

sa
ct

io
n

de
ci

si
on

Tr
an

sa
ct

io
n

re
m

ot
e

Tr
an

sa
ct

io
n

C
lie

nt
re

sp
on

se

G
ro

up
af

te
r

C
or

re
ct

ne
ss

cr
ite

rio
n

Alsberg-Day[2] Cq2a Ts0 Gs0 Dr2 Di0b Gl0 Ge1-nc Td0d Tr2e Cr1f Ga1-ng 1A-h

2PL & 2PC[24] Cq1 Ts0 Gs0 Dr1 Di3a Gl1-n-sb

Gl2-n-sc
Ge2-nd Td4-rwe Tr0

Tr1-df
Cr1 Ga0 1ASRg

BTO & 2PC[7] Cq1 Ts0 Gs0 Dr1 Di4a Gl1-n-s
Gl2-n-s

Ge2-n Td4-rw Tr0
Tr1-d

Cr1 Ga0 1ASR

Bernstein-
Goodman[9]

Cq1 Ts0 Gs0 Dr1 Di3 Gl1-n-sa

Gl2-n-sb
Ge2-n Td4-rw Tr0

Tr1-d
Cr1 Ga0 1ASR

OPT & 2PC[61] Cq1 Ts0 Gs0 Dr1 Di4a Gl1-n-s Ge2-nb Td4-rwc Tr0
Tr1-dd

Cr1 Ga0 1ASR

O2PL & 2PC[12] Cq1 Ts0 Gs0 Dr1 Di3 Gl1-n-s Ge2-na Td4-rw Tr0
Tr1-d

Cr1 Ga0 1ASR

Bcast all[1] Cq1 Ts0 Gs0 Dr2 Di3 Gl3-t-s Ge3-t Td0 Tr1-da Cr1 Ga0 1ASR

Bcast writes[1] Cq1 Ts0 Gs0 Dr2 Di3 Gl0a

Gl3-t-s
Ge3-t Td1-rw Tr0b

Tr1-d
Cr1 Ga0 1ASR

Delayed
bcast wrts[1]

Cq1 Ts0 Gs0 Dr2 Di3 Gl0 Ge3-t Td1-rw Tr0
Tr1-d

Cr1 Ga0 1ASR

Single bcast
txns[1]

Cq1 Ts0 Gs0 Dr2 Di3 Gl0 Ge0
Ge3-t

Td1-rwa

Td2-rw
Tr0
Tr1-d

Cr1 Ga0 1SR

Lazy Txn
Reordering[50]

Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge3-t Td2-rw Tr2 Cr1 Ga0 1SR

OTP-99[36] Cq1a

Cq4-tb
Ts0-nc

Ts2d
Gs0 Dr2 Di0e Gl0 Ge0 Td0 Tr0f

Tr1-pg
Cr1 Ga0 1SR

Fast Refresh
Df-Im [45]

Cq1a

Cq2b
Ts0 Gs0 Dr1 Di3c Gl0 Ge0 Td0d Tr0e

Tr1-df
Cr1 Ga0g

Ga2-fh
1SR

Fast Refresh
Im-Im [45]

Cq1
Cq2

Ts0 Gs0 Dr1 Di3 Gl0i

Gl2-f-aj
Ge0k

Ge2-fl
Td0 Tr0

Tr1-d
Cr1 Ga0 1SR

DBSM [47] Cq1 Ts0 Gs0 Dr2 Di3 Gl0 Ge0a

Ge3-tb
Td0c

Td2-rwd
Tr0
Tr1-de

Cr1 Ga0 1SR

SER[35] Cq1 Ts0 Gs0 Dr2 Di4a Gl0 Ge0b

Ge3-tc
Td0d

Td1-rwe
Tr0
Tr1-df

Cr1 Ga0 1SR

CS[35] Cq1 Ts0 Gs0 Dr2 Di4a Gl0 Ge0
Ge3-t

Td0
Td1-rw

Tr0
Tr1-d

Cr1 Ga0 1CS

SI [35] Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge0a

Ge3-tb
Td0c

Td2-wd
Tr0
Tr1-de

Cr1 Ga0 1SI

Hybrid [35] Cq1 Ts0 Gs0 Dr2 Di2a

Di4b
Gl0 Ge0c

Ge3-td
Td0e

Td1-rwf
Tr0
Tr1-dg

Cr1 Ga0 1SR

NODO [46] Cq1a

Cq4-tb
Ts1c Gs0 Dr2 Di2 Gl0 Ge0d

Ge3-ne
Td0f Tr0g

Tr1-ph
Cr1 Ga0 1SR

REORDERING[46] Cq1
Cq4-t

Ts1 Gs0 Dr2 Di2 Gl0 Ge0
Ge3-fi

Td0 Tr0
Tr1-p

Cr1 Ga0 1SR

Pronto[48] Cq2a Ts0 Gs0 Dr2 Di3 Gl0 Ge3-tb Td2c Tr2 Cr2d Ga0 1ASR

DBSM-RAC [63] Cq2a Ts0 Gs0 Dr1 Di3 Gl0 Ge0b

Ge3-tc
Td0d

Td4-rwe
Tr0f

Tr1-dg
Cr1 Ga0 1SR

Epidemic
restricted[30]

Cq1 Ts0 Gs0 Dr1 Di3 Gl0 Ge0a

Ge2-nb
Td0c

Td2-rwd
Tr0e

Tr2f
Cr1 Ga0 1SR

Epidemic
unrestrict.[30]

Cq1 Ts0 Gs0 Dr1 Di3 Gl2-n-sg Ge0
Ge2-n

Td0
Td2-rw

Tr0
Tr2

Cr1 Ga0 1SR

OTP[37] Cq4-ta Ts2b Gs0 Dr2 Di0c Gl0 Ge0 Td0 Tr1-pd Cr1 Ga0 1ASR

Continued on next page

18

Table3 – continued from previous page

C
lie

nt
re

qu
es

t

Tr
an

sa
ct

io
n

se
rv

ic
e

G
ro

up
st

ar
t

D
at

ab
as

e
re

pl
ic

at
io

n

D
at

ab
as

e
is

ol
at

io
n

G
ro

up
lif

e

G
ro

up
en

d

Tr
an

sa
ct

io
n

de
ci

si
on

Tr
an

sa
ct

io
n

re
m

ot
e

Tr
an

sa
ct

io
n

C
lie

nt
re

sp
on

se

G
ro

up
af

te
r

C
or

re
ct

ne
ss

cr
ite

rio
n

OTP-Q[37] Cq1e

Cq4-t
Ts1f

Ts2
Gs0 Dr2 Di0 Gl0 Ge0 Td0 Tr0g

Tr1-p
Cr1 Ga0 1SR

OTP-DQ[37] Cq1
Cq4-t

Ts1
Ts2

Gs0 Dr2 Di0 Gl0 Ge0 Td1-rwh

Td0
Tr0
Tr1-p

Cr1 Ga0 1SR

OTP-SQ[37] Cq1
Cq4-t

Ts0i

Ts2
Gs0 Dr2 Di0 Gl0 Ge0 Td0 Tr0

Tr1-p
Cr1 Ga0 1SR

RJDBC[23] Cq1a Ts0 Gs0 Dr2 Di0b Gl3-t-sc Ge3-td Td0e Tr2f Cr1 Ga0 1-g

RSI-PC[51] Cq1
Cq2a

Ts1b

Ts0c
Gs0 Dr2 Di2d

Di1e
Gl0 Ge0 Td0f Tr0

Tr2g
Cr1h Ga0i

Ga2-fj
1ASI
1SI
1ARC
1RC

SRCA[42] Cq1a Ts0 Gs0 Dr2 Di2 Gl0 Ge0b

Ge3-tc
Td0d

Td1-we
Tr0
Tr2

Cr1 Ga0 1SI

SRCA-Rep[42] Cq1 Ts1a Gs0 Dr2 Di2 Gl0 Ge0b

Ge3-tc
Td0d

Td2-we
Tr0
Tr1-p

Cr1 Ga0 1SI

DBSM* [68] Cq1a

Cq2b
Ts0 Gs0 Dr2 Di3 Gl0 Ge0

Ge3-t
Td0
Td2-w

Tr0
Tr1-d

Cr1 Ga0 1SR

PCSI
Distr. Cert.[20]

Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge0a

Ge3-tb
Td0c

Td2-wd
Tr0
Tr2

Cr1 Ga0 1SI

Tashkent-MW[21] Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge0a

Ge1-nb
Td0c

Td1-wd
Tr0e

Tr2f
Cr1 Ga0g 1SI

Tashkent-API[21] Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge0
Ge1-n

Td0
Td1-w

Tr0
Tr1-dh

Cr1 Ga0 1SI

DBSM-RO-opt[44] Cq1 Ts0 Gs0 Dr2 Di3 Gl0 Ge3-ta Td1-rw
Td2-rwb

Tr0
Tr1-d

Cr1 Ga0 1ASRc

DBSM-RO-cons[44] Cq1 Ts0 Gs3-t-sa

Gs0b
Dr2 Di3 Gl0 Ge0c

Ge3-td
Td0e

Td2-rwf
Tr0
Tr1-d

Cr1 Ga0 1ASR

Alg-Weak-SI[18] Cq1
Cq2a

Ts0 Gs0 Dr2 Di2 Gl0 Ge0b Td0c Tr0
Tr1-pd

Cr1 Ga0e

Ga3-ff
1SIg

Alg-Str.-SI /
Alg-Str.Ses.-SI[18]

Cq1
Cq2

Ts1a

Ts0b
Gs0 Dr2 Di2 Gl0 Ge0 Td0 Tr0

Tr1-p
Cr1 Ga0

Ga3-f
1ASI
1SI+c

One-at-a-time/
Many-at-a-time[58]

Cq2a Ts0 Gs0 Dr1 Di3b Gl0 Ge0c

Ge3-td
Td0e

Td3-rwf
Tr0g

Tr2h
Cr1 Ga0 1SR

k-bound GSI[4] Cq1 Ts0 Gs3-t-aa Dr2 Di2 Gl0 Ge0b

Ge3-tc
Td0d

Td2-we

Td1-rwf

Tr0
Tr2

Cr1 Ga0 1SR
1ASI
1SI

Tashkent+[22] Cq2a Ts0 Gs0 Dr2b Di2 Gl0 Ge0
Ge1-n

Td0
Td1-w

Tr0
Tr2

Cr1 Ga0 1SIc

Mid-Rep[33] Cq1 Ts0a

Ts1b
Gs0
Gs3-t-sc

Dr2 Di2 Gl0 Ge0
Ge3-t

Td0
Td1-rw

Tr0
Tr2d

Cr1 Ga0 1SR
1ASI
1SI

SIRC[56] Cq1 Ts0 Gs0 Dr2 Di1
Di2a

Gl0 Ge0b

Ge3-tc
Td0d

Td2-we
Tr0
Tr2

Cr1 Ga0 1SI
1RC

Serrano et al.[60] Cq2a Ts1b Gs0 Dr1 Di2 Gl1-n-sc Ge2-nd

Ge3-te
Td0f

Td2-wg
Tr0h

Tr2i
Cr1 Ga0 1SI

MPF/MCF[70] Cq1a

Cq2b
Ts0 Gs0 Dr2 Di3 Gl0 Ge0

Ge3-t
Td0
Td2-rw

Tr0
Tr1-d

Cr1 Ga0 1SR

WCRQ[53] Cq1 Ts0 Gs0 Dr2 Di4a Gl0 Ge2-nb

Ge3-tc
Td3-rwd Tr0

Tr2e
Cr1f Ga0 1ASR

AKARA [16] Cq1 Ts0-n
Ts2a

Gs3-t-sb Dr2 Di2 Gl0 Ge3-nc

Ge0d
Td0 Tr2 Cr1 Ga0 1SI

Continued on next page

19

Table3 – continued from previous page

C
lie

nt
re

qu
es

t

Tr
an

sa
ct

io
n

se
rv

ic
e

G
ro

up
st

ar
t

D
at

ab
as

e
re

pl
ic

at
io

n

D
at

ab
as

e
is

ol
at

io
n

G
ro

up
lif

e

G
ro

up
en

d

Tr
an

sa
ct

io
n

de
ci

si
on

Tr
an

sa
ct

io
n

re
m

ot
e

Tr
an

sa
ct

io
n

C
lie

nt
re

sp
on

se

G
ro

up
af

te
r

C
or

re
ct

ne
ss

cr
ite

rio
n

BaseCON for
1SR[69]

Cq1a

Cq4-tb
Ts0c

Ts2d
Gs0 Dr2 Di3e Gl0 Ge0 Td0f Tr0

Tr1-pg
Cr1h Ga0 1SR

BaseCON for
SC[69]

Cq2a

Cq4-tb
Ts0c

Ts2d
Gs0 Dr2 Di3e Gl0 Ge0 Td0f Tr0

Tr1-pg
Cr1h Ga0 1SR+

BaseCON for
strong 1SR[69]

Cq4-ta Ts0
Ts2

Gs0 Dr2 Di3 Gl0 Ge0 Td0 Tr0
Tr1-p

Cr1 Ga0 1ASR

gB-SIRC[57] Cq1 Ts0 Gs3-t-aa Dr2 Di1
Di2b

Gl0 Ge0c

Ge3-td
Td0e

Td2-wf

Td1-rwg

Tr0
Tr2

Cr1 Ga0 1ASI
1SI
1RC

then forward it to the primary [a]. The proposed system aims at offering a resilient sharing of distributed
resources but it is not specially tailored to any service. Inparticular, it is not tailored for database repli-
cation. Thus, some database-related points are not detailed in the paper, such as the database-isolation [b]
or the transaction-remote policy [e] (for which a conservative, non-overlapping option is assumed in our
survey). Authors focus on requests that change the state of the replicas, which can be regarded as update
transactions. Processing is slightly different dependingon whether the client directly addresses to the pri-
mary or not. In any case, a two-host resiliency is always ensured. The first backup receives the updates at
the end of the transaction [c], before a unique reply is sent to the client [f]. After this, the rest of backups
are updated in a cascade mode [g]: whenever a backup commits its new state, it forwards the updates to
the following backup. As all transactions are executed in the primary (the rest of nodes only act as back-
ups), the concurrency control of the primary server is enough and no decision process is necessary [d].
The resulting correctness criterion includes one-copy equivalence and the guarantee of no inversions (from
the user point of view, there is only one centralized server that runs all requests). The exact correctness
criterion directly depends on the local isolation of the primary replica [h]. If, for example, the isolation in
the primary node is serializable, the correctness criterion will be 1ASR.

2PL & 2PC (Distributed Two-Phase Locking with Two-Phase Commit) wasoriginally described by Gray
[24]. 2PL is an algorithm for distributed concurrency control,intended for distributed databases where
some degree of replication is also probable. This involves the use of distributed transactions. The under-
lying database provides a serializable level of isolation,with long read and write locks [a]. Once in the
appropriate cohort [b], read operations set a read lock on the local copy of the itemand read the data,
but updates must be approved at all replicas before the transaction proceeds [c]. Thus, write locks are re-
quired on all copies in a pessimistic way. All locks are held until the transaction has committed or aborted.
Deadlocks can appear and are solved by aborting the youngesttransaction. A snoop process periodically re-
quests waits-for information from all sites, detecting andresolving deadlocks. This process rotates among
the servers in a round-robin fashion. A two-phase commit [d] is executed for each transaction that requests
commitment. The initiating server (coordinator) sends apreparemessage to all nodes. Each server then
replies with a positive or negative message. If all messagesare positive, then the coordinator sends a com-
mit message. Every server confirms with another message the success of the commitment. If any of the
replies in the first phase is negative, the coordinator sendsan abort message and all servers report back to
the coordinator once the abortion is complete. Decision is,thus, agreement-based [e]: aborts are possible
due to deadlocks, node or disk failures, problems in the log,etc., so the first phase of 2PC achieves an
agreement among the servers about the decision for the current transaction. In nodes holding copies of
replicated items, subtransactions are initiated as in cohorts, but only for update transactions. Locks ensure
that conflicting operations are not concurrently made [f]. The correctness criterion is 1ASR [g].

A similar protocol is Wound-Wait (WW), which was proposed by Rosenkrantz et al. [54]. The only
difference with regard to distributed 2PL is the way in whichdeadlocks are handled. In WW, deadlocks
are prevented by the use of timestamps. When a transaction requests a lock which is held by a younger

20

transaction (with a more recent initial start-up time), theyoungest transaction is immediately aborted unless
it is already in the second phase of its 2PC.

BTO & 2PC (Basic Timestamp Ordering with Two-Phase Locking) was originally proposed by Bernstein
and Goodman [7]. BTO is identical to distributed 2PL except for the fact that local isolation is based on
start-up timestamps [a]. Each data item has a read timestamp corresponding to the most recent reader, and
a write timestamp corresponding to the most recent writer. When a transaction requests a read operation,
it is permitted if the timestamp of the requester exceeds thewrite timestamp of the object. A write request
is permitted if the timestamp of the requester exceeds the read timestamp of the item. In this case, if the
write timestamp of the item is greater than the timestamp of the requester, the update is simply ignored.
Write locks must be granted in all remote copies before proceeding with update operations, which are kept
in private workspaces until commit time so that other writers are not blocked. On the other hand, approved
read operations must wait until the precedent writes are applied in order during the commit operation of
previous transactions. The used mechanisms enforce 1ASR.

Bernstein and Goodmanlater proposed a concurrency control algorithm [9] for achieving 1ASR in repli-
cated distributed databases. This algorithm, which also employs 2PL and 2PC (and so the strategies of both
algorithms match), is specially enforced to tolerate failures and recover nodes. Each data itemx has one or
more copies (xa, xb, ...). Each copy is stored at a site. Site failures are clean:when a site fails, it simply
stops running (Byzantine failures are not considered); when it recovers, it knows that it failed and starts a
recovery phase. Other sites in the system can detect when a site is down. Neither network partitions nor
network failures are considered.

Each data itemx has an associated directoryd(x), which can be replicated. Each copy of a directory
contains two kinds of information: a list of the available copies ofx, and a list of the available copies ofd(x).
Special status transactions change the contents of the directories to reflect site failures. User transactions
perform read and write operations over data items. Both types of transactions require an available copy
of d(x) for each access overx. Access to data items and directories are both protected by locking. Read
and write locks over data items conflict in the usual way. New locks are created for accessing directories:
din-locks, in-locks, ex-locks and user-locks. The three first are all conflicting among them. The last one,
user-lock, is set by user transactions and it conflicts only with in-locks, being compatible with the rest of
directory locks. Two-phase locking (2PL) is used for concurrency control.

There are three types of status transactions: directory-include, include and exclude. A directory-include
transaction,DIRECTORY-INCLUDE(dt), makes directory copydt available. It initializesdt to the “current
value” of d(x) and addsdt to the directory list of every available copy ofd(x) (din-locks are required in
the original copy of the directory, in the new one and in all the updated copies). An include transaction,
INCLUDE(xa), makes data item copyxa available. It first initializesxa to the current value ofx and then
it addsxa to the data-item list of every available copy ofd(x) (in-locks are requested in the local available
copy and in all the updated copies ofd(x); also, a read-lock is set on the original data item copy ofx
and a write-lock protects the access to the new copyxa). Finally, an exclude transaction,EXCLUDE(xa),
makes data item copyxa unavailable (ex-locks are required in the original and in all the updated copies
of d(x)). When executing any of these status transactions, if it is detected that some directory copydu

has become unavailable, the transaction also removesdu from the directory list of every available copy
of d(x). The distributed database system invokes exclude transactions when a site fails, and include and
directory-include transactions when a site recovers. There is no directory-exclude transaction;dt becomes
unavailable the instant its site fails.

User transactions access data items in read and write operations. When a read operation is requested,
the corresponding directory is accessed to find an availablecopy of x to read, which is then protected
with a read-lock [a]. For a write operation, a user-lock is set ondt , the local available copy ofd(x) (step
1). For each available data-item copyxa, a write-lock is set [b] (step 2). Finally, all still available copies
which were locked in the previous step are written (step 3). As sites may fail at any point in time, exclude
transactions can be applied concurrently with user transactions. Copies that could be locked in step 2 but
become unavailable before step 3 are ignored. Finally, whenthe user transaction reaches its locked point
(when it owns all of its locks), the following procedure is executed: (1) for each read itemxa, if xa is not in

21

��

��

��

��

��

�� ��

	�

	

	�

	�

�

a. Alsberg-Day

��

��

��

��

��

�� ��

	�

	

	�

	�

�

b. 2PL/Bernstein-Goodman

��

��

��

��

��

�� ��

	�

	

	�

	�

�

c. BTO

��

��

��

��

��

�� ��

	�

	

	�

	�

�

d. OPT

��

��

��

��

��

�� ��

	�

	

	�

	�

�

e. O2PL

��

��

��

��

��

�� ��

	�

	

	�

	�

�

f. Bcast all

��

��

��

��

��

�� ��

	�

	

	�

	�

�

g. Bcast writes

��

��

��

��

��

�� ��

	�

	

	�

	�

�

h. Delayed bcast wrts

��

��

��

��

��

�� ��

	�

	

	�

	�

�

i. Single bcast txns

Figure 3: Visual radial representations of the surveyed systems

the data-items list of local directory copydt , or if EXCLUDE(xa) has an ex-lock ondt , then the transaction
is aborted. (2) In parallel, all user-locks and read-locks are released, and the step 3 of the write procedure
is finished and all write-locks are also released.

A two-phase commit (2PC) procedure is used to commit transactions. The first phase of 2PC can run
before the transaction reaches its locked point. However, phase 2 must wait until the end of the step 1 of
the locked-point procedure. Phase 2 of 2PC and step 2 of the locked-point procedure can use the same
messages. Due to the use of 2PL and 2PC, 1ASR is guaranteed.

OPT & 2PC (Distributed Certification with Two-Phase Commit) corresponds to the first of the two dis-
tributed concurrency control protocols proposed by Sinha et al. [61]. As in BTO, all data items have a
read and a write timestamp corresponding to the most recent reader and writer, respectively [a]. However,

22

��

��

��

��

��

�� ��

	�

	

	�

	�

�

j. Lazy Txn Reord.

��

��

��

��

��

�� ��

	�

	

	�

	�

�

k. OTP-99/OTP-SQ

��

��

��

��

��

�� ��

	�

	

	�

	�

�

l. Fast Refresh Df-Im

��

��

��

��

��

�� ��

	�

	

	�

	�

�

m. Fast Refresh Im-Im

��

��

��

��

��

�� ��

	�

	

	�

	�

�

n. DBSM

��

��

��

��

��

�� ��

	�

	

	�

	�

�

o. SER/CS

��

��

��

��

��

�� ��

	�

	

	�

	�

�

p. SI

��

��

��

��

��

�� ��

	�

	

	�

	�

�

q. Hybrid

��

��

��

��

��

�� ��

	�

	

	�

	�

�

r. NODO/REORDERING

Figure 3: Visual radial representations of the surveyed systems (cont.)

in OPT, transactions are allowed to proceed freely, storingany updates in private workspaces. For each
read operation, the transaction must remember the write timestamp of the read item. Before starting the
two-phase commit [b], a unique timestamp is assigned to the transaction. A certification is then performed
for each transaction in each cohort. If there is some replication, remote updaters (which store copies of the
written objects) receive the writeset in thepreparemessage of 2PC and take also part in the certification
process. A read request is certified if the version that was read is still the current version and no write with
a newer timestamp has been already certified. A write requestis certified if no later reads have been locally
certified or committed. The termlater refers to the timestamp assigned at the start of the 2PC. A trans-
action is certified globally if local certification succeedsfor all its cohorts and all its remote updaters [c].
This certification process is run inside the local DBMS, which allows a concurrent execution of writesets
in remote updaters while ensuring a right concurrency control [d]. The optimism of this algorithm, which

23

��

��

��

��

��

�� ��

	�

	

	�

	�

�

s. Pronto

��

��

��

��

��

�� ��

	�

	

	�

	�

�

t. DBSM-RAC

��

��

��

��

��

�� ��

	�

	

	�

	�

�

u. Epidemic restricted

��

��

��

��

��

�� ��

	�

	

	�

	�

�

v. Epidemic unrestricted

��

��

��

��

��

�� ��

	�

	

	�

	�

w. OTP

��

��

��

��

��

�� ��

	�

	

	�

	�

�

x. OTP-Q

��

��

��

��

��

�� ��

	�

	

	�

	�

�

y. OTP-DQ

��

��

��

��

��

�� ��

	�

	

	�

	�

�

z. RJDBC

��

��

��

��

��

�� ��

	�

	

	�

	�

�

aa.RSI-PC

Figure 3: Visual radial representations of the surveyed systems (cont.)

lets read operations proceed without getting any locks, allows the appearance of potential inversions during
the execution of transactions. These potential inversionsare later detected and aborted during certification,
based on the total order of the timestamps assigned to the transactions, thus providing 1ASR.

O2PL & 2PC (Distributed Optimistic Two-Phase Locking with Two-PhaseCommit) was proposed by
Carey and Livny [12] as an optimistic version of distributed 2PL. Both algorithms are identical in the
absence of replication. However, O2PL handles replicated data as OPT does: when a cohort updates a
replicated data item, a write lock is requested on the local copy of the item, but the request of write locks
in remote copies is delayed until commit time. During 2PC [a], remote nodes must acquire the write
locks required by the transaction (this info is in thepreparemessage of the 2PC) before answering to the
coordinator. As read operations are required to first get a read lock and certified transactions get all write

24

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ab.SRCA

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ac.SRCA-Rep

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ad.DBSM*

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ae.PCSI Distr. Cert.

��

��

��

��

��

�� ��

	�

	

	�

	�

�

af. Tashkent-MW

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ag.Tashkent-API

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ah.DBSM-RO opt

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ai. DBSM-RO cons

��

��

��

��

��

�� ��

	�

	

	�

	�

�

aj. Alg-Weak-SI

Figure 3: Visual radial representations of the surveyed systems (cont.)

locks at all replicas before committing, the correctness criterion of 1ASR is ensured.

Agrawal et al. [1] propose the use of atomic broadcast to simplify the design of replication protocols, thus
eliminating the need for acknowledgments, global synchronization or two-phase commitment protocols.
Four protocols are proposed.Broadcast all is a naive solution that follows the state machine approach
[59] broadcasting each operation, read or write, in total orderto all replicas and waiting until its delivery to
execute it. A final commit operation is also broadcast and applied in the nodes [a]. Thus, every site delivers
all operations in the same order: independent transactionsmay commit at different orders while conflicting
operations are ensured to be executed at their delivery order. As a result, a 1ASR correctness criterion
is enforced.Broadcast writes, optimizes previous algorithm by sparing the broadcast of read operations
[a]. A delegate node sends a commit or abort message for its transactionT, as it is the only node where

25

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ak. Alg-Str./Str.Ses.-SI

��

��

��

��

��

�� ��

	�

	

	�

	�

�

al. One/Many-at-a-time

��

��

��

��

��

�� ��

	�

	

	�

	�

� ����������� ������

am.k-bound GSI

��

��

��

��

��

�� ��

	�

	

	�

	�

�

an.Tashkent+

��

��

��

��

��

�� ��

	�

	

	�

	�

� ����� ������ �������

ao.Mid-Rep (read-only)

��

��

��

��

��

�� ��

	�

	

	�

	�

���������� �������

ap.Mid-Rep (updates)

��

��

��

��

��

�� ��

	�

	

	�

	�

� ������ ������

aq.SIRC

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ar. Serrano et al.

��

��

��

��

��

�� ��

	�

	

	�

	�

�

as.MPF/MCF

Figure 3: Visual radial representations of the surveyed systems (cont.)

the read operations ofT were performed. Read-only transactions are committed onlyin their delegate
[b], while update transactions are committed at every replica. 1ASR is guaranteed.Delayed broadcast
writes, packs all write operations in a single broadcast at the end of transactionT. When this message is
delivered, nodes request write locks and execute writes. When T commits in its delegate node, a commit
operation is broadcast to all sites. Assuming that read-only transactions are also broadcast at the end and
a validation is performed for them, 1ASR is guaranteed. Finally, single broadcast transactions, reduces
all communication down to a single broadcast at the end of thetransaction, only for update transactions
(the decision to commit a read-only transaction is done locally [a] and, as a result, inversions may occur).
Readset and writeset information is contained in this message, for each node to be able to independently
certify transactions and grant all write locks. The resulting correctness criterion is 1SR.

These four protocols are referenced to as protocols A1, A2, A3 and A4 and their performance is evalu-

26

��

��

��

��

��

�� ��

	�

	

	�

	�

�

at. WCRQ

��

��

��

��

��

�� ��

	�

	

	�

	�

������ ������

au.AKARA

��

��

��

��

��

�� ��

	�

	

	�

	�

�

av. BaseCON for 1SR

��

��

��

��

��

�� ��

	�

	

	�

	�

�

aw. BaseCON for SC

��

��

��

��

��

�� ��

	�

	

	�

	�

�

ax. BaseCON for str-1SR

��

��

��

��

��

�� ��

	�

	

	�

	�

� ������ �����������

ay. gB-SIRC

Figure 3: Visual radial representations of the surveyed systems (cont.)

ated by Holliday et al. [29], who claim that the usage of atomic broadcast in database replication protocols
simplifies message passing and conflict resolution, thus making replication efficient, even when providing
full replication and update-everywhere capability.

TheLazy Transaction Reordering protocol was proposed by Pedone et al. [50] as a replication protocol
able to reduce the abort rate of existing lazy approaches11 by reordering transactions during certification
when possible. Traditional Kung-Robinson’s certification, where a delivered transactionT is aborted if
its readset intersects with the union of the writesets of concurrent and previously delivered committed
transactions, is thus changed for a new one where serial order does not necessarily have to match up with
that of the atomic broadcast used to send the certification message. The reordering protocol tries to find
a position in the serial order whereT can be inserted without violating serializability. If no position can
be found,T is aborted. The reordering nature of the protocol may increase inversions. As local write
operations are tentative and are only confirmed in a non-overlapping manner after certification, a serial
execution is achieved despite not using local serializableisolation. As a result, the correctness criterion is
1SR.

OTP algorithm, Optimistic Transaction Processing, was proposed by Kemme et al. [36] and later refined
[37]. In order to distinguish between both versions, we denote the initial one with the year of publication
OTP-99. In OTP-99, all accesses to the database are assumed to be done through the use of stored proce-

11In such a paper [50], an approach is identified as lazy if it locally executes transactions and sends certification information to
the rest of the system at commit time, as opposed to eager approaches, which are identified in the paper as those that synchronize
each data access by communicating with other nodes during transaction execution. Note that these definitions do not match those of
Section2, where eager approaches broadcast the writeset and apply itat all nodes before replying to the client, as opposed to lazy
approaches that send and apply writesets at remote nodes after committing in the delegate.

27

dures. Each stored procedure accesses only one of a set of disjoint conflict classes into which the database
is divided. Each node maintains a queue per conflict class, inorder to serialize conflicting transactions at
middleware level, and has a mechanism that maintains different versions of the data of each conflict class
[e]. Read-only transactions can be executed at any replica [a], using the corresponding snapshot [c] and
committing locally without further processing [f]. To provide consistent snapshots for queries, the different
maintained versions of the data are labeled with the index (the position inside the definitive total order) of
the transaction that created the version. IfTi was the last processed TO-delivered transaction at the time
a queryQ starts, then the index forQ is i.5 (a decimalindex). WhenQ wants to access some data, it is
provided with the data corresponding to the maximum versionwhich is lower than the index of the query.

Update transactions are broadcast in total order to all the sites [b], where they will be executed in an
active way [d]. An optimistic atomic broadcast is used, so first transactions are opt-delivered in a tentative
order to be later TO-delivered in the definitive total order.When a transaction is opt-delivered, it is inserted
in the corresponding queue. All transactions at the heads ofthe queues can be executed concurrently [g], as
they do not conflict. When a transactionT is finally TO-delivered, any conflicting transactionT ′ tentatively
ordered beforeT and not yet TO-delivered must be reordered (as the definitivetotal order is used as the
serialization order for conflicting transactions). IfT ′ already started execution, it must be aborted and later
re-executed.T is then rescheduled before all non-TO-delivered transactions in its corresponding queue.
On the other hand, when the definitive order matches the tentative one,T can be committed as soon as it
is fully executed. After commitment,T is removed from its queue and the following transaction can be
submitted to execution.

Regarding the correctness criterion, if we consider each conflict class, i.e., each division of the data-
base, as a logically different database, transactions running in any of those divisions are guaranteed a 1SR
correctness criterion, as the snapshots used by queries allow inversions.

Pacitti et al. [45] proposeFast Refresh Deferred-ImmediateandFast Refresh Immediate-Immediate,
two refreshment algorithms for a lazy master replication system. In those systems, each data item has a
primary copy stored in a master node, and updates to that dataitem are only allowed in that node [b], while
read operations are allowed in any replica [a] (inversions may arise). A transaction can commit after updat-
ing one copy. The rest of replicas are updated in separate refresh transactions. Partial replication is used in
this work, but all transactions are assumed to access only local data (there are no distributed transactions).
Secondary copies are stored in other servers. Write operations are propagated to the secondary copies,
which are updated in separate refresh transactions. Two types of propagation are considered: deferred (all
the update operations of a transactionT are multicast within a single message after the commitment of
T) [h], and immediate (each write operation is immediately multicast inside an asynchronous message,
without waiting for the commitment ofT) [j, l]. Read operations are not propagated [e, g, i, k]. Refresh
transactions can be triggered in the secondaries in three different ways: deferred, immediate and wait.
The combination of a propagation parameter and a triggeringmode defines a specific update propagation
strategy. In the deferred-immediate algorithm, a refresh transaction is started as soon as the corresponding
message is received by the node; while in the immediate-immediate one, a refresh transaction is started
as soon as the first message corresponding to the first operation is received, thus achieving higher replica
freshness. Finally, the ordering parameter defines the commit order of refresh transactions. Depending
on the system topology, this ordering must be refined in orderto maintain replica consistency (secondary
copies are updated and no inconsistent state is observable in the meantime). A FIFO reliable multicast
with a known upper bound is used. This upper bound, timestamps and drift-bounded clocks in nodes al-
low the protocol to achieve a total ordering among messages,when necessary, letting refresh transactions
to run concurrently [f] but forcing them to wait before their final commit operation, in order to perfectly
correspond with the commitment order in the master nodes. A serializable isolation level in local databases
[c] allows the system to ensure 1SR. No decision phase is required, as local concurrency control in master
nodes is enough [d].

DBSM (Database State Machine Replication)[47] applies the state machine model to the termination
protocol of a database replication system. Read-only transactions are directly committed when the user
requests to, i.e., no communication is established with other nodes and no decision process is performed

28

[a, c]. Update transactions atomically broadcast [b] their information (readset, writeset, updates) to the rest
of nodes, where a certification [d] is performed, checking for write-read conflicts. Successfully certified
transactions request all their write locks and, once they are granted, the updates are performed [e]. To
make sure that each database site will reach the same state, write-conflicting transactions must request
their locks (and be applied to the database) in the same orderthey were delivered. On the other hand,
transactions that do not conflict are commutable: they do notneed to be applied to the database in the same
order they were delivered. Although different sites may follow different sequences of states (depending on
such commutable transactions), write locks –held from certification to final commitment–, prevent users
from perceiving such inconsistency. On the other hand, as read-only transactions are not certified (they
are locally and immediately committed upon request), inversions are possible. The ensured correctness
criterion is 1SR.

During remote writeset application, conflicting local transactions are aborted. Establishing a trade-off
between consistency and performance, Correia et al. [15] relax the consistency criteria of the DBSM with
Epsilon Serializability. Read-only transactions can define a limit in the inconsistency they import, i.e., the
aggregated amount of staleness of read data. Update transactions define a limit in the inconsistency they
export to concurrent transactions. This way, during lock acquisition before writeset application, a local
mechanism verifies if the inconsistencies introduced by thecommitting writeset do not force a local query
to exceed its limits, or the remote update to exceed its limits. If both limits are not exceeded, the local
query can continue and the remote writeset can be applied. Otherwise, the local query is aborted.

SER [35] is a protocol for serializable databases, where long localread locks are requested for read op-
erations, while write operations are delayed until the end of the reading phase [a]. When a read-only
transaction finishes its operations and requests commitment, it is immediately committed, without any
communication with the rest of the system [b, d]. On the other hand, update transactions are broadcast in
total order [c]. When delivered, a validation mechanism is performed [e] but not for deciding about this
transaction but about local ones not yet delivered. This validation is based on locks. All write locks for the
delivered writeset are atomically requested. If there is nolock on the object, the lock is granted. If there
is a write lock or all the read locks are from transactions already delivered, then the request is enqueued.
If there is a read lock from a transactionTj not yet delivered,Tj is aborted and the write lock is granted.
If Tj was already broadcast, an abort message is sent. After this lock phase, if the delivered transaction
was local, a commit message is sent. Thus, a second message, only reliable, is sent for every broadcast
transaction with its final outcome, following a weak voting approach (the commit vote for a transaction
Tc is sent after the delivery of the writeset ofTc; the abort vote for a transactionTa is sent before the de-
livery of the writeset ofTa). Whenever a write lock is granted, the corresponding operation is performed.
The queues of requested locks ensure that conflicting operations are serially performed [f]. Updates of
non-conflicting transactions can be committed at differentorders, but the write locks prevent users from
perceiving the lack of sequentiality. Nevertheless, inversions may arise. The correctness criterion is 1SR.
A PostgreSQL implementation of the SER protocol, Postgres-R, was published and further discussed by
Kemme and Alonso [34].

CS [35] is a version of SER for databases where read locks are released after the read operation if the
transaction will not update the object later on [a]. The algorithm is identical to that of SER, except for the
decision phase, where transactions holding short read locks are not aborted when the delivered transaction
requests a write lock in the same object. Instead, the delivered transaction waits for the short locks to be
released. This way, read operations are less affected by writes, but inversions may increase and the resulting
execution may be non-serializable. The update applicationmechanism, as in SER, allows independent
transactions to commit in a different order to that of their delivery, although this is concealed to users by
holding write locks from decision time. Therefore, the ensured correctness criterion is 1CS.

SI [35] is deployed upon a local database providing snapshot isolation. On request, read-only transactions
are immediately committed without any communication with the rest of the system [a, c], while update
transactions must be atomically broadcast [b]. The sequence number of their writesets is used as end-
of-transaction (EOT) timestamp. The begin-of-transaction (BOT) timestamp ofTj is set to the highest

29

sequence number EOTi such thatTi and all transactions with lower sequence numbers have terminated in
the replica at the starting time ofTj . Certification [d] is made by checking the EOT timestamp of the last
transaction currently holding or waiting to acquire a writelock on an objectX with the BOT timestamp
of the delivered transaction wanting to writeX. If both transactions are concurrent (EOT> BOT), the
delivered transaction is aborted. If there is no write lock on objectX, the comparison is made with the
EOT of the transaction that wrote its current version. Non-aborted transactions request their write locks in
delivery order. As soon as a lock is granted, the corresponding operation is performed [e]. Again, write
locks prevent users from perceiving the lack of sequentiality when non-conflicting transactions are applied
at different orders in different replicas. The correctnesscriterion is 1SI, as inversions are not precluded.

Hybrid [35] is a combination of previous protocols SER and SI. Read-only transactions are executed in
snapshot isolation mode [a]: they get a version of the database at their delegate corresponding to their start
time (inversions may arise). Update transactions are executed like in SER [b]. Read-only transactions com-
mit immediately without any communication with the rest of the nodes [c, e], whereas update transactions
are broadcast in total order [d]. A validation phase based on locks is performed whenever a transaction
is delivered [f]. Only the delegate of the transaction is able to decide the final outcome, which is reliably
broadcast at the end of the lock phase. As in SER, only local transactions not yet delivered can be aborted.
Thus, the decision is not for the delivered transaction, butfor transactions that would be subsequent in the
total order. Whenever the delivered transaction gets a writelock, the corresponding operation is performed
[g], which can produce the reordering of independent transactions. The guaranteed correctness criterion is
1SR.

NODO (NOn-Disjoint conflict classes and Optimistic multicast) was proposed by Patiño-Mart́ınez et al.
[46] as a middleware-based replication protocol that aims to enhance scalability of existing systems reduc-
ing the communication overhead. Data is partitioned into disjoint basic conflict classes, which are then
grouped into distinct compound conflict classes. Each compound conflict class has a master or primary
site, which allows the protocol to rely on the local concurrency control for deciding the outcome of trans-
actions [f]. A transaction accesses any compound conflict class, whichis known in advance. Read-only
transactions can be executed in any node [a], as a complete copy of the database is stored at each node.
Update transactions, however, are broadcast in total orderto all sites [b]. An optimistic delivery allows the
overlap of the time needed to determine the total order with the time needed to execute the transaction. For
concurrency purposes, each site has a queue associated to each basic conflict class. When a transactionT
is optimistically delivered (opt-delivered), all sites queue it in all the basic conflict classes it accesses. At
the master site ofT, wheneverT is the first transaction in any of its queues, the corresponding operation is
executed [c]. WhenT is delivered in total order (TO-delivered), if the tentative order was correct,T can
commit as soon as it finishes execution. Then, its writeset isreliably broadcast in a commit message to
all sites [e], where updates are applied afterT is TO-delivered and as soon as it reaches the head of each
corresponding queue [h]. When all updates are applied,T commits. Committed transactions are removed
from the queues. If messages get out of order, any conflictingtransactionT ′ opt-delivered beforeT and
not yet TO-delivered is incorrectly ordered beforeT in all the queues they have in common.T must be
reordered before the transactions that are opt-delivered but not yet TO-delivered. IfT ′ already started its
execution, it must be aborted at the master site. Read-only transactions are queued at their delegate node
after transactions that have been TO-delivered and before transactions that have not yet been TO-delivered
[c]. Once a read-only transaction ends, it is locally committed with no further communication [d, g]. A
performance evaluation of an implementation of this protocol was conducted by Jiḿenez-Peris et al. [32].

A drawback of NODO is that a mismatch between the tentative and the definitive orders may lead to an
abortion. Taking advantage of the master copy nature of thisprotocol, a new version was also proposed
in that paper [46]: the REORDERING algorithm, where a local site can unilaterally decide to change
the serialization order of two local transactions following the tentative order instead of the definitive one in
order to avoid such aborts. Remote nodes must be informed about the new execution order (this information
is added to the commit message). Restrictions apply, as reordering is only possible if the conflict class of
the reordered transaction, the first one in the local tentative order, is a subset of the conflict class of the

30

so-called serializer transaction, the one that comes first in the definitive total order. The commit message
of REORDERING contains the identifier of the serializer transaction and follows a FIFO [i] order (several
transactions can be reordered with respect to the same serializer transaction, and their commit order in all
sites must be the same). When a transactionTi is TO-delivered at its master site, any non-TO-delivered
local transactionTj whose conflict class is a subset of that ofTi is now committable (it will be committed
when it finishes execution, as if it were TO-delivered in the NODO algorithm). Local non-TO-delivered
conflicting transactions that cannot be reordered and have started execution must be aborted. At remote
sites, reordered transactions are only committed when its serializer transaction is TO-delivered at that site.
Both NODO and REORDERING allow inversions and ensure the correctness criterion of 1SR.

Pronto [48] follows the primary-backup approach, so transactions must be addressed to the primary [a].
Clients do not need to know which node is the primary at any moment, as the first part of their algorithm
is devoted to find the current primary by consecutively asking all the replicas. After transaction execu-
tion in the primary, Pronto sends to the backups the ordered sequence of all its SQL sentences [b]. This
allows heterogeneity in the underlying DBMS as long as they follow the same SQL interface. Possible
non determinism is said to be solved by introducing orderinginformation that allows the backups to make
the same non-deterministic choices as the primary. As all replicas completely execute each transaction,
Pronto assimilates to an active approach. But unlike activereplication, backups process transactions af-
ter the primary, allowing the primary to make non-deterministic choices and export them to the backups.
The certification process [c] does not consider the conflicts between transactions. Instead, a simple integer
comparison is performed to check if the transaction was executed in the same epoch where it is trying
to commit. A change in the epoch, which results in another server being the primary, occurs when any
backup suspects the primary to have failed and broadcasts (also in the total order used for broadcasting
transactions) a new epoch message. As these suspicions may be false, the primary may be still running
and so it aborts all transactions in execution upon the delivery of the new epoch message. However, due to
the time it takes for the message to be delivered, it is possible that multiple primaries process transactions
at the same time. To prevent possible inconsistencies, delivered transactions are committed in backups
only if they were executed in the current epoch (by the current primary). After termination, all replicas
(primary and backups) send the transaction results to the client [d]. As inversions are precluded by serving
all transactions in the primary, the correctness criterionis 1ASR.

DBSM-RAC, Database State Machine with Resilient Atomic Commit and Fast Atomic Broadcast, was
proposed by Sousa et al. [63] as an adaptation of DBSM for partial replication. In partial replication,
nodes maintain only the transaction information that refers to data items replicated in that node. Due to
this, certification is no longer ensured to reach the same decision at all nodes. Instead, a non-blocking
(to tolerate failures) atomic commit protocol must be run, in order to reach a consensus on transaction
termination [e]. But atomic commit protocols can abort transactions as soon as a participant is suspected
to have failed. This goes against the motivation for replication, as the more replicas an item has, the higher
the probability of a suspicion, and the lower the probability of a transaction accessing that item to be finally
committed. Resilient atomic commit solves this problem by allowing participants to commit a transaction
even if some of the other servers are suspected to have failed, for which it requires a failure detector oracle.
The second abstraction presented is Fast Atomic Broadcast,a total order broadcast which can tentatively
deliver (FST-deliver) multiple times a message before deciding on the final total order (FNL-deliver). This
optimistic behavior allows the overlap of the time needed todecide the total order with the time needed
to run the resilient atomic commit, thus overcoming the penalty of the latter. A transactionT must start
in a node that replicates all the items accessed byT [a]. Read-only transactions are locally committed [b,
d, f]. Update transactions spread their information using the fast atomic broadcast [c]. As soon asT is
first FST-delivered, all participating sites (those replicating any item accessed byT) certify T and send the
certification result as their vote for the resilient atomic commit protocol. WhenT is FNL-delivered, if the
tentative order was correct, the result of the resilient atomic commit is used to decide the final outcome of
T. If T can commit, its write locks are requested and its operationsexecuted as soon as they are granted [g].
Whenever the orders mismatch, the certification and resilient atomic commit started forT are discarded
and the process is repeated for the final order. As in DBSM, write locks prevent users from perceiving the

31

lack of sequentiality caused by independent transactions committing in different orders in different nodes.
As inversions are not precluded, the correctness criterionis 1SR.

Holliday et al. [30] propose a pair of partial database replication protocols supporting multi-operation
transactional semantics and aimed to environments where servers are connected by an unreliable network,
subject to congestion and dynamic topology changes, where messages can arrive in any order, take an
unbounded amount of time to arrive, or be completely lost (however, messages will not arrive corrupted).
Each site maintains an event log of transaction operations,where the potential causality among events is
preserved by vector clocks. Records of this log are exchanged with the rest of servers in an epidemic way
with periodic point-to-point messages. This exchange ensures that eventually all sites incorporate all the
operations of the system. A nodeNi also maintains a tableTi that contains the most recent knowledge of
Ni of the vector clocks at all sites. This time-table, also included in the epidemic messages, ensures the
time-table property: ifTi [k, j] = v thenNi knows thatNk has received the records of all events atNj up to
timev (which is the value of the local clock ofNj).

Transactions are executed locally. In the restricted access approach,Epidemic restricted, a transaction
T can access only those data items that are permanently storedin the delegate node of the transaction. When
T finishes, if it is read-only it is immediately committed without further processing [a, c, e]. Otherwise, its
readset, writeset (with the updated values) and timestamp are stored in a pre-commit record in the delegate
node to be epidemically spread [b]. The timestamp used is theith row of the time-table ofNi , Ti [i,∗],
with the ith component incremented by one (the clock value at each node isincremented every time a new
record is inserted into the log). This timestamp allows the protocol to determine concurrency between
transactions in order to certify them. WhenNi knows, by the clock information from epidemic messages,
that this record has reached all sites,Ni must have received any concurrent transactions initiated in other
nodes and thus has all the required information to certifyT [d]. As there is no order guarantee, when
a conflict is found between two concurrent transactions, both transactions must be aborted. Not aborted
transactions are applied and committed at each node [f].

In the remote access approach,Epidemic unrestricted, remote objects can be read and written by main-
taining a local temporary database in memory. When a local transaction wants to read a remote data item,
the temporary database and pre-commit records from other sites are inspected trying to get a valid version
of the item. If no valid version is available, a request record is added to the event log and epidemically
transmitted [g]. A site replicating that item would be able to turn that record into a response one, storing it
at its log and transmitting it later. On the other hand, when alocal transaction wants to write a remote data
item, the current value of the item is not required and the transaction can perform the write operation and
continue.

Both the restricted and the unrestricted versions of this algorithm allow inversions of read-only trans-
actions. The updates to the local database are applied following the causal order of the log. As a result,
1SR is guaranteed.

OTP was proposed by Kemme et al. [37] (along with OTP-Q, OTP-DQ and OTP-SQ) to achieve high
performance by overlapping communication and transactionprocessing in database replication systems
providing full replication and one-copy serializability.OTP is a more refined version of OTP-99 [36], where
transactions were restricted to access only one conflict class. OTP only considers update transactions,
issued by clients that invoke stored procedures. Whenever a client sends a request to a node, this node
forwards it to all sites in an atomic broadcast with optimistic delivery [a]. This primitive allows the overlap
of the time needed to determine the total order with the processing of the message. To this end, a message is
optimistically delivered (opt-delivered) in an initial tentative order. When the order is agreed, the message is
delivered in total order (TO-delivered). Tentative and total orders may differ. The processing of transactions
is then done in an active way: all sites execute all operations, i.e., there is no delegate node [b]. When the
request is opt-delivered, all required locks are requestedin an atomic step. This consists in queueing a read
or write lock entry in the queue corresponding to the accessed data item. These queues are maintained by
the protocol, so concurrency control is done at middleware level [c], deferring the execution of operations
until the corresponding lock is granted [d]. This way, transactions are executed optimistically, butthe

32

commit operation is not performed until the total order is decided. If a transactionT is already executed
when it is TO-delivered, or is already TO-delivered when it finishes execution, this means that the tentative
order was correct.T commits and releases all its locks. On the other hand, if a transactionT is TO-delivered
before it finishes execution, all its lock entries are inspected. Any transactionT ′ not yet TO-delivered with
a conflicting granted lock is aborted: all its operations areundone, all its locks are released and its execution
will be restarted later, as the tentative order was not correct andT must be executed before. Finally, all
the locks ofT are scheduled before the first lock corresponding to a transaction not yet TO-delivered.
Independent transactions may commit at different orders. Moreover, as OTP does not consider read-only
transactions and update transactions are strictly serialized, inversions are avoided and 1ASR is guaranteed.

OTP-Q, OTP-DQ andOTP-SQ complement OTP with the management of read-only transactions. In all
these protocols requests must be declared in advance as queries or update transactions. Queries are only
locally executed with no communication overhead [e, g]. A basic approach is taken in OTP-Q, a queryQ
is treated as if it were an update transaction being TO-delivered: any transaction not yet TO-delivered with
conflicting granted locks is aborted and the locks ofQ are inserted before the first lock entry corresponding
to a not yet TO-delivered transaction. Operations are deferred until the corresponding lock is granted [f].

Although simple, OTP-Q requires that queries know in advance all the data items they want to access,
which might not be feasible due to their usual ad hoc character. Moreover, queries may access many items
and run for a long time. Locking all data at the beginning willthus lead to considerable delay for update
transactions. In order to overcome these disadvantages, authors propose OTP-DQ, which treats queries
dynamically, allowing queries to request their locks whenever they want to access a new item. To avoid
violations of the one-copy serializability, data items arelabeled with version numbers corresponding to
the position inside the total order of the last transaction that updated them. Each update transaction is
also identified with such a version number. Queries maintaintwo timestamps corresponding to the version
numbers of a pair of transactions between which the query canbe safely serialized. Each time an update
transaction requests a lock on an item read by a query, or whenever the query reads an item, timestamps
are adjusted in order to ensure that the query does not reverse the serial order established by the total order.
In case that it is detected that the order has been reversed, the query is aborted [h].

Both OTP-Q and OTP-DQ place read-only transactions properly inside the serial order but, as queries
are not enforced to respect real-time precedence (their processing is local and the validation rules merely
aim for serializability), the correctness criterion is 1SR.

Finally, OTP-SQ uses multiversioning for providing each read-only transaction with appropriate ver-
sions of all data items it wants to access, i.e., with a snapshot. This way, queries do not acquire locks,
do not interfere with updates and can be started immediately[i]. The correctness criterion is the same of
OTP-Q and OTP-DQ.

RJDBC [23] is a simple and easy to install middleware that requires no modification in the client applica-
tions nor in the database internals. A client request arrives to a system node [a], which, for each operation
of the transaction, and depending on the underlying database concurrency control in use [b], decides to
broadcast the operation in total order to all replicas [c] or not (e.g., read operations in a multi-version
concurrency control providing snapshot isolation are not required to be broadcast). If not broadcast, the
operation is executed locally. Otherwise, it is sequentially executed upon delivery (the same applies for the
final commit operation [d, f]). As all nodes execute all significant operations in the same order, no deci-
sion phase is necessary [e]. The guaranteed correctness criterion depends on the underlying concurrency
control and on the decision to broadcast operations [g]. If serializability is used for local isolation but read
operations are not broadcast, then 1SR is provided. On the other hand, broadcasting also read operations
allows the system to achieve 1ASR. Similarly, if snapshot isolation is provided, then 1SI can be achieved
without broadcasting read operations, while 1ASI requiressuch a broadcast.

RSI-PC (Replicated Snapshot Isolation with Primary Copy) was proposed by Plattner and Alonso [51]
as a scheduling algorithm for their middleware-based replication platform, Ganymed, where there is a
master node andn slave nodes. RSI-PC takes advantage of the non-blocking nature of read operations
in snapshot isolation (read operations are never blocked bywrite operations nor cause write operations to

33

wait for readers) by treating read-only and update transactions in different ways, thus providing scalability
without reducing consistency. All client requests are addressed to the scheduler, which forwards update
transactions to the master node and performs load balancingwith read-only transactions among the slaves
[a]. Updates are started in the master without any delay [c] and handled under snapshot (actually, under
the serializable mode of the underlying Oracle or PostgreSQL databases, which is a variant of snapshot
isolation where conflict detection is performed progressively by using row write locks, ensuring that the
transaction sees the same snapshot during its whole lifetime) or read committed isolation [e]. No decision
phase is necessary [f], as the local concurrency control of the master replica is enough. After an update
transaction commits in the master, its writeset is sent to the scheduler, which has, for every slave, a FIFO
update queue and a thread that applies the contents of that queue to its assigned replica [j]. Although this
constitutes a lazy behavior (update propagation is done outof the transaction boundaries), this algorithm is
equivalent to an eager service as strong consistency can be always guaranteed.

Read-only transactions are processed in the slaves using snapshot isolation [d], thus no conflicts appear
between writeset application and query processing in the slaves, as readers are never blocked by writers
in snapshot isolation. However, to ensure strong consistency for read-only transactions, they are delayed
until all pending writesets are applied in the selected slave [b], thus providing read-only transactions with
the latest global database snapshot. For read-only transactions that cannot tolerate any delay there are two
choices: to be executed in the master replica (thus reducingthe available capacity for updates), or to specify
a staleness threshold. No group communication is established by read-only transactions [i].

As transaction-remote and client-response strategies arenot detailed in the paper, we assume the most
plausible choice [g, h]. The ensured correctness criterion depends on the isolation mode of update trans-
actions and the staleness toleration of read-only transactions: if queries do not tolerate staleness, they are
provided with inversions-free consistency.

SRCA [42] is a centralized protocol, where all transaction operations must be addressed to the centralized
middleware, which redirects the operations to any replica [a]. Read-only transactions are locally committed
without any global communication [b, d]. For update transactions, the group end coordination [c] is made
after the decision [e] is taken by the centralized middleware. The sequential application of writesets,
combined with snapshot isolation at database level and no mechanisms for inversion preclusion12 results
in the correctness criterion of 1SI.

SRCA-Repwas proposed by Lin et al. [42] as a middleware protocol that guarantees one-copy snapshot
isolation in replicated databases. Each replica in the system is locally managed by a DBMS providing
snapshot isolation. The database is fully replicated, so transactions can be executed in a delegate replica
until the commit operation is requested. Then, read-only transactions are locally committed without any
communication [b, d], whereas writesets from update transactions are broadcast to the rest of replicas in
uniform total order [c]. Each replica performs a certification [e] for each writeset, following the delivery
order. Successfully certified writesets are then enqueued in the tocommitqueue, to be later applied and
committed in the local copy of the database, and in thews list, which contains all the transactions applied
in the system.

To reduce the overhead of the certification, it is performed in two steps. Each successfully certified
transaction receives a monotonically increasing identifier calledtid. When a transactionT requests com-
mitment in its delegate nodeRd, a local validation is performed: its writeset is compared against those of
the transactions in thetocommitqueue ofRd. If any conflict is found (non-empty intersection of writesets),
T is aborted. Otherwise, thetid of the last certified transaction inRd is set as thecert value ofT. WhenT
is delivered at remote replicaRr , its writeset is compared against those of thews list whosetid is greater
than thecert of T. Any conflict leads to the abortion ofT. Otherwise,T receives itstid and is enqueued in
both thetocommitqueue and thews list of each of the replicas.

To improve performance, a concurrent writeset applicationis allowed. When some conditions are

12Remember that, in snapshot isolation, inversions are conservatively precluded if the snapshot provided to transactionsalways
corresponds to the latest available snapshot in the entire system. Optimistically, transactions may get an older snapshotbut be
restarted (getting a new snapshot) when the inversion is detected.

34

satisfied,13 several non-conflicting transactions from thetocommitqueue are sent to the database to be
applied and committed. This can alter the commit order, causing holesand breaking the sequentiality.
Thus, new local transactions must be prevented from starting [a] as long as there are holes in the commit
order. The correctness criterion is 1SI, as inversions are not precluded.

DBSM* was proposed by Zuikevičiūtė and Pedone [68] as a readsets-free version of DBSM. Local isola-
tion is still managed with 2PL, but the certification test enforces the first-committer-wins rule of snapshot
isolation. In order to maintain the original 1SR, a conflict materialization technique is used. The database
is logically divided into disjoint sets, and each one is assigned to a different node, which is responsible
for processing update transactions that access that set [b]. Read-only transactions, on the other hand, are
scheduled independently of data items accessed [a]. An additional control table containing one dummy
row for each logical set allows the materialization of write-read conflicts, in order to be detected in the cer-
tification. This way, a transaction that reads data from a remote logical set is incremented with an update
to the corresponding row in the control table. As inversionsare not precluded, the resulting correctness
criterion is 1SR.

PCSI Distributed Certification [20] provides prefix consistent snapshot isolation (PCSI), a form of gen-
eralized snapshot isolation (GSI), which is equivalent to 1SI. In this distributed certification protocol, read-
only transactions directly commit [c] without communicating with the rest of nodes [a] and update trans-
actions broadcast their writeset in total order [b] and are later certified [d] and applied at each replica.

Tashkent-MW andTashkent-API were proposed by Elnikety et al. [21] with the goal of uniting both
transaction ordering and durability, whose separation in common database replication systems is claimed by
these authors as being a major bottleneck due to the high costassociated to sequential disk writes required to
ensure in the database the same commit order decided in the middleware. The replication system proposed
is compound of a set of database replicas and a replicated certifier, responsible for validating transactions
[d] and providing replicas with remote writesets. A snapshot isolated database is used in each replica,
where read-only transactions are locally committed (no validation nor communication needed [a, c, e]).
When an update transactionT finishes in its delegate, it is sent to the certifier [b], which replies with the
validation result, the writesets generated in remote replicas and the commit order to be enforced in all
nodes. The delegate then applies remote writesets and commits or abortsT, depending on the validation
result and respecting the global order imposed by the certifier.

In Tashkent-MW, durability is moved to the middleware and, thus, commit operations are fast in-
memory operations, which are done serially to ensure the same global order at each replica. Writesets
are also serially sent to the database [f], but synchronous writes to disk are disabled. On the contrary, in
Tashkent-API, commit ordering is moved to the underlying database management system, which is modi-
fied to accept a commit order, so multiple non-conflicting writesets can be sent concurrently to the database
[h] while ensuring the correct commit order. This way, the database can group the writes to disk for ef-
ficient disk IO. In both protocols, the transmission of writesets to remote nodes is completely decoupled
from transaction execution, as it is done as part of the replyof the certifier to the requests of other nodes
[g].

Both in Tashkent-MW and Tashkent-API, the commit order followed by replicas is the same. However,
the state of the underlying database replicas is updated by grouping multiple commit operations into one
single disk write. As this grouping is not forced to be the same in all replicas, servers will not follow
the same exact sequence of states: some of them may omit some intermediate states that were present at
other servers.14 Nevertheless, this does not impair consistency and 1SI (as inversions are not precluded) is
guaranteed.

13The conditions that must hold to send a writesetT to the database of replicaRare: (a) no conflicting writeset is ordered beforeT
in thetocommitqueue; and (b) eitherT is local or there are no local transactions waiting to start in Ror T does not start a new hole.

14Imagine a Tashkent system with an initial state, or version,v0. There are three nodes in the system and each one starts the
execution of a local update transaction:R1 executesT1, R2 executesT2 andR3 executesT3. If all the transactions are independent, they
will all positively pass their validation at the certifier. SupposeT1 finishes the first. The certifier responds with the positive decision

35

DBSM-RO-opt [44] aims to extend the DBSM replication in order to provide inversions-free consistency
[c] among the nodes. To do so, an optimistic approach is followed: read-only transactions are locally
executed in their delegate replica but are also atomically broadcast when the user requests to commit [a], so
both read-only and update transactions are checked, looking for write-read conflicts: read-only transactions
are inspected only by their delegate replica, while update transactions are certified by each replica in the
system [b]. This avoids inversions and, as a result, the correctness criterion is 1ASR.

DBSM-RO-cons[44] also aims to extend the DBSM replication in order to provideinversions-free con-
sistency but, in this case, a conservative (pessimistic) approach is followed: read-only transactions are
atomically broadcast when they begin [a] and are executed only when all update transactions orderedbe-
fore are committed in the executing replica. This means thatnot only the group-start communication is
synchronous but the query must also wait for all pending writesets to be applied (this extra waiting time
could be considered as a late occurrence of a deferred transaction-service, Ts1). Update transactions do not
need to be broadcast at start time [b]. When finished in its delegate replica, a read-only transaction does not
need any further communication [c] nor any certification [e], but update transactions must broadcast their
information in total order [d] and undergo the usual conflict checking process [f]. The resulting correctness
criterion is the same than in DBSM-RO-opt.

Alg-Weak-SI [18], as well as Alg-Strong-Session-SI and Alg-Strong-SI, is used in a system with a primary
replica and several secondary nodes, where clients send transactions to any replica. Read-only transactions
can be executed in the secondaries (without any further communication with the rest of nodes, [e]), but
update transactions are forwarded to the primary [a]. This protocol follows a lazy propagation of updates,
so no communication is established during the lifetime of transactions [b]. Instead, local concurrency
control in the primary replica is the only responsible for deciding the outcome of update transactions [c],
whose start, updates and final operation (commit or abort) are registered in a log which is later used to lazily
propagate [f] these operations in order (a FIFO order is required, which provides a total order broadcast
as there is only one sender) to the secondary replicas. The sending process inspects each log entry: a start
operation is immediately propagated; update operations are inserted in the update list of the transaction they
belong to; a commit entry for transactionT causes the broadcast of this operation along with the updatelist
of T; an abort entry of transactionT is also propagated, discarding in this case the corresponding update
list. In the secondaries, delivered messages are buffered in theupdatequeue and processed in order. When
the start message ofTi is processed –after waiting for thependingqueue to be completely empty–, a refresh
transactionT ′

i is started. When the commit message ofTi (with the updates associated) is processed, a
new thread is created to apply the updates ofTi using transactionT ′

i , and the commit operation ofTi is
appended to thependingqueue. This allows the protocol to concurrently apply writesets while ensuring
the same commit order of transactions [d]. As read-only transactions are executed in secondary replicas
without inversion preclusion, inversions may occur (queries may get an old snapshot). Thus, the correctness
criterion is 1SI [g].

Alg-Strong-SI andAlg-Strong-Session-SI[18] guarantee strong snapshot isolation (1ASI) and strong ses-
sion snapshot isolation (1SI+), respectively [c]. While 1ASI avoids all inversions, 1SI+ prevents inversions
within the same user session. In order to provide 1SI+, a version number is assigned to each session,
corresponding to the version installed by the last update transaction in that session. When a read-only
transaction of the same session wants to start, all writesets with version numbers inferior to the session

but it does not have any pending writeset forR1, so this node commitsT1, reaching (from versionv0) versionv1 (corresponding to the
updates ofT1). Now R2 finishes the execution ofT2 and sends it to the certifier, which responds with the positive decision and with
the writeset ofT1. As transactions are independent,R2 sends them together to the database, which writes their commits in a single
disk write, thus moving from versionv0 directly to versionv2 (corresponding to the updates ofT1 andT2). Finally, R3 finishes the
local execution ofT3 and sends it to the certifier, which responds with the positive decision and with the writesets ofT1 andT2. R3
applies the three transactions in a single disk write, thus passing from versionv0 to versionv3 (corresponding to the updates of the
three transactions). This way, the three replicas end with the same final state and no other possible transaction has been able to see
any inconsistent state, but the sequences of database states differ from replica to replica.

36

version number must be applied in the secondary replica prior to the start of the read-only transaction [a].
If, instead of having one session per client, there is a single session for the system, then 1ASI is provided.
Update transactions can start immediately as they are all executed in the same primary replica [b]. Apart
from this, these protocols are identical to Alg-Weak-SI.

One-at-a-time andMany-at-a-time [58] are two termination protocols that extend DBSM to provide a
quasi-genuine partial replication, where a node permanently stores not more than the transaction identifier
for those transactions that do not access any item replicated in that node. To avoid consequent unnecessary
abortions, a non-trivial validation is performed, based onquorums. A transactionT can only be executed
on a site that replicates all items accessed byT [a]. Read and write operations are executed locally ac-
cording to the strict two-phase locking rule [b]. When a read-only transaction requests commitment, it is
locally committed [c, e, g]. In the case of an update transaction, the transaction (identifier, delegate site,
readset, writeset with updates, and the logical timestamp of the transaction submission) is broadcast [d]
in a weak ordering reliable broadcast, an optimistic primitive that takes advantage of network hardware
characteristics to deliver messages in total order with high probability. A consensus procedure is used to
decide the total order of delivered transactions. The non-trivial validation consists in a voting phase where
each site sends the result of its validation test to the rest of nodes. Each site can then safely decide the
outcome of a transactionT when it has received votes from a voting quorum ofT [f], i.e., a set of sites
such that for each data item read byT, there is at least one site that replicates this item. Instead of first
using consensus to determine the next transactionT and then executing the voting phase forT, a different
approach is taken, overlapping both processes. In the one-at-a-time algorithm, each site votes for its next
undecided transactionT and proposes it for consensus. By the time the consensus decides for transaction
T, luckily every site will already have received the votes forT. If consensus decides a transaction differ-
ent from that voted by a site, a vote message is sent for the decided transaction. When a transaction is
successfully validated, it is applied in the site [h] and the global version counter used to timestamp trans-
actions is increased. This algorithm validates one transaction at a time, which can be a bottleneck if many
transactions are submitted. The many-at-a-time algorithm, which does not rely on spontaneous total order,
tries to solve this by proposing sequences of transactions and changing the validation test accordingly. As
inversions are not precluded, the correctness criterion is1SR.

k-bound GSI [4] is able to bound the degree of snapshot outdatedness from a relaxed GSI (1SI) to a
strong SI (1ASI), while optimistically executing transactions; and it also provides a serializable level for
those transactions requiring higher isolation (1SR). As local DBMSs are only required to provide snapshot
isolation, serializable transactions are parsed in order to transformSELECTstatements intoSELECT FOR
UPDATE ones. This simplifies the detection of write-read conflicts,which are then governed by the first-
committer-wins rule.

Two snapshots taken at the samereal time in different replicas may be different, as only states at
the samelogical time are guaranteed to be consistent. To allow an optimisticexecution, before the first
operation of each transactionT, an asynchronousT.ID message is broadcast in total order [a], so that the
logical starting time ofT can be established. Then, the optimistic execution ofT overlaps with the time
required to complete such initial communication. Moreover, T specifies a valuek as the maximumdistance
between the snapshot it took (corresponding to the real timeof its start operation) and the snapshot created
by the last transaction that committed in any system node before T started (corresponding to the logical
time of the start operation ofT). This distance is measured as the number of colliding writesets that are
applied in the delegate node ofT from the real starting time ofT until its logical starting time (the delivery
of T.ID). A colliding writeset is a writeset that has a non-empty intersection with the intended readset
of T, which has to be declared in advance. When the number of colliding writesets is greater thank, T
is aborted and will be restarted whenT.ID is processed. Thus, withk = 0, the transaction is executed
under 1ASI; withk > 0, the achieved correctness criterion is 1SI (authors, to highlight the possibility of
defining different staleness levels, refer to the differentbound valuesfor the GSI criterion, as opposed to
the standard GSI, which occurs with an infinite value ofk). Overloading the meaning ofk, a value of−1
indicates thatT requires serializability.

When a read-only transaction finishes its operations, it is locally committed (after receiving its own

37

T.ID message and as long as it has not been aborted in the meantime,for transactions with 0≤ k < ∞)
without any communication with the rest of nodes [b, d], whereas the writeset of an update transaction is
broadcast in total order to the rest of replicas [c]. A certification process [e] is performed in every replica
for each delivered writeset. In order to avoid sending readsets, the decision for serializable transactions is
taken in their delegate node [f] and then broadcast to the rest of nodes.

Tashkent+ [22] was proposed as an evolution of Tashkent-MW where a memory-aware load balancing is
performed in order to further minimize the disk IO requirements. Changes to the previous system include
the addition of a scheduler, with different scheduling algorithms, and an optimization, called update filter-
ing, for reducing the update propagation load. Transactiontypes are predefined and the scheduler is able to
estimate the amount of memory, called working set, that eachtype will need. With this information, authors
use a bin packing heuristic to group transaction types so that their combined working sets fit together into
the available memory, thus avoiding memory contention and subsequent disk IO. Servers are assigned to
transaction groups and this allocation can be dynamic for changing workloads. Different proposed sched-
uling algorithms differ in the way the working sets are estimated. This way, each transaction is dispatched
to a server assigned to its transaction group [a].

Update filtering consists in identifying unused tables in a replica (those not accessed by the transaction
group to which the replica is assigned) and filtering out the updates to those tables, thus reducing the
overhead of update propagation. This optimization is only possible under stable workloads, i.e., when
the assignment of replicas to transactions groups is permanent. This way, Tashkent+ is essentially a fully
replicated design but may, under some conditions, present the advantages of partial replication [b].

Apart from the changes explained above, the rest of the system works as in Tashkent-MW. Authors
claim that the correctness criterion is 1SI+ (inversions precluded within sessions), as a given connection
can execute only one specific transaction type and will be, thus, always assigned to the same group of
replicas. But no details are provided about how all replicasin the same group are atomically updated or
how they provide transactions with updated snapshots regardless of the replica where the transaction starts.
Thus, the correctness criterion is here considered to be 1SI[c].

Mid-Rep is a pessimistic weak voting protocol proposed by Juárez et al. [33] that provides three different
correctness criteria on top of a DBMS supporting SI: 1SR, 1ASI and 1SI. Transactions define the criterion
they require. For 1SR transactions, allSELECT statements are turned intoSELECT FOR UPDATEones.
For 1ASI transactions, a start message is sent in total order[c] and the transaction must wait for its de-
livery to proceed. When a read-only transaction finishes its operations, it is immediately committed at its
delegate replica and no further processing is required. On the other hand, update transactions broadcast
their writeset in total order to all available replicas, which will apply them sequentially [d] and terminate
(commit or abort) each transaction according to the voting message sent by the master site (the delegate)
of the transaction. During writeset application, no other potentially conflicting local operation is allowed
to start: all write operations and also read operations performed by 1SR transactions are thus disabled [b]
(read operations from 1ASI or 1SI transactions are not deferred [a]).

SIRC [56] concurrently supports snapshot and read committed isolation, as long as both levels are provided
by the local DBMS [a]. Read-only transactions are locally committed without any communication with
the rest of replicas [b, d], while update transactions are broadcast in total order [c]. For SI transactions,
a certification based on write-write conflicts is performed [e]. RC transactions do not need any decision
phase [d]. Writeset application follows the delivery order.

Serrano et al. [60] propose a replication protocol aimed to increase scalability of traditional solutions,
commonly based on full replication and on a 1SR correctness criterion. These two characteristics are
claimed to introduce an important overhead and to limit concurrency. Consequently, their proposal is to
use partial replication and a more relaxed correctness criterion, 1SI, where inversions are not precluded
and underlying databases are snapshot-isolated. The client connects to a site [a] that at least stores the data
accessed in the first operation of the transactionT. This node acts as the coordinator, assigning a starting

38

timestamp toT and redirecting operations [c] to other nodes when necessary. In those other nodes,T must
use the same snapshot, the one corresponding to its startingtimestamp. To this end, each node starts dummy
transactions each time that a transaction commits. When the redirected operation is the first operation ofT
in the forwarded node, the corresponding dummy transactionis associated toT (later operations will use
the same transaction). Prior to execute each redirected operation, the changes previously produced byT
are applied at the forwarded site (naturally, only those affecting data stored at that node) [b] (remember
that the transaction-service policy applies at each participating node in the case of distributed transactions).
After execution, the forwarded site propagates the result of the operation and all the new changes to the
coordinator, which applies these changes before executingthe next operation. When the client requests
commitment of a read-only transaction, the coordinator multicasts a commit message to all participating
sites [d] (there is no need for validation [f] nor execution in remote nodes [h]). In the case of an update
transaction, the coordinator broadcasts its writeset in total order [e]. All sites perform then a certification
[g]. If certification succeeds, all nodes apply the writeset (those nodes that have already performed some
operations ofT apply only the missing updates) in a non-overlapping way [i] andT can commit.

Zuikevičiūtė and Pedone [70] proposed a scheduling algorithm for the DBSM replication protocol. Aborts
can be reduced if conflicting transactions are executed in the same node, thus letting the local concur-
rency control appropriately serialize them. On the other hand, parallelism improves performance, reducing
response times. Considering this trade-off, a hybrid load balancing technique is proposed, which allows da-
tabase administrators to give more or less significance to minimizing conflicts or maximizing parallelism.
Maximizing Parallelism First,MPF, prioritizes parallelism and so it initially assigns transactions to nodes
trying to keep the load even. If more than one option exists, then it tries to minimize conflicts. Minimizing
Conflicts First,MCF , avoids assigning conflicting transactions to different nodes. If there are no conflicts,
it tries to balance the load among the replicas. A compromisebetween the two opposite schemes can be
achieved by a factorf. This way, update transactions are analyzed and a specific replica is chosen to be the
delegate [b]. On the other hand, both techniques assign read-only transactions to the least loaded replica
[a]. Apart from this novel scheduling, the followed strategies are the same as in DBSM and, thus, the
correctness criterion is also the same.

WCRQ [53] is a bridge between consensus-based and quorum-based replication. Underlying databases
provide serializability, using long read locks for readingoperations and deferring write operations until
the end of the reading phase [a]. When an update transactionT finishes in its delegate replica, a uniform
total order broadcast [c] is sent to the rest of replicas with the transaction writeset. When it is delivered,
each replica tries to get write locks for each item in the writeset ofT. If there was one or more read locks
on an object, every transaction holding them which is not yetserialized is aborted (by sending an abort
message in uniform total order if it was already broadcast),and the write lock is granted toT. If there
was a write lock in the object, or if some read locks are from transactions serialized beforeT, T waits
until those locks are released. When a replica gets all the locks of a transaction, it sends a point-to-point
acknowledgment message to the delegate. When the delegate gets all the write locks of the transaction and
receives acknowledgment from a write-quorum of replicas, it sends a commit message in a uniform reliable
broadcast. When this message is delivered, every replica commits the transaction. As these messages are
not ordered, independent transactions may commit at different orders in different nodes. When a transaction
commits, all other transactions waiting to get write locks in the updated objects are aborted (their delegate
sends an abort message in a uniform reliable broadcast). Whena read-only transaction finishes in its
delegate replica, a message with the readset is sent to a read-quorum of replicas [b]. When this message
is delivered, replicas try to get read locks for the items on the readset. When the locks are acquired, if
the version is the same as the one read in the delegate, the replica sends back a positive acknowledgment
message. Otherwise, a negative acknowledgment message is sent. In any case, read locks are released
as soon as this validation is done. When the delegate receivespositive acknowledgments from a read-
quorum of replicas, it commits the transaction. Otherwise,if any negative acknowledgment is received,
the transaction is aborted. For both read-only and update transactions, a quorum of replicas is required to
get locks on the items and check that the current versions areequal to the accessed versions in the delegate
[d]. As transaction-remote and client-response strategies are not detailed in the paper, we assume the most

39

plausible choice [e, f]. Inversions are avoided by ensuring that queries do not read old values. As a result,
the 1ASR correctness criterion is guaranteed.

AKARA [16] allows transactions to be executed either in an active or ina passive manner (in both cases,
interactivity is precluded). Upon transaction submission, the type (either active or passive) and the conflict
classes of the transaction are computed, and an initial total order broadcast is sent with transaction informa-
tion. After delivery, and once the transaction is the first inthe processing queue, the transaction is started
[b] (this introduces an additional wait to the synchronous message transmission, for both active and passive
transactions). For passive transactions, a local execution phase is performed and afterwards the writeset is
reliably sent to the rest of replicas [c] to be applied following the total order established by the broadcast
sent at transaction start. For active transactions, no local phase exists [a]: transactions are initiated, exe-
cuted and committed in all nodes at the same logical time (that of their slot inside the total order). No extra
communication is needed for these transactions [d]. As isolation corresponds to the snapshot level and no
mechanisms avoid inversions, the ensured correctness criteria is 1SI.

Zuikevičiūtė and Pedone [69] characterized different correctness criteria for replicated databases and pre-
sented three variants of BaseCON, one for each of the discussed correctness criteria. WithBaseCON for
1SR transactions are serialized but the causal order may not be preserved. InBaseCON for SC(session
consistency), transactions are serialized and the real-time order of those belonging to the same user session
is also preserved and, thus, clients can always read their own previous updates (this corresponds to the
1SR+ correctness criterion [55]). These two variants are identical except for the way the scheduler selects
the executing replica for read-only transactions [a]: in BaseCON for 1SR, all replicas are considered and
the transaction is forwarded to the least loaded one; in BaseCON for SC, the scheduler considers only those
replicas where previous update transactions of the same session have been already applied. Once in the
executing replica, read-only transactions start as soon asthey are received [c] and are committed locally.
On the other hand, update transactions are broadcast in total order to every replica in the system [b] and
executed in active manner, so no local phase exists [d]. Strict two-phase locking is used to achieve serial-
izability [e]. No decision phase is required [f] as all transactions can commit, but update transactions must
wait [g] for all previously delivered conflicting update transactions to commit in this replica before starting.
The commit order of all update transactions is required to bethe same as their delivery order. Transaction
results are sent from each executing replica to the scheduler, which sends to the client only the first of the
replies [h].

The third version of the protocol by Zuikevičiūtė and Pedone [69] is BaseCON for strong 1SR, which
always preserves the real-time (or causal) order of transactions in their serialization. To this end, some
changes are applied to previous systems: read-only transactions are directed to the scheduler but also
broadcast in total order to all replicas, like update transactions [a].15 The scheduler then determines, for
the read-only transaction, the set of replicas where preceding update transactions of any client have already
been committed. From this set, the scheduler selects the least loaded server, where the query immediately
starts its optimistic execution. When this transaction is delivered in the chosen replica by the total order
broadcast, a test is performed to check if the scheduler has changed since this transaction was scheduled.
In this case, the transaction is aborted and restarted. Thischeck allows the system to tolerate failures
and cannot be considered as a decision, as the transaction always commits. Inversions are precluded by
scheduling read-only transactions to updated replicas, thus achieving 1ASR correctness criterion.

gB-SIRC [57] is deployed upon a database offering both read committed and snapshot isolation levels
[b]. This protocol provides several correctness criteria: one based on the read committed isolation (1RC)
and another based on snapshot isolation, with a configurablelevel of staleness, defined by factorg, from
1ASI (or strong SI) withg= 0, to 1SI (or standard GSI) with an infinite value ofg. Intermediate values of
factorg allow transactions to define the exact amount of outdatedness they can tolerate (authors refer to this

15However, unlike update transactions and despite being the client request addressed to all replicas in the system, only the node
chosen by the scheduler will execute the transaction, thus serving the client request.

40

non-standard criterion asg-Bound). Similarly tok-bound GSI, all SI-based transactions (those providing a
value forg) broadcast an asynchronousT.ID message in total order when they start [a], which allows their
optimistic execution while establishing a global startingpoint that would be enforced when transactions
abort due to a number of conflicts greater thang. Read-only transactions can be locally committed without
any global communication [c, e]: RC queries commit as soon as they finish their operations, while SI ones
must wait to the processing of theirT.ID message and, if they have not been aborted during the meantime,
they can be locally committed. Regarding update transactions, once they finish their operations, their
writesets are broadcast in total order [d]. For 1RC update transactions, no decision phase is implemented
[e]. All other update transactions are certified in search for write-write conflicts [f]. Whenever a writeset
is committed in a replica, local SI-based transactions are validated in search for write-read conflicts with it
[g], which are tolerated in a number up tog. Writesets are applied in a non-overlapping manner. Inversions
are precluded only for 1ASI transactions.

4.2 Scope of the Proposed Model

The policy-based characterization model proposed in Section 3 and used for this survey is intended to be
general enough to cover all possibilities in replication systems, thus providing a tool able to represent their
basic skeleton. The set of strategies followed by a replication system constitutes its operational basis and
allows an adequate comparison between systems.

Obviously, many finest-grained details, like optimizations or concurrency control rules, are not covered
by this characterization, as intending otherwise would result in an extremely complex model. Thus, there
is a trade-off between simplicity and completeness.

Moreover, and despite our efforts, this model is not valid for all replication systems. This is the case
of distributed versioning[3], a replication protocol tailored to back-end databases ofdynamic content web
sites, characterized by presenting a low rate of update operations. This protocol aims to achieve scalability
while maintaining serializability. The cluster architecture for distributed versioning consists of an appli-
cation server, a scheduler, a sequencer and a set of databasereplicas. In order to achieve serializability,
a separate version number is assigned to each table. Each transaction issued by the application server is
sent to the scheduler, specifying all the tables that are going to be accessed in the whole transaction and
whether these accesses are for reading or for writing. The scheduler forwards this information to the se-
quencer, which atomically assigns table versions to be accessed by the operations in that transaction. This
assignment establishes the serial order to be enforced and allows transactions to concurrently execute op-
erations that do not conflict. All transactions can commit (Td0), those conflicting will follow the serial
order dictated by the sequencer. New versions become available when a previous transaction commits or
as a result of last-use declarations (an optimization for reducing conflict duration). After the assignment
for transactionT is completed, the application server can start to submit theoperations ofT. The conflict-
aware scheduler is able to forward a read operation to the least loaded updated replica. Write operations are
broadcast to all replicas and actively executed. This scheduling could be interpreted as a Cq2 for reads and
Cq4 for writes. However, in this case it is not the whole transaction which is scheduled but each single op-
eration inside the transaction. It could also be represented as Gl3 and Ge3 for write and commit operations,
but the communication initiative is not taken by a server executing the affected transaction. Indeed, no
communication is ever established among replicas. Instead, each operation sent from the application server
is forwarded by the scheduler to the corresponding replica(s), which execute them independently. Thus,
communication is done only between the application server and the scheduler, and between the scheduler
and the replicas. Once in a replica, an operation must wait for all its version numbers to be available, which
could be represented as Ts1 or Tr1-p (although, again, it is not the transaction start which is deferred but
the start of each single operation inside the transaction).Concurrency control is thus made at middleware
level (the database isolation level is not detailed in the paper). Once a replica executes the operation, it
returns its results to the scheduler. The first reply received by the scheduler is sent back to the application
server (Cr1). As read operations must wait also for their version numbers to be available before starting, the
correctness criterion is 1ASR. In summary, the main problemfor describing distributed versioning with our
model is that this system divides transactions into their individual operations and, while the management
of each of these operations can be represented with our strategies, the handling of the whole transaction

41

cannot be depicted by our model.
A similar middleware-based system is presented by Cecchet et al. [13] for clustering back-end databases

of large web or e-commerce sites. C-JDBC also features a scheduler that sends update operations to all
involved servers while performing load balancing for read operations. But in this case, client requests
contact a server and each server contains a scheduler component. C-JDBC supports both full and partial
replication, while ensuring inversions-free consistencybetween replicas: at any single moment, only one
updating operation (write, commit or abort operation) is inprogress in the virtual database, and responses
are returned to the client only once all servers have processed the request. The correctness criterion will
then depend on the isolation level offered by the underlyingdatabases. As for the previous system, the
processing of each single operation can be depicted with ourmodel, but that of the whole transaction
would constitute a loop of such a representation of single operations.

4.3 Discussion

Chronologically ordered characterizations of Table3 summarize the evolution of database replication sys-
tems since their appearance. Earlier systems –distributeddatabases with some degree of replication– were
devoted to provide the highest correctness criterion, 1ASR, using to this end the serializable isolation level
in local databases and rigid synchronization mechanisms, inherited from standalone database management
systems, such as distributed locking for concurrency control (which involves a linear communication with
other servers), or an atomic commit protocol like 2PC (whichrequires several rounds), in order to reach
a consensus among participants about transaction termination and thus ensure consistency. Examples of
these earlier systems are 2PL & 2PC [24], BTO & 2PC [7], Bernstein-Goodman [9], OPT & 2PC [61] and
O2PL & 2PC [12]. However, these mechanisms restricted concurrency, thusseverely reducing performance
and scalability.

Research efforts focused then on improving these factors trying to reduce communication and replica-
tion overhead with new concurrency control algorithms and more efficient termination management, local-
izing the execution of operations in delegate or master sites, simplifying termination with the use of group
communication systems, using optimistic communication primitives, considering different topologies, re-
laxing isolation and consistency or introducing partial replication schemas. One example of such relaxed
isolation, which is still valid for a wide range of applications, is the snapshot isolation level. An interesting
feature of snapshot isolation is that read operations are never blocked by write operations, nor cause write
operations to wait for readers. SI became popular and many database replication systems started to pro-
vide this isolation. Some systems exploiting this level andoffering correctness criteria based on snapshot
isolation are SI [35], RSI-PC [51], SRCA and SRCA-Rep [42], PCSI Distr. Cert. [20], Tashkent-MW and
Tashkent-API [21], Alg-Weak-SI, Alg-Str.-SI and Alg-Str.Ses.-SI [18], k-bound GSI [4], Tashkent+ [22],
Mid-Rep [33], SIRC [56], Serrano et al. [60], AKARA [16] andgB-SIRC [57].

Other proposals aimed at adaptability, designing systems able to provide different consistency guaran-
tees that would fit better the requirements of modern applications, which usually include different types of
transactions that require different levels of isolation. This led to a new generation of protocols that sup-
port different correctness criteria at the same time (such as RSI-PC [51], k-bound GSI [4], Mid-Rep [33],
SIRC [56] andgB-SIRC [57]), which improved performance by executing each transaction at the minimum
required level of isolation.

Considering each policy separately, it is clear that in somecases there is a majority strategy with very
few exceptions, while in other policies there is no pronounced trend towards any specific strategy. Some
choices may have strong implications in consistency or performance, and this may make systems favor
ones against others. Let us analyze each policy in detail.

The most used client-request (Cq) strategy is Cq1: any server can process a request. This policy allows
an easy management of requests and load balancing, althoughit requires a correct global concurrency
control in order to avoid inconsistencies. On the other hand, systems that use primaries or master sites
may rely on the local concurrency control of such nodes but require client requests to be addressed or
forwarded to such servers (Cq2). This is the case of Alsberg-Day [2], Fast Refresh Df-Im and Fast Refresh
Im-Im [45], Pronto [48], RSI-PC [51], DBSM* [68], Alg-Weak-SI, Alg-Str.-SI and Alg-Str.Ses.-SI [18],
and Tashkent+ [22]. Cq2 is also used by systems that provide partial replication and need to address client
requests to a server containing the data required by the operation (DBSM-RAC [63], One-at-a-time and

42

Many-at-a-time [58], Serrano et al. [60]). Other systems also use Cq2 because they require transactions to
be addressed to updated replicas, in order to provide stronger consistency, such as BaseCON for SC [69].
Finally, scheduling algorithms MPF and MCF [70] may also select a specific server in order to minimize
abortions by executing conflicting transactions at the samenode, thus relying on local concurrency control
to appropriately serialize transactions.

Forwarding the client request to all system nodes (Cq4) in a total order broadcast is a possible approach
for establishing an early synchronization point. Systems such as NODO and REORDERING [46], and
the families of OTP [36, 37] and BaseCON [69] implement such a client-request policy. Systems that
require total order guarantees for synchronizing transaction execution must wait for such a communication
primitive to agree on the delivery order. NODO and REORDERING move their synchronization point to
the start of the transaction and use an optimistic delivery which allows the system to overlap the time needed
by the GCS for the agreement with the time needed to execute the transaction. By the time the delivery
order is decided, the transaction has already progressed with its operations in its delegate server. On the
other hand, both OTP and BaseCON families follow a Cq4 policyin order to execute update transactions
in an active manner, while queries are executed at only one server.

Surveyed systems mainly follow, in their transaction-service policies (Ts), the strategy of immediate
service (Ts0), under which transactions are started as soonas the server has enough free resources. In
some cases, it is necessary to block the processing of transactions until some condition holds (Ts1). This is
the case of several systems: NODO, REORDERING [46], OTP-Q and OTP-DQ [37], where concurrency
control is done at middleware level and thus transactions must wait for the end of previous conflicting
operations in order to be started; RSI-PC [51], Alg-Str.-SI and Alg-Str.Ses.-SI [18], where the service of
transactions is deferred to guarantee stronger consistency; SRCA-Rep [42], where local transactions must
be prevented from perceiving the lack of sequentiality; Mid-Rep [33], where potentially conflicting local
operations are disabled during writeset application; and the algorithm by Serrano et al. [60], where cohorts
of distributed transactions must apply the updates of previous operations of the transaction (served by other
nodes) before executing the requested operation in their local database.

Systems that actively execute transactions (OTP-99 [36], OTP, OTP-Q, OTP-DQ and OTP-SQ [37],
AKARA [16], BaseCON for 1SR, BaseCON for SC and BaseCON for strong 1SR [69]) are said to imple-
ment the strategy of no local service (Ts2) for those active transactions.

Regarding group-start (Gs) strategies, only few systems require to make a communication at transac-
tion start, thus establishing a global starting point for transactions. That is the case of DBSM-RO-cons
[44], which totally orders queries to provide 1ASR;k-bound GSI [4], Mid-Rep [33] and gB-SIRC [57],
which guarantee 1ASI by totally ordering transaction starts; and AKARA [16], which moves the required
synchronization point to transaction start and allows active and passive transaction processing.

With regard to the degree of replication (Dr), earlier systems (2PL & 2PC [24], BTO & 2PC [7],
Bernstein-Goodman [9], OPT & 2PC [61], O2PL & 2PC [12]) were mostly distributed databases where
replication was not widely used (Dr1). After the generalization of full replication (Dr2), only few systems
(Fast Refresh Df-Im and Fast Refresh Im-Im [45], DBSM-RAC [63], Epidemic restricted and Epidemic
unrestricted [30], One-at-a-time and Many-at-a-time [58], Serrano et al. [60]) feature partial replication
(Dr1), mainly to minimize the cost of update propagation andapplication, although other mechanisms or
constraints must be applied for the correct management of transaction execution.

To alleviate their complexity and allow replication protocols to focus on their native purpose of ensuring
replica consistency, systems usually delegate local concurrency control to the DBMS with the appropriate
isolation level (Di) for which the protocol has been conceived. Depending on the correctness criterion,
systems require local DBMSs to provide different isolationlevels. Thus, earlier systems and those requiring
a high level of isolation (2PL & 2PC [24], Bernstein-Goodman [9], O2PL & 2PC [12], Bcast all, Bcast
writes, Delayed bcast writes and Single bcast transactions[1], Fast Refresh Df-Im and Fast Refresh Im-
Im [45], DBSM [47], Pronto [48], DBSM-RAC [63], Epidemic restricted and Epidemic unrestricted [30],
DBSM* [68], DBSM-RO-opt and DBSM-RO-cons [44], One-at-a-time and Many-at-a-time [58], MPF and
MCF [70], BaseCON for 1SR, BaseCON for SC and BaseCON for strong 1SR [69]) rely on the serializable
isolation level (Di3) of their underlying databases, whichadequately serializes transactions executed at
each server. Other systems relax their correctness criteria or are able to increase the locally provided
guarantees, and thus also relax the isolation level of theirlocal databases. Snapshot (Di2) isolation (Lazy
Txn Reordering [50], SI and Hybrid [35], NODO and REORDERING [46], RSI-PC [51], SRCA and

43

SRCA-Rep [42], PCSI Distr. Cert. [20], Tashkent-MW and Tashkent-API [21], Alg-Weak-SI, Alg-Str.-SI
and Alg-Str.Ses.-SI [18], k-bound GSI [4], Tashkent+ [22], Mid-Rep [33], SIRC [56], Serrano et al. [60],
AKARA [16], gB-SIRC [57]) or, more rarely, read committed (Di1) isolation (RSI-PC [51], SIRC [56],
gB-SIRC [57]) are requested by such systems.

Among those systems not specifying a concrete level of isolation (Di0), two of them (Alsberg-Day
[2] and RJDBC [23]) are based on the local concurrency control of their DBMSs and may function with
different isolation levels at their local databases. The rest of the systems with a Di0 strategy perform
concurrency control at the protocol layer and therefore they do not require any specific underlying isolation.
This is the case of OTP-99 [36], which uses a queue per conflict class and allows transactions to proceed
when they are at the head position of their queue. OTP, OTP-Q,OTP-DQ and OTP-SQ protocols [37]
follow a similar approach but, in this case, there is a queue per data item and so transactions are not
restricted to access only one conflict class.

Finally, there are few systems that require some customization (Di4) of their underlying databases.
Thus, BTO & 2PC [7] and OPT & 2PC [61] require the maintenance of read and write timestamps for each
data item; and SER, CS, Hybrid [35] and WCRQ [53] delay the acquisition of write locks until the remote
phase of transactions.

Regarding group-life (Gl) communications, as linear interaction is costly, only few systems make such
synchronization. While most of the systems follow a Gl0 strategy (no communication during local transac-
tion execution), systems such as 2PL & 2PC [24], BTO & 2PC [7], Bernstein-Goodman [9], OPT & 2PC
[61], O2PL & 2PC [12], Epidemic unrestricted [30] or the protocol by Serrano et al. [60] are obliged to use
linear interaction due to their partial replication and theconsequent distributed nature of their transactions,
which may potentially require to access data items at other nodes. Bcast all, Bcast writes [1] and RJDBC
[23] execute their significant operations in an active mode, sending a message for each of such operations
to all servers (Gl3). Finally, Fast Refresh Im-Im [45] uses a Gl2 strategy to immediately propagate updates
to secondary copies in order to increase their freshness.

Regarding the group-end (Ge) policy, as most of the systems do not apply read-only transactions at re-
mote nodes, they neither broadcast them to the group upon commit request (Ge0). However, in some cases,
read-only transactions require a synchronization point. Two of the surveyed systems are able to identify
read-only transactions and manage them differently from update transactions while they still require cer-
tain synchronization at group-end for queries. This is the case of WCRQ [53], which sends queries to a
read-quorum of replicas (Ge2) in order to provide those queries with strong consistency. The algorithm by
Serrano et al. [60] also applies a Ge2 strategy for queries, in order to commit the distributed transaction at
all participating sites.

In order to ensure replica consistency, a synchronization is always needed for update transactions,
either at the beginning, at the end or after the execution of the transaction in its delegate node. OTP-99
[36], OTP, OTP-Q, OTP-DQ and OTP-SQ [37], the active processing of AKARA [16], BaseCON for 1SR,
BaseCON for SC and BaseCON for strong 1SR [69] make the synchronization point of update transactions
at the beginning (either with the client-request or the group-start policies), thus rendering unnecessary to
synchronize with a group-end strategy (Ge0). Systems such as Fast Refresh Df-Im [45], RSI-PC [51], Alg-
Weak-SI, Alg-Str.-SI and Alg-Str.Ses.-SI [18] choose a lazy synchronization after transaction commitment,
and thus they also follow a Ge0 strategy.

Apart from the systems synchronizing update transactions at the beginning or after the commitment in
the delegate, the rest of the systems make such synchronization at the end of the transaction in the delegate
server, i.e., before the final commit operation, with a non-null group-end strategy. Alsberg-Day [2], which
makes an update propagation in cascade mode, and the Tashkent family (Tashkent-MW and Tashkent-API
[21], Tashkent+ [22]), which sends the writeset to a central certifier, follow the Ge1 strategy that requires
the communication with only one server or component in the system. Among the remaining surveyed
systems, some of them, based on partial replication, need tosend transaction information only to a subset
of system nodes (Ge2). This is the case of 2PL & 2PC [24], BTO & 2PC [7], Bernstein-Goodman [9], OPT
& 2PC [61], O2PL & 2PC [12], Fast Refresh Im-Im [45], Epidemic restricted and Epidemic unrestricted
[30]. The rest of the systems follow a Ge3 strategy, where the transaction information is broadcast to all
nodes of the system.

44

In order to agree on the outcome of a broadcast transaction,16 systems run the decision process. Weak
voting, where a single node decides (Td1) and later communicates it decision to the rest of servers, as well
as certification, where all nodes deterministically reach the same decision (Td2) are the preferred strategies.
Only three of the surveyed systems base their decisions on the agreement of a quorum (Td3): One-at-a-
time and Many-at-a-time [58], and WCRQ [53]. In One-at-a-time and Many-at-a-time, partial replication
is used and nodes store information only about transactionsthat access items replicated at that node. To
perform the decision process, nodes vote and then safely decide the outcome of a transactionT once they
have received the votes of a voting quorum ofT. In WCRQ [53], a read-quorum decides the outcome of
a read-only transaction in order to ensure strong consistency, while write-quorums decide the commitment
of update transactions. Finally, there are systems that base their decisions on the agreement of all servers
(Td4): 2PL & 2PC [24], BTO & 2PC [7], Bernstein-Goodman [9], OPT & 2PC [61] and O2PL & 2PC
[12], which all use the 2PC protocol; and DBSM-RAC [63], which employs a non-blocking atomic commit
protocol.

The transaction-remote (Tr) policy defines the way transactions are applied at remote nodes. Most
of the systems identify read-only transactions and do not apply them at remote servers (Tr0). The only
exceptions are: Alsberg-Day [2], which is not specially tailored for database replicationand thus it does not
identify queries; Bcast all [1], where all operations are broadcast and executed in all theservers; Lazy Txn
Reordering [50], where all transactions are broadcast and possibly reordered to minimize abortions; Pronto
[48], which assimilates to an active approach by sending to the backups the SQL sentences instead of the
writeset; RJDBC [23], where all significant operations (including the commit operation) are broadcast to all
replicas; and AKARA [16], which broadcasts all transactions at their starting point. In all these systems, no
different treatment is given to read-only transactions. Onthe other hand, the rest of the surveyed systems do
not execute queries at remote nodes, but only update transactions. In order to increase performance, systems
usually apply remote transactions in a concurrent manner (Tr1), by controlling, either at the protocol level
or inside the database, that conflicting transactions are applied in the same order at all replicas. However,
to avoid the possible increase in complexity of such control, many systems apply writesets in a sequential,
non-overlapping manner (Tr2).

With regard to the client-response (Cr) policy, only one of the surveyed systems, Pronto [48], returns
multiple responses to the client (Cr2), whereas the rest of the systems always opt for returning a single
answer (Cr1). The Cr2 client-response policy may require further processing in the client to select or
compute a final result if multipledifferentanswers are sent.

Group-after (Ga) policies can seriously affect consistency, in that update propagation outside the scope
of transactions may lead to inconsistent states in different replicas. Thus, when using lazy propagation
special care must be taken to ensure that consistency is maintained or that some reconciliation mechanisms
are able to restore the system to a consistent state. Only fewof the surveyed systems follow a non-null
group-after strategy: Alsberg-Day [2], Fast Refresh Df-Im [45], RSI-PC [51], Alg-Weak-SI, Alg-Str.-SI
and Alg-Str.Ses.-SI [18]. All these systems consider a primary copy configuration, where updates are
made at only one node (the primary copy of the system or the master site of the updated data) and are later
lazily propagated to the slaves or secondary nodes. As only one node processes updates, no inconsistencies
are introduced.

5 Conclusion

In this paper we present a characterization model that provides a common framework to describe and
compare different database replication systems. This model is the result of a careful analysis of different
community proposals made since the beginning of this research field. In this study, we identify the relevant
steps that are common to all replication protocols, and the different approaches that protocols follow in such
steps. A policy is associated with each step, and the different approaches or options are called strategies.
Policies are grouped into families, according to the relation among the interactions they regulate. With this
model, we can detail the strategy that each protocol followsfor each of its main steps.

16Those systems that locally commit queries without any communication with the rest of the nodes usually employ the bottom
strategy (Td0) for such read-only transactions: no decision process is run for them.

45

This model is then used in order to characterize more than 50 database replication systems, in an
extensive survey that reviews the chronological evolutionof this research field. While many different
strategies have been followed in order to accomplish the required system interactions, some of them seem
to have been preferred over others, due to several reasons, from performance issues, to easiness of protocol
design and implementation.

Acknowledgments

This work has been partially supported by EU FEDER and the Spanish MICINN under grants TIN2009-
14460-C03 and TIN2010-17193; and by the Spanish MEC under grant BES-2007-17362.

References

[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting Atomic Broadcast in Replicated
Databases (Extended Abstract). In3rd International Euro-Par Conference on Parallel Processing,
volume 1300 ofLecture Notes in Computer Science (LNCS), pages 496–503. Springer, 1997.

[2] P. Alsberg and J. D. Day. A Principle for Resilient Sharing of Distributed Resources. In2nd Interna-
tional Conference on Software Engineering (ICSE), pages 562–570. IEEE-CS Press, 1976.

[3] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed Versioning: Consistent Replication for Scal-
ing Back-End Databases of Dynamic Content Web Sites. InACM/IFIP/USENIX International Mid-
dleware Conference, volume 2672 ofLecture Notes in Computer Science (LNCS), pages 282–304.
Springer, 2003.

[4] J. E. Armend́ariz-́Iñigo, J. R. Júarez-Rodŕıguez, J. R. Gonźalez de Mend́ıvil, H. Decker, and F. D.
Muñoz-Escóı. k-bound GSI: A Flexible Database Replication Protocol. InACM Symposium on
Applied Computing (SAC), pages 556–560. ACM, 2007.

[5] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil. A Critique of ANSI
SQL Isolation Levels. InACM SIGMOD International Conference on Management of Data, pages
1–10. ACM, 1995.

[6] P. A. Bernstein. Middleware: A Model for Distributed System Services.Communications of the ACM
(CACM), 39(2):86–98, 1996.

[7] P. A. Bernstein and N. Goodman. Timestamp-Based Algorithms for Concurrency Control in Dis-
tributed Database Systems. In6th International Conference on Very Large Data Bases (VLDB),
pages 285–300. IEEE-CS Press, 1980.

[8] P. A. Bernstein and N. Goodman. Concurrency Control in Distributed Database Systems.ACM
Computing Surveys (CSUR), 13(2):185–221, 1981.

[9] P. A. Bernstein and N. Goodman. An Algorithm for Concurrency Control and Recovery in Replicated
Distributed Databases.ACM Transactions on Database Systems (TODS), 9(4):596–615, 1984.

[10] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[11] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of Multidatabase Transaction Man-
agement.The VLDB Journal, 1(2):181–239, 1992.

[12] M. J. Carey and M. Livny. Conflict Detection Tradeoffs for Replicated Data.ACM Transactions on
Database Systems (TODS), 16(4):703–746, 1991.

[13] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible Database Clustering Middleware.
In FREENIX Track, USENIX Annual Technical Conference, pages 9–18. USENIX Association, 2004.

46

[14] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications: A Comprehensive
Study.ACM Computing Surveys (CSUR), 33(4):427–469, 2001.

[15] A. Correia Jr., A. L. Sousa, L. Soares, F. Moura, and R. C.Oliveira. Revisiting Epsilon Serializabilty
to improve the Database State Machine (Extended Abstract).In SRDS Workshop on Dependable
Distributed Data Management (WDDDM), 2004.

[16] A. Correia Jr., J. Pereira, and R. C. Oliveira. AKARA: A Flexible Clustering Protocol for Demanding
Transactional Workloads. InOTM Confederated International Conferences (Part I), volume 5331 of
Lecture Notes in Computer Science (LNCS), pages 691–708. Springer, 2008.

[17] K. Daudjee and K. Salem. Lazy Database Replication withOrdering Guarantees. In20th Interna-
tional Conference on Data Engineering (ICDE), pages 424–435. IEEE Computer Society, 2004.

[18] K. Daudjee and K. Salem. Lazy Database Replication withSnapshot Isolation. In32nd International
Conference on Very Large Data Bases (VLDB), pages 715–726. ACM, 2006.

[19] R. De Prisco, B. W. Lampson, and N. A. Lynch. Revisiting the Paxos Algorithm. In11th International
Workshop on Distributed Algorithms (WDAG), volume 1320 ofLecture Notes in Computer Science
(LNCS), pages 111–125. Springer, 1997.

[20] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database Replication Using Generalized Snapshot Iso-
lation. In 24th IEEE Symposium on Reliable Distributed Systems (SRDS), pages 73–84. IEEE-CS
Press, 2005.

[21] S. Elnikety, S. G. Dropsho, and F. Pedone. Tashkent: Uniting Durability with Transaction Ordering
for High-Performance Scalable Database Replication. InEuroSys Conference, pages 117–130. ACM,
2006.

[22] S. Elnikety, S. G. Dropsho, and W. Zwaenepoel. Tashkent+: Memory-Aware Load Balancing and
Update Filtering in Replicated Databases. InEuroSys Conference, pages 399–412. ACM, 2007.

[23] J. Esparza Peidro, F. D. Muñoz-Escóı, L. Irún-Briz, and J. M. Bernab́eu-Aub́an. RJDBC: A Simple
Database Replication Engine. In6th International Conference on Enterprise Information Systems
(ICEIS), pages 587–590, 2004.

[24] J. Gray. Notes on Database Operating Systems. InAdvanced Course: Operating Systems, volume 60
of Lecture Notes in Computer Science (LNCS), pages 393–481. Springer, 1978.

[25] J. Gray and L. Lamport. Consensus on Transaction Commit. ACM Transactions on Database Systems
(TODS), 31(1):133–160, 2006.

[26] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The Dangers of Replication and a Solution. InACM
SIGMOD International Conference on Management of Data, pages 173–182. ACM, 1996.

[27] V. Hadzilacos and S. Toueg. A Modular Approach to Fault-Tolerant Broadcasts and Related Prob-
lems. Technical Report 94-1425, Department of Computer Science, Cornell University, 1994.

[28] T. Härder and A. Reuter. Principles of Transaction-Oriented Database Recovery.ACM Computing
Surveys (CSUR), 15(4):287–317, 1983.

[29] J. Holliday, D. Agrawal, and A. El Abbadi. The Performance of Database Replication with Group
Multicast. In 29th IEEE International Symposium on Fault-Tolerant Computing Systems (FTCS),
pages 158–165. IEEE-CS Press, 1999.

[30] J. Holliday, D. Agrawal, and A. El Abbadi. Partial Database Replication using Epidemic Communi-
cation. In22nd IEEE International Conference on Distributed Computing Systems (ICDCS), pages
485–493. IEEE-CS Press, 2002.

47

[31] R. Jiḿenez-Peris, M. Patiño-Mart́ınez, G. Alonso, and S. Arévalo. A Low-Latency Non-blocking
Commit Service. In15th International Conference on Distributed Computing (DISC), volume 2180
of Lecture Notes in Computer Science (LNCS), pages 93–107. Springer, 2001.

[32] R. Jiḿenez-Peris, M. Patiño-Mart́ınez, B. Kemme, and G. Alonso. Improving the Scalability of
Fault-Tolerant Database Clusters. In22nd IEEE International Conference on Distributed Computing
Systems (ICDCS), pages 477–484. IEEE-CS Press, 2002.

[33] J. R. Júarez-Rodŕıguez, J. E. Armend́ariz-́Iñigo, J. R. Gonźalez de Mend́ıvil, F. D. Muñoz-Escóı,
and J. R. Garitagoitia. A Weak Voting Database Replication Protocol Providing Different Isolation
Levels. In7th International Conference on New Technologies of Distributed Systems (NOTERE),
pages 261–268, 2007.

[34] B. Kemme and G. Alonso. Don’t Be Lazy, Be Consistent: Postgres-R, a New Way to Implement
Database Replication. In26th International Conference on Very Large Data Bases (VLDB), pages
134–143. Morgan Kaufmann, 2000.

[35] B. Kemme and G. Alonso. A New Approach to Developing and Implementing Eager Database Repli-
cation Protocols.ACM Transactions on Database Systems (TODS), 25(3):333–379, 2000.

[36] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transactions over Optimistic Atomic
Broadcast Protocols. In19th International Conference on Distributed Computing Systems (ICDCS),
pages 424–431. IEEE-CS Press, 1999.

[37] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann. Using Optimistic Atomic Broadcast
in Transaction Processing Systems.IEEE Transactions on Knowledge and Data Engineering (TKDE),
15(4):1018–1032, 2003.

[38] L. Lamport. The Part-Time Parliament.ACM Transactions on Computer Systems (TOCS), 16(2):
133–169, 1998.

[39] L. Lamport. Paxos Made Simple.ACM SIGACT News(Distributed Computing Column), 32(4):
18–25, 2001.

[40] B. W. Lampson. Atomic transactions. InAdvanced Course: Distributed Systems, volume 105 of
Lecture Notes in Computer Science (LNCS), pages 246–265. Springer, 1981.

[41] B. W. Lampson. How to Build a Highly Available System Using Consensus. In10th International
Workshop on Distributed Algorithms (WDAG), volume 1151 ofLecture Notes in Computer Science
(LNCS), pages 1–17. Springer, 1996.

[42] Y. Lin, B. Kemme, M. Patĩno-Mart́ınez, and R. Jiḿenez-Peris. Middleware based Data Replication
providing Snapshot Isolation. InACM SIGMOD International Conference on Management of Data,
pages 419–430. ACM, 2005.

[43] F. D. Muñoz-Escóı, J. M. Bernab́e-Gisbert, R. de Juan-Marı́n, J. E. Armend́ariz-Iñigo, and J. R.
Gonźalez de Mend́ıvil. Revising 1-Copy Equivalence in Replicated Databaseswith Snapshot Iso-
lation. In OTM Confederated International Conferences (Part I), volume 5870 ofLecture Notes in
Computer Science (LNCS), pages 467–483. Springer, 2009.

[44] R. C. Oliveira, J. Pereira, A. Correia Jr., and E. Archibald. Revisiting 1-Copy Equivalence in Clustered
Databases. InACM Symposium on Applied Computing (SAC), pages 728–732. ACM, 2006.

[45] E. Pacitti, P. Minet, and E. Simon. Fast Algorithms for Maintaining Replica Consistency in Lazy
Master Replicated Databases. In25th International Conference on Very Large Data Bases (VLDB),
pages 126–137. Morgan Kaufmann, 1999.

[46] M. Patĩno-Mart́ınez, R. Jiḿenez-Peris, B. Kemme, and G. Alonso. Scalable Replication in Database
Clusters. In14th International Conference on Distributed Computing (DISC), volume 1914 ofLecture
Notes in Computer Science (LNCS), pages 315–329. Springer, 2000.

48

[47] F. Pedone.The Database State Machine and Group Communication Issues. PhD thesis,́Ecole Poly-
technique F́ed́erale de Lausanne (EPFL), Switzerland, 1999.

[48] F. Pedone and S. Frølund. Pronto: A Fast Failover Protocol for Off-the-shelf Commercial Databases.
In 19th IEEE Symposium on Reliable Distributed Systems (SRDS), pages 176–185. IEEE-CS Press,
2000.

[49] F. Pedone and A. Schiper. Optimistic Atomic Broadcast.In 12th International Symposium on Dis-
tributed Computing (DISC), volume 1499 ofLecture Notes in Computer Science (LNCS), pages 318–
332. Springer, 1998.

[50] F. Pedone, R. Guerraoui, and A. Schiper. Transaction Reordering in Replicated Databases. In16th
IEEE Symposium on Reliable Distributed Systems (SRDS), pages 175–182. IEEE-CS Press, 1997.

[51] C. Plattner and G. Alonso. Ganymed: Scalable Replication for Transactional Web Applications. In
ACM/IFIP/USENIX International Middleware Conference, volume 3231 ofLecture Notes in Com-
puter Science (LNCS), pages 155–174. Springer, 2004.

[52] Y. Raz. The Principle of Commitment Ordering, or Guaranteeing Serializability in a Heterogeneous
Environment of Multiple Autonomous Resource Managers Using Atomic Commitment. In18th In-
ternational Conference on Very Large Data Bases (VLDB), pages 292–312. Morgan Kaufmann, 1992.

[53] L. Rodrigues, N. Carvalho, and E. Miedes. Supporting Linearizable Semantics in Replicated Data-
bases. In7th IEEE International Symposium on Network Computing and Applications (NCA), pages
263–266. IEEE-CS Press, 2008.

[54] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. System Level Concurrency Control for Dis-
tributed Database Systems.ACM Transactions on Database Systems (TODS), 3(2):178–198, 1978.

[55] M. I. Ruiz-Fuertes and F. D. Mũnoz-Escóı. Refinement of the One-Copy Serializable Correctness Cri-
terion. Technical Report ITI-SIDI-2011/004, Instituto Tecnológico de Inforḿatica, Valencia, Spain,
2011.

[56] R. Salinas, J. M. Bernabé-Gisbert, F. D. Mũnoz-Escóı, J. E. Armend́ariz-́Iñigo, and J. R. Gonźalez
de Mend́ıvil. SIRC: A Multiple Isolation Level Protocol for Middleware-based Data Replication. In
22nd International Symposium on Computer and Information Sciences (ISCIS), pages 1–6. IEEE-CS
Press, 2007.

[57] R. Salinas, F. D. Mũnoz-Escóı, J. E. Armend́ariz-́Iñigo, and J. R. Gonźalez de Mend́ıvil. A Perfor-
mance Evaluation of g-Bound with a Consistency Protocol Supporting Multiple Isolation Levels. In
OTM Confederated International Workshops and Posters, volume 5333 ofLecture Notes in Computer
Science (LNCS), pages 914–923. Springer, 2008.

[58] N. Schiper, R. Schmidt, and F. Pedone. Optimistic Algorithms for Partial Database Replication.
In 10th International Conference on Principles of Distributed Systems (OPODIS), volume 4305 of
Lecture Notes in Computer Science (LNCS), pages 81–93. Springer, 2006.

[59] F. B. Schneider. Synchronization in Distributed Programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(2):125–148, 1982.

[60] D. Serrano, M. Patiño-Mart́ınez, R. Jiḿenez-Peris, and B. Kemme. Boosting Database Replication
Scalability through Partial Replication and 1-Copy-Snapshot-Isolation. In13th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), pages 290–297. IEEE-CS Press, 2007.

[61] M. K. Sinha, P. D. Nanadikar, and S. L. Mehndiratta. Timestamp Based Certification Schemes for
Transactions in Distributed Database Systems. InACM SIGMOD International Conference on Man-
agement of Data, pages 402–411. ACM, 1985.

49

[62] D. Skeen. Nonblocking Commit Protocols. InACM SIGMOD International Conference on Manage-
ment of Data, pages 133–142. ACM, 1981.

[63] A. L. Sousa, R. C. Oliveira, F. Moura, and F. Pedone. Partial Replication in the Database State
Machine. InIEEE International Symposium on Network Computing and Applications (NCA), pages
298–309. IEEE-CS Press, 2001.

[64] I. L. Traiger, J. Gray, C. A. Galtieri, and B. G. Lindsay.Transactions and Consistency in Distributed
Database Systems.ACM Transactions on Database Systems (TODS), 7(3):323–342, 1982.

[65] M. Wiesmann and A. Schiper. Comparison of Database Replication Techniques Based on Total Order
Broadcast.IEEE Transactions on Knowledge and Data Engineering (TKDE), 17(4):551–566, 2005.

[66] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding Replication in
Databases and Distributed Systems. In20th International Conference on Distributed Computing
Systems (ICDCS), pages 464–474. IEEE-CS Press, 2000.

[67] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. Alonso. Database Replication Techniques:
A Three Parameter Classification. In19th IEEE Symposium on Reliable Distributed Systems (SRDS),
pages 206–215. IEEE-CS Press, 2000.

[68] V. Zuikevičiūtė and F. Pedone. Revisiting the Database State Machine Approach. InVLDB Workshop
on Design, Implementation and Deployment of Database Replication, 2005.

[69] V. Zuikevičiūtė and F. Pedone. Correctness Criteria for Database Replication: Theoretical and Practi-
cal Aspects. InOTM Confederated International Conferences (Part I), volume 5331 ofLecture Notes
in Computer Science (LNCS), pages 639–656. Springer, 2008.

[70] V. Zuikevičiūtė and F. Pedone. Conflict-Aware Load-Balancing Techniques for Database Replication.
In ACM Symposium on Applied Computing (SAC), pages 2169–2173. ACM, 2008.

50

