
Managing Scalable Persistent Data

F. D. Muñoz-Escoı́, J. R. Garcı́a-Escrivá, M. R. Pallardó-Lozoya, J. Esparza-Peidro

Institut Universitari Mixt Tecnològic d’Informàtica
Universitat Politècnica de València

46022 València (SPAIN)

{fmunyoz,rgarcia,rpallardo,jesparza}@iti.upv.es

Technical Report ITI-SIDI-2011/003

Fr
an

ce
sc

D
.M

uñ
oz

-E
sc

oı́
et

al
.:

M
an

ag
in

g
Sc

al
ab

le
Pe

rs
is

te
nt

D
at

a
IT

I-
SI

D
I-

20
11

/0
03





Managing Scalable Persistent Data

F. D. Muñoz-Escoı́, J. R. Garcı́a-Escrivá, M. R. Pallardó-Lozoya, J. Esparza-Peidro

Institut Universitari Mixt Tecnològic d’Informàtica
Universitat Politècnica de València

46022 València (SPAIN)

Technical Report ITI-SIDI-2011/003

e-mail: {fmunyoz,rgarcia,rpallardo,jesparza}@iti.upv.es

Abstract

Distributed applications should be able to manage dynamic workloads; i.e., the amount of client
requests per time unit may vary frequently and servers should rapidly adapt their computing efforts to
those workloads. This implies that these applications should be able to scale out without problems in
order to handle workload peaks and to reduce their number of replicas when the workload diminishes, at
least when a pay-per-use utility model is assumed. Cloud systems provide a solid basis for this kind of
applications. This paper surveys different techniques being used in different modern systems in order to
increase the scalability and adaptability in the management of persistent data. Those techniques follow
two basic principles: (a) to minimise distributed coordination, and (b) to eliminate any sources of delay
in local operation service. These principles are implemented following six complementary mechanisms:
(1) to replicate data in order to improve read access parallelisation, (2) to partition the database in order
to increase update access concurrency, (3) to relax the resulting replica consistency in order to ensure
network-partition tolerance, (4) usage of simple operations in order to reduce concurrency control efforts,
(5) declaration of simple schemas, thus reducing the dependency on elaborate indexing techniques and
eliminating the need of join operations, and (6) to bound coordination for directly achieving the first
stated principle.

1 Introduction
Scalability, pay-per-use utility model and virtualisation are the three key characteristics of the cloud com-
puting paradigm [91]. Many modern distributed applications are service-oriented and can be easily de-
ployed in a cloud infrastructure. One of the main difficulties for achieving scalability in a cloud system
can be found in the management of persistent data, since data have traditionally been stored in secondary
memory and replicated in order to overcome failures. As a result, this management necessarily implies
noticeable delays.

The aim of this paper is to describe the techniques and mechanisms used in modern distributed systems
in order to guarantee an acceptable level of adaptability and scalability in data management. Most of them
have been inspired by current cloud systems. Some of such systems have designed very efficient solutions
for some specific kinds of applications that, unfortunately, are unable to satisfy the requirements of other
applications.

Although there are already some papers [43, 48, 49, 88] that state which are the principles that must
be followed in order to enhance data management scalability, all of them have assumed a given kind of
applications. Therefore, their lists of proposals are only partial or too specific. Thus, whilst [43, 48] rec-
ommend to simplify transactions in order to reduce synchronisation needs, by means of simple operations
that only update a single item (an approach followed in some cloud systems [31, 35, 41]), other papers
[88] and systems [66, 30, 63] still consider that regular transactions are recommendable and they need to
be supported, contradicting the former. Besides, other papers [49] argue that the key elements could be the

1



use of idempotent actions and asynchronous propagation, generating as a result a relaxed consistency that
should be assumed by application programmers. Hence, no complete agreement on the set of mechanisms
to be used in order to obtain a scalable system exists nowadays.

This paper takes an ample snapshot of the current approaches. Its main aim is to provide a general
description of those solutions for the readers interested in this field providing an initial set of references to
follow in order to obtain further details about each of these systems. Additionally, we provide a general
comparison of those systems and point to possible new trends in this area.

The rest of the paper is structured as follows. Section 2 presents the common characteristics of the
assumed system model in most scalable systems. Section 3 presents the general mechanisms to achieve
scalability. Later, Sections 4 to 8 describe each one of such recommendations and discuss the trade-offs
they introduce. Section 9 summarizes the main characteristics of the most relevant scalable systems and,
finally, Section 10 concludes the paper.

2 System Model
Most modern data-centres for any kind of cloud infrastructure assume the following characteristics:

• The system is composed by multiple machines. There could be tens of machines in a minimal
configuration, but they could easily reach the thousands, or even millions.

• In each data-centre network latencies are small and have little variance. A partially synchronous
distributed system can be assumed due to this fact in that environment.

• Nodes may fail by crashing. Most data-centres are carefully monitored and provide a trusted envi-
ronment where Byzantine failures may not arise.

• Replication generally follows a Read-One Write-All-Available (ROWAA) [21] approach. Although
some other quorum-based approaches exist, Jiménez-Peris et al. [52] proved that, among them, a
ROWAA method is the best alternative in order to improve both performance and scalability. This
implies that read-only requests can be directly served by a single replica and that no inter-server
interaction is needed in that case. On the other hand, update requests should eventually reach all
servers that hold any copy of the updated data. This does not necessarily imply that all system nodes
need to co-operate when an update request is started, since the amount of data item copies could be
smaller than the number of system nodes.

Additionally, some scalable applications might require their deployment in multiple data-centres, thus
reaching a world-wide scope. In those cases, the inter-data-centres links usually have non-negligible laten-
cies and a severely limited bandwidth (at least, when they are compared with internal networks in regular
data-centres).

3 Scalability Mechanisms
Intuitively, a distributed system is scalable if it is able to increase its computing power in order to deal
with increasing workloads. To this end, two different approaches exist: vertical scalability and horizontal
scalability. In the vertical case, the computing capacity of each node should be increased; for instance,
expanding its main memory or replacing its CPU or disk with a newer and faster or larger one, respectively.
In the horizontal case, the system is extended including additional nodes to it. So, the larger the number of
nodes, the better the system’s computing service becomes.

Although vertical scalability cannot be ignored, current designs for scalable data management are con-
centrated in the horizontal variant. In an ideal world, when the set of nodes that compose the distributed
system was extended, a linear scalability would be obtained; i.e., the workload that could be managed in
a larger system would be directly proportional to the amount of new nodes that have been added to it.
Moreover, such trend should be maintained infinitely.

2



Some characteristics to be considered in the design of scalable data systems have been suggested in
different papers [48, 43] and they have been widely accepted and followed in the design of modern data
scalable systems. Let us recall those recommendations and analyse in the next sections which different
approaches have been adopted in current systems to implement them. Note that none of these characteristics
comes for free, since there are some trade-offs between them and also when they are confronted with the
regular properties that clients expect in any distributed service.

The mechanisms to be considered are:

M1 Replication. Data must be replicated. This allows that different server nodes hold copies of the data
and each of such servers could be placed close to a given set of clients, minimising thus the time
needed for propagating the requests and replies exchanged by clients and servers.

Replication is also the key principle to achieve failure transparency [89]; i.e., when any of the compo-
nents failed, the user would not be able to perceive such failure. To this end, redundancy (replication)
is mandatory.

Replication is able to ensure linear scalability when read-only requests are considered. Note that in
that case the workload can be proportionally divided among all data replicas, and no interaction is
needed among them.

Unfortunately, not all operations being requested by the applications would be read-only and updates
always need some interactions among servers in a ROWAA model. Those update propagations in-
troduce non-negligible delays and they might prevent the system from scaling. As a result, different
complementary rules should be considered for minimising those delays.

M2 Data partitioning. Since the set of data being managed in a modern cloud system could easily reach
Petabyte sizes [31, 4], it is impossible to maintain an entire copy of all these data in each of the server
nodes. As a result, some kind of partial replication [21] should be adopted; i.e., only some subset of
the data is stored in each server, and the updates do not need to be propagated to all system nodes.

However, partial replication introduces the risk of requiring multiple nodes for serving a single read-
only query, since the set of items to be accessed might not be allocated to a single server. So, some
care has to be taken in order to distribute the set of data among the set of system nodes. When the
set of possible queries is known in advance, a refinement of the partial replication strategy can be
considered: to partition the data in disjoint subsets, assigning each data subset to a different team of
server nodes. Such approach is known as database partitioning [84], and has been recommended in
most systems maintaining large stores [4, 7, 17, 30, 35, 36, 38, 41, 48, 78, 88]. In order to minimise
service delays, these systems recommend a passive replication [28] model; i.e., there is a primary
node that directly manages all update requests forwarded to a given partition, applying later those
updates (once ordered by the primary) to the rest of replicas in that partition. Thus, conflicts among
concurrent requests can be locally managed by this single server and the need of coordination with
other replicas is eliminated (if we only consider the steps related to conflict detection and transaction
ordering).

M3 Relaxed consistency. In a distributed system, consistency usually refers to bounding the divergence
among the states of multiple replicas of a given piece of memory. There are different consistency
models [70]. The strongest ones require a complex coordination among replicas but provide a very
comfortable model for the application programmer (almost identical to that of a single machine),
while the most relaxed ones are able to admit multiple differences among replicas’ states and they
minimise the coordination needed by system nodes, but they are very hard to programme.

Regarding consistency, the key for guaranteeing a minimal delay when client operations should be
managed by a replicated data store is to select a relaxed consistency model. Most modern data sys-
tems have adopted the eventual consistency [92] model or recommend [43] similar relaxed models.
Such model requires that, in the absence of further updates, the states of all item replicas eventually
converge. If we consider that previous principles have advised a partitioned store with a passive
replication model, this allows us to use lazy propagation [27] (also known as asynchronous replica-
tion [49]) of updates through secondary replicas in a trivial way; i.e., the update propagation can be
done once the results of an operation execution have been reported to the client.

3



M4 Simple operations. If data operations are protected by transactions, data stores should provide con-
currency control mechanisms in order to guarantee isolation, logs for ensuring data recoverability,
and different kinds of indexes for locating the data to be accessed. All these managements demand
a lot of computing resources. So, at a glance, one should try to avoid such costs in a scalable sys-
tem, as recommended in different papers [48, 43]. The immediate effect of such attempt might be to
eliminate transactions or to simplify them, only allowing single-item accesses in each operation or
transaction.

Single-item operations do also simplify the design of partitioned databases. Note that if all operations
are compelled to access a single item, no algorithm will be needed to obtain a perfect database
partitioning since all possible partition schemes are valid.

In order to further relax communication guarantees, some papers [48, 49, 26, 43, 5] also recommend
that these operations were idempotent; i.e., that their effects do not depend on how many times the
operation is executed. Thus, if unreliable communication protocols were used, application semantics
can be ensured with an at-least-once message delivery policy.

A final requirement that simplifies the design of recovery protocols for previously failed replicas
consists in guaranteeing that all updating operations were commutative, as suggested in [49, 57].
This recommendation is specially important in systems that assume an asynchronous multi-primary
replication model.

M5 Simple schemas. Relational databases provide an SQL interface that is assumed by most program-
mers when they need to use a database. Unfortunately, a relational schema admits some opera-
tions (joins, for instance) that would be difficult to support in a distributed environment where the
database has been partitioned (as recommended in Mechanism M2) and the amount of server coordi-
nation steps needs to be minimised. Because of this, many scalable data stores [31, 35, 41, 59] have
renounced to the relational model and have adopted a simpler single-table key-value [41] schema.

M6 Limited coordination. In spite of needing a minimal server coordination, scalable data stores should
maintain some meta-data (for instance, which are the current data partitions and which has been
the assignment of primary replicas to each partition) whose availability is critical. So, meta-data
is also replicated but it cannot follow the loosely consistent model described above for the regular
store contents: its consistency should be strong. As a result, there is a small set of critical meta-data
that demands a different and specialised management. Unfortunately, this data-set requires a strong
coordination between the nodes that store it. There is no agreement on the name given to the set of
nodes that manage these meta-data, although the term kernel set may suggest what it is intended for.

In practice, any coordination needed by the set of nodes that hold the entire database could be del-
egated to this kernel set. Since the general aim is to reduce inter-node coordination as much as
possible, the communication costs in the kernel set should have also a minimal impact on the overall
performance. To this end, the kernel set is regularly deployed in some specialised clusters (more
than one, in order to ensure its liveness in case of failure), executing all of them the same tasks (i.e.,
mirroring the service of any request) following a state machine [77] model or using the Paxos [61]
protocol, ensuring thus a strong consistency. The updates applied on this kernel set are later propa-
gated to the rest of the system, or will be known by those other nodes when they refresh the state of
a cached version of such data.

One of the first proposals for an architecture with a component similar to a kernel set was presented
in a paper from Baldoni et al. describing the design of a three-tier replication architecture [18] for
the active replication model [77]. Its middle-tier (equivalent to the kernel set described here) was
responsible for all the coordination required in order to guarantee a linearisable [50] (i.e., strong)
consistency and was deployed as a cluster of nodes. On the other hand, regular replicas were placed
at the third tier in that architecture and they were asynchronously accessed by the middle tier. Thus,
replicas could be accessed even across WANs, and they did not require any coordination among
them, but only with the middle tier.

Examples of kernel sets of this kind in scalable data stores are: the Chubby service [29] in Google’s
Bigtable clouds, Elastra’s Metadata Manager and Master (MMM) [38] component, ZooKeeper [53]

4



in Cassandra-based [59] and Yahoo!’s [35, 34] systems, the Paxos Service component [67] in the
Boxwood architecture, etc.

In order to sum up, Mechanism M1 (Partial replication) does not admit any objection since all dis-
tributed systems require failure transparency [89] and this demands some kind of replication. On the other
hand, all remaining mechanisms (M2 to M6) do not perfectly match the regular deployment of common
data services in a distributed system. So the following sections discuss different trade-offs raised by those
recommendations.

4 Data Partitioning
Database partitioning [84, 42] was presented in the eighties as one of the best approaches to provide
scalability in the management of persistent data. Assuming regular distributed transactions, a “shared
nothing” [84] approach provides an adequate basis for replicating data and, when server interaction is
adequately minimised by the replication protocol, for enhancing the scalability.

The concept presented in this first paper [84] only refers to not sharing any physical device nor resource
between database machines, and this is also applicable to other database replication techniques (e.g., all
protocol families based on total order broadcast that have been described and compared in [95]). However,
other more recent papers [85] refine such concept and present it as a synonym of (or, at least, the basis for)
“sharding” or horizontal partitioning [42]. We follow this last approach in this section.

There are several issues (presented as DPI, i.e., data partitioning issue, in the following list) that should
be considered when horizontal partitioning is used in a distributed or replicated database:

DPI1 Difficulty of database design. A perfect database partitioning is able to increase performance, dis-
tributing the workload among multiple servers and thus boosting scalability. In that optimal case,
each transaction does only access a single partition and it can be directly served by a single node.
However, this is almost impossible to achieve in the general case, since the set of transactions that
applications may execute on a given database could be dynamic and difficult to forecast. So, several
transactions could require data located in multiple partitions and this would raise concurrency control
and data propagation problems, thus reducing the achieved level of scalability.

Fortunately, most modern applications access relational databases using stored procedures [72] and
this permits to know in advance the kind of transactions that each application will use over the stored
data. With that information, the task of partitioning is simplified. For instance, different transaction
conflict classes [23] can be defined, and each partition receives the items belonging to a given conflict
class. Moreover, research on partitioning approaches is also maturing and good results in this area
are already available [37].

DPI2 Difficulty of load balancing. The main focus of a database partitioning approach is to maximise the
percentage of transactions that do only access a single database partition. However, once the database
is partitioned in this way, it could be difficult to receive the same workload in each partition, since
any load balancer in these systems is conditioned by the data stored and managed in each node. So, a
partitioning solution should be able to consider this fact in its partitioning criteria. Note also that not
all servers would have the same computing performance. As a result, per-partition workloads should
be monitored and, when a reconfiguration is needed, partitions might be re-assigned to the servers
that better match their needs.

DPI3 Re-partitioning overhead. The set of nodes that maintain the database might vary dynamically [80]
and this might pose problems if the set of available partitions needs to be restructured. Note that
in current systems, scalability is announced as “infinite” and this implies that the set of data being
stored is also progressively enlarged, requiring periodical evaluations of the set of existing partitions
in a given database. When new database servers join the system and new partitions need to be added,
it has to be decided which data should be migrated to them and which nodes will be responsible
for those new partitions. Similar problems should be managed when the set of partitions needs to
be reduced, since the data originally placed in the removed partitions should be transferred to some
nodes that will be their new managers (enlarging their own partitions).

5



DPI4 Number of messages. In the original paper [84], a shared nothing architecture was compared against
others that share disk or main memory. In those cases the partitioned architecture requires more mes-
sages than its alternatives, since not all the resources are locally available as in those other systems.

A partitioned database requires that each of its fragments or partitions were replicated in order to be
fault-tolerant. Therefore, each update request needs to be propagated to all replicas, demanding more
messages for completing such task. Additionally, if partitioning is not perfect and each transaction
(or, at least, part of them) accesses items placed in different partitions, data propagation will be also
needed to manage those transactions. So, potentially, the required number of messages to serve
transactions in a partitioned environment could be high.

Nonetheless, modern data scalable systems have eliminated many of these potential problems sug-
gesting simple operations [5, 26, 43, 48] instead of regular transactions. So, updates are only allowed
over single items, whilst queries are not restricted in the general case. Thus, one can ensure that up-
date operations do only require a single partition and may be directly managed by a single server.
As a result, the number of messages needed by this kind of operations can be easily bound. Queries
will also follow a pre-processing in the map-reduce [40] paradigm (to be described in Section 6) that
allows their parallelisation. Thus, although they might require a large set of messages, their response
time will still be short and users will not complain.

DPI5 Data directory. Some directory should exist in the data store to find out which is the set of nodes that
maintain each database partition. Moreover, such information should be known by all database sys-
tem nodes. The aim is to get the address of the storing node for each item in a minimal time, without
requiring any message exchange in the ideal case. This is also known as the routing [56] component
of a data storage architecture and its aim is different from that of the kernel set component, since the
latter mainly manages coordination/synchronisation tasks.

The routing functionality is easily achievable if the identifiers of all system nodes are known and a
deterministic (hash or indexing) function is used for matching item IDs onto node IDs, as it has been
done in structured peer-to-peer systems [10], for instance. So, in the regular case, no actual physical
directory is needed: the deterministic function is enough, and that function can be embedded in the
proxies being used by clients. As a result, the first message associated to a given operation being
emitted by any client is already sent to the partition manager node able to directly answer it, thus
minimising communication costs.

DPI6 Locality of reference. Finally, observe that in systems with a world-wide deployment (i.e., those
with multiple data-centres spread over the earth), each data-centre should hold the partitions mostly
accessed by clients placed near it. This requires some access monitorisation, but it will be able to
further reduce the message propagation delays between clients and servers. This property was highly
recommended in classical distributed databases where horizontal partitioning was applied [97], and
such recommendation has been kept also in modern scalable systems [5, 17, 56].

As we have seen, the design of a partitioned data store is not trivial and it might require distributed
coordination when that partitioning effort does not generate a perfectly matched distribution, compelling
some transactions or operations to access multiple partitions. Because of this, other distributed architec-
tures were proposed for achieving scalability. One of such alternatives is to hold the database in a shared set
of disks that could be managed by a large set of servers [80]. That architecture has been recently proposed
in the Hyder system [22] as an ideal approach for managing relational databases in cloud platforms. Its
best advantage is its simplified programming model, since applications receive and use a perfect single-
system image and do not need to use any distribution-aware procedure. Besides providing that transparent
interface to application programmers, the architecture described in [22] does not need to internally use any
distributed termination protocol nor distributed concurrency control mechanism. It maintains the database
as a log of transaction intentional records; i.e., the log itself is the database. This implies that write opera-
tions can be implemented as append-only actions, making possible the usage of fast flash memory devices,
further reducing the transaction completion time.

With a shared-disk architecture, it is possible to parallelise the service of concurrent transactions among
the set of database servers sharing such network-reachable set of disks. To this end, Hyder adopts an

6



optimistic concurrency control with multi-versioning. Because of this, the usage of locks is eliminated and
no delays are introduced in transaction service. Additionally, transaction records are directly written to
disk before deciding whether the transaction can be committed or not. At transaction termination time, the
transaction records can be checked for conflicts against other concurrent transactions already committed.
Therefore, any server is able to decide on its own the transaction’s fate using simple deterministic rules.

However, the shared disk (even using the fastest ones) is the main bottleneck in those architectures,
and unlimited scalability is impossible. Sooner or later, the set of servers that concurrently process the
incoming transactions will saturate the available disk bandwidth. Although this is a severe constraint, the
simulations given in [22] report that workloads up to 100000 TPS can be served without problems in the
Hyder system.

The adoption of a shared-disk strategy, as proposed in [22], makes sense for relational databases that
need to use regular ACID transactions whose set of operations might not be known in advance. Note
that a system of this kind does not use some of the mechanisms suggested in Section 3: there are no
simple operations (Mechanism M4) nor a simple schema (Mechanism M5). Otherwise, when most of the
recommendations are followed, partitioning seems to still be the preferable alternative.

5 Relaxed Consistency
As it has been already said in Section 3, replication is a highly recommended mechanism in order to
develop a scalable system. Because of this, for each operation being served, the amount of interaction
among replicas should also be minimised. Such minimal interaction forces to adopt a passive (i.e., primary-
backup) [28] replication model, since a multi-master one would require a distributed concurrency control
mechanism and it would have increased the synchronisation of such replicas and the amount of messages
being exchanged for serving each operation.

Even with a passive model there are communication costs that should be considered: those needed
to propagate the updates once a given operation has been executed in the primary replica. To this end,
multiple papers [35, 39, 41, 43, 44, 49, 54, 57, 92] have advised the adoption of an asynchronous update
propagation (i.e., that those updates were propagated once the primary had completed the transaction and
replied to the client), thus leading to a relaxed replica consistency. With it, the primary or master replica
always holds the latest state, but secondary replicas may have a given number of pending updates; i.e.,
updates not yet applied. So, the state in those backup replicas will not be the latest one and the replica
consistency observed by clients reading from them is relaxed. In some cases, this asynchronous update
propagation is the basis for an eventual consistency [92] model; i.e., one where the states of all replicas
will eventually converge (for instance, when no further updates are received in a given interval of time).

In spite of this, the design outlined in the last two paragraphs is still able to provide sequential consis-
tency [60] at the server side, since all replicas will be able to see the same sequence of updates and such
updates are consistent with the execution of a given programme (in this case, that of the primary replica),
as required by that consistency model. However, such executions are not linearisable [50], since once a
primary replica has generated and read a new value v2 for a given item, any secondary is still able to read
afterwards an older value v1 on its local replica; i.e., read inversions [16] (forbidden in the linearisable
model) are possible.

Those read inversions might be perceived by user applications, generating thus a relaxed consistency
model for client processes. Because of this, several systems (as Amazon SimpleDB and Google Ap-
pEngine) present in their API different consistency guarantees that can be selected by the application [94].
Surprisingly, the benchmarks used in [94] have not detected important differences in operation completion
time nor throughput between the alternative consistency models supported by these systems.

But consistency may be further reduced in order to improve scalability and service time. To this end,
one of the constraints stated above might be removed: the adoption of a passive replication model. Such
replication model was assumed since, in the regular case, most of the update operations to be executed in
a given data partition are conflictive among them and this would demand a distributed concurrency control
between all master replicas in a given partition. However, no concurrency control is needed when all
operations are commutative and this has also been another recommendation given in several papers [49, 57,
74]. So, in that case, multiple replicas in the same partition are able to directly manage update operations,

7



in parallel, thus balancing the updating workload among them and increasing the system productivity.
Later, using asynchronous propagation, those updates are applied in all other replicas. As a result of
this, consistency might be now very relaxed (since different replicas follow different sequences of updates
violating thus the causal [6], PRAM [64] and even cache [47] consistency models) and, when all operations
have been applied in all replicas, the states of such replicas will converge.

Note that many operations are not commutative, and because of this, they should be executed in the
order they have been requested by clients. However, there are simple rules that allow the translation of
those operations into others that are commutative. For instance, regarding operations over numerical data
types, the operation to be executed could be applied onto the current value of the items that are its operands;
if the result (assuming that it would be stored in a given data item A) is greater than A’s previous value, the
operation may be translated into an addition to A, or into a subtraction otherwise. So, when the results of
such operations are propagated to other replicas, they are not expressed as the new value for the updated
data items but as subtractions or additions to be applied on their current value. As a result, their application
order is no longer important, since they are now commutative. Following this approach, all numerical
operations would be translated into commutative operations allowing their propagation and application
without problems.

Therefore, many people identifies eventual consistency as the assumed consistency for any cloud sys-
tem. However, this might depend on the requirements of each application to be deployed in these sys-
tems. For instance, Google Megastore [17] ensures strong consistency and a SQL-like interface using
synchronous update propagation. It is layered on top of the key-value stores (e.g., Bigtable [31]) developed
at Google, so each application may choose its intended level of consistency, using the system that better
matches its requirements. In a similar way, there are different Microsoft’s papers describing several cloud-
related projects [30, 49]. Thus, whilst the first one explicitly mentions that the database is partitioned and
a passive replication is used [30] in order to manage each partition (and, as such, this system may still pro-
vide a sequential consistency), the latter [49] recommends commutative operations and a relaxed eventual
consistency. So, it seems that it is recommendable to support different levels of consistency, adapting it to
the requirements stated by each application.

Flexible consistency has been managed in different ways in several systems. The basic solution consists
in providing a relaxed support in the data store and delegating other alternatives to specialised protocols
[58] executed at the application level able to reinforce the resulting consistency, if needed. Other solutions
[57] propose a flexible consistency management that is able to adapt the resulting consistency level to the
requirements stated by applications.

The approach described in [57] consists in associating consistency requirements to the sets of data
managed by applications, instead of associating them to the transactions that access such data. Data is
divided into three categories (A, B and C). Category A contains data for which a consistency violation
results in large penalty costs (critical data). It implements serialisability [21]; i.e., sequential consistency
[60] according to [70]. Category B varies its consistency requirements depending on another factor, e.g.,
the availability of that data, their probability of conflicts, different time constraints, etc. This is named
adaptive consistency. Category C comprises data that tolerates inconsistencies, at least temporarily. It
ensures session consistency [90]. Different sample applications are considered to illustrate how categories
are selected. For instance, in an electronic commerce application, the economical value of each item
determines its category; in an auction system, the remaining time till the end of the auction gives each
item’s category; in a collaborative editing application, the probability of conflicts in accesses to each file
determines each file’s category.

6 Simple Operations
Multiple proposals [31, 43, 48] for scalable data stores have stated that the operations to be served by such
systems should be as simple as possible, accessing a single item or entity in the ideal case. This makes
sense since the simpler the operations are, the better the performance would be, so that each operation
would require less effort to be completed, therefore improving the achievable concurrency level and the
degree of service parallelisation.

However, not all the operations in a given application could be always so simple. So, we will distinguish

8



between update operations and queries in the following subsections, describing each variant separately.
Additionally, transactions cannot be dropped in all applications. So, they are also described in Subsection
6.3.

6.1 Updates
Many web-based applications follow a simple-operation model for interacting with data [26, 35]; i.e., most
update operations in those applications only require a single data item. For instance, webmail applications
do not demand transactional semantics to an e-mail delivery, even when it is targeted to multiple destina-
tions. Such e-mail delivery might be seen as an insert of a new item (a new “column”) onto the information
of a given entity (if we assume that e-mail accounts are managed as entities, each one with a different key).
So, an interface based on simple operations is enough to manage such events. Note that high levels of
scalability are demanded by these modern webmail systems since they currently manage millions of users
(e.g., in systems as gmail, Yahoo! mail, or hotmail, to name a few), and allowing large amounts of data
stored per user/account (some GBs in most cases).

The use of simple operations combined with Mechanism M2 (Data partitioning) provides an excellent
basis to overcome the constraints imposed by the CAP theorem [46]. Recall that the CAP theorem proves
that it is impossible to achieve simultaneously a service system that is consistent, available and network-
partition-tolerant in both asynchronous and partially synchronous systems. At least one of these three
properties should be dropped when the other two are guaranteed. Therefore, we can still build a consistent
and (partially) available system even when network partitions arise. Note that data partitioning might
distribute all item replicas of a given data partition in the same data-centre, promoting reference locality
(i.e., DPI6 as presented above). So, the consistency among all item replicas for a given data partition can
still be ensured. With this assumption, since most operations do only access a single item, consistency is
guaranteed for updates. If the network is partitioned, several database partitions may still remain reachable
in each resulting network component. As a result, part of the updating operations may still find their
intended target items available, and a reasonable capacity and quality of service can still be delivered;
i.e., system progress is not lost. On the other hand, query operations that try to access a large set of
database items might receive only a partial answer in case of a network partition. In this case consistency
is sacrificed, but for many applications that relaxed answer may be enough.

Although a model based on simple operations (constrained to single-item updates) is optimal regarding
scalability, it immediately implies that regular transactions are not usable since their aim was to encom-
pass a sequence of accesses ensuring atomicity (and also isolation, consistency and durability) to their
effects, and now the operations being managed only encompass a single item, but not many. So, multi-
operation atomicity is intentionally sacrificed in order to improve performance. Once transactions have
been discarded, complex concurrency control mechanisms, query optimisation, buffer management and
other transaction management tasks can also be dismissed. Therefore, operation management is simplified
and it will not generate any delays, further improving scalability.

Many systems that follow this simple operation principle use as their underlying storage a distributed
file system based on immutable items. Immutable items compel the generation of new item versions on each
update. As a result, each write operation is served as a log of the new values, and this further accelerates
the update completion time, as it was proven by general-purpose log file systems [76]. On the other hand,
logging might induce a slight overhead in subsequent read accesses, since the locating and positioning
steps that have been saved in the writing phase compel the usage of indexes that introduce an additional
level of indirection in the read steps. Nonetheless, such log indexes are maintained in main memory and
the logs are periodically compacted, thus removing any overhead in read accesses. Systems like Cassandra
[59] and the Google File System [44] follow this approach based on immutable items.

Some research papers [5, 26, 43, 48, 49, 66] have recommended that update operations were idempo-
tent. Therefore, communication among system nodes could be asynchronous and faster, and even it might
tolerate unreliable protocols. This approach reduced communication costs, and it would enhance the result-
ing scalability. With it, servers do only need to re-attempt the execution of each request until such requests
are executed, achieving an exactly-once semantics with an at-least-once implementation. This also sim-
plifies the development of recovery procedures. Unfortunately, this recommendation seems to contradict
a previous one regarding Mechanism M3: operations need to be commutative, and to this end, they were

9



converted into operations that should be executed exactly once and that were not idempotent. The solution
to this apparent conflict was already described in [49]: idempotency can be logically achieved when the
servers are able to recall whether the incoming requests have already been executed. If so, they are simply
discarded. The key to achieve this consists in tagging each request with an appropriate identifier and in
guaranteeing that all attempts for a given client request will use the same identifier. Therefore, once the
request is executed, all servers will be able to discard subsequent repetitions.

6.2 Queries
All we have described up to now is concerned about update operations. At a glance, queries do not seem
to introduce any problem since a read-only request simply requires to access a single node (recall that we
have assumed a ROWAA model). So, no server coordination is needed in this case. But in the regular
case, a query is not a “simple” operation; i.e., most common queries get an answer composed by many
items and this might require to contact many system nodes (i.e., many database partitions). Hopefully,
assuming Mechanism M3 the consistency being granted in a cloud system is, in the general case, quite
relaxed. Therefore, in order to enhance scalability some means should be designed for promoting the
maximal collaboration between server nodes in query answers, dividing the work among as many servers
as possible and mixing their replies without incurring in any complex coordination among them. This aim
has been accomplished with the MapReduce [40] programming paradigm for queries, originally developed
at Google. It can be complemented with a high-level programming language, specially intended for a
map-reduce paradigm and providing a declarative interface. Sawzall [74] is an example of this kind of
languages.

In this paradigm, the intended computation is divided in two sequential phases. The first one (”map”)
consists in applying a mapping function onto each of the key-value pairs of a given table in order to generate
several intermediate key-value pairs. The second phase applies a ”reduce” function onto all intermediate
pairs with a same value in their intermediate key. As a result, either zero or one pair is generated for each
of such sets.

MapReduce is usually employed on top of Bigtable [31] that uses GFS [44] as its underlying file-
system. Since Bigtable data is structured in tablets, and tablets are distributed onto multiple servers, it is
quite easy to parallelise the execution of the ”map” function. As a result, parallelisation is automatic if
Bigtable is used as a data container. The intermediate key-value pairs generated by the ”map” function can
be stored in GFS and processed later on by other processes that execute the ”reduce” function.

Hadoop [15, 13] is an open-source project, developed by The Apache Software Foundation, that pro-
vides support for the map-reduce paradigm. This certifies that this paradigm has gained wide adoption for
efficient programme development onto large data stores. The Hadoop project has developed other compo-
nents needed for supporting such programming paradigm, such as a distributed store that replicates data
(HDFS [81], similar to GFS [44]), a high-level programming language (Pig [71], comparable to Google’s
Sawzall [74]) and a coordination manager (ZooKeeper [53] inspired in Chubby [29], Paxos [61] and Box-
wood [67]). Many companies have adopted Hadoop as their tool for managing scalable data stores, being
Yahoo! [34] one of the best examples since it has been directly implied in Hadoop development.

6.3 Transactions
In spite of the good performance of map-reduce queries and simple (i.e., single-entity) updates, several
authors still consider mandatory the usage of some kind of transactions encompassing a given sequence
of operations, since most programmers are used to them. So, here we find a trade-off between scalability
(with a new programming paradigm associated to it) and reliability (with classical transactions as its main
building block).

To begin with, the concept of minitransaction was proposed in [5] and it is able to merge both trends.
On one hand, it adopts a template with a minimal set of steps to build each transaction. Therefore, it is
not a simple update operation as those described above but it is also short-lived in all cases. On the other
hand, it may access data placed in multiple nodes, and ensures atomicity on these accesses. Concretely,
a minitransaction consists of a set of read items, a set of compare items, and a set of conditional-write
items. Each item specifies a memory node and an address range within that memory node; compare and

10



conditional-write items also include the data values to be used. Items must be chosen before the minitrans-
action starts executing. Upon execution, a minitransaction does the following: (1) it reads the locations
specified by the read items, (2) it compares the locations stated in its compare items section, if any, against
the data in the compare items (equality comparison), (3) if all comparisons succeed, or if there are no
compare items, it writes into the locations in the conditional-write items, and (4) it finally returns to the
application the locations read in (1) and the results of the comparisons in (3). With a careful selection of
data structures, the resulting Sinfonia system [5] illustrates how highly scalable services can be developed
using the minitransaction concept. Although the Sinfonia paper is not focused in data scalability, it shows
that transactions still make sense in the development of scalable services.

A second group of papers [4, 38, 39, 68] proposes the usage of some kind of transaction to encom-
pass the update of multiple items in systems originally intended for simple updates. This is particularly
interesting for collaborative applications [39] where most of the tasks need to update a sequence of items
atomically, and this kind of support is not present in regular cloud systems that have used Mechanism M4.
To this end, the authors of [39] propose the KeyGroup concept, able to dynamically encompass a set of
items and ensure atomicity on their updates, with some synchronisation needed among the nodes that hold
such data items.

In a third group we can find data scalable systems that are not only interested in scalability, but also
in maintaining compatibility with existent standards. One example is SQL Azure [30] that needs to main-
tain interfaces compatible with those of SQL Server regarding database access. Assuming this constraint,
transactions can not be eliminated. Note that a large group of companies that currently use or will use
cloud services are interested in the Platform-as-a-Service (PaaS) model, and they plan to use those cloud
services as a database outsource solution. Therefore, in those cases, an SQL interface is mandatory in or-
der to reduce the costs of such migration. Scalability is a recommendable plus, but not the single objective
of those solutions.

Other scalable systems have followed this SQL with regular transactions path. A second example
is the H-Store system [54] based on replication, horizontal partitioning, and main-memory storage, or
the C-Store one [86] based on vertical partitioning. Those systems follow some of the recommendations
given in [88] for what should be, according to its authors, an efficient new architecture for OLTP. Those
recommendations are:

1. Main memory storage. Since common databases in small and medium companies do not manage a
huge amount of data, and current main memories are large, most databases will fit in main memory.
As a result, main memory should be the default storage medium.

2. No resource control. Since modern OLTP transactions are not interactive and can be completed
in a few milliseconds (or even microseconds assuming main-memory storage), multi-threading and
concurrency control could be dropped.

3. Shared-nothing architectures. Grid and blade deployments are common nowadays. Instead of shar-
ing the database among many processors in a single computer, it is better to partition it among a set
of computers interconnected by a high-speed network.

4. High availability. Partitions may be replicated in order to guarantee high availability. Logging (i.e.,
redo logs) in secondary storage can be also eliminated, since recovery is ensured by the existing
replicas. Only an undo log should be maintained, but it can be maintained in main memory, and only
whilst the transaction is still alive.

SQL and regular ACID transactions are mandatory in these systems, since these classical characteristics
are still demanded by a large set of modern applications. Note that [88] is breaking some of the assumptions
initially given in our paper. We were interested in extremely scalable system storage; i.e., cloud providers
try to achieve huge scalability levels since they need to support the data of a large set of companies that
require their services. Therefore, the amount of data being considered is almost infinite. However, if we
consider each isolated client company, the rule will be that assumed by [88]. These are two different views
of the same problem, and the solutions adopted in each of them are quite different.

Nonetheless, the VoltDB [93] database manager developed as an evolution of H-Store [54] announces
45 times higher throughput than conventional OLTP DBMSs and with an almost linear scalability (in the

11



range from 1 to 12 machines). So, the principles outlined in [88] seem to be appropriate for small to
medium systems.

7 Simple Schemas
As a consequence of Mechanism M4 (Simple operations), a simplified database schema seems convenient.
Since regular ACID transactions might be abandoned when Mechanism M4 is used, there will be no need to
maintain a relational database schema. Scalable data stores should look for other database schemas better
tailored for simple update operations, and also to facilitate database partitioning as needed by Mechanism
M2. Therefore, many cloud systems [8, 9, 12, 14, 19, 31, 35, 39, 41, 59, 75] use a single data store with a
key-value schema, and is some of them [14, 31, 35, 59] their “value” field can be structured at will.

The main aim of any scalable approach should be to eliminate the need of server coordination and to re-
duce as much as possible the time needed to serve each operation. A key-value store is able to achieve these
objectives. Server coordination is eliminated for updates if operations are simplified and do only access a
single data item, as assumed in Mechanism M4. The key being used to locate the item directly provides
the address of the primary server devoted to each data item, assuming a deterministic location-directory
service. So, updates can be directly forwarded to the server that will manage them and no coordination nor
additional message propagation step is needed to start an update operation. On the other hand, queries that
manage a large set of data can be easily parallelised by the complementary map-reduce paradigm. So, their
service time is also minimal, and scalability is not endangered.

But other researchers [85] have criticised the fact of eliminating the relational model and its supporting
relational data stores in these new scalable systems. Indeed, the contents of [85] propose an adaptation
of the relational database management systems in order to increase its performance and eliminate their
service delays, thus providing an operation response time for complete transactions comparable to that of
simple operations in key-value stores. That adaptation follows the advices previously given in [88] that
have been outlined in Section 6: main-memory storage, data partitioning, no logging, no buffering, and no
concurrency control.

Other cloud systems, as SQL Azure [30], Relational Cloud [36] or the unbundled kernel described in
[66, 63], also maintain data assuming a relational database schema and provide an SQL interface to scalable
applications. In [66, 63] the database service is re-structured in two independent layers: the Transactional
Component (TC) and the Data Component (DC), being TC placed above DC. In such architecture, TC
manages concurrency control and undo/redo recovery, whilst DC manages the physical storage structure,
supporting a relational schema. Thus, DC should be involved in the indexing, caching, and physical recov-
ery tasks. Although both transactions and a relational schema are assumed in [66, 63], its two-layer design
suggests that transactions and storage should be managed independently and optimised on their own.

The effects of simplified schemas on performance has been partially evaluated in [96], where several
recommendations for avoiding memory wastes are discussed. Although its results are intended for general
schemas, that paper shows that using three basic rules (to recycle the free space available in indexes as a
caching space; to avoid locality waste, i.e., to place together those rows or fields that will be used together;
and to avoid encoding waste, i.e., to select appropriate types for each field, once the stored data is known),
it is possible to achieve important improvements on performance (up to 8 times faster query time) and
on memory consumption (up to 17 times lower when all rules are followed, although this depends on the
concrete data store being considered).

All these proposals show that there is no complete agreement on the adequacy of a simple key-value
interface and schema in order to maintain and access persistent data.

8 Limited Coordination
Traditional distributed database management systems [21] required 2-phase [62] or 3-phase commit [82] in
order to terminate a distributed transaction. This was needed in order to guarantee their ACID properties.
Those termination protocols required that all involved nodes participate in the termination procedures,

12



communicating their agreement on such completion. Unfortunately, this would introduce an excessive
delay in a modern system that intends to be scalable.

Modern database replication protocols [95], as initially proposed in [3], have partially eliminated this
overhead using total-order broadcast [33] for propagating transaction writesets, and limiting server co-
ordination to a single round of update propagation, avoiding both 2PC and 3PC. Most of these protocols
only need local concurrency control. Using it, they have also simplified their conflict evaluation rules and
have thus removed any other need of coordination. But most of them still require synchronous eager up-
date propagation in order to maintain consistency (i.e., the server that has directly executed the transaction
should wait until writeset delivery time in order to reply to the client) and this introduces a non-negligible
delay in transaction completion time.

Because of this, the remaining scalability principles outlined in this paper have progressively been
proposed and adopted. They have contributed to eliminate delays in transaction/operation service time.
Therefore, an optimal deployment that minimises server coordination is based on a perfect database parti-
tioning that ensures that every operation or transaction will only access the items stored in a single partition.
Besides this, the replication protocol and the assumed replica consistency must be able to admit an asyn-
chronous update propagation; i.e., writesets could be transferred to other replicas and applied there once
the results of the transaction or operation have been returned to the client application.

Thus, replication management will not require any server interaction that introduces client-perceivable
delays when these characteristics are ensured:

• Perfect database partitioning. It allows that all operation/transaction items were available at a single
server. With that, it is not necessary to check for the items maintained in other servers in order to
complete each transaction.

• Asynchronous update propagation. Since this defers propagation after the transaction or operation
completion and the client is unaware of such costs. Moreover, this also makes possible to batch
multiple updates in a single propagation message.

Although this might eliminate all server interactions regarding replica management, there are other as-
pects of a data store system that should be considered. One of them is administration. Administration tasks
may be needed at application deployment time, but also when the workload being supported by any ap-
plication requires some kind of deployment reconfiguration in order to follow the application service level
agreement. Additionally, node failures should be monitored and correctly managed. All these activities
imply updates in several kinds of meta-data being used for administration tasks. Such meta-data, as regular
application data, needs to be replicated in order to overcome failures. But, as shown in Mechanism M3,
regular application data usually tolerates a relaxed consistency model, since the aim of most applications
is to be able to scale without problems, providing acceptable service to as many clients as possible. On the
other hand, meta-data needs strong consistency, since the items maintained in this second store are critical
to maintain an appropriate quality of service for applications. Therefore, meta-data recovers the need for
strong consistency and the adoption of heavy replication approaches in order to manage such second kind
of data. Those protocols still impose a non-negligible need of coordination among the servers that manage
these activities.

To solve this issue, a special component (that we have called kernel set) is used in most cloud systems.
It is able to coordinate server interaction and to hold and administer reduced amounts of critical data.
Scalability is not an issue in this second store, since not many processes will need to concurrently access
such data. The important issue here is to guarantee data availability and to ensure strong consistency.

Since kernel sets are specialised in coordination, any component of a cloud system may manage (or
delegate) any distributed coordination using the interfaces provided by such special module. Examples can
be found in the papers that describe Chubby [29] or ZooKeeper [53].

9 Scalable Systems
Table 1 summarises the main characteristics of several scalable systems that are described in the sequel,
showing which combinations of the mechanisms explained in this paper are actually used in real systems.

13



To this end, Section 9.1 groups the set of data stores that strictly follow the key-value schema suggested by
Mechanism M5, whilst Sections 9.2 to 9.6 list in alphabetical order and describe some of the systems that
do not follow such recommendation. The list has selected a single system for each different combination
of the mechanisms and parameters shown in Table 1 in order to be concise. Nonetheless, at the end of each
of those sections, other systems that also share the same configurations are also cited. Finally, Section 9.7
gives a summary and some suggestions for further research.

Systems

Key-value SQLMechanisms
stores

G-Store Hyder Megastore
Azure

VoltDB

Data partitioning (M2) Hor.(+Vert.) Horiz. No Horiz. Horiz. Horiz.
Consistency (M3) Eventual Eventual Strong Multiple Sequent. Sequent.

Update prop. Async. Async. Cache-upd Sync. Async. None
Simple operations (M4) Yes Base No No No No

Concur. ctrl. No mutex MVCC MVCC Yes No
Isolation No Serial MVCC MVCC Serializ. Serial
Transactions No KeyGroup Yes Yes Yes Yes

Simple schema (M5) KeyValue KeyValue Log KeyValue No No
Coordination (M6) Minimal Medium Medium Medium Medium Low

Admin. tasks Yes Yes No Yes Yes Yes
Transac. start No Yes No No No bcast
Dist. commit No At times Cache-upd Yes At times No

Table 1: Characteristics of some scalable data management systems.

9.1 Key-value Stores
The term key-value store encompasses a rather large set of data storing systems, with some common at-
tributes. Because of the diversity of their approaches, some authors have identified the need to further
classify them into several subcategories. There is some controversy about such taxonomy, as well as the
systems included in each variant, or even if a concrete system should be considered as a key-value store.
We present the following classification inspired in [87], as well as the information collected from different
sources:

• Simple key-value stores: Systems which store single key-values pairs, and provide very simple insert,
delete and lookup operations. The different values can be retrieved by the associated keys, and
that is the only way of retrieving objects. The values are typically considered as blob objects, and
replicated without further analysis. It is the simplest approach and provides very efficient results.
Some examples are Dynamo [41], Voldemort [83], Riak [19] and Scalaris [79].

• Document stores: Systems which store documents, complex objects mainly composed of key-value
pairs. Some systems allow even nested documents, but relationships between documents are nor-
mally dropped. The core system is still based on a key-value engine, but extra lookup facilities are
provided, since objects are not considered just black boxes. In this way, the documents are indexed
and can be retrieved by simple query mechanisms based on the provided key-value pairs. These
systems are supposed to provide the same benefits as simple key-value stores but supporting more
complex data and query procedures. Some examples are SimpleDB [9], CouchDB [12], MongoDB
[75] and Terrastore [25].

• Tabular stores: They are also known as (wide) column-based stores. These systems store multidi-
mensional maps indexed by a key, which somehow provides a tabular view of data, composed of
rows and columns. These maps can be partitioned vertically and horizontally across nodes. Some
works [1, 65] suggest that column-oriented data stores are very well suited for storing extremely

14



big tables without observing performance degradation, and some real implementations have proved
such thesis. Some examples are Bigtable [31], HBase [14], Hypertable [51], Cassandra [11, 59] and
PNUTS [35].

All these data stores typically implement all recommended scalability mechanisms cited in Section 3.
As a result, they are able to reach the highest scalability levels.

At a glance, their main limitation is their relaxed consistency that might prevent some applications
from using those systems. However, it is worth noting that these data stores are a single component of a
cloud-provider architecture and that, when needed, other pieces of such architecture are still able to mask
such problems; i.e., to enforce stricter consistency guarantees, for instance.

As shown in Table 1 there are a few minor limitations on some of the listed recommendations. For
instance, distributed coordination might be useful in some cases. That coordination is only needed when
some administrational tasks are executed (new nodes join the system, partitions are re-arranged, etc). How-
ever, no coordination mechanism is natively implemented by these data stores, but by other components of
the general architecture, as illustrated by Chubby [29] in Google’s systems or ZooKeeper [53] in Yahoo!’s
ones. Therefore, the no-distributed-coordination ideal cannot be achieved by these systems in all cases
although coordination is not required for dealing with regular client operations.

9.2 G-Store
In some cases, modern web-based applications still demand some transactional support in order to en-
compass multiple operations in a single transaction. This may happen [39] in some applications as online
gaming, collaborative editing, etc. Because of this, some data storing systems have partially sacrificed
the usage of simple operations and have mixed it with the possibility of defining multi-entity transactions.
G-Store [39] has been one of the first systems providing such support.

G-Store is a layer placed on top of a regular key-value store. So, applications may still use the function-
ality and reach the scalability levels described in Section 9.1. However, when needed, these applications
may provide atomicity guarantees to a sequence of operations that access multiple entities/keys. To this
end, a KeyGroup is dynamically created and several transactions can be started on it. A ”grouping protocol”
is needed to create the KeyGroup. The resulting group will have a leader that will manage all subsequent
transactional steps. In order to create the group, the leader follows an algorithm similar to the one required
in a mutual exclusion algorithm with a coordinator; i.e., it multicasts a request message to all the follow-
ers that answer granting an exclusive lock. Later, a final release message is also multicast by the leader
when the group is dissolved. Therefore, G-Store transactions seem to be a bit stronger than regular ACID
ones, since concurrency control is provided through mutual exclusion, and the resulting isolation is not
only serialisable (providing the logical image of a serial order, but allowing concurrency), but a real serial
order. Although an algorithm for distributed commit is not explicitly used in this system, the protocols for
creating and dissolving key-groups have a comparable coordination cost. Moreover, when transactions are
used, their operations should be monitored and propagated by the group coordinator, further compromising
its performance (since it is a centralisation point that could be overloaded).

So, the example provided by G-Store is able to balance the excellent levels of scalability of key-value
stores (when the target applications are comfortable with such interface) with a better transactional sup-
port (when multi-operation atomicity is demanded and extreme scalability is not needed). Note that the
KeyGroup abstraction demands non-negligible coordination efforts and the resulting scalability is clearly
reduced when transactions are used.

9.3 Hyder
Although database partitioning was already proposed in the eighties [84] as a mechanism able to enhance
scalability, it was not the unique proposal for this aim. Contemporaneously, other different architectures
appeared with good scalability levels, as those [80] based on multiple servers sharing a single data store
(e.g., with multi-ported disks). Such alternative proposal has been recovered in the Microsoft Hyder [22]
system.

15



Hyder’s architecture still assumes relational databases. It does not follow horizontal partitioning and
uses a shared set of networked flash stores. Note that horizontal partitioning is not always easy in a rela-
tional database. For instance, a many-to-many relation that needs to be used by many transactions accessing
many of its rows will be almost impossible to partition and distribute [22].

Inter-server communication is kept to a minimum in this architecture since each server is able to manage
its transactions using only local concurrency control mechanisms based on multi-versioning. Besides this,
distributed commit is unneeded since each transaction does only use a single server.

Another important aim of this system is the usage of NAND flash memory in order to store its persis-
tent data, since its performance and costs are improving at a fast pace. However, flash memory imposes
severe restrictions on the way storage is administered: this memory does only support a limited (although
progressively larger) amount of per-location writings, and although read and update operations are allowed
on a per-page granularity (with typical page sizes from 512 bytes to 4096 bytes), erasure operations are
only allowed on a per-block granularity (and each block groups from 32 to 128 consecutive pages). This
leads to the usage of log-based file systems on this kind of storage devices and a complete redesign of
several components of a database management system [22, 24].

As a result, the design of Hyder is based on a log-structured store directly mapped to a shared flash
storage. The key here is that the own log is the database, and the recently used records are cached in
main memory. Although distributed commit protocols are avoided, since each transaction can be served
by a single node (no remote subtransaction is needed), once update transactions are completed, messages
should be sent to remote nodes in order to update their caches.

In order to sum up, Hyder is able to ensure a good scalability level without respecting all suggestions
given by the mechanisms described in our paper. It does not need data partitioning, since the complete
data store is remotely stored and shared by all servers. Since that remote storage is shared and it provides a
logical single image, the overall consistency is strong. Data are actually replicated at the file system level,
but details on the replication strategy are not discussed in [22]. The users are not compelled to use simple
operations in their applications. Transactions are admitted and a SQL-like interface might be provided
on top of Hyder (although, again, details are not discussed in [22]). The logical database schema is not
restricted by default. Write operations are always kept as appended records at the end of the database log.
This is the unique implementation of the database. So, actually, the schema being used is only focused on
performance: write operations do not imply any delay, and read operations (queries) are managed using
local caches in each server node. This is one of the best “schemas” regarding performance. Coordination
is unneeded for dealing with distributed commitment. Therefore, some of our proposed mechanisms have
not been adopted in Hyder, but its used alternatives provide similar scalability levels.

Nonetheless, the use of a networked data store could introduce a bottleneck for achieving extreme scala-
bility levels. Since all database servers might manage concurrently a lot of transactions, their updates might
saturate the available network (in order to reach the store) or storage bandwidths. Additionally, the paper
states that updates are also transferred to the remaining servers in order to directly update their caches, and
this might introduce a non-negligible coordination effort (lower than that required by distributed commit
protocols but still significant).

As a result, the achievable scalability level is lower than that of a key-value store, although such draw-
back is compensated by its transactional support (that does only require local management; making possible
a regular ACID functionality).

9.4 Megastore
Similar to G-Store, Google Megastore [17] is a layer placed on top of a key-value database (concretely,
Bigtable) with the aim of accepting regular ACID transactions with an SQL-like interface in a highly
scalable system.

The entity group [48] abstraction is used in order to partition the database. Each entity group defines
a partition, and each partition is synchronously replicated (i.e., with synchronous update propagation) and
ensures strong consistency among its replicas. Replicas are located in different data-centres. Therefore,
each entity group is able to survive regional ”disasters”. On the other hand, consistency between different
entity groups is relaxed and transactions that update multiple entity groups require a distributed commit
protocol. So, inter-entity-group transactions are penalised and they will be used scarcely.

16



Transactions use multi-versioned concurrency control. They admit three different levels of consistency:
current (i.e., strong), snapshot and inconsistent (i.e., relaxed). Quoting the paper [17]:

Current and snapshot reads are always done within the scope of a single entity group.
When starting a current read, the transaction system first ensures that all previously commit-
ted writes are applied; then the application reads at the timestamp of the latest committed
transaction. For a snapshot read, the system picks up the timestamp of the last known fully
applied transaction and reads from there, even if some committed transactions have not yet
been applied. Megastore also provides inconsistent reads, which ignore the state of the log and
read the latest values directly. This is useful for operations that have more aggressive latency
requirements and can tolerate stale or partially applied data.

So, this system ensures strong consistency thanks to its synchronous update propagation but it is also able
to by-pass pending update receptions when the user application may deal with a relaxed consistency, thus
improving performance.

Note that Megastore is bound to the schema provided by Bigtable. So, it is compelled to use a simple
schema that is not appropriate for relational data management. So, some “denormalisation” rules are
needed for translating regular SQL database schemas, implementing them in Megastore/Bigtable. To this
end, Megastore DDL includes a “STORING” clause and allows the definition of both “repeated” and
“inline” indexes. The former are able to index the values stored in an attribute/field of a given entity.
Note that such attributes may hold a list of values in Bigtable. The latter (i.e., inline indexes) “are useful
for extracting slices of information from child entities and storing the data in the parent for fast access.
Coupled with repeated indexes, they can also be used to implement many-to-many relationships more
efficiently than by maintaining a many-to-many link table”.

Regarding coordination, as we have previously seen, distributed commit protocols are needed at times
in Megastore: when the involved items belong to different entity groups, since each group has a different
coordinator node. Besides this, every regular Megastore transaction uses a simplified variant of the Paxos
[61] protocol for managing update propagation. Therefore, coordination needs are strong in this system,
compromising extreme scalability.

9.5 SQL Azure
As it has been shown in the last three subsections, ACID transactions seem to be needed in highly scalable
systems, and different solutions to this lack have been proposed in G-Store, Hyder and Megastore. How-
ever, none of those solutions have left the simple schema recommended in Mechanism M5. Because of this,
all those systems still provide a good scalability level but they are unable to manage a fully compliant SQL
interface, and such functionality is required by a large set of companies that plan to migrate their IT ser-
vices to the cloud with a minimal programming effort. Note that in this case, most of those companies are
more interested in database outsourcing (due to the saving in system administration tasks and in hardware
renewal costs) than in extreme scalability. Microsoft SQL Azure [30, 69] fills this void.

Obviously, in this kind of systems Mechanism M5 should be forgotten and a regular relational schema
must be adopted instead. This implies a small sacrifice in scalability, since relational databases need spe-
cialised management regarding buffering, query optimisation, concurrency control, etc. in order to guar-
antee all ACID properties, providing an acceptable performance level. However, although Mechanism M4
should also be dropped, since the aim is to fully support ACID SQL transactions, all other mechanisms
(i.e., M1, M2, M3 and M6) discussed in our paper are still followed.

To this end, databases are passively replicated and horizontally (or, at least, with a table-level granular-
ity) partitioned; i.e., there is a primary server in each database logical partition, allowing thus the concurrent
execution (without any needed coordination) of multiple transactions that do only access the items placed
in single partitions. This might allow an asynchronous propagation of updates to the secondary replicas
of each logical database partition, reducing the perceived transaction completion time, although Microsoft
papers do not explain whether synchronous or asynchronous propagation is used.

Asynchronous update propagation would provide a slightly relaxed consistency model, but this is still
compliant with the generalised [2] serialisable (and snapshot [20]) isolation levels (Recall that both iso-
lation levels –serialisable and snapshot– are supported in Microsoft SQL Server 2008 and SQL Azure

17



ensures compatibility with it.) Indeed, such implemented consistency model could be tagged as sequential
[60] since with an asynchronous passive replication it is easy to guarantee that all replicas see the same
sequence of updates, and those updates follow the FIFO order set by the primary.

A distributed commit protocol might be needed, but only in case of transactions that have needed to
access items placed in more than one database partition. This will not be the regular case in this system.

Several research papers have been published related to database management designs from Microsoft
for cloud deployments [66, 63] but it is unclear whether such designs perfectly match the current implemen-
tation of SQL Azure. Anyway, the system is commercially available, showing that its level of scalability is
adequate for the set of its target applications (mainly interested in SQL Server compatibility).

There are other prototypes or systems that share most of the aims of SQL Azure (support for ACID
SQL transactions using a relational model in a scalable data store). One of them is Relational Cloud
[36], whose main effort is placed on ensuring a perfect partitioning scheme in order to guarantee the best
performance levels once the regular workload for a given database is known. Therefore, that system uses a
new partitioning algorithm (inspired in that of [37]) and the resulting distribution considers both horizontal
and vertical partitioning.

9.6 VoltDB
VoltDB [93] and its previous prototype H-Store [54] have similar aims to those of SQL Azure: to maintain
a relational schema and ACID SQL transactions in a scalable data store. However, there is an important
difference between both proposals: SQL Azure is the data store for a cloud provider company, whilst
VoltDB is not targeted for cloud environments. This implies that virtualisation is not considered in the
VoltDB design.

As it has been already mentioned at the end of Section 6, VoltDB/H-Store follows the design recom-
mendations given in [88] for improving the scalability of relational DBMSs: horizontal partitioning, main-
memory storage, no resource control, no multi-threading, shared-nothing architecture (complemented with
partitioning) and high-availability (replication).

As in most of the systems described previously in Section 9 one of the key characteristics to enhance
scalability is a perfect database partitioning. VoltDB also shares this requirement. Once the set of transac-
tions that the target applications need is known, a horizontal data partitioning criterion is used. With this,
distributed commit protocols are not needed and the required distributed coordination efforts are minimal:
they only consist in monitoring the state of each node, reacting to node failures.

Local concurrency control mechanisms are also avoided. To this end, multi-threading is discarded
and all transactions are served sequentially. Since most modern applications are not interactive, their
transactions can be implemented as stored procedures and executed directly from begin to end without any
pause. Since one of the other recommendations given in [88] is to deploy the database in main-memory
storage, transaction completion time is minimal and high availability is ensured through active replication.
To this end, the same stored procedure is invoked in all replicas of the involved database partition at once,
being locally executed in each of them and avoiding any update propagation among them.

According to some performance results [73] for OLAP workloads, the scalability levels of this kind of
systems is promising.

On the other hand, at a glance, it seems that such good performance levels might only be achieved for
specific kinds of transactions. Since concurrency is avoided in this architecture, a workload dominated
by long transactions would be difficult to manage in this architecture, whilst it would not introduce any
problem in some other systems studied in this survey (that tolerate concurrency without danger). Despite
this, the VoltDB architecture illustrates that there are multiple ways to achieve a given objective (SQL
transactions in a scalable system) and that all of them make sense.

As a related work, it is worth noting the existence of the C-Store [86] proposal that shares some of the
characteristics of the H-Store and VoltDB systems, but introducing an important difference: partitioning is
vertical instead of horizontal. So, C-Store proposes a column-oriented partitioning aiming at query optimi-
sation (instead of write optimisations, as done in regular relational database systems). It still maintains a
relational schema, but data is partitioned, indexed and stored in order to rapidly answer the typical queries
existent in the (known) applications that should access those data. A given column may be stored multiple
times, in different projection sets (one per important query to be answered). So, replication is implicit in

18



this storage model. Write operations, despite not being the main focus in this system, are also fast. To this
end, insertions are first made in a separate row-oriented writeable store (WS), being later moved and in-
dexed into the “regular” column-oriented read-optimised store (RS) of this system. This architecture shows
that the relational model could still be adapted to and used when query optimisation is the main objective.

9.7 Summary and Possible New Trends
Multiple scalable data storing systems have been cited in this paper. Most of them have been able to
implement the mechanisms (fully or, at least, partially) recommended in order to ensure good levels of
horizontal scalability.

The key principle followed by all these mechanisms is to avoid distributed coordination as much as
possible. Indeed, this had already been recommended by distributed system textbooks (e.g., [89]) as the
key for designing decentralised algorithms, that are necessary if scalability is the aim.

Unfortunately, when coordination is reduced, some troubles may arise. The first is an excessively
relaxed consistency model, that may introduce some difficulties for developing correct programmes [49].
Hopefully, the data store is not the single component of a cloud system and other complementary layers are
able to ensure a usable consistency level, as it has been compared and surveyed in [94]. The second trouble
consists in providing a programming interface that was not adequate for all user applications. Thus, whilst
simple update operations and a map-reduce query paradigm are easily parallelised and ensure impressive
performance levels, not all web-based applications may follow such model and some of them still require
regular ACID transactions to interact with data. Because of this, some systems (already described in
Sections 9.3 to 9.6) or architectural layers [26] have given a traditional SQL programming interface.

At a glance, the performance and scalability bounds of key-value stores seem to be higher than those of
SQL-compliant systems. Indeed, the former are able to directly implement more scalability mechanisms
than the latter. However, we have found a single paper [55] comparing the performance of some of these
systems, and it shows that there are not significant differences among SQL Azure and the Amazon’s stor-
age (although the latter was deployed directly on its distributed file system S3 [8] that shares most of its
characteristics with the Dynamo research prototype). Both systems are far better than other configurations
where regular relational DBMSs were used as the underlying cloud storage system, even in the Amazon’s
cloud architecture.

Regarding possible new trends in scalability mechanisms, we have to state again that the driving prin-
ciples consist in (a) limiting coordination needs and (b) eliminating any local barriers that could enlarge
operation service time in each node. All the mechanisms presented in our paper try to comply with ei-
ther one or both principles. So, any additional scalability mechanisms should be complementary to those
already presented.

A possible research line in this field is related to how to ensure local data persistency incurring in min-
imal delays. We have already seen how to reduce writing costs using immutable entities, leading to entity
versioning and log-based file systems. This approach was already recommended in [43] and implemented
in several systems (e.g., Bigtable [31], GFS [44], Cassandra [59], . . . ). However, some systems (e.g., the
SwissBox [7] architecture with its Crescando [45] storage system, H-Store [54] and Cloudy [56]) have
gone one step beyond and they are able to implement the storage layer in main-memory. Therefore, they
need to have multiple replicas of each data item in order to ensure persistency in case of failure, and this re-
quires a non-negligible coordination effort in order to propagate the updates. So, this design has eliminated
local delays but it has also re-introduced communication needs (but such update propagation steps are also
needed in all other scalable systems, since high availability is always a must). Hopefully, some new storing
technologies are emerging (as Phase-Change Memory [32]) that ensure persistency with an access time
similar to that of current RAM. This will provide a solution to what is looked for in this research line, but
at the expense of a database manager redesign [32].

Finally, another interesting research line that complements pure scalability mechanisms is that of con-
figurability; i.e., to be able to adapt a data storage system to the requirements of each application besides
ensuring a high scalability. To this end, a modular architecture is needed, and the Cloudy [56] system is a
good starting example for this trend. Cloudy is able to provide three different APIs: Key/Value, SQL, and
XQuery; three different kinds of storage: main-memory hash maps, Berkeley DB, or MXQuery; and to ac-
cept different policies for managing other of its modules: routing, partitioning, consistency, load-balancing,

19



etc. Therefore, the selection of appropriate choices for each module seems easy, and the resulting data man-
agement could be tailored to the requirements of each application. Most of the policies and mechanisms
described in that system match the recommendations outlined in our paper.

10 Conclusions
The current paper discusses which are the essential mechanisms in order to improve the scalability of
persistent data storing services. It describes such mechanisms and provides some pointers to systems and
research papers that have adopted them or have proposed other complementary techniques.

We have identified two main principles: (1) to reduce distributed coordination to a minimum and (2)
to eliminate any sources of delay in local operation service. Those principles are concreted in a series
of scalability mechanisms that should be implemented in data storing systems. These mechanisms are:
(1) to replicate data in order to improve read access parallelisation, (2) to partition the database in order
to increase update access concurrency, (3) to relax the resulting replica consistency in order to ensure
network-partition tolerance, (4) to use simple operations in order to reduce concurrency control efforts, (5)
to use simple schemas in order to reduce the dependency on elaborate indexing techniques and to eliminate
the need of join operations, and (6) to bound coordination for directly achieving the first stated principle.

Most key-value stores are able to directly implement all these recommended mechanisms, but provide
a data consistency model that might be too relaxed, needing special care for programming using it [49].
Additionally, simple operations and schemas seem to prohibit the usage of ACID transactions and relational
stores. So, other systems were designed trying to by-pass some of these mechanisms but still achieving
comparable levels of scalability. We have presented a short summary of each of these systems, providing
references that would be useful to deepen in the knowledge of this field.

Acknowledgements
This work has been partially supported by EU FEDER and Spanish MICINN under research grant TIN2009-
14460-C03-01. The authors are grateful to M. Idoia Ruiz-Fuertes, Leticia Pascual-Miret, Emili Miedes and
J. Enrique Armendáriz-Íñigo for their comments on preliminary versions of this paper.

References
[1] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-stores: how different

are they really? In Intnl. Conf. on Mngmnt. of Data (SIGMOD), pages 967–980, New York, NY, USA,
2008. ACM Press.

[2] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized isolation level definitions. In 16th
Intnl. Conf. on Data Eng. (ICDE), pages 67–78, San Diego, CA, USA, March 2000. IEEE-CS Press.

[3] Divyakant Agrawal, Gustavo Alonso, Amr El Abbadi, and Ioana Stanoi. Exploiting atomic broadcast
in replicated databases. In 3rd Intnl. Euro-Par Conf., volume 1300 of Lect. Notes Comput. Sc., pages
496–503, Passau, Germany, 1997. Springer.

[4] Divyakant Agrawal, Amr El Abbadi, Shyam Antony, and Sudipto Das. Data management challenges
in cloud computing infrastructures. In 6th Intnl. Wshop. on Databases in Networked Information
Systems (DNIS), pages 1–10, Aizu-Wakamatsu, Japan, March 2010.

[5] Marcos Kawazoe Aguilera, Arif Merchant, Mehul A. Shah, Alistair C. Veitch, and Christos T. Kara-
manolis. Sinfonia: A new paradigm for building scalable distributed systems. ACM Trans. Comput.
Syst., 27(3), 2009.

[6] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal memory:
Definitions, implementation, and programming. Distr. Comput., 9(1):37–49, 1995.

20



[7] Gustavo Alonso, Daniel Kossmann, and Timothy Roscoe. SwissBox: An architecture for data pro-
cessing appliances. In 5th Biennial Conf. on Innovative Data Systems Research (CIDR), pages 32–37,
Asilomar, CA, USA, January 2011.

[8] Amazon Web Services LLC. Amazon simple storage service (S3). URL: http://aws.amazon.com/s3/,
March 2011.

[9] Amazon Web Services LLC. Amazon SimpleDB. URL: http://aws.amazon.com/simpledb/, 2011.

[10] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv., 36:335–371, December 2004.

[11] Apache Software Foundation. The Apache Cassandra project. URL: http://cassandra.apache.org,
2011.

[12] Apache Software Foundation. The Apache CouchDB project. URL: http://couchdb.apache.org, 2011.

[13] Apache Software Foundation. Apache Hadoop wiki. URL: http://wiki.apache.org/hadoop/, April
2011.

[14] Apache Software Foundation. The Apache HBase book. URL: http://hbase.apache.org/book/, April
2011.

[15] Apache Software Foundation. Hadoop map reduce project. URL:
http://hadoop.apache.org/mapreduce/, April 2011.

[16] Hagit Attiya. Robust simulation of shared memory - 20 years after. Bull. EATCS, (100):100–114,
February 2010.

[17] Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin, James Larson, Jean-
Michel Léon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In 5th Biennial Conf. on Innovative Data Systems
Research (CIDR), pages 223–234, Asilomar, CA, USA, January 2011.

[18] Roberto Baldoni, Carlo Marchetti, and Alessandro Termini. Active software replication through a
three-tier approach. In 21st Symp. on Reliab. Distrib. Sys. (SRDS), pages 109–118, Osaka, Japan,
October 2002. IEEE-CS Press.

[19] Basho Technologies, Inc. An introduction to Riak. URL: http://wiki.basho.com/An-Introduction-to-
Riak.html, 2011.

[20] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and Patrick E. O’Neil.
A critique of ANSI SQL isolation levels. In Intnl. Conf. on Mgmnt. of Data (SIGMOD), pages 1–10,
San José, CA, USA, May 1995. ACM Press.

[21] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

[22] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder - a transactional record manager for
shared flash. In 5th Biennial Conf. on Innovative Data Systems Research (CIDR), pages 9–20, Asilo-
mar, CA, USA, January 2011.

[23] Philip A. Bernstein, David W. Shipman, and James B. Rothnie Jr. Concurrency control in a system
for distributed databases (SDD-1). ACM Trans. Database Syst., 5(1):18–51, 1980.

[24] Philippe Bonnet and Luc Bouganim. Flash device support for database management. In 5th Biennial
Conf. on Innovative Data Systems Research (CIDR), pages 1–8, Asilomar, CA, USA, January 2011.

[25] Sergio Bossa. Terrastore: A scalable, elastic, consistent document store.
http://code.google.com/p/terrastore/, 2011.

21



[26] Matthias Brantner, Daniela Florescu, David A. Graf, Donald Kossmann, and Tim Kraska. Building
a database on S3. In Intnl. Conf. on Mngmnt. of Data (SIGMOD), pages 251–264, Vancouver, BC,
Canada, June 2008. ACM Press.

[27] Yuri Breitbart and Henry F. Korth. Replication and consistency: being lazy helps sometimes. In 16th
ACM Symp. on Princ. of Database Sys. (PODS), PODS ’97, pages 173–184, New York, NY, USA,
1997. ACM.

[28] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Optimal primary-backup pro-
tocols. In 6th Intnl. Wshop. on Distr. Alg. (WDAG), volume 647 of Lect. Notes Comput. Sc., pages
362–378, Haifa, Israel, 1992. Springer.

[29] Michael Burrows. The Chubby lock service for loosely-coupled distributed systems. In 7th Symp.
on Operat. Sys. Design and Implem. (OSDI), pages 335–350, Seattle, WA, USA, November 2006.
USENIX Assoc.

[30] David G. Campbell, Gopal Kakivaya, and Nigel Ellis. Extreme scale with full SQL language support
in Microsoft SQL Azure. In Intnl. Conf. on Mngmnt. of Data (SIGMOD), pages 1021–1024, New
York, NY, USA, 2010. ACM.

[31] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Bur-
rows, Tushar Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A distributed storage system for
structured data. In 7th Symp. on Operat. Sys. Design and Implem. (OSDI), pages 205–218, Seattle,
WA, USA, November 2006. USENIX Assoc.

[32] Shimin Chen, Phillip Gibbons, and Suman Nath. Rethinking database algorithms for phase-change
memory. In 5th Biennial Conf. on Innovative Data Systems Research (CIDR), pages 21–31, Asilomar,
CA, USA, January 2011.

[33] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a com-
prehensive study. ACM Comput. Surv., 33(4):427–469, 2001.

[34] Brian F. Cooper, Eric Baldeschwieler, Rodrigo Fonseca, James J. Kistler, P. P. S. Narayan, Chuck
Neerdaels, Toby Negrin, Raghu Ramakrishnan, Adam Silberstein, Utkarsh Srivastava, and Raymie
Stata. Building a cloud for Yahoo! IEEE Data Eng. Bull., 32(1):36–43, 2009.

[35] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. PVLDB, 1(2):1277–1288, 2008.

[36] Carlo Curino, Evan P. C. Jones, Raluca Ada Popa, Nirmesh Malviya, Eugene Wu, Sam Madden, Hari
Balakrishnan, and Nickolai Zeldovich. Relational cloud: A database-as-a-service for the cloud. In 5th
Biennial Conf. on Innovative Data Systems Research (CIDR), pages 235–240, Asilomar, CA, USA,
January 2011.

[37] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. Schism: a workload-driven
approach to database replication and partitioning. PVLDB, 3(1):48–57, 2010.

[38] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: An elastic transactional data store
in the cloud. CoRR, abs/1008.3751, 2010.

[39] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store: a scalable data store for transactional
multi key access in the cloud. In 1st ACM Symposium on Cloud Computing (SoCC), pages 163–174,
Indianapolis, Indiana, USA, June 2010.

[40] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters. In 6th
Simp. on Operat. Syst. Design and Impl. (OSDI), pages 137–150, San Francisco, CA, USA, December
2004. USENIX Assoc.

22



[41] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Laksh-
man, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
Amazon’s highly available key-value store. In 21st ACM Symp. on Operat. Sys. Princ. (SOSP), pages
205–220, Stevenson, Washington, USA, October 2007.

[42] David J. DeWitt, Shahram Ghandeharizadeh, Donovan A. Schneider, Allan Bricker, Hui-I Hsiao, and
Rick Rasmussen. The Gamma database machine project. IEEE Trans. Knowl. Data Eng., 2(1):44–62,
1990.

[43] Shel Finkelstein, Dean Jacobs, and Rainer Brendle. Principles for inconsistency. In 4th Biennial
Conference on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, January 2009.

[44] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In 19th ACM
Symp. on Operat. Sys. Princ. (SOSP), pages 29–43, Bolton Landing, NY, USA, October 2003.

[45] Georgios Giannikis, Philipp Unterbrunner, Jeremy Meyer, Gustavo Alonso, Dietmar Fauser, and Don-
ald Kossmann. Crescando. In Intnl. Conf. on Mngmnt. of Data (SIGMOD), pages 1227–1230, Indi-
anapolis, Indiana, USA, June 2010. ACM Press.

[46] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[47] James R. Goodman. Cache consistency and sequential consistency. Technical Report 61, SCI Com-
mittee, March 1989.

[48] Pat Helland. Life beyond distributed transactions: an apostate’s opinion. In 3rd Biennial Conference
on Innovative Data Systems Research (CIDR), pages 132–141, Asilomar, CA, USA, January 2007.

[49] Pat Helland and David Campbell. Building on quicksand. In 4th Biennial Conference on Innovative
Data Systems Research (CIDR), Asilomar, CA, USA, January 2009.

[50] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[51] Hypertable, Inc. Hypertable. http://www.hypertable.org, 2011.

[52] Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, Gustavo Alonso, and Bettina Kemme. Are quorums
an alternative for data replication? ACM Trans. Database Syst., 28(3):257–294, 2003.

[53] Flavio Paiva Junqueira and Benjamin Reed. The life and times of a ZooKeeper. In 28th Annual ACM
Symp. on Princ. of Distrib. Comp. (PODC), page 4, Calgary, Alberta, Canada, August 2009. ACM
Press.

[54] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stanley B. Zdonik,
Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J.
Abadi. H-store: a high-performance, distributed main memory transaction processing system.
PVLDB, 1(2):1496–1499, 2008.

[55] Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative architectures for
transaction processing in the cloud. In Intnl. Conf. on Mngmnt. of Data (SIGMOD), pages 579–590,
Indianapolis, Indiana, USA, June 2010. ACM Press.

[56] Donald Kossmann, Tim Kraska, Simon Loesing, Stephan Merkli, Raman Mittal, and Flavio
Pfaffhauser. Cloudy: A modular cloud storage system. PVLDB, 3(2):1533–1536, 2010.

[57] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. Consistency rationing in the
cloud: Pay only when it matters. PVLDB, 2(1):253–264, 2009.

23



[58] Konstantinos Krikellas, Sameh Elnikety, Zografoula Vagena, and Orion Hodson. Strongly consistent
replication for a bargain. In 26th Intnl. Conf. on Data Eng. (ICDE), pages 52–63, Long Beach, CA,
USA, March 2010. IEEE-CS Press.

[59] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system. Oper-
ating Systems Review, 44(2):35–40, 2010.

[60] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess pro-
grams. IEEE Trans. Computers, 28(9):690–691, 1979.

[61] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.

[62] Butler W. Lampson. Atomic transactions. In Advanced Course: Distributed Systems, volume 105 of
Lect. Notes Comput. Sc., pages 246–265. Springer, 1980.

[63] Justin J. Levandoski, David Lomet, Mohamed F. Mokbel, and Kevin Keliang Zhao. Deuteronomy:
Transaction support for cloud data. In 5th Biennial Conf. on Innovative Data Systems Research
(CIDR), pages 123–133, Asilomar, CA, USA, January 2011.

[64] Richard J. Lipton and Jonathan S. Sandberg. PRAM: A scalable shared memory. Technical Report
CS-TR-180-88, Princeton University, September 1988.

[65] Ziyang Liu, Bin He, Hui-I Hsiao, and Yi Chen. Efficient and scalable data evolution with column
oriented databases. In 14th Intnl. Conf. on Extend. Database Techn. (EDBT), pages 105–116, New
York, NY, USA, 2011. ACM Press.

[66] David B. Lomet, Alan Fekete, Gerhard Weikum, and Michael J. Zwilling. Unbundling transaction
services in the cloud. In 4th Biennial Conference on Innovative Data Systems Research (CIDR),
Asilomar, CA, USA, January 2009.

[67] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. Thekkath, and Lidong Zhou. Box-
wood: Abstractions as the foundation for storage infrastructure. In 6th Simp. on Operat. Syst. Design
and Impl. (OSDI), pages 105–120, San Francisco, CA, USA, December 2004. USENIX Assoc.

[68] Francisco Maia, José Enrique Armendáriz-Íñigo, Marı́a Idoia Ruiz-Fuertes, and Rui Oliveira. Scal-
able transactions in the cloud: Partitioning revisited. In 12th Intnl. Symp. on Distrib. Obj., Middle-
ware and Appl. (DOA), volume 6427 of Lect. Notes Comput. Sc., pages 785–787, Hersonissos, Crete,
Greece, October 2010. Springer.

[69] Microsoft Corp. Windows Azure: Microsoft’s cloud services platform. URL:
http://www.microsoft.com/windowsazure/, March 2011.

[70] David Mosberger. Memory consistency models. Operating Systems Review, 27(1):18–26, 1993.

[71] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. Pig
latin: a not-so-foreign language for data processing. In Intnl. Conf. on Mngmnt. of Data (SIGMOD),
pages 1099–1110, Vancouver, BC, Canada, June 2008. ACM Press.

[72] Marta Patiño-Martı́nez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso. MIDDLE-R:
Consistent database replication at the middleware level. ACM Trans. Comput. Syst., 23(4):375–423,
2005.

[73] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel Madden,
and Michael Stonebraker. A comparison of approaches to large-scale data analysis. In Intnl. Conf.
on Mngmnt. of Data (SIGMOD), pages 165–178, Providence, Rhode Island, USA, June 2009. ACM
Press.

[74] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the data: Parallel analysis
with Sawzall. Scientific Programming, 13(4):277–298, 2005.

24



[75] Eelco Plugge, Tim Hawkins, and Peter Membrey. The Definitive Guide to MongoDB: The NoSQL
Database for Cloud and Desktop Computing. Apress, Berkely, CA, USA, 1st edition, 2010.

[76] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured file
system. ACM Trans. Comput. Syst., 10(1):26–52, 1992.

[77] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, 1990.

[78] Lutz Schubert. The future of cloud computing: Opportunities for European cloud computing beyond
2010. Expert Group Report, January 2010. European Commission, Information Society and Media.

[79] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Scalaris: Reliable transactional P2P
key/value store. In 7th ACM SIGPLAN Wshop. on Erlang, pages 41–48, New York, NY, USA, 2008.
ACM.

[80] Kurt A. Shoens. Data sharing vs. partitioning for capacity and availability. IEEE Database Eng. Bull.,
9(1):10–16, 1986.

[81] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop distributed
file system. In 26th IEEE Conf. on Mass Storage Syst. and Techn. (MSST), Incline Village, NV, USA,
May 2010. IEEE-CS Press.

[82] Dale Skeen. Nonblocking commit protocols. In Intnl. Conf. on Mngmnt. of Data (SIGMOD), pages
133–142. ACM Press, April 1981.

[83] SNA LinkedIn Team. Project Voldemort web site. http://project-voldemort.com/, 2011.

[84] Michael Stonebraker. The case for shared nothing. IEEE Database Eng. Bull., 9(1):4–9, 1986.

[85] Michael Stonebraker. SQL databases v. NoSQL databases. Commun. ACM, 53(4):10–11, April 2010.

[86] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel Fer-
reira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alex
Rasin, Nga Tran, and Stanley B. Zdonik. C-Store: A column-oriented DBMS. In 31st Intnl. Conf. on
Very Large Data Bases (VLDB), pages 553–564, Trondheim, Norway, August 2005. ACM Press.

[87] Michael Stonebraker and Rick Cattell. Ten rules for scalable performance in ”simple operation”
datastores. Commun. ACM, 54(6), June 2011.

[88] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil Hachem, and
Pat Helland. The end of an architectural era (it’s time for a complete rewrite). In 33rd Intnl. Conf. on
Very Large Data Bases (VLDB), pages 1150–1160, Vienna, Austria, September 2007. ACM Press.

[89] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.

[90] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and Brent B.
Welch. Session guarantees for weakly consistent replicated data. In 3rd Intnl. Conf. Paral. and
Distrib. Inform. Sys. (PDIS), pages 140–149, Austin, Texas, USA, September 1994. IEEE-CS Press.

[91] Luis Miguel Vaquero, Luis Rodero-Merino, Juan Cáceres, and Maik A. Lindner. A break in the
clouds: towards a cloud definition. Computer Communication Review, 39(1):50–55, 2009.

[92] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009.

[93] VoltDB, Inc. VoltDB technical overview: Next generation open-source SQL
database with ACID for fast-scaling OLTP applications. Downloadable from:
http://voltdb.com/ pdf/VoltDBTechnicalOverviewWhitePaper.pdf, May 2010.

25



[94] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data consistency properties and
the trade-offs in commercial cloud storages: The consumers’ perspective. In 5th Biennial Conf. on
Innovative Data Systems Research (CIDR), pages 134–143, Asilomar, CA, USA, January 2011.

[95] Matthias Wiesmann and André Schiper. Comparison of database replication techniques based on total
order broadcast. IEEE Trans. Knowl. Data Eng., 17(4):551–566, 2005.

[96] Eugene Wu, Carlo Curino, and Samuel Madden. No bits left behind. In 5th Biennial Conf. on
Innovative Data Systems Research (CIDR), pages 187–190, Asilomar, CA, USA, January 2011.

[97] Clement T. Yu and C. C. Chang. Distributed query processing. ACM Comput. Surv., 16(4):399–433,
1984.

26


