
Refinement of the One-Copy Serializable

Correctness Criterion

M. I. Ruiz-Fuertes, F. D. Muñoz-Escoı́
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Abstract

Correctness in early replicated distributed database systems was usually defined as one-copy serializ-

ability. A database spread over multiple sites must behave as a unique node, and the result of concurrently

executing transactions must be equivalent to that of a serial execution of the same set of transactions. In

order to ensure such guarantees, concurrency was managed by distributed locking, and atomic commit

protocols controlled transaction termination. Such systems, however, suffered from low performance and

poor scalability due to the high cost of the protocols in use. Research focused then on improving per-

formance and scalability while maintaining the correctness criterion of one-copy serializability. Atomic

broadcast was proposed as a better alternative to atomic commit protocols, and transactions were locally

executed before being broadcast to the rest of replicas. Outstanding performance improvements were

achieved. However, enforced guarantees were subtly but significantly modified. This paper proposes a

refinement of the correctness criterion of one-copy serializability by defining two new correctness criteria

enclosed on it. With these refined criteria, the different guarantees provided by the analyzed systems can

be precisely stated.

1 Introduction

Distributed and replicated database systems appeared in order to provide a higher level of availability and

fault tolerance than existing stand-alone (centralized, i.e. non-replicated) databases, while still ensuring a

correct management of data. Traiger et al. [1] suggested the concepts of one-copy equivalence and loca-

tion, replica, concurrency, and failure transparencies, as desirable features for distributed systems. Bern-

stein, Hadzilacos and Goodman later defined one-copy serializability (1SR) [2] as a correctness criterion.

According to it, the interleaved execution of users’ transactions must be equivalent to a serial execution

of those transactions on a stand-alone database. 1SR turned immediately to be the accepted correctness

criterion for database replication protocols. In order to ensure such guarantees, a conservative approach

inherited from stand-alone database systems was followed [3]. Thus, write operations over any data item

had to acquire write locks in all its copies prior to updating the local copy. This concurrency control based

on distributed locking strongly affected performance, as each write operation must be preceded by a round

of messages requesting the corresponding lock in every replica. Moreover, in order to guarantee transaction

atomicity, an atomic commit protocol was run for transaction termination. In such protocols, several rounds

of messages are required in order to reach a consensus among all participating sites for each transaction

commitment, which further penalized performance and scalability.

Several optimizations were added later to database replication systems, trying to provide correct, i.e.

1SR, replication at a reasonable cost. According to the deferred update replication model [1,4], transactions
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were processed locally at one server and, at commit time, were forwarded to the rest of system nodes

for validation. This optimization saved communication costs as synchronization with other nodes was

only done at transaction termination during the atomic commit protocol. Another important optimization

consisted in substituting the atomic commit protocol for an atomic (total order) broadcast [5, 6], whose

delivery order was then used as a serialization order for achieving 1SR. Wiesmann and Schiper [7] provide

a performance comparison of database replication techniques and conclude, among other insights, that

techniques based on total order broadcast significantly outperform traditional database replication protocols

like distributed locking, and that this performance difference is larger if the network is slow and subject to

contention. This is due to the fact that distributed locking requires many messages, while techniques based

on total order broadcast demand less networking resources, typically by restricting interactions to a single

broadcast, which makes these techniques very efficient with a slow network.

According to the definition of 1SR [2], replication protocols based on atomic commit and those based

on atomic broadcast ensure the same correctness criterion. However, carefully analyzing the behavior

of both systems, some differences can be observed. In a traditional stand-alone system, a user could

transfer certain amount of money from one account A to another B, commit the transaction, and read

the increased balance in B in the following transaction. The same is ensured in replicated systems based

on distributed locking and atomic commit, precisely due to these inherited techniques. As both systems

behave identically, the user will then not be able to distinguish between the stand-alone and the replicated

one. Moreover, the user will consider this behavior correct, as it perfectly matches their expectations.

However, the deferred update propagation and the atomic broadcast of an optimized replicated system

may cause that the same operation ends in a worried user when, after committing the bank transfer, they

temporarily read the old balance in B, as if the money had disappeared (we show later in the paper why this

may happen). Clearly, the user might consider this behavior incorrect until, after some time, the increased

balance can be finally read. This situation would never have occurred in a traditional stand-alone database.

Does this mean that the system based on atomic broadcast is not behaving as one copy as it claims to do?

Are then one-copy serializable database replication systems actually behaving as one copy?

In this paper, we demonstrate that some consistency-related features significantly changed when atomic

commit protocols were replaced by termination protocols based on atomic broadcast. These visible dif-

ferences in consistency, admitted in 1SR, might originate some confusion among users. To show this, we

made a historical review through different 1SR systems and chose two representative database replication

system models, which are analyzed through a case study to reveal the differences between them. As a

solution, and inspired in the memory consistency models used in distributed shared memory (DSM), we

define new correctness criteria for distinguishing among different types of 1SR database replication.

The rest of the paper is structured as follows. Section 2 presents other works that relate to this one.

Section 3 details the assumed system model and provides basic definitions. Section 4 states the ampleness

of the term one-copy serializability, by showing important differences in consistency between two systems

providing 1SR. Section 5 presents and compares the two strictest memory consistency models used in the

scope of DSM. Inspired in the fundamental difference between those models, Section 6 presents a complete

formalization of our proposed criteria. Section 7 gives a final discussion.

2 Related Work

Several previous papers [8, 9, 10, 11, 12] noted that 1SR admits multiple consistency degrees. Due to this,

different authors have qualified 1SR with additional requirements and different names in order to capture

database users’ expectations. For instance, Breitbart, Garcia-Molina and Silberschatz [8] defined strong

serializability; Daudjee and Salem [9] proposed strong 1SR and strong session 1SR; Zuikevičiūtė and

Pedone [10] adopted the use of strong serializability and session consistency; and Kemme et al. [11, 12]

explained the meaning of the terms strong consistency and weak consistency. However, as far as we know,

none of the previous works meets the objectives of this paper, namely: (a) provide a complete and general

overview of this matter that clarifies the underlying reason why 1SR needed to be qualified or refined; (b)

provide a careful formalization of the different approaches with precise definitions and theorems; and (c)

survey existing database replication systems in order to classify them regarding their interpretation of 1SR.

Similar refinements to the one proposed here for 1SR can be done with other isolation levels, such as
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snapshot isolation [13, 14]. In this line, our group surveyed existing works and proposed uniform names

for the correctness criteria of replicated databases that work with snapshot isolation [15].

The concept of serializability with external consistency, used in general distributed systems (not specif-

ically oriented to database replication systems) and treated in different papers [16, 17], would correspond

with the strictest interpretation of the database correctness criterion of 1SR. Such works, however, neither

provide a careful formalization for that concept.

3 System Model and Definitions

The replication systems analyzed in this paper consider a partially synchronous distributed system com-

posed of database servers, also called sites, nodes or replicas, R1, R2, . . . , Rn, which store data, and clients

or users1 that contact these servers to access the data. Communication between components is based on

message passing, as they do not have shared memory. Consequently, they neither have a global clock.

Servers can also communicate through atomic broadcast, described below.

From the point of view of the user, a database is a collection of logical data items. Each logical

data item is physically stored at the servers. A local Database Management System, or DBMS for short,

runs at each site and is responsible for the control of the data. The database workload is composed of

transactions, T1, T2, . . . Transactions are sequences of read and write operations followed by a commit or

an abort operation, and maintain the ACID properties [18]. The set of logical items a transaction reads

is called the readset. Similarly, the writeset is the set of logical items written by a transaction, and it also

includes the updated or inserted values. A transaction is called a query (or a read-only transaction) if it does

not contain any write operation; otherwise it is called an update transaction. In the Read One Write All

Available (ROWAA) [2] approach, queries only need to access one replica, while update transactions are

required to modify all available replicas.2 Database users are provided with the concept of session [19], in

order to logically group a set of transactions from the same user. Transactions from different users belong

to different sessions. However, it can be left to the user the decision of using one or multiple sessions

to group their transactions. Transactions of the same user session are submitted sequentially, but may be

addressed to different replicas. The replica to which a transaction is addressed is called the delegate replica

for that transaction and it is responsible for its execution. The rest of the nodes are remote replicas for that

transaction. Each client request is only processed by its delegate, which later transfers the updates to the

remote nodes. In other words, a passive, update-everywhere replication is performed.

Transactions may be executed concurrently in a DBMS, raising conflicts. Two transactions conflict if

they have conflicting operations. Two operations conflict if they are issued by different transactions, access

the same data item and at least one of the operations is a write. The local concurrency control of the DBMS

establishes which executions of concurrent transactions are correct or legal regarding certain isolation level.

The strictest isolation level that a DBMS can provide is the serializable isolation level [20]. This level

guarantees a completely isolated execution of transactions, as if they were serially performed, one after the

other. Changes made by transaction T are only visible to other transactions after the commitment of T .

On the other hand, if T aborts, then its changes are never seen by any other transaction. The serializable

isolation level can be achieved, e.g., by the strict two-phase locking (2PL) [2].

To ensure consistent termination of transactions, database systems have traditionally resorted to an

atomic commit protocol, where each transaction participant starts by voting yes or no and each site reaches

the same decision about the outcome of the current transaction: commit or abort. A widely used atomic

commit protocol is the two-phase commit protocol (2PC) [21,22], which involves two rounds of messages

for reaching a consensus on the termination of each transaction. 2PC can be centralized or decentralized.

In the centralized approach, the coordinator first sends a message to the rest of nodes, with information

about the ending transaction. Each server must then reply to the coordinator whether it agrees or not

to commit the transaction. If all replies are positive, the coordinator sends a commit message and waits

for acknowledgments from all the nodes. If any of the replies was negative, an abort message is sent in

the second phase. The decentralized version is similar but with any server starting the process and with

responses to every other server.

1We employ user to specifically refer to a human agent.
2Unavailable replicas are updated once they recover.
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Atomic broadcast (abcast for short) is a group communication abstraction used by replicas to com-

municate. Atomic broadcast is defined by the primitives broadcast(m) and deliver(m), and satisfies the

following properties [23]. (a) Validity: if a correct site broadcasts a message m, then it eventually delivers

m. (b) Agreement: if a correct site delivers a message m, then every correct site eventually delivers m. (c)

Integrity: for every message m, every site delivers m at most once, and only if m was previously broadcast.

(d) Total Order: if two correct sites deliver two messages m and m′, then they do so in the same order. Due

to this last property, atomic broadcast is also known as total order broadcast.

Either through atomic commit protocols or with the aid of atomic broadcast, applying the writesets and

correctly managing conflicting operations are necessary actions for maintaining the correctness criterion

and required level of replica consistency. The systems considered in this paper guarantee the correctness

criterion of 1SR. Replica consistency measures the synchronization among the copies of the same data

item. Different levels of replica consistency may be enforced.

4 1SR: an Ample Term

In many cases, implemented systems are quite more restrictive than the correctness models they follow.

Situations that would be allowed by the model are rejected in the real system, or they are simply not

possible due to implementation issues. This mismatching is usually due to pragmatic considerations, as an

exact model reflection would increment the system complexity. Although correctness is never impaired,

other aspects such as performance, concurrency or scalability are negatively affected.

This is the case of the distributed concurrency control protocol described by Bernstein and Goodman

[3]. It is based on a serializable isolation in local nodes (implemented with 2PL), distributed locking and

two-phase commit (2PC), and follows the ROWAA approach and the one-copy serializability criterion. We

will refer to this general model as a DLAC3 system. The 2PC protocol used for transaction termination

ensures that all replicas agree on the set of committed transactions and a serializable history is guaranteed.

However, due to distributed locking and atomic commit, replicas do not only commit the same set of

transactions but do it in such a way that any new issued transaction is able to see all the changes performed

by previous transactions, with independence of the replica where this new transaction is executed. That

is, the system nodes behave as a traditional one-copy database in that any copy of a written data item is

updated before any subsequent access to that copy is allowed: a transaction T always gets the most recent

vision of the database, as created by the last transaction executed in the system immediately before T . Let

us consider a simple database execution to illustrate this feature.

Execution 1 (DLAC systems, Figure 1(a)) A user starts transaction T1 at replica R1. The database con-

tains data item x with an initial value x0. T1 requests write access to x, which requires that a write lock

is acquired at each replica, as stated by the distributed locking concurrency control. After getting all the

locks, T1 modifies the value of x and finishes. During the atomic commit protocol all replicas agree on

the commitment, so T1 can commit, the new value x1 can be assigned to x, and the write lock on x can

be released. After the commitment of T1 in R1, the same user, who wants to be sure about the success of

their updates, starts a query, T2, for reading x. T2 is also started in replica R1, where value x1 is already

available. T2 reads x1, as expected, and finishes. Suppose that replica R2 is slower and it did not yet apply

the new value to data item x, so it still has value x0. Now the user starts a second query T3 for reading

x again and, due to some load balancing, T3 is run at replica R2. When T3 tries to read x, a read lock is

requested. As the item is not yet updated, the write lock granted to T1 still holds, and T3 must wait. Once

R2 applies the update of T1, the write lock is released and T3 is able to read value x1, as expected, and

commit. Note that R2 was not updated when T3 was launched, but distributed locks prevented T3 from

accessing an outdated value. Both T2 and T3 were able to access the value updated by T1, which is the

expected behavior (traditional stand-alone databases provide this same effect). The equivalent serial order

of this execution is T1, T2, T3 or T1, T3, T2.

The observed behavior, i.e. transactions getting the last value of all database items, is not required by

the 1SR correctness criterion. Indeed, serializability (and thus 1SR) only states that the effect of trans-

actions must be equivalent to that of any serial order. No restriction is imposed over this serial order. In

3Distributed Locking and Atomic Commit.
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(a)

(b)

Figure 1: Diagrams for Executions 1 and 2. Two replicas are visualized: R1 and R2. Vertical broken

lines represent real time at each replica, increasing downwards. Horizontal dotted lines represent commit

operations in each replica. A transaction T0 is assumed to create the initial database state. In DLAC

systems (a), T3 does not start in R2 until T1 finishes in this node. In DUABLOQ systems (b), however,

transactions may swap. (Note that T2 is not executed at R2, and neither does T3 at R1, as they are read-only

transactions in a ROWAA system.)

particular, no real-time consideration is taken into account, such as respecting the order on which trans-

actions were started by the user. In a traditional stand-alone database providing serializability, however,

if a transaction T2 started after the termination of conflicting transaction T1, the equivalent serial order

necessarily respected this precedence (there is only one node executing all transactions). Just like tradi-

tional stand-alone systems, DLAC systems are more restrictive than the correctness model they follow. The

stricter observed behavior of stand-alone systems was due to the physical laws of time, while that of DLAC

systems is a consequence of the techniques used in their implementation. However, these same techniques

made those earlier systems slow and barely scalable.

More modern systems [5, 6] proposed the substitution of the atomic commit protocol by a termination

protocol based on atomic broadcast that performs the deferred update propagation.4 In these systems,

which also follow the ROWAA approach, transactions are locally executed at their delegate replica. When

a transaction ends, its readset and writeset are sent to the rest of replicas in total order, using the atomic

broadcast. After delivery, if no conflict is found in the certification, the transaction commits at every replica.

Read-only transactions, or queries, do not need to be broadcast: they are committed locally and are inserted

in an appropriate position inside the serialization order. These DUABLOQ5 systems performed significantly

better than previous DLAC ones [7]. These improvements were possible thanks to the adoption of the full

replication model,6 where all replicas store a complete copy of the database, instead of the more general

model of distribution with partial replication, which forced to use costly distributed transactions. This new

4Deferred update propagation was already used in the distributed certification scheme proposed by Sinha, Nanadikar and Mehndi-

ratta [4] or in the distributed optimistic two-phase locking, O2PL, of Carey and Livny [24].
5Deferred Updates, Atomic Broadcast and Locally Ordered Queries.
6Partial replication is also possible in DUABLOQ systems.

5



approach allowed replication systems to boost performance and scalability while the correctness criterion

was claimed to be one-copy serializability as traditionally defined. However, a significant difference with

regard to DLAC systems was introduced. Let us analyze the new behavior with the same client requests.

Execution 2 (DUABLOQ systems, Figure 1(b)) A user starts transaction T1 in replica R1, where it up-

dates the local copy of data item x, after acquiring the local write lock. At transaction termination, the

deferred update propagation is done and thus the writeset, i.e. data item x and the updated value x1, is

broadcast to all replicas. A deterministic certification process is run independently at each replica before

writeset application. If certification is successful, replica R1 commits T1 and the same user immediately

starts a query T2 for reading the updated item. T2 is directed to replica R1 and so it reads the updated

value and finishes. But again, the user starts a second query T3 that is addressed to replica R2. Similarly

to the DLAC case, R2 agrees on committing T1 but has not yet started to apply the writeset of T1. The key

difference is that now, and assuming that there are no other transactions running, data item x is not locked

(supposing that the concurrency control is based on locks) or otherwise protected and T3 is able to access

x without waiting. The accessed version x0 corresponds to the last locally committed transaction that

updated that item, and not to the last globally certified transaction in the system. So T3 gets an unexpected

value and the user, who was previously able to read the updated item with T2, is now not able to see it

with the following transaction T3. Nevertheless, 1SR is guaranteed: the effect of transactions is equivalent

to that of the serial order T3, T1, T2. The fact that T1 precedes T3 in real time is not considered in 1SR.

However, the user reads an outdated value, which clearly is not what they expected.

There are indeed two possibilities for this situation in locking-based systems: either the certification

involves getting the necessary locks and R2 has not yet run the certification for T1, or the certification is

based on history logs, required locks are only set on writeset application and such writeset application has

not yet started. The sample execution depicts the second case, but both possibilities have the same result: T3

will read the old value of x and T1 will finally commit in R2. In any case, the origin of the inversion is two-

fold: first, locks are locally and independently managed (there is neither a distributed locking mechanism

nor replicas must confirm each other the acquisition of locks for a certification consensus); and second,

replicas perform at different paces and some nodes may be behind in their writeset application, allowing

new transactions started at such nodes to overtake already broadcast writesets. The first cause is inherent to

the mechanisms of these protocols. The second one, however, depends on the workload, the differences of

performance between servers, etc. This way, inversions will not always appear and they are not the common

behavior of DUABLOQ protocols. Nevertheless, they are admitted when the above conditions occur: the

stricter behavior of both traditional stand-alone and DLAC systems is no longer enforced. In DUABLOQ

systems, 1SR is guaranteed to the letter, but not further. The difference between DLAC and DUABLOQ

systems lies in the distinct replica consistency maintained.7 While in DLAC systems distributed locks

prevent transactions from accessing outdated values, in DUABLOQ systems different values for the same

data item are accessible at the same time at different replicas. Both system models ensure 1SR because

replica consistency was not considered in correctness criteria for database replication. Indeed, the definition

of 1SR does not deal with the level of synchronization between replicas, leaving this aspect open to the

system designer. The fact of not enforcing any replica consistency level renders the definition ample enough

to allow several interpretations. Although this can now lead to ambiguity, that was not the case back

when 1SR was defined, as existing techniques only allowed one possibility. However, although different

techniques appeared later, no specification regarding replica consistency was added to the definition. This

fact is interesting, as a similar concept was already defined and studied in the scope of distributed shared

memory, surveyed in multiple papers [25, 26, 27].

5 DSM Consistency Models

Memory consistency models represent the way on which memories from different sites are synchronized

in order to conform a distributed shared memory. The higher the level of consistency, the higher the

7Note that these executions show a unique user performing all accesses. This is only for the sake of a clearer perception of the

problem, represented as a user getting different values from an item that they updated in an immediately previous transaction. But the

consistency problem is the same if transactions are from different users.
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synchronization and the fewer the divergences on values. According to Mosberger [25], the strictest level

of consistency, atomic consistency [28] (a.k.a. linearizability [29]) considers that operations take effect

inside an operation interval. Operation intervals are non-overlapping, consecutive time slots. Several

operations can be executed in the same slot; read operations take effect at read-begin time while write

operations take effect at write-end time. Thus, read operations see the effects of all write operations of the

previous slot but not those of the same slot.

Despite the simplicity of the idea and the easiness of design for applications that use atomic memory,

this consistency level is often discarded due to its high associated cost [27, 30]. Consequently, a more

relaxed model is used in practice as the common level: sequential consistency [31]. In a sequentially con-

sistent system, all processors agree on the order of observed effects [25]. According to Lamport [31], the

result of any execution is the same as if the operations of all the processors were executed in some sequen-

tial order, and the operations of each individual processor appear in this sequence in the order specified by

its program.

The key difference between these two consistency models is the old-new inversion between read oper-

ations [32]. Such issue is precluded in the atomic model but it may arise in the sequential one. It consists

in the following: once a process p writes a value vn onto a variable x whose previous value was vo, another

process r1 is able to read vn while later a second reader r2 reads vo. Note that this is sequentially consis-

tent since r2 is still able to read afterwards value vn, according to the total order associated with sequential

consistency. However, such scenario violates atomic consistency since r2 reads x once the slot given to

value vn was already started and all reads in such slot should return value vn (instead of vo). This old-new

inversion is exactly the situation arisen in previous Execution 2.

6 Refinement of 1SR

According to Guerraoui, Garbinato and Mazouni [33], in general distributed executions (i.e. not necessar-

ily related to DBMSs), one-copy equivalence can be guaranteed when all processes see all memory-related

events in the same order. This implies that the DSM consistency models able to achieve one-copy equiv-

alence are both the sequential and the atomic ones. Following such trend, Mosberger [25] states that the

one-copy serializability concept as defined by Bernstein et al. [2] is equivalent to sequential consistency.

On the other hand, Fekete and Ramamritham [34] distinguish between strong consistency (which is ex-

plicitly associated with the atomic DSM model and mentioned as a synonym of one-copy equivalence) and

weak consistency (where sequential consistency is included). As it can be seen, no agreement on the exact

level of replica consistency needed to achieve one-copy equivalence exists nowadays.

Although memory consistency models only consider individual operations (write or read a variable

in memory), a correspondence to a transactional environment can be established. Indeed, the concept of

transaction matches very well the concept of operation interval. As explained by Fekete and Ramamritham

[34], a transaction T can be considered as a macro-operation from the DSM point of view, where all read

operations can be logically moved to the starting point of T (as read versions correspond to those available

when the transaction started),8 and all write operations logically moved to the termination point of T

(when the transaction commits and its updates are visible for other transactions). Thus, we can consider

the interval of time where all transaction operations are done as a transaction interval.

The fact that a transaction is a macro-operation also reduces the high costs that led to dismiss atomic

consistency in DSM. Although it is true that maintaining strong consistency levels for individual opera-

tions is costly, the fact of using transactions that group arbitrarily large sets of operations into one unit

of execution allows to amortize the cost of the operations, thus making atomic consistency bearable in a

transactional context. With transactions, synchronization between sites must be done only once for the full

set of write operations included in a transaction. This writeset is thus regarded as a macro write operation,

as opposite to multiple individual write operations.

Although transactions have been widely used in distributed systems, very few works have considered

the DSM consistency model resulting from database replication protocols, being that of Fekete and Ra-

mamritham [34] one of such few exceptions. We consider that this is an interesting line of action, as

8We can safely assume that a transaction will never read a data item after writing it or that the application is able to cache written

versions and serve those read operations without accessing the database.
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transferring the concept of transaction into traditional memory consistency models makes it possible to

provide the strongest level of consistency in database replication systems at a reasonable cost.

Inspired in the idea of a transaction as a macro-operation, and adapting Mosberger’s concept of oper-

ation interval [25] to its use with transactions, we now present a complete formalization in order to refine

1SR with two new correctness criteria, by distinguishing among the possible replica consistency levels.

In the same manner as old-new inversions allow us to distinguish between the atomic and the sequential

memory consistency levels, we will distinguish among the resulting correctness criteria by means of the

presence or absence of similar phenomena in the executions of the system. For this we consider database

replication systems that guarantee 1SR.

Starting from the Chapter 8 of the book by Bernstein et al. [2], if a system guarantees 1SR, then a

complete replicated data history HRD (RD history) over a set of transactions executed in that system is

1SR, i.e., it is view equivalent to a serial one-copy history H1C (1C history): (a) HRD and H1C have

the same reads-from relationships, i.e., Tk reads from Tj in HRD if and only if the same holds in H1C ;

and (b) for each final write in H1C , there is a final write in HRD for some copy of the same data item.

The equivalent 1C history is serial: for every pair of transactions, all the operations of one transaction

are executed before any of the operations of the other. From the point of view of users, transactions in

a serial execution seem to be processed atomically, in what we identify as an interval. We now provide

the foundations of our reasoning model, based on the concept of intervals. Next, by requiring some extra

conditions over the sequence of intervals of the equivalent 1C history, we will qualify two new criteria that

are enclosed in 1SR.

Definition 1 (Interval) Let H1C be a serial 1C history, and Tj a transaction committed in H1C . We define

the interval of Tj in H1C , I(Tj), as the block composed by the operations of Tj in H1C . As H1C is serial,

it constitutes a sequence of the intervals of all committed transactions.

Note that aborted transactions do not present intervals.

Definition 2 (Interval order) Let H1C be a serial 1C history. We define the interval order of H1C , <i, as

the total order in which the intervals appear in the sequence defined by H1C .

Definition 3 (Conflicting transactions) Two transactions conflict if they have conflicting operations. Two

operations conflict if they belong to different transactions, they access the same data item and at least one

of the operations is a write.

Definition 4 (Independent transactions) Two transactions that do not conflict are called independent

transactions. Multiple transactions compose a set of independent transactions if they are independent

two by two.

Independent transactions may be executed at any order: as they do not conflict, the results of the trans-

actions and the final state of the database will be the same at any possible execution order. However, when

transactions conflict, the order in which they are executed is important, as the results of the transactions and

the final state of the database depend on this execution order. One of all possible equivalent serial orders

of a set of conflicting transactions must be chosen. 1SR admits any of them, but from the point of view of

the user, the natural and intuitive order is the order in which transactions have been started in real time.

Definition 5 (First start) We say that a transaction Tj first-starts when it accesses any item of the repli-

cated database for the first time through any system replica Ri (the delegate replica).

Real time must be considered in order to capture the point of view of users. However, this does not

impose any real-time constraints on the system, nor it requires any notion of global clock among replicas.

Note also that in a locking-based concurrency control all operations over database items must be pre-

ceded by the acquisition of the necessary locks. A transaction whose initial operation is held in the database

while waiting for the required locks is not considered as first-started until those locks are granted and the

first data item is effectively accessed. This way, the versions of the data that a transaction reads depend on

the time when such transaction first-started.
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After executing all its operations, if no abortion occurs, a transaction asks for commitment. In the Read

One Write All Available (ROWAA) [2] approach, each committed transaction Tj must apply its updates at

every available replica, which can be considered as multiple commit operations for the same transaction.

In a quorum approach, only a subset of the replicas must be updated. In any case, one of the replicas, Ri,

will be the first to complete the commit operation and make the updates of Tj visible to local transactions

starting at Ri. This instant is when Tj first-commits.

Definition 6 (First commit) We say that a transaction Tj first-commits when it commits in the replicated

database for the first time, through any system replica Ri.

Definition 7 (RT precedence) We define a partial, transitive order of real-time precedence, <rt, in the

following way: a transaction Tj precedes transaction Tk in real time, Tj <rt Tk, if and only if Tj first-

commits before Tk first-starts.

Definition 8 (Concurrent transactions) Two transactions Tj and Tk are concurrent if both Tj <rt Tk

and Tk <rt Tj are false, i.e., there is no real-time precedence between them.

Definition 9 (Alteration) Let Tj and Tk be two committed transactions in the serial 1C history H1C . Let

Tj precede Tk in real time, Tj <rt Tk. We say that an alteration occurs in H1C if Tk precedes Tj in

the interval order of H1C , Tk <i Tj , i.e., the interval order of H1C is inconsistent with the real-time

precedence of the transactions. Tk is called the altered transaction, while Tj is the overtaken transaction.

Definition 10 (RTC precedence) We define a partial order called real-time & conflict precedence, <rtc,

as the transitive closure of the relationship that includes all pairs Tj <rtc Tk such that (a) Tj <rt Tk, and

(b) Tj and Tk are conflicting transactions.

Definition 11 (Inversion) Let Tj and Tk be two conflicting transactions, committed at the serial 1C history

H1C . Let Tj precede Tk in RTC order, Tj <rtc Tk. We say that an inversion occurs in H1C if Tk precedes

Tj in the interval order of H1C , Tk <i Tj , i.e., the interval order of H1C is inconsistent with the RTC

precedence of the transactions. Tk is called the inverted transaction, while Tj is the overtaken transaction.

More simply, an inversion is an alteration between two conflicting transactions.

From the point of view of the users, only the alterations of conflicting transactions, i.e., only the inver-

sions, are detectable. Imagine transactions Ta, Tb and Tc, started by the same user one after the commitment

of the other, i.e., Ta <rt Tb <rt Tc. Let Ta contain only a write operation over item x, and let Tb and Tc

be two read-only transactions. Suppose Tb reads x and Tc reads y. This way, the RTC precedence over this

set of transactions is composed by only one relationship: Ta <rtc Tb. Indeed, the user expects Tb to run

after Ta and thus get the updated value of x, while Tc is completely independent of the other transactions

and could be executed at any place: the result would be exactly the same.

The phenomenon of old-new inversion presented in Section 5 corresponds to an inversion of a transac-

tion that overtakes the update transaction from which it was supposed to read a value.

Definition 12 (1ASR correctness criterion) A complete RD history HRD over a set of transactions is

1ASR if it is view equivalent to a serial 1C history H1C which respects the RTC precedence, i.e., which

contains no inversions.

The ‘A’ in the name stands for “atomic” as, from the point of view of the users, the results of the

execution of a set of transactions are equivalent to those that one could obtain by ensuring that a transaction

is committed at every replica before starting the next transaction. This way, users perceive an atomic nature

in the replica consistency of the system.9 Informally, 1ASR restricts the set of all possible equivalent serial

orders that would comply with 1SR, so that orders violating RTC are not considered. This is the case of

the DLAC systems described in Section 4. We can also say that a database replication system provides the

correctness criterion of 1ASR if the user cannot differentiate it from a traditional stand-alone system even

when spreading their accesses all over the set of replicas.

9However note that 1ASR is less strict than the atomic DSM level as it only maintains the property of the absence of inversions.
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To implement a 1ASR system, no global clock is necessary. Even if the system cannot decide whether

two operations of independent transactions happen in one or the other order when the client and the replica

processes are all different, there are mechanisms that allow the system to respect the real-time ordering

of transactions. Distributed locks are an example. Moreover, several implementation approaches can be

followed in order to construct a 1ASR system. As a first approach, all alterations can be avoided by totally

ordering transactions before starting execution, and executing them sequentially following that order, in

such a way that a transaction must have committed at all available and necessary replicas before the next

transaction is started. Such a total order can be determined by a sequencer, by requiring transactions to ac-

quire locks at each replica they must access, or by assigning starting timestamps to transactions. However,

avoiding all alterations reduces concurrency and performance. When two transactions are independent, the

database state after committing both transactions will be the same either with a serial order T1, T2 or T2, T1.

The system could execute both transactions concurrently to increase performance without implications on

perceived consistency. This is the approach followed by DLAC systems, which allow alterations10 but

avoid inversions. While there are additional approaches for implementation, the common objective of all

of them is to provide users with an atomic image, either pessimistically (avoiding alterations or inversions)

or optimistically (aborting a transaction whose commit would create an inversion).

Examples of systems that provide 1ASR are the algorithm by Bernstein and Goodman [3], the dis-

tributed two-phase locking, wound-wait, basic timestamp ordering and distributed certification algorithms

surveyed by Carey and Livny, along with the distributed optimistic two-phase locking algorithm they pro-

pose [24], the strongly serializable DBMSs of Breitbart, Garcia-Molina and Silberschatz [8], the first three

algorithms proposed by Agrawal et al. [6], Pronto [35], the refined OTP algorithm [36], DBSM-RO-opt

and DBSM-RO-cons [37], the WCRQ algorithm [38], and BaseCON for strong 1SR [10].

1ASR is suitable for applications that require a strict level of consistency and cannot tolerate any inver-

sion. However, avoiding all inversions may affect performance. We can relax the imposed conditions by

only requiring that individual users do not suffer inversions. This way, even if some inversions are allowed,

individual users perceive an atomic image, as if the system were 1ASR.

Definition 13 (Projection of a history) We define the projection of a serial 1C history for a set of transac-

tions T as the result of deleting from the history all intervals corresponding to transactions not belonging

to T.

Definition 14 (Session) Database users are provided with the concept of session, in order to logically

group a set of transactions from the same user. Transactions from different users belong to different ses-

sions. However, it can be left to the user the decision of using one or multiple sessions to group their

transactions.

Definition 15 (Session projection) For a given session Si, composed by a set of transactions TSi
, the

projection of a serial 1C history for the set of session transactions is called the session projection of that

history for Si.

Definition 16 (1SR+ correctness criterion) A complete RD history HRD over a set of transactions is

1SR+ if it is view equivalent to a serial 1C history H1C such that, for each existing session Si, the session

projection of H1C for Si respects the RTC precedence.

The extra requirement of 1SR+ (inversion preclusion in sessions) further prevents the occurrence of

undesirable conditions over the ensured 1SR foundation: the equivalent serial order must respect RTC

precedence over the transactions of the same user session. From the point of view of an individual user

grouping all their transactions within the same session, the system cannot be distinguished from a system

guaranteeing 1ASR.

Examples of systems that provide 1SR+ (but do not provide 1ASR) are the Block and Forward algo-

rithms by Daudjee and Salem [9] and the BaseCON algorithm for SC [10].

Finally, it is obvious that not all applications have the same requirements. Those not sensitive to real-

time precedence do not need to care about such issue: 1SR is enough. This is the case of the DUABLOQ

10Messages from 2PC are not ordered and different independent transactions may execute the atomic commit protocol at the same

time, possibly committing in different orders at different replicas.
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Figure 2: Refinement of the 1SR correctness criterion

systems described in Section 4. If the commit order followed by each replica matches the delivery order of

writesets of the total order broadcast, then the replica consistency of such DUABLOQ system is equivalent

to the sequential DSM model.11 Nevertheless, this is not necessary (specifically, for independent writesets

[39]) and, thus, more relaxed consistency levels are admitted in 1SR.

Examples of systems providing 1SR (but not 1SR+ or 1ASR) are the last algorithm proposed by

Agrawal et al. [6], the lazy transaction reordering protocol by Pedone, Guerraoui, and Schiper [40], the

initial version of OTP by Kemme et al. [41], the fast refresh algorithms by Pacitti, Minet and Simon [42],

DBSM [39], the SER and the hybrid algorithms by Kemme and Alonso [43], NODO and REORDER-

ING [44], DBSM-RAC [45], the epidemic algorithms by Holliday, Agrawal and El Abbadi [46], the OTP-

Q, OTP-DQ and OTP-SQ protocols [36], DBSM* [47], the one-at-a-time and many-at-a-time algorithms

by Schiper, Schmidt and Pedone [48], k-bound GSI [49], Mid-Rep [50], the MPF and MCF algorithms [51],

and the BaseCON for 1SR [10].

Both 1ASR and 1SR+ histories are included in the set of 1SR histories. Moreover, 1ASR histories are

a subset of 1SR+ histories. Additionally, all three sets are different. This corresponds to Figure 2 and is

formalized in the following theorems.

Theorem 1 The set of 1ASR histories is a subset of the set of 1SR histories.

Proof 1 By definition 12, a 1ASR history is view-equivalent to a serial 1C history, thus also satisfying the

1SR correctness criterion.

Theorem 2 The set of 1SR+ histories is a subset of the set of 1SR histories.

Proof 2 By definition 16, a 1SR+ history is view-equivalent to a serial 1C history, thus also satisfying the

1SR correctness criterion.

Theorem 3 The set of 1ASR histories is a subset of the set of 1SR+ histories.

Proof 3 By definition 12, a 1ASR history is view-equivalent to a serial 1C history H1C that respects the

RTC precedence. Any projection of H1C (consisting in removing intervals from the history) will also

respect the RTC precedence. In particular, any session projection of H1C will respect the RTC precedence,

thus also satisfying the 1SR+ correctness criterion.

Theorem 4 The set of 1ASR histories is not equal to the set of 1SR+ histories.

Proof 4 The conditions satisfied by 1SR+ histories are less strong than the conditions required by 1ASR:

even if every session projection of the equivalent serial 1C history H1C of a 1SR+ system respects RTC,

H1C (which includes all the transaction intervals) is not guaranteed to also respect RTC. Thus it is possible

to find systems that produce histories that guarantee 1SR+ but do not guarantee 1ASR, as listed before.

Theorem 5 The set of 1ASR histories is not equal to the set of 1SR histories.

11Note that in the general case total-order broadcasts also respect the FIFO order needed by sequential consistency.
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Proof 5 No restriction is imposed over the serial 1C history equivalent to a 1SR history. Particularly, RTC

is not guaranteed to be respected. Thus it is possible to find systems that produce histories that guarantee

1SR but do not guarantee 1ASR, as listed before.

Theorem 6 The set of 1SR+ histories is not equal to the set of 1SR histories.

Proof 6 No restriction is imposed over the serial 1C history equivalent to a 1SR history. Particularly,

RTC is not guaranteed to be respected in every session projection. Thus it is possible to find systems that

produce histories that guarantee 1SR but do not guarantee 1SR+, as listed before.

We have defined two correctness criteria that refine 1SR. The resulting three criteria cover the differ-

ent possible interpretations regarding replica consistency as perceived by users: preclusion of inversions

(1ASR), preclusion of inversions within sessions (1SR+), and possibility of inversions (1SR). As noted be-

fore, there are different names in the literature that would correspond to the correctness criteria formalized

here: e.g., 1ASR would be equivalent to strong 1SR and 1SR+ would match strong session 1SR [9, 10].

7 Discussion and Conclusions

Serializability is the highest level of transaction isolation. Under it, the effect of concurrently executing

transactions must be the same as that of any serial execution of those transactions. Traditional stand-alone

databases providing serializability were actually more restrictive than required by the model: the equivalent

serial execution never presented alterations with regard to real-time precedence. Database users became

accustomed to this stricter behavior, which ensures that a transaction executed after another is able to see

the effects of that previous transaction. This became a fundamental principle of stand-alone systems from

the users’ point of view, while never required by any correctness criterion.

When databases were distributed and replicated for increased performance, one-copy equivalence was

added to serializability to define one-copy serializability (1SR) [2], under which the interleaved execution

of transactions must be equivalent to a serial execution of the same set of transactions on a one-copy (non-

replicated) database. Early database replication systems based on distributed locking and atomic commit

(DLAC systems), designed to provide 1SR, were again more restrictive than required, due to the employed

techniques. Users did not complain: distributed systems behaved as traditional stand-alone ones.

Later, performance-improved systems appeared, where old techniques were substituted with deferred

update propagation and atomic broadcast, and where queries were committed and serialized locally (DU-

ABLOQ systems). One-copy serializability was guaranteed but nothing enforced the more restrictive be-

havior to which users were accustomed: a transaction executed after another might not be able to see the

effects of that previous transaction, due to an inversion.

The difference between DLAC and DUABLOQ systems is a different consistency level among repli-

cas. This aspect was never considered in database correctness criteria, thus allowing replication systems

to freely relax replica consistency, depriving users of the stricter behavior they were familiarized with,

while still being as correct as other systems maintaining that behavior. Both system models were equally

acceptable under one-copy serializability. This correctness criterion became then an ample term but, up

to our knowledge, such fact has not been stated nor justified yet. However, the consistency level provided

by recent systems has been branded as weak, strong, strict, etc., in an attempt to better characterize it with

regard to other 1SR systems.

We consider that the ambiguity stemming from the fact of not considering replica consistency in cor-

rectness criteria for database replication systems is not trivial, as it may lead to user confusion and unfair-

ness when comparing the performance of different replication systems. We think that an explicit distinction

must be made. Memory consistency models can be borrowed from the distributed shared memory scope

in order to clearly state the features of each system. Inspired in these models, we propose two correctness

criteria that refine the 1SR criterion: 1SR+ and 1ASR. These criteria differ in the inversions that users may

perceive and therefore define three levels of user-centric consistency: in 1ASR no inversions are perceived,

in 1SR+ no inversions within user sessions are perceived, in 1SR inversions may be perceived. A complete

formalization is also provided.
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We have identified DLAC systems (those using distributed locking and the two-phase commit protocol)

as 1ASR systems. On the other hand, general DUABLOQ systems (those locally executing transactions

and finally broadcasting updates in total order) guarantee the 1SR correctness criterion, but not 1SR+ or

1ASR. We have also surveyed existing systems, classifying them according to their correctness criterion.

The provided samples prove that the 1SR criterion clearly admits refined subcriteria.

To conclude, there are two answers for the question that was raised in the introduction: “Are one-copy

serializable database replication systems actually behaving as one copy?”. According to the theory on

isolation levels and consistency models, one-copy serializable systems do behave as one copy. According to

the users’ subjective experience, probably accustomed to the behavior of traditional stand-alone databases

(more restrictive than the correctness model they enforced), only systems ensuring 1ASR would behave as

one copy.12 From the point of view of such users, the transparency required to all distributed systems [30]

would not be ensured in replicated databases that provide 1SR but do not guarantee 1ASR.
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[11] Kemme, B., Jiménez-Peris, R., Patiño-Martı́nez, M., and Alonso, G. (2010) Database Replication: A

Tutorial. In Charron-Bost, B., Pedone, F., and Schiper, A. (eds.), Replication: Theory and Practice,

Lect. Notes Comput. Sc., 5959, pp. 219–252. Springer.
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[44] Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., and Alonso, G. (2000) Scalable Replication in

Database Clusters. Proc. Int. Conf. Distrib. Comput., Lect. Notes Comput. Sc., 1914, pp. 315–329.

Springer.

[45] Sousa, A. L., Oliveira, R. C., Moura, F., and Pedone, F. (2001) Partial Replication in the Database

State Machine. Proc. IEEE Int. Symp. Netw. Comput. Applic., pp. 298–309. IEEE-CS.

[46] Holliday, J., Agrawal, D., and El Abbadi, A. (2002) Partial Database Replication using Epidemic

Communication. Proc. IEEE Int. Conf. Distrib. Comput. Syst., pp. 485–493. IEEE-CS.
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