
A Characterisation of Dynamic Distributed Systems

Félix Garcı́a-Neiva, Rubén de Juan-Marı́n and Francesc D. Muñoz-Escoı́

Institut Universitari Mixt Tecnològic d’Informàtica
Universitat Politècnica de València

46022 València - SPAIN

{fgarcia,rjuan,fmunyoz}@iti.upv.es

Technical Report ITI-SIDI-2012/01

Fé
lix

G
ar

cı́
a-

N
ei

va
et

al
.:

A
C

ha
ra

ct
er

is
at

io
n

of
D

yn
am

ic
D

is
tr

ib
ut

ed
Sy

st
em

s
IT

I-
SI

D
I-

20
12

/0
1





A Characterisation of Dynamic Distributed Systems

Félix Garcı́a-Neiva, Rubén de Juan-Marı́n and Francesc D. Muñoz-Escoı́

Institut Universitari Mixt Tecnològic d’Informàtica
Universitat Politècnica de València

46022 València - SPAIN

Technical Report ITI-SIDI-2012/01

e-mail: {fgarcia,rjuan,fmunyoz}@iti.upv.es

Abstract

Highly-available and scalable distributed systems are inherently dynamic, but no clear definition of
this dynamism has been widely accepted up to now. The aim of this paper is to survey recent works that
have presented new results in the area of dynamic distributed systems, describing their contributions.
Additionally, this survey shows that all their assumed dynamic system models can be adequately charac-
terised using the definition and classification given by Baldoni, Bertier, Raynal and Tucci-Piergiovanni
(i.e., the BBRTP definition). This classification is based on two main parameters: (a) the number of
processes that compose the system, and (b) the diameter of the networking graph that interconnects those
processes. Other important characteristics of dynamic systems can be derived from these two parameters.

1 Introduction
High availability has traditionally been one of the objectives in many distributed applications and systems.
To this end, processes and data should be replicated, but replication, concurrency and failures should be
transparent to the users [38]. One of the aims of many distributed applications is to provide a single-system
image to the user; i.e., to achieve distribution transparency. Unfortunately system components may fail.
This demands that they eventually recover and were re-integrated in the system. As a result, a first level of
dynamism is introduced in any distributed algorithm when a recoverable system model is assumed.

The advent of peer-to-peer [5] collaborative applications, where nodes may join and leave the system
at will, and the emergence of the cloud computing paradigm [41] that introduces the need of elasticity and
scalability [34] in order to manage variable and potentially huge workloads, has augmented the inherent
dynamism in those new kinds of distributed applications. So, a definition for dynamic distributed systems
seems to be needed, although only a few proposals have appeared and none of them has been clearly
accepted.

This paper shows that the definition and classification given in [7] characterises in a precise way all
dynamic distributed system variants. Its two key parameters (degree of concurrency and networking graph
diameter) condition the characteristics of each possible class of dynamic distributed applications. This is
confirmed providing a short survey of a set of recent publications where dynamic distributed systems are
described or assumed.

The rest of this paper is structured as follows. Section 2 recalls the definition of dynamic distributed
systems given in [7]. Section 3 summarises the BBRTP classification. Section 4 provides a slight refine-
ment to that classification, considering in which classes is assumable a synchronous system model, leading
thus an outlook over the set of classes where the consensus problem may be solved. Later, Section 5
presents a brief survey on recent research papers that have assumed a dynamic system, analysing to which
class or classes they belong. Finally, Section 6 concludes this paper.

1



2 Definition of Dynamic Distributed Systems
Quoting Baldoni et al. [7], a possible definition of a dynamic distributed system is the following:

Definition 1 (Dynamic System). “A dynamic system is a continually running system in which an arbitrarily
large number of processes are part of the system during each interval of time and, at any time, any process
can directly interact with only an arbitrary small part of the system.”

This definition is later formalised in [7] providing a characterisation of dynamic distributed systems
that is also a classification of them (presented in Section 3.) Before entering in detail in such classification,
several properties may already be extracted from the informal definition given above:

1. Since the number of participating processes could be large, applications developed for dynamic
systems do not need that all those processes know each other. As a result, a complete system mem-
bership management is not mandatory in dynamic systems, nor possible in many of them.

2. Processes have only a partial view of the system. In the general case, a fully interconnecting graph
cannot be assumed.

Note that in most cases distributed algorithms have assumed that communication between any pair of
processes is feasible. This was modelled assuming a fully-connected graph. Such logical topology
makes sense when the sender process knows the identity and address of the receiving one. In that
case, message routing and delivery reliability can be ensured by the network and transport layers of
the protocol stack. On the other hand, in a large dynamic system it is not possible to know the identity
of all other system processes. As a result, such logical fully-connected topology is not realistic nor
directly usable in any algorithm for dynamic systems.

3 The BBRTP Classification
Since dynamism implies that processes may join and leave the system at will, the concepts of system run,
system graph and graph sequence [7] need to be defined.

Definition 2 (System run). A system run is a total order on the join and leave events issued by processes
that respects their real time occurrence order.

Definition 3 (System graph). A distributed system can be represented by a graph G = (P,E), where P
is the set of processes that compose the system and E is a set of edges (pi, pj), representing bidirectional
reliable channels connecting processes pi and pj .

Note that system graphs do not need to be fully connected, and that the addition or removal of any node
or edge generates a different graph. So, these graph updates define a sequence of graphs in a given system
run.

Definition 4 (Graph sequence). Let {Gn}run denote the sequence of graphs through which the system
passes in a given run. Each Gn ∈ {Gn}run is a connected graph whose diameter can be greater than one.

Based on these concepts, the BBRTP classification [7] considers these two complementary dimensions:

• Number of concurrent entities (P ). Assuming the infinite arrival model proposed in [32, 2], these
variants can be distinguished1:

– P b. The number of processes that concurrently belong to the system is bounded by a constant
b in all system runs.

– Pn. The number of processes that concurrently belong to the system is bounded in each system
run, but may be unbounded when the union of all system runs is considered.

1Although the original notation in [2] uses Mb, Mn and M∞ to refer to these models, we use P b, P n and P∞ in order to avoid
confusion with the BBRTP classification, since the latter also uses an M in its model specification.

2



– P∞. The number of processes that concurrently belong to the system in a single run may grow
to infinity as the time passes.

• Diameter of the interconnecting graph (D). This parameter models the “geographical” dynamism
of the system. To this end, {Dn}run denotes the set of diameters of the graphs in {Gn}run. The
alternatives to be considered regarding the graph diameter are:

– Db, Bounded and known diameter. The diameter is bounded by b and that bound is known by
the algorithms designed for that model. Formally: ∀Dn ∈ {Dn}run, Dn ≤ b.

– Dn, Bounded and unknown diameter. All the diameters {Dn}run are finite en each run, but the
union of all Dn in {Dn}run may be unbounded. This implies that in this model an algorithm
has no information on the diameter.

– D∞, Unbounded diameter. In this model the diameter may grow indefinitely in a run.

Number of Network diameter
processes Db Dn D∞

P b M b,b – –
Pn Mn,b Mn,n –
P∞ M∞,b M∞,n M∞,∞

Figure 1: Dynamic models considering the P and D parameters.

As a result, considering both parameters, a composed MP,D set of models is defined. Both parameters
can assume the values b, n and ∞ to indicate their three variants, as described above. From the nine
possible models, M b,n, M b,∞ and Mn,∞ models are not possible since their number of active concurrent
processes bounds in some way such network diameters. In other words, their diameter is in fact bounded
by D = P − 1. Therefore, as a result, we have six different models that correspond to the following
combinations: M b,b, Mn,b, M∞,b, Mn,n, M∞,n and M∞,∞. The resulting models are depicted in Fig. 1.

4 Classification Refinement
Authors of [7] suggest that other complementary parameters could be considered in order to refine the
given classification. Indeed, they suggest synchrony as a possible refining characteristic; i.e., at a glance,
each resulting dynamic model might be subdivided considering different degrees of synchrony.

4.1 Achievable Synchronicity
Let us now consider synchrony in order to apply such refinement. Regarding that characteristic, several
degrees of synchrony (or asynchrony) may be distinguished. To this end, two axes of asynchrony are
identified in a distributed system:

1. Processor asynchrony allows a processor to remain in the same step in its execution for arbitrary
long finite amounts of time while other processors continue to run.

2. Communication asynchrony does not allow to bound message delivery time.

Communication asynchrony seems to be the main axis. It is accepted that processor synchrony can be
simulated with a reasonable effort in a system that uses logical buffering [42]; i.e., an algorithm that as-
sumes synchronous processes can be executed using asynchronous processes if the algorithm steps are ap-
propriately numbered in each processor and messages are buffered until their intended receiver has reached
the appropriate algorithm step. Note that communication may be asynchronous to this end. Although
there are also general synchronisers (i.e., algorithms able to simulate both synchronous processors and

3



synchronous communications) they cannot be easily implemented in a real system (e.g., they require un-
bounded space). As a result, let us revise –in the following sections– all these dynamic models regarding
whether synchronous communication may be achieved in them, since this is a key property in order to de-
cide whether the studied system models could be synchronous or not. Besides that, note also that all these
systems could trivially be assumed as asynchronous, and that communication is also considered partially
synchronous when there is a bound on message transmission time but such bound is unknown [15].

To begin with, let us assume the most favourable scenario: each channel is synchronous, being δ its
known bound on message transmission time. However, in a dynamic system the full set of processors is
unknown. This implies that a given sender is unable to directly reach every other process in the system.
If any algorithm step requires that a given process (for instance, a coordinator) sends a message to every
other process, such message propagation would require epidemic communication [24].

Most classical distributed algorithms had been devised for static systems; i.e., systems where the set of
executing processes is known. Moreover, almost all algorithms are designed for managing communications
at the application layer (or, at least, at the transport one) considering the regular network protocol stack.
This implies that routing is not a problem and that the assumed channels are able to communicate every
pair of system processes. Synchronous communication in that context implies that every pair of system
processes can exchange messages and that such message transmission time is bounded. In a dynamic
system, on the other hand, a process may only know about a small set of neighbour processes. As a result,
some kind of application-layer routing is demanded in order to intercommunicate all system processes.
This demands a slight variation in the definition of synchronous communication.

Definition 5 (Synchronous communication). Communication in a dynamic distributed system S is con-
sidered synchronous when the message transmission time between every pair of processes (p1, p2) in S is
bounded and such bound is known.

Thus, process-to-process channel bounds are not enough in the general case since message forwarding
is demanded in many algorithms. So, let us analyse whether processes may assume bounds in such message
forwarding or not.

4.1.1 M∗,b Models

These dynamic system models assume that the network diameter is bounded and known. In that case, if
each channel is synchronous (as said above), the resulting system will be also synchronous. Thus, message
transmission time will be bounded in a M∗,b system to bδ time.

Theorem 1 (M∗,b synchronous communication). The message transmission time between every pair of
processes p1 and p2 in a distributed system S that follows any of the M∗,b models (i.e., M b,b, Mn,b or
M∞,b) is bounded by bδ.

Proof. Immediate, given the bounds on the network diameter (b) and the channel transmission time (δ).
Note that if the network diameter is b, every epidemic broadcast will be able to reach all current system

processes in b steps and this requires a bounded time.

4.2 M∗,n Models
These dynamic system models assume that the network diameter is bounded, but the bound is unknown.
At a glance, the algorithms may not assume any message transmission bound, although they can be certain
that the messages will reach their destinations since reliable channels have been assumed.

Lemma 1 (M∗,n non-synchronous communication). The message transmission time between every pair
of processes p1 and p2 in a distributed system S that follows any of theM∗,n models (i.e., Mn,n orM∞,n)
cannot have a known bound.

Proof. In this kind of system there are not any known bounds in the number of concurrent processes nor
in the network diameter. This implies that each process only maintains a limited neighbourhood and such
known processes vary throughout time.

4



Communication between each pair of processes could be reached using a given route of intermediate
processes. Since the network diameter has no known bound, the length of such routing paths cannot
be bounded a priori. Once a route has been found, a given bound exists. Unfortunately, routes are not
stable since their composing processes could leave and re-join the system at will. As a result, in an M∗,n

system, interconnecting routes are dynamic and their bounds (both in number of “hops” at the transport or
application layer and in the overall transmission time) cannot be set.

Given this intuitive justification, let us prove that communication cannot have a known bound using
reductio ad absurdum. To this end, the assumptions are:

1. System S belongs to the Mn,n or M∞,n models; i.e., its network diameter is bounded but unknown.

2. Communication between every pair of processes (p1, p2) in S is bounded, being γ (with γ > δ) the
known bound on message transmission time.

If communication time is bounded by γ between every pair of system processes, a given process may
start at time t an epidemic broadcast algorithm able to reach every other system process in γ time. This
epidemic algorithm collects the paths needed to intercommunicate its starting process with any other system
process and instructs each visited process to start this same algorithm on its own. To this end, the message
progressively holds the identifiers and addresses of all processes that it has visited. This information is also
useful to avoid cycles and to guarantee that eventually the initial broadcast reaches all system nodes.

Finally, each of the receivers of those epidemic broadcasts will be able to collect all system paths needed
to intercommunicate itself with every other process (recall that channels were assumed bidirectional in Def.
3). This algorithm would require 2γ time to complete; i.e., it terminates at time t+2γ. Note that termination
is guaranteed by hypothesis 2. As a result, each system process is able to know the network diameter. This
shows that the system network diameter is actually bounded and known, contradicting the initial hypothesis
1. This concludes the proof.

As a result of this, it is clear that these models may not assume synchronous communication. Despite
this, it is still possible to assume a partially synchronous [15] communication; i.e., a bound actually exists
but its value is unknown to the processes.

Theorem 2 (M∗,n partial synchronous communication). The message transmission time between every
pair of processes p1 and p2 in a distributed system S that follows any of the M∗,n models (i.e., Mn,n or
M∞,n) may be bounded but its bound is unknown.

Proof. The definition of M∗,n systems assumes that they have a bounded (although unknown) network
diameter. We had already assumed that each interconnecting channel is synchronous, with δ as its upper
bound on message propagation time. Let us now assume that the unknown upper bound on the network
diameter is β. As a result, there is an actual upper bound on the message propagation time between any
pair of processes in S: βδ. Unfortunately, such upper bound cannot be known as it has been already proven
in Lemma 1.

4.2.1 M∞,∞ Model

The M∞,∞ system model assumes that both the network diameter and the degree of concurrency are
infinite when long runs are considered. Additionally, dynamic systems assume that processes enter and
leave the system at will. As a result, the following theorem can be stated:

Theorem 3 (M∞,∞ asynchronous communication). The message transmission time between every pair of
processes p1 and p2 in a distributed system S that follows the M∞,∞ model cannot be bounded.

Proof. This system model, for concrete run intervals, is similar to model M∞,n (additionally, its network
diameter may grow throughout time in a given run). This implies that the proof given in Lemma 1 is also
applicable here and, given theM∞,∞ definition, no unknown bound may exist. As a result, communication
cannot be bounded in this kind of systems.

5



4.2.2 Consequences

The results given in the previous sections assume the best possible configurations regarding communica-
tion synchrony. Such configurations are difficult to implement in an M∗,n model. Indeed, none of the
surveyed papers belonging to that family of dynamic systems assumes that process-to-process channels
have a bounded message propagation time. As a result, although the M∗,n model could provide a par-
tially synchronous communication model, algorithms that assume such model only rely on asynchronous
communication.

As a result, the classification refinement given in the previous section suggests that some classical
problems that are not solvable in “static” asynchronous reliable distributed systems where processes may
fail, will not be solvable in M∗,n and M∞,∞ dynamic systems. This includes consensus [17], for instance.
On the other hand, problems that require a synchronous system demand that the resulting dynamic model
becomes one of the M∗,b classes.

Regarding these synchronous solutions, several basic approaches may be found:

• The first one sets a hierarchical organisation of the system processes, defining multiple subsystems
and interconnecting them using inter-system channels. Each subsystem maintains at least a distin-
guished processor that bridges its contained set of processes with those of other subsystems. As a
result, each subsystem is fully-connected and its internal network diameter is 1, whilst communi-
cation with other subsystems is managed by the distinguished processor and it also has a bounded
and known diameter that depends on the number of layers being defined in such hierarchy. This hi-
erarchical architecture was proposed in the context of interconnectable memory consistency models
[9, 16] or interconnectable message broadcast protocols [26, 4], still in a static context, but it also
provides a solid basis for dynamic systems. The regular architecture of the current cloud system
providers [41] follows a similar pattern (separate interconnected large data-centres) that boosts both
scalability and dynamism in the management of the hosted applications.

• The second one [33] defines a stable subset of processes able to ensure algorithm progress. This
stable set should comply with some constraints: a minimal number of processes (α) that remain in the
system long enough (stability) –note that α simulates the static-system requirement of maintaining at
least n−f correct processes2–, and a strong cooperation among those α processes (and this suggests
that they assume a fully-interconnecting network among them). Additionally, two complementary
communication primitives are provided: a query-response that broadcasts a query and waits for α
answers, and a broadcast operation that is able to propagate information to all system processes. At
a glance, this implies that the stable subset conforms to the M b,b system model, whilst the overall
system may assume even the M∞,∞ one. Algorithms are executed in an M b,b subpart, propagating
their advancements to the remaining processes that may join the distinguished subset if they are
sufficiently stable. To this end, they only need to be one of the first α repliers to the query-response
primitives being executed in the corresponding algorithm.

But, fortunately, not all the problems demand a synchronous system in order to be solved. In those
cases, each given problem should be carefully studied analysing in which kinds of dynamic system some
solution can be found. A sample of this kind is already presented in [7] where the one-time query problem
[11] is initially solved only in anM∗,b system with the WildFire algorithm [11], but its specification is later
slightly relaxed in order to build the DepthSearch algorithm [7] that solves it also in any M∗,n model but
not in an M∞,∞ one.

4.3 Refined Model
Another question that arises from the properties outlined above is where to place the frontier between static
and dynamic systems. A traditional static reliable system considers an a priori known set of participating
processes that has a logical complete interconnecting network. This corresponds to an M b,1 model in our
classification, that is a subset of the dynamic M b,b class defined above. Does this mean that all M b,1

2Being n the initial number of system processes and f the current number of failed processes.

6



systems are static and that all M b,b systems with network diameter greater than one are dynamic? What
does it happen with Mn,1 and M∞,1 systems? Are they static or dynamic? Let us start with the latter.
In Mn,1 and M∞,1 systems there is no fixed (and known3) set of system processes. As a result, these
kinds of systems are not static. On the other hand an M b,b system has a known maximal number of
processes, but their identity or addresses are unknown a priory. Otherwise, the algorithm would assume a
direct channel between every pair of processes, since most algorithms work on top of a tranport layer in
the communication stack. This would imply that the resulting logical network diameter would have had a
value of 1. This means that inM b,b systems, algorithms do not require that each process knows which is the
current set of processes that belong the system; i.e., those algorithms only demand the existence of a given
(partial) set of neighbour processes. The key characteristic of these algorithms is decentralisation. With it,
management of highly frequent arrivals and departures of processes (i.e., dynamism) is not difficult.

From a general point of view, and according to Def. 1, M b,b>1 systems are dynamic and only M b,1

systems are static, although this may allow some divergences considering specific problems. For instance,
there is a wide agreement on considering “dynamic” those systems that are able to reconfigure their state
when there are any process arrivals or departures, even in the case that there is no membership service
in such systems. Examples of M b,1 systems of this kind are those managed with group communication
services providing view-oriented communication [36], and those supporting atomic consistency in recon-
figurable systems [3, 21, 31]. So, there is no clearly-defined border between static and dynamic systems
and this demands a refinement of the dynamic characterisation, generating the following concepts:

• Static distributed systems: A system that belongs to class M b,1 but does not tolerate the arrival of
new processes nor the active departure of the existing ones.

• Reconfiguration-based dynamic systems: A system that belongs to class M b,1 and that is able to
manage the arrival or departure of its member processes. Processes in this kind of dynamic sys-
tems are able to know and exchange messages with any other process belonging to the same system
configuration or system view. Systems of this kind have been described in [3, 21, 30, 31, 36].

• Strong dynamic systems: Those that comply with Definition 1 and have a diameter bigger than 1,
D > 1. Algorithms that assume a strong dynamic system do not require that all their executing
processes know each other.

Figure 2 shows how these concepts are related to the original classification given in [7].

Figure 2: Relationship among the BBRTP classes and the static and dynamic class refinement.

5 A Brief Survey of Related Work
In the last years there have been multiple papers that have presented new solutions to different problems
when they are adapted to dynamic environments. Let us revisit such results, associating them to the class
families presented in Section 4 and following a chronological order into each family. Recall that Section 4

3Note that when the actual number of system processes is unknown the required algorithms should be able to adapt their behaviour
to the arrival of an unforeseen number of new processes in a given run.

7



has analysed which is the maximum level of communication synchrony that can be achieved in each of the
dynamic system families, but the actual degree of synchrony may vary from being completely asynchronous
to assuming that maximum level. As a result, multiple variants can be found in the sequel.

5.1 M∗,b Systems
The older papers found in this family (that encompasses all classes with limited and known network diam-
eter) do not explicitly use the adjective “dynamic” in order to describe its assumed system model. One of
the characteristics of a dynamic system is that its algorithms should deal with the frequent departure and
arrival of processes. This happens with both a large unknown number of processes and with a bounded
known one. Let us start with the latter. An example of this kind is the Paxos algorithm [30], designed in
1990. It proposes a consensus algorithm for a system with asynchronous processes and asynchronous com-
munication able to guarantee safety and to reach liveness in most of its executions (but not in all of them),
assuming a recoverable failure model. This still respects the known impossibility [17] of reaching consen-
sus in an asynchronous static system where processes may fail, but all the conditions that must appear in
order to prevent this algorithm from reaching progress seldom arise at once. Paxos provides a sample of
how dynamic solutions may extend the traditional static ones. The assumed system belongs to the M b,1

class4, and shows that the fact of dealing with failures/departures and recoveries/arrivals already introduces
some dynamism in a distributed system. Other variants of the Paxos algorithm, as Disk Paxos [19], have
enhanced its functionality supporting a greater percentage of process failures/departures, although they still
maintain the constraint of not ensuring liveness in all possible executions.

As it has been said above, a research line that introduced another variant of dynamism in the system
is the one that assumes unbounded concurrency [32, 20]. When the number of processes that should
be managed in a given algorithm cannot be bounded (i.e. it is infinite), the resulting algorithm easily
tolerates departures and arrivals of processes, since it cannot forecast how many processes participate in its
execution. This is one of the key characteristics of a dynamic system. On the other hand, the papers that
initiated this research line assumed a shared memory model. As a result, they could be translated into a
logical network with diameter 1.

Dynamic environments was also the target of [10]. In this case, the dynamic environment referred
to systems where nodes can connect and disconnect frequently, network topologies can vary over time
and energy consumption is in many cases critical (MANETs). Thus, the author proposed several group
membership protocols for this kind of scenarios. The first protocol, HMS, was devoted for systems with
a well-known topology and moderate size but partitionable, therefore she considered M b,b systems when
proposing this protocol. Moreover, the HMS constituted the basic building block for the others. The sec-
ond one, HaloMS was intended for large scale systems based on the scenario of client-server architectures,
where important interactions are server-server activity and client-server accesses. The assumption of this
scenario allowed the author to simplify the large scale system context to: a) the servers, a stable set of
nodes where each server knows each other, compounding the core: an M b,1 system and b) the clients that
only have to know one server which allows them to access other servers, thus composing an M b,2 system,
the halo. Then, having in mind ad-hoc networks, and more especifically, MANETs, she proposed a mem-
bership protocol MODUS (membership on demand) that allowed the activation and deactivation of mem-
bership monitoring on demand in order to reduce the energy consumption, a critical factor in MANETs.
This protocol was intended for systems where topology can vary, but as the membership was considered in
the traditional way, all nodes know all available nodes, so we are again in front of a M b,b system. The last
proposal was to use MODUS with Membership Estimation for dynamic networks. In this case, they have
a service providing an estimation of the current membership without strict guarantees, and a memerbship
service which provides traditional membership semantics. The former service provides an initial view, and
basic information for creating new views when required. Thus, these protocols as they are conceived can
be used in Mn,n systems.

A survey about the management of infinitely many processes in a distributed system was given in [2].
It provides some examples of algorithmic approaches that adapt solutions initially designed for the Mn,1

model to the M∞,1 one. These approaches are applied to the group naming, atomic snapshot [1] and

4It is a first example of reconfiguration-based dynamic system, as discussed in Section 4.2.2.

8



other problems. For instance, the mechanisms suggested for solving the atomic snapshot problem in an
M∞,1 model are also used to solve a relaxed definition of the group membership problem. Recall that
valid solutions for the group membership problem [13] require consensus and that the latter demands at
least partial synchrony in order to be solved when processes may fail (or leave the system). This provides
a sample confirming that some M∗,b systems require non-asynchronous communication.

Things start to change a bit later, and some papers already refer to the infinite arrival model as a
synonym for the dynamic distributed system concept. One of these first “explicitly dynamic” papers is
[18] that assumes an infinite arrival model with finite concurrency for both clients and servers; i.e. each
system run may have an infinite number of processes but the amount of concurrent processes in a given
time interval can be bounded. This means that its solutions belong to the M∞,b class assumed in this
paper. The contributions of [18] consist in proposing two basic abstractions in order to support atomically
(i.e., linearisable [25]) replicated objects in a dynamic system. Those two abstractions are: (a) the usage of
operation-related dynamic quorums, and (b) a persistent reliable broadcast able to broadcast a message to
a sufficiently large number of processes that belong to the system. The latter implies that processes should
be reachable in a given interval (i.e. the system has a bounded network diameter) and that processes that
join the system whilst a message is being broadcast will be able to receive it. In order to ensure liveness
these broadcasts do not need to reach all the system processes that existed at the time the broadcast was
initiated but only a stable (sub)set of them. Additionally, some degree of synchrony is also assumed in
order to implement this broadcast primitive.

The usage of a stable set of processes and a persistent reliable broadcast primitive is retaken in [33]
where these abstractions are proposed as the general basis for developing algorithms for dynamic systems,
as we have outlined in Section 4.2.2. Thus, although the overall system complies with the M∞,n class,
progress is ensured by a stable subset able to assume an Mn,b or even an M b,b class, simplifying algorithm
design.

Despite the availability of the persistent reliable broadcast and a stable subset, an open problem still
exists: the actual criteria needed to select such stable subset. This problem is analysed in [22] in the field of
P2P applications where churn is a difficulty for guaranteeing a correct functionality of those applications. In
[22] two parameters are considered for analysing how the stable set is selected: (a) whether the strategy uses
information about nodes in order to predict which nodes will be stable (predictive) or not (agnostic), and (b)
whether the strategy replaces a failed node with a new node (replacement) or not (fixed). Combining these
two parameters, four different families of strategies arise and several strategies in each family are described.
They are: (a) predictive-fixed (fixed decent, fixed most available and fixed longest lived), (b) agnostic-fixed
(fixed random), (c) predictive-replacement (max expectation, longest uptime, optimal), and (d) agnostic-
replacement (random replacement, passive preference list, active preference list). The advantages and
drawbacks of each strategy are analysed and a set of P2P applications are studied, identifying which is the
best strategy in each case. As expected, the best choice generally depends on the application requirements.

Dynamism is also analysed in [36] regarding its implications on group communication systems. To this
end, the system model is restricted to M b,b since membership services should be implementable in this
context and this demands that the set of participating processes is known by the algorithms or applications
that use a group communication system. The paper revises all concepts related to virtual synchrony [12] in
a context where processes may leave and rejoin the system at will. Although some of the traditional defini-
tions in this area are refined, most of them are inherently correct. This shows that distributed applications
that assume a virtual synchrony model (i.e., most of the fault-tolerant ones) are implicitly dynamic.

Gramoli [23] studies how to face dynamism and scalability when atomic consistency [29] should be
guaranteed. His analysis is based on reconfigurable read and write quorums, and is inspired in previous
solutions to the same problem [31, 21] in dynamic systems. All the operations should wait for their replies
from the intended quorum members. Besides the algorithms proposed in that Ph.D. thesis, one of its con-
tributions is the classification of the quorum systems supporting atomic consistency. Six different classes
are distinguished in such taxonomy: (a) static failure-prone, (b) static redundant, (c) dynamic replaceable,
(d) dynamic repairable, (e) probabilistic repairable and (f) probabilistic structureless. The two first classes
do not tolerate that involved processes leave or join the system. Dynamic replaceable (or reconfigurable)
systems are able to tolerate failures or disconnections but are still unable to scale. On the other hand, the
dynamic repairable systems are the first class with moderate scalability. These two last classes assume an
Mn,b or M∞,b model. In order to mix dynamism and scalability, probabilistic solutions are needed, as

9



those proposed in [23], tolerating also an M∗,n model.
In [40] a first algorithm implementing the Ω failure detector in an infinite arrival model is presented. To

this end, the failure detectors manage lists of active processes, instead of suspected ones since the aim of
an Ω failure detector is to solve the leader election problem. The algorithm needs a multicast primitive and
this forces to assume a fully connected network with IP-multicast capability. Process identifiers depend on
the IP address of their respective host machines. A crash-recovery failure model is assumed. As a result,
process identifiers only bound the concurrent number of alive processes but not the overall amount of them
in a given algorithm run. These assumptions imply an Mn,b model according to our refined classification.

A bit later, Baldoni et al. [8] proposed an implementation of regular registers [29] in the same Mn,b

model, explicitly qualifying such configuration as dynamic. Regular registers have the same computing
power than atomic registers (i.e., an atomic register can be implemented with an algorithm that uses regular
registers), but allow easier implementations. Additionally, they can be used as a basis to solve consensus in
asynchronous systems prone to failures when the latter are complemented by some leader election service,
as that outlined in [40]. The first regular register implementation discussed in [8] assumes a synchronous
system (confirming that Mn,b systems may be synchronous, as proven in Section 4.1.1), and provides a
fast (i.e., non-blocking and local) read operation and a write operation based on multicasting the new value
and its associated version number. It is complemented with a more elaborated algorithm able to implement
the regular register in an eventually synchronous system and a proof on the impossibility of implementing
a regular register in a dynamic asynchronous system.

Resource directory services in structured P2P systems [5] provide another sample of the selection
of a given subset of processes in order to provide a basic service for a dynamic distributed application.
Distributed hash tables (DHT) or similar structured subsystems [35, 37] have been designed in order to
implement a directory/location service of this kind. They manage a distributed directory service for a
potentially huge domain of resources, easily tolerating the join and leave of serving processes. Efficient
solutions to this problem had already been published in 2001 [35, 37]; i.e., before most of the papers
discussed in this section were written. These solutions rely on a known function that translates resource
names/identifiers into some kind of coordinates in a given space. Each serving process has also an identifier
that marks it as the server for a part of the resource identifiers space, and a structure is built arranging those
space fragments. As a result, each serving process has a subset of known serving processes that interact
with it in order to route the client requests to the appropriate serving process that stores the requested
resource addresses. Dynamism is tolerated using some degree of replication and a fast redistribution of
the directory information being held by each leaving server. The algorithms being used for setting the
directory structure bound the logical diameter of the interconnecting network. Such bound depends on the
dimensions of the space being assumed for the resource identifiers (e.g., number of bits in the resource
identifiers of Chord [37]). As a result, these systems may be included in an Mn,b model.

A related problem is analysed in [27, 28] where the set of processes that belong to a large-scale ap-
plication are able to self-organise themselves, defining a logical topology where they receive some virtual
coordinates. This is interesting for self-organising sensor networks. The proposed algorithm is based on
local information. It only requires that each participating node has a different identifier. This implies an
M b,b model, since the length of the process identifiers limits the maximal degree of concurrency and net-
work diameter. As a result, the data types required for storing those values are known in advance. The
system is organised in two different layers. The first one (VINCOS) is able to assign virtual coordinates to
system nodes. The other (NetGeoS) achieves a geometric structure on top of VINCOS. VINCOS is based
on finding the ”external belt” of the system (its borderline), and dividing such belt in a given number of
portions with (approximately) the same amount of nodes. Each of such portions is taken as the origin for a
different coordinate axis. The coordinates of a node are calculated as the length of the minimal path from
such node to each one of the belt portions, measured in ”number of hops”.

A recent contribution in the domain of reconfiguration-based dynamic distributed systems is the im-
plementability of atomic consistency without requiring consensus [3]. Aguilera et al. [3] prove that their
DynaStore algorithm implements atomic registers in an asynchronous dynamic environment, whilst con-
sensus cannot be solved in that environment. This shows that the implementation of atomic registers is a
lighter problem than consensus, both in static (as already stated and proven in [6]) and dynamic contexts.

10



5.2 M∗,n Systems
The second family of system classes assumes an interconnecting network with bounded but unknown
network diameter. It is composed of only two classes: Mn,n and M∞,n.

As proven in Theorem 2, this family of dynamic systems may still assume partially synchronous com-
munication, but the dynamism of the set of processes and the potentially large amount of them leads to
ignore such possibility, assuming an asynchronous communication. This has led to the adoption of a stable
subset of processes (with a known interconnecting network diameter, usually with value 1 at the applica-
tion layer) in order to accelerate any decision steps needed by the algorithms as recommended in [33], thus
ensuring progress.

Another application in this family is the querying algorithms for unstructured P2P file-sharing systems
[5], as Gnutella. These applications commonly use a flooding query (similar to an epidemic broadcast)
that is answered by the nodes that hold any resource that matches such query. None of the “peers” needs
to know the full set of nodes that execute the file-sharing application and each of them easily tolerates the
arrival of new members or the departure of the existing ones in its known set of “neighbours”. The actual
network diameter is bounded (since the number of processes that use the application is finite although very
large), but the bound is unknown. So, this justifies its inclusion in the Mn,n class. Similarly to what has
been described above, regarding stable subsets, flooding queries in unstructured P2P systems where also
limited and “translated” into other variants that could match theM∗,b family properties. For instance, since
these queries would overload the network, they were “pruned” setting a maximum number of hops in their
system traversal. Another variant consists in setting a partial structure using super-peers that define a two-
layer hierarchy. Super-peers centralise the directory information of their immediate neighbourhood, and
this reduces a bit the cost of the flooding queries. Other complementary approaches (usage of super-peers,
dynamic topology adaptation for queries, active flow control in order to avoid node overloading, one-
hop replication of directory contents in all nodes) were suggested [14] in order to increase the scalability
of these querying techniques, preserving their best characteristics (usage of keywords, success rate on
systems with high churn, etc.), but still maintaining a pruned scanning of the interconnecting graph. The
best contribution of [14] consists in proving experimentally that none of those complementary approaches
is able to individually improve the query performance (regarding the rate of query hits per query message),
but when they are properly combined such performance is greatly boosted. All those complementary
approaches demand only some knowledge about the state of the immediate neighbour nodes, but not about
the overall system topology nor network diameter nor system population. As a result, they can be used in
every dynamic distributed system family.

Regarding P2P systems, Tucci Piergiovanni [39] analyses existing system connectivity algorithms.
These algorithms are needed to drive the diffusion of information in a P2P system (i.e., to manage an
epidemic reliable broadcast). A model with infinite arrival of processes and unbound concurrency (i.e. a
P∞ model), with asynchronous communication is assumed. She proposes a new algorithm (DET) that is
able to ensure both scalability and system connectivity tolerating some degree of churn, improving the con-
nectivity maintenance of previous algorithms. Since knowledge of the system diameter is not required by
DET, it belongs to the M∞,n model. Since communication is assumed asynchronous, connectivity cannot
be always fully ensured. In case of churn, a connectivity restoring algorithm is used and in the worst case
at least a star topology is maintained.

5.3 M∗,∞ Systems
This third family (with infinite network diameter) consists of only one class: M∞,∞. It has only theoretical
sense. No implementable applications belong to this class.

6 Conclusions
Quoting [7] a dynamic system is “a continually running system in which an arbitrarily large number of
processes are part of it during each interval of time and, at any time, any process can directly interact with
only an arbitrary small part of the system”. Six different classes of dynamic systems (specified as MP,D)

11



are identified in [7], crossing two complementary axes: the degree of concurrency (P ) and the network
diameter (D). The resulting classes are: M b,b, Mn,b, M∞,b, Mn,n, M∞,n and M∞,∞. We analyse the
highest degree of system synchrony achievable in each of the identified classes in that taxonomy.

Not all published papers follow the definitions given in [7] regarding dynamic systems. As a result,
there are some variations on the dynamic systems concept and this suggests a refinement of the dynamism
characterisation. In this context, traditional static systems correspond to a subset of the M b,b class: the
M b,1 model. Such subset manages a bounded number of processes assuming a fully connected net-
work. Sharing this same model, other systems qualified as dynamic do exist. They have been renamed
as reconfiguration-based dynamic systems and despite allowing the arrival and departure of processes, the
set of processes that execute a given algorithm are able to know each other in this dynamic variant. As such,
these algorithms and systems do not follow strictly the definition given above. Finally, those systems that
strictly comply with such definition are known as strong dynamic systems in our classification refinement.

There are multiple sources of dynamism in modern distributed applications. One of them is the man-
agement of an unbounded concurrency due to an infinite arrival of processes. In this regard, Aguilera [2]
provides a basic classification of those systems (inherited as the concurrency axis in [7]) and a thorough
survey on how to adapt Pn algorithms in order to use them in a P∞ context.

A brief summary of recent work in the dynamic distributed systems area has been presented, briefly
describing the contributions of each paper in its corresponding class, illustrating which problems have been
solved or are still open in each of the identified classes.

Acknowledgements
This work has been supported by EU FEDER and Spanish MICINN under research grants TIN2009-14460-
C03 and TIN2010-17193.

References
[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic snap-

shots of shared memory. J. ACM, 40(4):873–890, 1993.

[2] Marcos Kawazoe Aguilera. A pleasant stroll through the land of infinitely many creatures. SIGACT
News, 35(2):36–59, 2004.

[3] Marcos Kawazoe Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic stor-
age without consensus. J. ACM, 58(2):7, 2011.

[4] A. Álvarez, Sergio Arévalo, Vicent Cholvi, Antonio Fernández, and Ernesto Jiménez. On the inter-
connection of message passing systems. Inform. Process. Lett., 105(6):249–254, 2008.

[5] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv., 36(4):335–371, 2004.

[6] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing sys-
tems. J. ACM, 42(1):124–142, 1995.

[7] Roberto Baldoni, Marin Bertier, Michel Raynal, and Sara Tucci-Piergiovanni. Looking for a definition
of dynamic distributed systems. In 9th Intnl. Conf. Paral. Comput. Tech. (PaCT), volume 4671 of Lect.
Notes Comput. Sc., pages 1–14, Pereslavl-Zalessky, Russia, September 2007. Springer.

[8] Roberto Baldoni, Silvia Bonomi, Anne-Marie Kermarrec, and Michel Raynal. Implementing a reg-
ister in a dynamic distributed system. In 29th Intnl. Conf. Distrib. Comput. Sys. (ICDCS), pages
639–647, Montreal, Québec, Canada, June 2009. IEEE-CS Press.

[9] Roberto Baldoni, Roy Friedman, and Robbert van Renesse. The hierarchical daisy architecture for
causal delivery. In 17th Intnl. Conf. on Distrib. Comput. Syst. (ICDCS), pages 570–577, Baltimore,
Maryland, USA, May 1997.

12



[10] Mari Carmen Bañuls. Group Membership Protocols for Dynamic Environments. PhD thesis, Depar-
tamento de Sistemas Informáticos y Computación, Valencia, Spain, March 2006.

[11] Mayank Bawa, Aristides Gionis, Hector Garcia-Molina, and Rajeev Motwani. The price of validity
in dynamic networks. J. Comput. Syst. Sci., 73(3):245–264, 2007.

[12] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of failures. ACM
T. Comput. Syst., 5(1):47–76, 1987.

[13] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. On the impossibility of group mem-
bership. In 15th Symp. Princ. Distrib. Comput. (PODC), pages 322–330, Philadelphia, Pennsylvania,
USA, May 1996.

[14] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making Gnutella-
like P2P systems scalable. In Conf. on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM), pages 407–418, Karlsruhe, Germany, 2003. ACM Press.

[15] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

[16] Antonio Fernández, Ernesto Jiménez, and Vicent Cholvi. On the interconnection of causal memory
systems. In 19th Annual ACM Symp. on Princ. of Distrib. Comp. (PODC), pages 163–170, Portland,
Oregon, USA, July 2000.

[17] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, 1985.

[18] Roy Friedman, Michel Raynal, and Corentin Travers. Two abstractions for implementing atomic
objects in dynamic systems. In 9th Intnl. Conf. Princ. Distrib. Sys. (OPODIS), volume 3974 of Lect.
Notes Comput. Sc., pages 73–87, Pisa, Italy, December 2005. Springer.

[19] Eli Gafni and Leslie Lamport. Disk Paxos. In 14th Intnl. Conf. Distrib. Comput. (DISC), volume
1914 of Lect. Notes Comput. Sc., pages 330–344, Toledo, Spain, October 2000. Springer.

[20] Eli Gafni, Michael Merritt, and Gadi Taubenfeld. The concurrency hierarchy, and algorithms for
unbounded concurrency. In 20th Annual Symp. on Princ. of Distrib. Comp. (PODC), pages 161–169,
Newport, Rhode Island, USA, August 2001. ACM Press.

[21] Seth Gilbert, Nancy A. Lynch, and Alexander A. Shvartsman. RAMBO II: Rapidly reconfigurable
atomic memory for dynamic networks. In Intnl. Conf. on Depend. Sys. and Netw. (DSN), pages
259–268, San Francisco, CA, USA, June 2003. IEEE-CS Press.

[22] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing churn in distributed systems. In Conf.
Appl. Techn. Arch. Protoc. Comput. Comm. (SIGCOMM), pages 147–158, Pisa, Italy, September
2006. ACM Press.

[23] Vicent Gramoli. Distributed Shared Memory for Large-Scale Dynamic Systems. PhD thesis, Univer-
sité Rennes 1, November 2007.

[24] Indranil Gupta, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh. Efficient epidemic-style protocols
for reliable and scalable multicast. In 21st Symp. Reliab. Distrib. Syst. (SRDS), pages 180–189, Osaka,
Japan, October 2002. IEEE-CS Press.

[25] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM T. Progr. Lang. Sys., 12(3):463–492, 1990.

[26] Scott Johnson, Farnam Jahanian, and Jigney Shah. The inter-group router approach to scalable group
composition. In 19th Intnl. Conf. on Distrib. Comput. Syst. (ICDCS), pages 4–14, Austin, TX, USA,
June 1999.

13



[27] Anne-Marie Kermarrec, Achour Mostéfaoui, Michel Raynal, Gilles Trédan, and Aline Carneiro
Viana. From anarchy to geometric structuring: the power of virtual coordinates. In 27th Annual
Symp. Princ. Distrib. Comput. (PODC), page 435, Toronto, Canada, August 2008. ACM Press.

[28] Anne-Marie Kermarrec, Achour Mostéfaoui, Michel Raynal, Gilles Trédan, and Aline Carneiro
Viana. Large-scale networked systems: From anarchy to geometric self-structuring. In 10th Intnl.
Conf. Distrib. Comput. Netw. (ICDCN), volume 5408 of Lect. Notes Comput. Sc., pages 25–36, Hy-
derabad, India, January 2009. Springer.

[29] Leslie Lamport. On interprocess communication. Distrib. Comput., 1(2):77–101, 1986.

[30] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.

[31] Nancy A. Lynch and Alexander A. Shvartsman. RAMBO: A reconfigurable atomic memory service
for dynamic networks. In 16th Intnl. Conf. on Distrib. Comput. (DISC), volume 2508 of Lect. Notes
Comput. Sc., pages 173–190, Toulouse, France, October 2002.

[32] Michael Merritt and Gadi Taubenfeld. Computing with infinitely many processes. In 14th Intnl. Conf.
Distrib. Comput. (DISC), volume 1914 of Lect. Notes Comput. Sc., pages 164–178, Toledo, Spain,
October 2000. Springer.

[33] Achour Mostéfaoui, Michel Raynal, Corentin Travers, Stacy Patterson, Divyakant Agrawal, and Amr
El Abbadi. From static distributed systems to dynamic systems. In 24th Symp. on Reliab. Distrib.
Syst. (SRDS), pages 109–118, Orlando, FL, USA, October 2005. IEEE-CS Press.

[34] M. Remedios Pallardó-Lozoya, Javier Esparza-Peidro, José-Ramón Garcı́a-Escrivá, Hendrik Decker,
and Francesc D. Muñoz-Escoı́. Scalable data management in distributed information systems. In
Wshop. Inform. Syst. Distrib. Env. (ISDE), volume 7046 of Lect. Notes Comput. Sc., pages 208–217,
Hersonissos, Crete, Greece, October 2011. Springer.

[35] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott Shenker. A scalable
content-addressable network. In ACM SIGCOMM Conf., pages 161–172, San Diego, CA, USA,
August 2001. ACM Press.

[36] André Schiper. Dynamic group communication. Distrib. Comput., 18(5):359–374, 2006.

[37] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In ACM SIGCOMM Conf., pages
149–160, San Diego, CA, USA, August 2001. ACM Press.

[38] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, and Bruce G. Lindsay. Transactions and consistency
in distributed database systems. ACM Trans. Database Syst., 7(3):323–342, 1982.

[39] Sara Tucci-Piergiovanni. Concurrent Connectivity Maintenance with Infinitely Many Processes. PhD
thesis, University of Rome ”La Sapienza”, Rome, Italy, November 2005.

[40] Sara Tucci Piergiovanni and Roberto Baldoni. Eventual leader election in the infinite arrival message-
passing system model. In 22nd Intnl. Symp. Distrib. Comput. (DISC), volume 5218 of Lect. Notes
Comput. Sc., pages 518–519, Arcachon, France, September 2008. Springer.

[41] Luis Miguel Vaquero, Luis Rodero-Merino, Juan Cáceres, and Maik A. Lindner. A break in the
clouds: towards a cloud definition. Comput. Comm. Rev., 39(1):50–55, 2009.

[42] Jennifer L. Welch. Simulating synchronous processors. Inf. Comput., 74(2):159–170, 1987.

14


