
Replicated Database Systems under the Crash-Recovery

Failure Model: Correctness Conditions for 1-Copy Equivalence

J. R. Júarez-Rodŕıguez1, I. Arrieta-Salinas1, J. R. Gonźalez de Mend́ıvil 1, F. D. Muñoz-Escóı2

1Depto. de Ing. Mateḿatica e Inforḿatica 2 Inst. Univ. Mixto Tecnoĺogico de Inforḿatica
Univ. Pública de Navarra Univ. Politécnica de Valencia
31006 Pamplona, Spain 46022 Valencia, Spain

{jr.juarez,itziar.arrieta,mendivil}@unavarra.es fmunyoz@iti.upv.es

Technical Report TR-ITI-SIDI-2011/002

J.
R

.J
úa

re
z-

R
od

ŕıg
ue

ze
ta

l.:
R

e
p

lic
a

te
d

D
a

ta
b

a
se

S
ys

te
m

s
u

n
d

e
r

th
e

C
ra

sh
-R

e
co

ve
ry

Fa
ilu

re
M

o
d

e
l:

C
o

rr
e

ct
n

e
ss

C
o

n
d

iti
o

n
s

fo
r

1
-C

o
p

y
E

q
u

iv
a

le
n

ce
T

R
-I

T
I-

S
ID

I-
20

11
/0

02

Replicated Database Systems under the
Crash-Recovery Failure Model: Correctness Conditions for

1-Copy Equivalence

J. R. Júarez-Rodŕıguez1, I. Arrieta-Salinas1, J. R. Gonźalez de Mend́ıvil 1, F. D. Muñoz-Escóı2

1Depto. de Ing. Mateḿatica e Inforḿatica 2 Inst. Univ. Mixto Tecnoĺogico de Inforḿatica
Univ. Pública de Navarra Univ. Politécnica de Valencia
31006 Pamplona, Spain 46022 Valencia, Spain

Technical Report TR-ITI-SIDI-2011/002

e-mail:{jr.juarez,itziar.arrieta,mendivil}@unavarra.es fmunyoz@iti.upv.es

April 12, 2011

Abstract

The correct design and implementation of replicated database servers isa challenging task. A repli-
cation protocol has to ensure consistency among different data replicas even in case of failure, as well
as to retransmit lost data if a replica recovers after a failure. One-copyequivalence is the traditional
criterion to study the correctness of this kind of systems. Formal tecniques using simple and modular
models are necessary to provide clear specifications of distributed data systems, although they are rarely
used. In fact, up to our knowledge, no previous work has tried to gathermultiple isolation levels, integrity
constraints, crash failures and recovery in a same formal model. Thispaper presents a general frame-
work for modelling and verifying database replication schemes under thecrash-recovery failure model
that covers a wide range of protocols. Using this model, we introduce a one-copy equivalence notion,
in which transactions can be executed under different isolation levels, and we provide some criteria to
simplify the task of proving this equivalence for full replicated protocols.Additionally, these criteria are
also applicable to partial replication protocols.

1 Introduction

In the last years, high availability and load balancing in database servers have become increasingly im-
portant. The challenge in the design of these systems is to keep multiple copies of data items in differ-
ent physical locations despite failures. Most replicationtechniques usually follow a Read One Write All
(ROWA) approach: transactions read from one replica, whereas their write operations have to be applied
at all replicas. The primary copy approach is the easiest replication strategy, in which a replica, called
primary, is in charge of executing all the update transactions and the rest of replicas are used as backups
that can only perform read-only transactions. In contrast,the update everywhere strategy allows to perform
updates at any copy but makes coordination more complex. Several protocols are based on deferred-update
replication: each update transaction executes first all itsoperations in one replica, called delegate, and then
the write operations are propagated to all replicas.

In order to ensure consistency among replicas, transactionexecutions have to be synchronized. Latest
solutions of database replication [1, 9, 14, 17, 18, 19, 21, 25, 29, 33, 40] make use of Group Communication
Systems (GCS) to order transactions. These systems allow tokeep track of the active replicas and to
communicate using a variety of reliability and ordering properties, which are very useful for replication
and fault-tolerance.

1

When a server site fails, clients can redirect their transactions to another available one, but possibility
of recovering sites that have failed must exist. The recovery task basically consists in transferring the
information lost during the failure interval, from one or more active replicas to one or more recovering
sites, without interfering with the normal service of the system.

Motivation . When developing crash-recovery applications in a distributed system, its correctness must
be proven somehow. The correctness of replicated database systems is traditionally linked to the notion
of one-copy equivalence [8], since a user should see a replicated system working as a single database.
The main idea is that every transaction in the replicated system behaves as if it had been executed in a
logical copy of the database maintaining its isolation level and respecting the integrity constraints in case it
is committed. Currently, there exist different definitionsof the one-equivalence concept depending on the
concrete isolation level considered, such as one-copy serializability [8] or one-copy snapshot isolation [25].
Moreover, many one-copy equivalence definitions do not consider any liveness properties, which entails
that if no events occurred in the system, it would be considered as correct.

The adoption of formal design techniques to provide precisespecifications of the problem, their so-
lutions and proof of correctness is an important issue to be addressed, more so when the vast number of
algorithms and protocols for database replication shows usthe great complexity of the problem. It is highly
desirable to use a simple and compact mathematical model to provide clear specifications and formal ver-
ifications of the critical properties of distributed systems. Besides, system specifications should be clear
and modular enough to describe precisely all the aspects of acomplex distributed system. However, formal
methods and modular descriptions are rarely used in replicated database systems.

Several solutions have been proposed to provide data replication. These solutions usually assume only
a single isolation level and do not manage integrity constraints [2, 13, 14, 22, 25, 28, 29, 34]; a few works
support multiple isolation levels, but again without considering integrity constraints [6, 37]; and a last set
considers integrity constraints, but only related to either a replication protocol family [31, 35] or a single
isolation level [24]. Some of these works [2,24,25,33] consider also the effect of crash failures, but only a
few of them presents a strict formal model to reason about them. Besides, other works [5, 11, 18, 20] deal
with how to recover from replica failures, although they simply propose some recovery mechanisms and
do not provide any formal reasoning about their correctness.

Up to our knowledge, no previous work has tried to gather all these details together in a formal model.
Furthermore, many correctness proofs either do not consider failures or no strict formal proofs are pre-
sented. Besides, the correctness of the recovery process isnormally presented as a patch over the proof
for the replication protocol, although the recovery shouldbe actually integrated into the replication proto-
col. Usually, stronger conditions are assumed to simplify the study of failures, instead of considering the
peculiarities of the recovery process from the start.

Contributions . This paper tries to fill this void by presenting a general model for a replicated database
system under the crash-recover failure model that supportsboth multiple isolation levels and integrity con-
straints. The model considers a distributed system where each site has a local DBMS that guarantees the
ACID properties [16]. Afull replication model is followed; i.e., each replica holds a full copy of the
database and all replicas share the same schema. Transactions may be started at any time and any site, and
may read or write any item. In this model, transactions may beexecuted under any isolation level sup-
ported by the DBMSs. Thus, applications may combine sets of transactions with different isolation levels.
Moreover, databases admit the declaration of integrity constraints that must be respected by committed
transactions. Furthermore, this general model accommodates any kind of replication protocol that fulfills
a very simple set of properties, which most existing replication approaches actually do. With the aim to
provide a rigorous and modular specification, we make use of the I/O automaton model [26,27].

Using this general model, we provide the one-copy equivalence notion based on a legal relation that
transforms the behaviors of the replicated system, in whicha transaction is executed in different sites, into
a one-copy behavior, in which the transaction appears to be executed in a single database. Thus, to prove
the correctness of a particular solution, we only need to check whether it is possible to find this relation.
However, proving the correctness of a particular system in this way can be an arduous task; but it can be
simplified if some simple properties that the system behaviors have to fulfill are provided.

Thus, in order to narrow the gap between the implementation of replication and recovery protocols and
their formal proofs, this paper proposes a set of four correctness criteria, which are proven to be the nec-
essary and sufficient conditions to be imposed on a replicated database system (using ROWA replication)

2

supporting the crash-recover model for achieving one-copyequivalence. These criteria, consisting of both
safety and liveness properties, can serve as a basis for formally proving the correctness of protocols under
the considered model in a modular and well-defined way. Thesecriteria require that: (C1 - local transaction
progress) every transaction that starts in its delegate site eventually gives a termination response (commit-
ted or aborted) at some site of the system unless that site crashes; (C2 - uniform decision) if a transaction is
committed (aborted) at one site, then it cannot be aborted (committed) at other sites; (C3 - uniform prefix
order consistency) for every two distinct sites, the sequence of committed update transactions at one site
is a prefix of the sequence of the committed update transactions at the other site or vice versa providing
that the writesets of remote and local transactions are the same; and (C4 - non-contradiction) if a remote
transaction is committed, then it does not conflict with any of the transactions that were committed at its
delegate replica between the beginning and commitment of it. Although they are quite intuitive, they have
never been formalized or proved as valid for such a general model of data replication.

Related works. Previous works with a similar aim have not reached the levelof generality proposed
in this paper. Some works [3, 24] based on histories of operations executed on SI databases provide some
sufficient conditions for a replicated history of a ROWA system to be one-copy equivalent. Additionally,
in [24], integrity constraints and crash failures are also considered. However, failures are studied as a
separate case of the replication process and hence the replication and recovery processes are considered
individually although they are very interrelated. Anotherwork [38] based on TLA+ [23] provides a general
serializable database specification to study the serializability of deferred-update protocols. Thus, they
propose an abstract algorithm that makes it easy to think about sufficient and necessary requirements for
them to work correctly. Their system model is based on serializable databases and it does not consider
either integrity constraints nor crash failures. Finally,in [2], we tried to propose some criteria to achieve
the one-copy equivalence of a replicated database system, considering crash failures from the beginning,
but the system model was based on SI replicas and it did not consider integrity constraints. Nevertheless,
these criteria failed again to discuss the uncertainty of the crash failure despite its importance, which
requires every remote transaction not to conflict with any ofthe transactions that were committed at its
delegate replica.

Structure of the paper. The rest of this paper is organized as follows. Section 2 introduces the spec-
ification framework used throughout this work. Section 3 explains the basic definitions for understanding
single database systems by means of the specification of a generic single database system with no fail-
ures. In Section 4, the previous system is extended to support the crash-recover failure model. Section 5
presents the specification of an abstract replicated database system with the crash-recover model. Section 6
formalizes the notion of one-copy equivalence. Section 7 isdevoted to the correctness criteria that must
be imposed in order to achieve one-copy equivalence, along with the formal proof that shows that such
criteria are the necessary and sufficient conditions for obtaining one-copy equivalence. Section 8 extends
the model presented in previous sections to include partialreplication. Finally, Section 9 presents some
concluding remarks.

2 Specification Framework

This paper makes use of theI/O automaton model[27] with the aim to provide a rigorous framework. In
order to promote a modular design, each component is modeledas an I/O automaton module [27]. Each
moduleM is specified by its external signaturesig(M) and a set of behaviorsbehs(M) delimited by safety
and liveness properties.

The signature of a moduleM consists of two different kinds of actions that allowM to communicate
with other modules: input actions (in(M)) and output actions (out(M)). Thus,sig(M) = (in(M), out(M)).
The set comprising all the possible actions ofM is acts(M) = in(M) ∪ out(M).

An infinite (finite) behaviorβ of a moduleM is denoted byβ = π1 · π2...πm... (β = π1 · π2...πm)
with πi ∈ acts(M). The set of all acceptable behaviors ofM is denoted bybehs(M). We say thatπi is in
β if the i-th event inβ is πi, and thatπ is in β if there exists an indexk such thatπk = π andπk is in β.
For any0 ≤ j ≤ |β| (where|β| stands for the length ofβ), β(j) represents the finite prefix (denoted ’¹’)
of lengthj of β, i.e.,β(j) ¹ β and|β(j)| = j. By its definition,β(0) = empty. Moreover, we define a
function namedend() that returns the last element of a given sequence, e.g.,end(β(j)) = πj .

3

Let ϕ ⊆ acts(M), β|ϕ is the subsequence ofβ including only the actions ofϕ in β, i.e., β|ϕ =
πi1 · πi2 ...πik

... such thatπik
is in β andπik

∈ ϕ. Note that we can also use the original indexes of the
actions ofβ when describing the sequence of actions ofβ|ϕ. Whenϕ = acts(M ′) for a moduleM ′, we
simply writeβ|M ′.

In this paper, a replicated system is represented as the composition of a set of compatible modules [27].
A composition operation of several modulesMi whose signatures are compatible results in a module
M = Πi(Mi) which has a signature composed by the set ofMi signatures and a set of behaviorsbehs(M)
such that each behaviorβ ∈ behs(M) satisfies thatβ|Mi ∈ behs(Mi), i.e., the behavior of the composition
satisfies the properties of each of its components.

On the other hand, if a moduleM is a more detailed refinement of another moduleM ′, M must satisfy
M ′ in the sense thatsig(M)=sig(M ′) andbehs(M)⊆behs(M ′). Thus, the properties satisfied byM ′

will also be satisfied byM .
Finally, although some variables used in the properties of the behaviors may be unbounded, it is under-

stood that they are universally quantified in their domains for the entire scope of the formulas, unless we
explicitly specify them for a better comprehension.

3 Database System Model

This section presents the specification of a generic single database system with no failures, which is mod-
eled by means of a module denoted byDB(I, T). This module is needed for introducing some basic
definitions and notations which are used throughout this work.

3.1 Database Transactions

A databaseconsists of a set of items that can be accessed by concurrent transactions. LetI be the set of
database items. The identifier of each item is assumed to be unique. The set of possible values for each
itemx ∈ I is represented byVx.

Let T be the set of all possible transaction identifiers in any module, where the identifier of each
transaction is assumed to be unique. A transactiont ∈ T is a sequence of read and write operations
over the database items, starting with abegin operation (denoted byB(t)) and ending with anabort or
commit operation. Each operationop is actually a(request op,response op) pair. The response of a
commit operation corresponding to a transactiont is either acommitted or anaborted notification (C(t)
andA(t) respectively), whereas the response of anabort operation (i.e., a rollback request) always reports
anaborted notification.

If t completes a write operation on an itemx by setting its value tov and is committed afterwards, a
new version(x, v, t) is installed on the database. Thus, aversion(x, v, t) relates an itemx ∈ I to the value
v ∈ Vx installed by a committed transactiont ∈ T . Let V the set of all possible versions of the database.
For each itemx ∈ I, its initial version is the first version installed by the first committed transaction
creating it. The model assumes that several versions of the same data item can be available in the database.
Therefore, when a transaction completes a read operation onan itemx, it can get any version(x, v, t′) ∈ V
previously installed byt′.

An execution of a set of concurrent transactions over the database is usually represented by an inter-
leaved sequence of completed transaction operations. In order to delimit which of the executions are the
possible valid executions on the database, some obligations have to be imposed to define that set of correct
executions [8,32]. However, from a mathematical perspective, it is also possible to provide a complete de-
scription of the execution without specifying the sequenceof all individual operations for each transaction
in the execution. To this end, we can include certain parameters in the notification of commit and abort
operations, so as to obtain a complete semantic descriptionof each transaction. More precisely, each trans-
actiont that commits in a certain behavior must specify its readset (i.e. the set of versions read byt) and
its writeset (i.e. the set of versions installed byt). A transaction is said to be read-only in a behaviorβ if
its writeset is an empty set throughoutβ; otherwise, it is called an update transaction. Moreover, databases
require a certain amount of information to establish whether a transaction can be committed or not. This
control information may be the readset or the writeset themselves, it may be inferred from these sets (e.g.

4

the items of the writeset) or it may even be related with otherinformation of the execution. To represent this
information in a general way, we define a setE that contains all the possible control information elements,
which will depend on the kind of control information used.

Thus, the notification of a committed transactiont taking place in an execution is now denoted by
C(t, d), whered includes the setsd.rs ∈ 2V , d.ws ∈ 2V andd.inf ∈ E (which stand for the readset,
writeset and control information used for establishing whyt has been committed). In the following,D =
2V × 2V × E ; henced ∈ D.

It would also be possible to change the aborted notificationA(t) by A(t, c) where parameterc would
explain the abort cause oft. However, it is unnecessary in this paper.

3.2 A Generic Single Database Module

The moduleDB(I, T) is defined by its external action signature and the set of its possible behaviors,
behs(DB(I, T)). We omit(I, T) when it is clear in the context. The external signature ofDB is defined
in such a way thatin(DB) is arbitrary and{B(t), C(t, d), A(t) : t ∈ T , d ∈ D} ⊆ out(DB). By means
of B(t), theDB module notifies the beginning of a new transactiont. ActionsC(t, d) andA(t) represent
the database’s final decision on the transaction effects.

In the following, we present the main definitions used for restricting the set of possible behaviors of the
rest of modules specified in this paper.

Definition 3.1. (Well-formedness)

• A transactiont ∈ T is said to be well-formed in a behaviorβ ∈ behs(DB) if the sequenceβ|{B(t), A(t),
C(t, d) : d ∈ D} is a prefix of one of the following sequences:B(t) · C(t, d) for somed ∈ D, or
B(t) · A(t).

• A behaviorβ ∈ behs(DB) is said to be well-formed if everyt ∈ T is well-formed inβ.

If a behaviorβ ∈ behs(DB) is well-formed, then after the beginning of a transaction itcan only be
either committed or aborted, and such actions can only appear at most once inβ.

The database specification is based on the concept of committed state, also called snapshot. A snapshot
provides a view of the installed versions of the database items existing at a certain time in a behavior.

To determine the versions that comprise the snapshot, we define the log of a behavior for a certain set
of items. Given a writesetws ∈ 2V , and a subset of itemsIk ⊆ I, ws(Ik) represents the elements ofws
related to the items ofIk, i.e. ws(Ik) = {(x, v, t) : (x, v, t) ∈ ws ∧ x ∈ Ik}. The log ofDB for a subset
of itemsIk is defined as follows.

Definition 3.2. (Log of DB for Ik) Let β be a well-formed behavior ofDB(I, T) andIk be a subset of
I. For each prefixβ(j) of β, with 0 ≤ j ≤ |β|, the log ofβ(j) for the subset of itemsIk is defined as
log(β(j), Ik) = log(β(j − 1), Ik) · 〈d.ws(Ik)〉 ⇔ (πj = C(t, d) ∧ d.ws(Ik) 6= ∅ ∧ j > 0). Otherwise,
log(β(j), Ik) = log(β(j − 1), Ik), beinglog(β(0), Ik) = empty.

WhenIk = I, log(β(j), I) represents the sequence of writesets that were installed bythe all the
committed update transactions inβ(j). We can omit theIk parameter when representing the log for the
whole set of itemsI, i.e.,log(β(j)) = log(β(j), I).

By making use of the previous definition, the database snapshot is defined as the set of the latest
installed versions existing at a certain time in a behavior.

Definition 3.3. (Database Snapshot)Let β be a well-formed behavior ofDB. For each prefixβ(j) of β,
with 0 ≤ j ≤ |β|, the snapshot ofβ(j) is defined asS(β(j)) =

⋃

x∈I end(log(β(j), {x}))1.

Legal Database Behaviors. A database management system must guarantee all the ACID properties [15]
for each transaction. The log represents the set of versionsthat have been persistently installed on the
database, which can be seen as an abstraction of data durability. In order to guarantee atomicity, the model
establishes that aborted transactions must never interfere with committed transactions, i.e., the operations

1For simplicity reasons, it is assumed thatend(log(β(j), {x})) can be interpreted as a set. Thus,end(log(β(j), {x})) will only
contain the latest version of itemx, regardless of the number of versions ofx installed by a given writeset.

5

of aborted transactions are appropriately rolled back. Thepresented definitions satisfy atomicity. In addi-
tion, real database management systems admit the definitionof a variety of isolation levels under which
transactions can be executed, and it is also possible to specify a whole range of integrity constraints to
maintain data consistency. Instead of assuming a specific isolation level for each transaction, the presented
database model considers weak conditions from which multiple isolation levels can be derived (within the
limits of the proposed mathematical formulation). The definitions of predicatescompatible(), isolated()
andconsistent() allow us to achieve this degree of generality.

First, we define the semantic data of a transactiont in a behaviorβ by means of the following function,
which specifies the point at which the readset, writeset and control information of a transaction in a certain
behavior become meaningful and never change from then on.

Definition 3.4. Let δ : T × behs(DB) → D. Given a well-formed behaviorβ ∈ behs(DB) and a
transactiont ∈ T , thenδ(t, β) = d if and only ifC(t, d) is in β. Otherwise,δ(t, β) is undefined.

Definition 3.5. Let β be a well-formed behavior ofDB, t′, t ∈ T be two transactions andi, j be two
indexes ofβ such that0 ≤ i < j ≤ |β|:

• compatible(t, i, β(j)) ⇒
δ(t, β(j)).rs ⊆ (

⋃

i≤k≤j S(β(k))) ∪ δ(t, β(j)).ws
• isolated(t′, t, i, β(j)) ≡ ∃k : i < k < j : πk = C(t′, d′) ⇒ P (d′.inf, δ(t, β(j)).inf)
• consistent(t, β(j)) ≡ ∀z : Kz(S(β(j−1)), δ(t, β(j)).ws) whereKz() is an integrity constraint defined

in the database.

Predicatecompatible(t, i, β(j)) shows that the versions that can belong to the readsetδ(t, β(j)).rs
must have been installed on the database between indexesi andj of β or must be its own writesδ(t, β(j)).ws.

On the other hand,isolated(t′, t, i, β(j)) determines the conditions that may happen in the context of
a transactiont between indexesi andj of β with regard to another transactiont′ that may be concurrently
committed in that context. If those conditions happen, thent is able to reach the committed status (see Def-
inition 3.6 below). By its definition, ift′ is not committed betweeni andj, then it will never conflict with
t. Note that, in this case, the predicate becomes true. If thishappens for every transactiont′ ∈ T , it entails
thatt has been executed completely isolated from the rest of transactions betweeni andj. Otherwise, the
control information of the involved transactions will determine if their isolation level permits them to be
concurrently committed, by means ofP (d′.inf, δ(t, β(j)).inf) in isolated(t′, t, i, β(j)).

Finally, consistent(t, β(j)) holds if and only if the writeset oft, δ(t, β(j)).ws, does not infringe any
integrity constraint demanded by the database atj. Each constraint depends on the previous committed
state (snapshot) of the database and the writeset to be installed.

By making use of the aforementioned predicates, Definition 3.6 provides the obligations for every
committed transaction in alegal behavior.

Definition 3.6. (Legal Behavior)A well-formed behaviorβ ∈ behs(DB) is legal, if for eacht ∈ T such
thatπi = B(t) andπj = C(t, d) are inβ, the following conditions hold:

(a) compatible(t, i, β(j))
(b) isolated(t′, t, i, β(j)), for all t′ ∈ T
(c) consistent(t, β(j))

Thus, Definition 3.6 establishes that in a legal behavior, ifa transactiont is committed: (a) its readset
is obtained from the committed states seen within its context; (b) there is no other transactiont′ conflicting
with t; and (c) all the integrity constraints hold at the time the transaction is committed.

Table 1 shows several isolation levels that can be defined as particular cases of Definition 3.6.
The following example displays a legal behavior with concurrent transactions executed under different

isolation levels.

Example 1. Let us consider four update transactions{t1, t2, t3, t4} such thatt1 is executed under Weak
Read Committed,t2 under Snapshot Isolation,t3 under Dynamic-Serializable andt4 under Serial. Assum-
ing that transactions satisfy all the integrity constraints and are compatible, one of the possible behaviors
could be, as shown in Figure 1:

6

P (d′.inf, d.inf) in isolated(t′, t, i, β(j)) compatible(t, i, β(j))

Weak Read Committed [7] true d.rs ⊆
⋃

i≤k≤j
{S(β(k))} ∪ d.ws

Snapshot Isolation [14,25] items(d′.ws) ∩ items(d.ws) = ∅ d.rs ⊆ (S(β(i)) ∪ d.ws)

Dynamic-Serializable [14] items(d′.ws) ∩ (items(d.ws) ∪
items(d.rs)) = ∅

d.rs ⊆ (S(β(i)) ∪ d.ws)

Serial false d.rs ⊆ (S(β(i)) ∪ d.ws)

Table 1: Predicates depending on the isolation level considered (whereπi = B(t), πj = C(t, d) and
πk = C(t′, d′) are inβ with i < k < j)

B(t)1
β

(READ COMMITTED)t1

(SNAPSHOT ISOLATION)t2

(DYNAMIC SERIALIZABLE)t3

(SERIAL)t4

B(t)2 B(t)3 B(t)4 C(t ,d)2 A(t)4 C(t ,d)3 C(t ,d)1

1π 2ππ 3π 4π 5π 6π 7π 8π

3 12

Figure 1: Example of a behavior with transactions executed concurrently under different isolation levels.

⊲ β = B(t1) · B(t2) · B(t3) · B(t4) · C(t2, d2) · A(t4) · C(t3, d3) · C(t1, d1)
Since transactiont1 is executed under Weak Read Committed, itsisolated predicate is always true. As

for t2, which is executed under Snapshot Isolation,isolated(t′, t2, 2, β(5)) is also true, because there is no
transactiont′ that commits during its execution. Transactiont3, which runs under Dynamic-Serializable,
would makeisolated(t2, t3, 3, β(7)) false in caseitems(d2.ws) ∩ (items(d3.ws) ∪ items(d3.rs)) 6= ∅,
sinceπ5 = C(t2, d2). However, we can infer that there is no such intersection as both t2 and t3 are
committed. Finally,t4 can never be commited, asisolated(t2, t4, 4, β(6)) is false becauseπ5 = C(t2, d2).

3.3 Generalized Legal Behavior

The definition for legal behaviors can be generalized in a simple way to make it suitable for replicated set-
tings. In a generalized legal behavior, a transaction is allowed to perform operations with stale information
about database versions, as if it had been started before thetime it actually did. This idea was originally
introduced by [14] for Snapshot Isolation under the name of Generalized Snapshot Isolation. We extend
this notion to make it valid under other isolation levels.

Definition 3.7. (Generalized Legal Behavior)A well-formed behaviorβ ∈ behs(DB) is a generalized
legal behavior, if for eacht ∈ T such thatπi = B(t) andπj = C(t) are inβ, there exists0 ≤ s ≤ i such
that the following conditions hold:

(a) compatible(t, s, β(j))
(b) isolated(t′, t, s, β(j)), for all t′ ∈ T
(c) consistent(t, β(j))

4 A Crash-Recovery Database Module

The generic moduleDB(I, T) can be adapted to support the crash-recovery failure model.TheDBCR(I, T)
module, defined in Figure 2, hascrash andrecover as input actions. The new system is crash-prone: it

7

may fail and stop its execution at any time. Furthermore, thesystem may recover after crashing and resume
the execution of transactions.

• Signature:

in(DBCR) = {crash, recover}
out(DBCR) = {B(t), C(t, d), A(t) : t ∈ T , d ∈ D}

• A setbehs(DBCR) of behaviors such that everyβ ∈ behs(DBCR) is well-formed(Definition 3.1),
legal (Definition 3.6),progressive(Property 4.1), and fulfillsexecution integrity(Property 4.2).

Figure 2: ModuleDBCR(I, T)

Apart from being well-formed and legal, the behaviors ofDBCR must fulfill the following liveness
property, which states that if a transaction begins and doesnot provide any output, then the system must
have crashed.

Property 4.1. (Progressive Behavior)Every behaviorβ ∈ behs(DBCR) is progressive: for everyt ∈ T ,
πi = B(t) ⇒ ∃j : j > i : πj ∈ {C(t, d), A(t), crash : d ∈ D}.

Moreover, we need to adequately model the behavior of actions crash and recover, as specified
in Property 4.2.

Property 4.2. (Execution Integrity)Everyβ ∈ behs(DBCR) holds the two following conditions:

(a) πj = crash ⇒ (β = β(j) ∨ πj+1 = recover)
(b) πj = recover ⇒ πj−1 = crash

Property 4.2 ensures that: (a) after acrash action, either the system stops its activity and no further
actions are performed, or arecover action is executed after the system crashed to restart the system; and
(b) the immediate predecessor of arecover action is always acrash action. Thus, no actions can occur
between acrash and arecover action.

5 A Replicated Database System

This section provides the specification of an abstract replicated database system supporting the crash-
recovery failure model, namedRS. The components of theRS module are a group of databasesDBCR

n (I, T),
beingn ∈ N (whereN = {1..N} represents the set of site identifiers). All the databases inthe system
have the same set of itemsI and the same set of valuesVx for each itemx ∈ I, as well as the same
integrity constraints. Thus, they all have the same set of possible versionsV for the set of transactionsT .
Under these conditions,full database replicationis assumed. From this point onwards, we omitI andT
in DBCR

n (I, T).
The DBCR

n module is the same as theDBCR module of Section 4, with the only difference that,
since theDBCR

n is intended for replicated settings, its specification is subject to its site identifier, i.e.,
the actions of its signature are labeled with the site identifier. Thus,in(DBCR

n)={crashn, recovern};
out(DBCR

n)={Bn(t), Cn(t, d), An(t) : t ∈ T , d ∈ D}; and everyβ ∈ behs(DBCR
n) is well-formed,

legal, progressive and fulfills execution integrity.
The RS module results from the module composition [27] of the groupof DBCR

n modules:RS =
Πn∈NDBCR

n . Therefore, the signature ofRS has in(RS) =
(
⋃

n∈N in(DBCR
n)

)

and out(RS) =
(
⋃

n∈N out(DBCR
n)

)

as input and output actions.
The signature of theRS module is well-defined, as the signatures of the component modules are

compatible [27]. Moreover, by the definition of module composition, everyβ ∈ behs(RS) satisfies
β|DBCR

n ∈ behs(DBCR
n) .

Several works [10, 29, 36] point out the convenience of providing databases with extended features to
simplify the replication task. These features are modeled by the DBCR

n in an abstract way, regardless
of their implementation. Thus, in the resultingRS, the database at each site handles transactions with
independence from the rest of sites. As depicted in Figure 3,a replication protocol will be responsible

8

for coordinating them adequately, and a recovery protocol will manage sites that recover from a crash, so
that they can catch up with the rest of sites. By leaving the replication and recovery protocols in charge of
these tasks, theRS focuses on the valid behaviors that transactions can have, and hides the distribution and
communication issues that depend on the concrete implementation of the protocols.

RS

...

Replication & Recovery Protocols

recover
1

B
 (

t)
1

A
 (

t)
1

C
 (

t,
d
)

1
1

crash1

DB1
CR recover

2

B
 (

t)
2

A
 (

t)
2

C
 (

t,
d
)

2
2

crash2

DB2
CR recover

N

B
 (

t)
N

A
 (

t)
N

C
 (

t,
d
)

N
N

crashN

DBN
CR

Figure 3: Replicated Database System. Solid arrows indicate the observable actions of this model, whereas
dashed arrows represent hidden actions.

This paper focuses on protocols in which each transaction starts at a certain system site, calleddelegate
siteof that transaction, which is in charge of executing all readoperations. In contrast, the effects of write
operations of committed transactions must be applied at allsites (which entails that the writeset of each
transactiont is the same at all sites that committ). Similarly, the control information of a transaction in a
certain behavior is the same at all sites that commit that transaction.

Transactions are said to belocal transactionsat their respective delegate sites, andremote transactions
at the other sites. Each local transaction and all its associated remote transactions share the same transaction
identifier. In order to distinguish between local and remotetransactions, we assume a functionsite : T →
N such thatsite(t) (the delegate site oft) is unique:(site(t) = n ∧ site(t) = n′) ⇔ n = n′. There are
no further assumptions restricting the way in which local transactions can appear in the system; therefore,
they may begin anytime at any site and read/write any item under any isolation level.

We define a new module, namedRSP , which is a refinement of theRS. Hence,sig(RSP) = sig(RS)
andbehs(RSP) ⊆ behs(RS). The behaviors of theRSP module are restricted by Property 5.1, which
establishes the conditions that model the considered replication protocols. This property states that a remote
transaction can begin only after the corresponding local transaction began at the delegate site (thus avoiding
the spontaneous creation of remote transactions). Moreover, the semantic data regarding a transaction is
the same at all sites in which it is committed, with the exception of the readset (which is empty at remote
sites).

Property 5.1. (P : Protocol Abstraction)For every behaviorβ ∈ behs(RSP) and every transactiont ∈ T ,
the following conditions hold:

(a) πi = Bn(t) ⇒ ∃j : j ≤ i : πj = Bsite(t)(t)
(b) πi = Cn(t, d) ∧ πj = Cn′(t, d′) ⇒ d.ws = d′.ws ∧ d.inf = d′.inf
(c) πi = Cn(t, d) ∧ n 6= site(t) ⇒ d.rs = ∅

We now define the semantic data of a transactiont in a behavior of theRSP , which is the union of the
semantics oft at all system sites.

Definition 5.1. Given a behaviorβ ∈ behs(RSP) and a transactiont ∈ T , δ(t, β).rs =
⋃

n∈N (δ(t, β|DBCR
n).rs),

δ(t, β).ws =
⋃

n∈N (δ(t, β|DBCR
n).ws) andδ(t, β).inf =

⋃

n∈N (δ(t, β|DBCR
n).inf).

The following remark allows us to ignore read-only transactions for the rest of the paper.

Remark 5.1(Read-only transactions). If t is a read-only transaction, by its definition, ifCsite(t)(t, d) is in a
behavior of theRSP , it holds thatd.ws = ∅ (therefore it does not appear at the log ofsite(t)). Moreover,

9

by Property 5.1(b-c), for anyn 6= site(t), if Csite(t)(t, d
′) is in a behavior of theRS, thend′.rs =

d′.ws = ∅. However, in order for a read-only transactiont to be purely local,isolated(t, t′, i, β(j)) must
be true for anyt′. Assuming that read-only transactions never conflict with other transactions, no control
information has to be sent to remote transactions, thus theycan be executed locally. Consequently, read-
only transactions can be ignored. From now on, we consider that every transactiont ∈ T is an update
transaction.

TheRSP is just the composition ofN ≥ 1 databases with a basic property to model the replication
protocol abstraction. Since there are not any other global restrictions, any pattern is possible, e.g., although
a remote transaction is committed, its local transaction may be aborted or may not give any response
because of a crash. Therefore, other global conditions mustbe demanded in order to obtain a correct
replicated database system.

6 One-Copy Equivalence

The correctness criterion commonly used to prove that a replicated database system works correctly is
the one-copy equivalence notion [8]. Following this notion, a committed or aborted transaction is also
committed or aborted in the one-copy database, but if no response is produced for a transaction which
started in the replicated system because of a crash, then thesame happens in the one-copy database. In this
paper, the one-copy database attempts to provide an explanation for each transaction in a behavior of the
replicated system.

6.1 The 1CDB Module

The 1CDB module is defined in Figure 4. This module bears some similarity to the DBCR module
presented in Section 3. However, as the1CDB module represents a system withN replicas, instead of
the execution integrity specified by Property 4.2, the behaviors of the1CDB module must satisfy Prop-
erty 6.1, which models the occurrence ofcrash andrecover actions. It ensures that the number ofcrash
actions cannot be lower than the number ofrecover actions in any prefix of a behavior (i.e. everyrecover
must have a matchingcrash action that happened before, to represent that a replica recovers after having
crashed). Moreover, Property 6.1 states that the number ofcrash actions without a correspondingrecover
cannot be higher thanN (as there can be at mostN crashed replicas), and that when there areN crash
actions without a matchingrecover, the1CDB module cannot perform any more actions unless the next
action is arecover (thus representing that all replicas are crashed and one of them recovers, although in
the1CDB model there is no notion of system sites).

• Signature:

in(1CDB) = {crash, recover}
out(1CDB) = {B(t), A(t), C(t, d) : t ∈ T , d ∈ D}

• A set behs(1CDB) such that everyγ ∈ behs(1CDB) is a well-formed(Definition 3.1),gener-
alized legal(Definition 3.7),progressive(in the sense given in Property 4.1), andN-crash-stop
(Property 6.1) behavior.

Figure 4: Module 1CDB

Property 6.1. (N-crash-stop Behaviors)For every behaviorγ ∈ behs(1CDB), being#crash(γ(j)) =
|(γ(j)|{crash})| and #recover(γ(j)) = |(γ(j)|{recover})|, for any j : 0 ≤ j ≤ |γ|, the following
conditions hold:

• 0 ≤ #crash(γ(j)) − #recover(γ(j)) ≤ N
• #crash(γ(j)) − #recover(γ(j)) = N ⇒ (πj+1 = recover ∨ γ = γ(j))

Note also that the1CDB module considers generalized legal behaviors instead of legal behaviors. This
is due to the fact that a transaction that begins in a site may not see the most current versions of the database

10

items in the whole system, and the transaction may be committed locally by working with stale versions of
those items.

The1CDB module is the most abstract specification of a correct replicated database system. It does not
impose any conditions regarding its implementability. Forinstance, there are no restrictions on the number
of sites that may be simultaneously crashed. The additionalconditions imposed on replicated systems are
necessary to achieve one-copy equivalence, but are not partof the one-copy model itself.

6.2 One-copy Equivalence Definition

Given a list of conditionsϕ, theRSP
ϕ module is defined assig(RSP

ϕ)=sig(RSP) andbehs(RSP
ϕ)={β :

β ∈ behs(RSP) andβ satisfies all the conditions inϕ}. Any RSP
ϕ is called a (refined) module of the

RSP , sincebehs(RSP
ϕ) ⊆ behs(RSP).

TheRSP
ϕ module represents all possible systems that can be built using theRSP module as a basis.

We now have to state when anRSP
ϕ module is correct according to the notion of one-copy equivalence.

In an RSP
ϕ module, a transactiont ∈ T may appear inβ ∈ behs(RSP

ϕ) as either a local or a remote
transaction. However, in the1CDB module eacht ∈ T can only appear once without making reference
to any site. Thus, it is necessary to relate the actions of a transactiont in both modules and also their
semantics. Consequently, in order to study the one-copy equivalence we have to define a relation between
the behaviors of anRSP

ϕ and the1CDB.

Definition 6.1. (Legal Relation)LetRSP
ϕ be a refined module ofRSP . LetΓ be a relation inbehs(RSP

ϕ)

×behs(1CDB). Γ is a legal relation if for eachβ ∈ behs(RSP
ϕ) there exists at least oneγ ∈ behs(1CDB)

such that:

(1) δ(t, β) = δ(t, γ)
(2) ∃n ∈ N : Bn(t) is in β ⇔ B(t) is in γ
(3) ∃n ∈ N : Cn(t, d) is in β for somed ∈ D ⇔ C(t, d′) is in γ for somed′ ∈ D.
(4) ∃n ∈ N : An(t) is in β ⇔ A(t) is in γ
(5) |(β|{crashn : n ∈ N})| = |(γ|{crash})|
(6) |(β|{recovern : n ∈ N})| = |(γ|{recover})|

Note that, according to Definition 6.1(1), the semantic dataof a given transaction in behaviorsβ andγ
is the same. By the definition ofδ(t, β) and Property 5.1, it holds thatδ(t, β).ws = d.ws andδ(t, β).inf =
d.inf in caseCn(t, d) exists inβ. Moreover, ifn = site(t), δ(t, β).rs = d.rs. On the other hand, if a
transactiont is committed inγ, C(t, d′) will happen only once inγ, as it is well-formed. Thus,d′ must
contain all the semantic data oft, i.e. δ(t, γ) = d′.

To define the relation in a more general way, Definition 6.1 permits to choose arbitrarily the order of
the actions inγ regardless of the order established byβ for these actions. By its definition, the image of
β by the legal relationΓ , denotedΓ (β), satisfiesΓ (β) ⊆ behs(1CDB). Since transactions inγ ∈ Γ (β)
have the same readset, writeset and control information as in β, as well as the same isolation level as in
β, this legal relation can be somehow considered a general one-copy equivalence notion between a system
characterized bybehs(RSP

ϕ) and the1CDB module. This allows us to define the one-copy equivalence
between anRSP

ϕ module and the1CDB module.

Definition 6.2. (One-Copy Equivalence)Let RSP
ϕ be a refined module ofRSP . TheRSP

ϕ module is
one-copy equivalent to the1CDB module if and only if there exists a legal relationΓ ⊆ behs(RSP

ϕ) ×
behs(1CDB).

Figure 5 shows an example of a behaviorβ of anRSϕ module and a behaviorγ of the1CDB module
obtained fromβ. It is worth noting that a transactiont that begins in a siten that crashes before producing
a response fort can be committed (or aborted) after that transaction recovers (as in Figure 5, where site1
crashes before executingC1(t1, d

1
1)). In fact, when a siten crashes before executing theCn(t, d) action

for a pending transactiont, the model does not distinguish between the case whent was not committed in
n before it crashed and the case whent was actually committed butn crashed before producing a response.
The recovery protocol will be in charge of appropriately finishing transactions that were active before the

11

β

t1

t1 t2

B (t)1 1 B (t)2 1 crash 1 B (t)3 2

t2

t1

t1

t2

t3

B (t)3 1 C (t ,d)2 1 1 C (t ,d)3 1 1 C (t ,d)3 2 2
3

B (t)2 2 C (t ,d)2 2 2 recover 1 B (t)3 3 crash 3C (t ,d)1 1 1 B (t)1 2 C (t ,d)1 2 2

γ
B(t)1 crash B(t)2C(t ,δ(t ,β))1 1 C(t ,δ(t ,β))2 2 recover B(t)3 crash

2 3 2 1 1

t4

C (t ,d)1 4 4
1

B (t)1 4

t4

B (t)2 4 C (t ,d)2 4 4
2

B(t)4 C (t ,δ(t ,β))4 4

Figure 5: Example of a behaviorβ ∈ behs(RSP) and its corresponding one-copy equivalent behavior
γ ∈ Γ (β).

site crashed (e.g. if messages corresponding to pending transactions are persistently delivered [30], the
recovery protocol will be able to apply transactions that were delivered at the replica but were not applied
before crashing, by accessing the queue of delivered messages).

7 Correctness Criteria

This section details the set of conditionsϕ that must be fulfilled by the behaviors of theRSP
ϕ module

to provide one-copy equivalence (see Definition 6.2). As it will be proven, the proposed conditions are
necessary and sufficient to guarantee one-copy equivalence. For this reason, they are correctness criteria.

Criterion 1 (C1: Local Transaction Progress). Let β ∈ behs(RSP), it holds thatπi = Bsite(t)(t) ⇒
∃n : n ∈ N : ∃ k : k > i : πk ∈ {Cn(t, d), An(t), crashn : d ∈ D}

Criterion C1 indicates that if a transaction begins, then itwill be committed or aborted at least at one
site, or that site will crash otherwise. This liveness criterion entails that if a transaction begins and does
not provide any output then there must have been at least one crash in the system. Note that every formal
specification requires such kind of properties, since a system in which nothing happens is always safe.

Criterion 2 (C2: Non-Contradictory Decision). Letβ ∈ behs(RSP), it holds that¬(πi = Cn(t, d)∧πj =
An′(t)) in β, for anyt ∈ T , d ∈ D andn, n′ ∈ N .

Criterion C2 states that if a transaction is committed (aborted) at one site, either correct or faulty, it
cannot be aborted (committed) at any site. Thus, C2 guarantees that the decision on the outcome of a
transaction is not contradictory in the system.

Criterion 3 (C3: Uniform Prefix Order Consistency). Let β ∈ behs(RSP). For everyβ(j) ¹ β, it holds
that log(β(j)|DBCR

n) ¹ log(β(j)|DBCR
n′) or vice versa.

Criterion C3 forces the system to build the same snapshots atall the databases. If a database fails, this
criterion ensures that the last installed snapshot is also avalid snapshot for the rest of correct sites.

When it comes to considering crash failures, the previous criteria may not prevent some undesirable
behaviors. For example, if a local transactiont was going to be aborted locally by another conflicting
transaction, but the delegate site crashed before producing the abort notification, a remote transaction of
t may be committed at other site. Criterion C4 avoids such behaviors by ensuring that the behavior of
remote transactions is equivalent to that of their local transactions even if the local ones fail to notify their
termination. To simplify the formulation, we definelast(i, n, β) as the last transaction that committed in a
siten before an actionπi in a behaviorβ ∈ behs(RSP).

Definition 7.1 (Last Transaction). Let β be a behavior ofRSP . The last committed transaction ofβ at a
siten beforeπi is defined aslast(i, n, β) = tlast if and only if∃ j : j < i : πj = Cn(tlast, d) (for some
d ∈ D) ∧∀ k : j < k < i : πk /∈ {Cn(t, d′) : t ∈ T, d′ ∈ D}. Otherwise,last(i, n, β) = f0.

By Definition 7.1, either there exists a transactiontlast which is the last committed one just before
actionπi in β, or there does not exist a previous committed transaction yet. In the latter case, in order to

12

simplify some of the proofs, we assume that for alln ∈ N , if πj = Cn(f0) thenj = 0; i.e., a fictitious
transactionf0 has been committed at every site at the initial point.

Criterion 4 (C4: Remote Equivalence). Let β ∈ behs(RSP), it holds thatπi = Bsite(t)(t) ∧ πj =
Cn′(last(i, site(t), β), d′) ∧ πk = Cn′(t, d) ∧n′ 6= site(t) ⇒∀ t′′ ∈ T : isolated(t′′, t, j, β(k)|DBCR

n′).

It is worth noting that Criterion C4 is only necessary when isolation levels may cause conflicts.
We denote byRSP

CC the moduleRSP
ϕ whose behaviors satisfy C1-C4. Such criteria are proven to be

the necessary and sufficient conditions that must be imposedon theRSP to be one-copy equivalent to the
1CDB module in the next subsections.

7.1 Proof of Necessity

In order to study whether Criteria C1-C4 are necessary conditions to get the1CDB equivalent system, we
assume the existence of a legal relationΓ such that a refined module ofRSP is one-copy equivalent to
1CDB, and prove by contradiction that such equivalence is not possible when supposing that each criterion
does not hold.

Theorem 7.1. Let RSP
ϕ be a refined module ofRSP . If either C1, C2, C3 orC4 does not hold for

behs(RSP
ϕ), thenRSP

ϕ is not one-copy equivalent to1CDB.

Proof. We prove that when any of the correctness criteria does not hold, there exists no legal relationΓ
(so by Definition 6.2RSP

ϕ is not one-copy equivalent to1CDB), i.e. there is at least oneβ ∈ behs(RSP
ϕ)

such that anyγ obtained using the conditions of Definition 6.1 from any possible relationΓ satisfies
γ /∈ behs(1CDB).
• If C1 does not hold, then there existsβ ∈ behs(RSP

ϕ) such that for somet ∈ T : πi = Bsite(t)(t)∧ ∀n ∈
N : ∀ k : k > i : πk /∈ {Cn(t, d), An(t), crashn : d ∈ D}. SinceΓ is a legal relation, everyγ ∈ Γ (β)
holds thatγ|{Cn(t, d), An(t), crashn : d ∈ D} = B(t). Thus,γ /∈ behs(1CDB) because it is not
progressive with regard tot, so there cannot exist a legal relationΓ , i.e. C1 is necessary.
• In case C2 does not hold, then there existsβ ∈ behs(RSP

ϕ) such that for some transactiont ∈ T and some
d ∈ D, πi = Cn(t, d) andπj = An′(t) are inβ, with n 6= n′. For anyγ ∈ Γ (β), γ|{B(t), C(t, d), A(t) :
d ∈ D} is eitherB(t)·C(t, d)·A(t) or B(t)·A(t)·C(t, d) for somed ∈ D; therefore,γ is not well-formed.
Thus, C2 is a necessary condition.
• If C3 does not hold, then there exists a finiteβ ∈ behs(RSP

ϕ) such thatlog(β|DBCR
n , I) ± log(β|DBCR

n′ , I)
with n 6= n′. Let us consider theβ of Figure 6.

B (t)n 1

B (t)n' 2

B (t)n 3

B (t)n' 4

B (t)n 2

B (t)n' 1

C (t ,d)n 3 n
3

C (t ,d)n' 4 n'
4

C (t ,d)n 2 n
2

C (t ,d)n'
1

n' 1

C (t ,d)n 1
1
n

C (t ,d)n' 2 n'
2

S0
n

S0
n'

S2
n'

S1
n

S1
n'

S2
n

t1

t2

t3

t1

n=site(t)1

n'=site(t)2

β|DBn'
CR

β|DBn
CR

t2

t4

Figure 6: Example of a behavior in which transactions are committed in different order at two sites.

According to the system model, transactions can be executedunder any isolation level and they can
read/write any item at any time. Then, we establish the following additional conditions to the considered
behaviorβ:

(1) d1
n.rs ⊆ Sn

0 andd2
n′ .rs ⊆ Sn′

0 with Sn
0 = Sn′

0

(2) items(d1
n.ws) * items(d2

n′ .ws) anditems(d2
n′ .ws) * items(d1

n.ws)

13

(3) d3
n.rs ⊆ Sn

1 andd4
n′ .rs ⊆ Sn′

2

(4) items(d3
n.rs) ∩ items(d1

n.ws) 6= ∅ ∧ items(d3
n.rs) ∩ items(d2

n′ .ws) 6= ∅
(5) items(d4

n′ .rs) ∩ items(d1
n.ws) 6= ∅ ∧ items(d4

n′ .rs) ∩ items(d2
n′ .ws) 6= ∅

Recall that, by Property 5.1,d1
n.ws = d1

n′ .ws andd2
n.ws = d2

n′ .ws. Any possibleγ ∈ behs(1CDB)

considering the transformation of Definition 6.1 produces one of the snapshot sequencesSn′

2 ·Sn′

1 orSn
1 ·S

n
2 .

SinceSn
1 6= Sn′

1 andSn′

2 6= Sn
2 , for anyγ′ ∈ Γ (β) that could be built includingt3 andt4 overγ, eithert3

is incompatible ort4 is incompatible and thereforeγ′ /∈ behs(1CDB).
• As Criteria C1-C3 have already been proven to be necessary conditions, anyRSP

ϕ which is one-copy
equivalent to1CDB must fulfill ϕ ⊇ {C1, C2, C3}. Thus, we can consider a one-copy equivalent system
that fulfills these properties. First, we strengthen C1 by considering the following progress condition:

(C’1: Transaction Progress) For everyβ ∈ behs(RSP): πi = Bn(t) ⇒ ∃k : k > i : πk ∈ {Cn(t, d),
An(t), crashn : d ∈ D}

LetRSP
{C′1,C2,C3} be a moduleRSP whose behaviors satisfy Criteria C’1, C2 and C3. TheRSP

{C′1,C2,C3}

module satisfies Criteria C1-C3 (as C’1 implies C1 trivially). Let us assume that thatRSP
{C′1,C2,C3}

is one-copy equivalent to1CDB and that C4 does not hold forRSP
{C′1,C2,C3}. Therefore, there ex-

ists β ∈ behs(RSP
{C′1,C2,C3}) (and β ∈ behs(RSP

{C1,C2,C3})) such thatπi = Bsite(t)(t) ∧ πj =

Cn′(last(i, site(t), β), d′) ∧ πk = Cn′(t, d) ∧ site(t) 6= n′ ∧ ∃t′′ ∈ T : ¬isolated(t′′, t, j, β(k)|DBCR
n′).

The following proof shows that this is a contradiction, since everyβ ∈ behs(RSP
{C′1,C2,C3}) fulfills C4

when for anyn ∈ N there is no actioncrashn in β.
By C’1, ∃ s : s > i : πs ∈ {Csite(t)(t, d), Asite(t)(t) : d ∈ D} in β. By C2: πs = Csite(t)(t, d) since

πk = Cn′(t, d′).
By its definition there exists aπl = Csite(t)(last(i, site(t), β), dlast). Since everyβ|DBCR

site(t) is legal,

∀ t′′ ∈ T : isolated(t′′, t, i, β(s)|DBCR
site(t)), and then∀ t′′ ∈ T : isolated(t′′, t, l, β(s)|DBCR

site(t)). By C3,

log(β(k)|DBCR
n′ , I) = log(β(s)|DBCR

site(t), I).
If there exists a transactiontm ∈ T such thatl < m < s andπm = Csite(t)(tm, dm), then there exists

anm′ such thatj < m′ < k andπm′ = Cn′(tm, d′m). Recall thatdm.ws = d′m.ws anddm.inf = d′m.inf
for every site. Thus, ifisolated(tm, t, j, β(k)|DBCR

n′) is false, then a contradiction is obtained because
isolated(tm, t, l, β(s)|DBCR

site(t)) is true.

Thus, if C4 does not hold, thenbehs(RSP
{C′1,C2,C3}) is not one-copy equivalent to1CDB, and neither

is behs(RSP
{C1,C2,C3}). As a consequence, C4 is a necessary condition for the behaviors ofRSP

ϕ to be
one-copy equivalent to1CDB.

Remark 7.1. Although Criterion C1 is the weakest liveness condition fora correct system, theRSP

module actually fulfills CriterionC ′1, which is stronger than C1, due to the fact that the behaviorsof every
DBCR

n are progressive in the sense of Property 4.1.

7.2 Proof of Sufficiency

In order to prove that Criteria C1 to C4 are sufficient conditions for obtaining one-copy equivalence, the
criteria must ensure that any behaviorβ of theRSP

CC module can be transformed in such a way that the
result is a behaviorγ of the1CDB module.

We now study the structure of a transaction in a behaviorβ. Letβt be the subsequenceβt = β|{An(t),
Bsite(t)(t), Cn(t, d) : n ∈ N , d ∈ D}. For each transactiont ∈ T , theβt sequence will always be one of
the sequences defined in Theorem 7.2 due to the conditions enforced by C2.

Theorem 7.2. Letβ ∈ behs(RSP
CC). For each transactiont ∈ T , the sequenceβt is one of the following

sequences (where(n1, . . . , nN) is a permutation of the site identifiers,1..N):

• βt = empty

• βt = Bsite(t)(t) · γct
with γct

¹ Cn1
(t, d1) . . . CnN

(t, dN) (with d1 . . . dN ∈ D)

14

• βt = Bsite(t)(t) · γat
with γat

¹ An1
(t) . . . AnN

(t)

Proof. By Definition 3.1 and Property 5.1(a), for everyt ∈ T , eitherβt is empty (in caseBsite(t)(t) is not
in β), or Bsite(t)(t) is the first action involvingt in β, i.e.,Bsite(t)(t) ¹ βt. If γct

= γat
= empty, the

theorem holds; if not,βt will be Bsite(t)(t) · γ. Then, letπi, πj be inβ such thati < j. Now suppose that
πi = An(t) is in γ. By contradiction, we assume that there also exists aπj = Cn′(t, d) in γ, for some
d ∈ D. By Definition 3.1,n 6= n′. Sinceβ satisfies C2, suchγ is not possible. The same happens if
πi = Cn(t, d) andπj = An′(t). Thus, the theorem holds.

A transactiont ∈ T is said to becommitted ina behaviorβ ∈ behs(RSP
CC), denoted byt ∈

Committed(β), if and only if βt has an actionCn(t, d) for some siten ∈ N andd ∈ D, formally:
βt ¹ Bsite(t)(t) · γct

with γct
6= empty. In the same wayt ∈ T is aborted inβ ∈ behs(RSP

CC),
(t ∈ Aborted(β)), if and only if βt has an actionAn(t) for any siten ∈ N , formally: βt ¹ Bsite(t)(t) ·
γat

with γat
6= empty.

As a result of Theorem 7.2: (i) ift ∈ Committed(β), thenBsite(t)(t) · Cfc(βt)(t, d) is a prefix of
βt (for somed ∈ D), wherefc(βt) is the first site at whicht is committed; and (ii) ift ∈ Aborted(β),
thenBsite(t)(t) · Aac(βt)(t) is a prefix ofβt, wherefa(βt) is the first site at whicht is aborted. Next, we
define the subsequence ofβ comprising the beginning and the first output (committed or aborted) of each
transaction, as well as the crash and recover actions.

Definition 7.2 (Transaction’s First-Output Behavior). Letβ be a behavior ofRSP
CC . The subsequenceβF

is defined asβF = β|F (β) whereF (β) = {Bsite(t)(t) : t ∈ T}∪{Cfc(βt)(t, d) : t ∈ Committed(β), d ∈
D} ∪ {Afa(βt)(t) : t ∈ Aborted(β)} ∪ {crashn : n ∈ N} ∪ {recovern : n ∈ N}.

TheβF sequence has some useful properties, shown in Lemma 7.1, of which we will make use later.

Lemma 7.1. Letβ be a behavior ofRSP
CC . In the subsequenceβF the following conditions hold:

1.πi ∈ {Cfc(βt)(t, d), Afa(βt)(t) : d ∈ D} ⇒ ∃k : k < i : πk = Bsite(t)(t)

2.πi = Bsite(t)(t) ⇒ ∃k : k > i : πk ∈ {Cfc(βt)(t, δ(t, β)), Afa(βt)(t), crashn : n ∈ N , d ∈ D}

3. For every0 ≤ j ≤ |βF |, the following conditions hold:

• 0 ≤ #crash(β(j)F) − #recover(β(j)F) ≤ N
• #crash(β(j)F)−#recover(β(j)F) = N ⇒ (β(j)F = βF ∨πj+1 = recovern for somen ∈ N)

Proof. The first condition comes from Definition 7.2 ofβF and Theorem 7.2. Moreover, asβ ∈ behs(RSP
CC)

satisfies C1, then by Definition 7.2 and Theorem 7.2 the secondcondition holds. Finally, the third con-
dition is proven by Property 4.2. Since in everyβ|DBCR

n a recovern action is always immediately pre-
ceded by acrashn action, by the definition ofβF , 0 ≤ #crash(β(j)F) − #recover(β(j)F). Fur-
thermore, in everyβ|DBCR

n the action following acrashn action, if any, isrecovern. As a result,
#crash(β(j)F) − #recover(β(j)F) ≤ N ; and in case#crash(β(j)F) − #recover(β(j)F) = N ,
by Property 4.2 no action is possible afterπj at any site of theRSP

CC unlessπj+1 = recovern for some
n ∈ N .

TheβF sequence also satisfies thatlog(β|DBCR
n) ¹ log(βF) for all n ∈ N , as stated in Lemma 7.2

(recall thatlog(β) = log(β, I)). This means thatβF installs the same snapshots, and in the same order, as
the ones installed at each replica of the replicated system.This consideration is possible due toβF being
trivially well-formed in the sense given by Definition 3.1 (see Lemma 7.1) and the fact that the writeset of
a transaction is the same for all sites that commit it by Property 5.1.

Lemma 7.2. Letβ ∈ behs(RSP
CC). It holds thatlog(β(j)|DBCR

n) ¹ log(β(j)F) for every prefixβ(j) ¹
β and everyn ∈ N .

Proof. Let β(j) be a finite prefix ofβ for some indexj ∈ Z+. By induction overj ≥ 0.

- Basis: j = 0. β(0)|DBCR
n =β(0)F =empty and, by definition,log(β(0)|DBCR

n)=log(β(0)F)=empty.
- Hypothesis: log(β(j)|DBCR

n) ¹ log(β(j)F) andj>0.

15

- Induction Step: we only consider the eventsπj+1 affecting the lemma statement.

• πj+1 = Cfc(βt)(t, d) (for somed ∈ D) and fc(βt) = n. By Hypothesis,log(β(j)|DBCR
n) ¹

log(β(j)F). The only possible case from the Hypothesis islog(β(j)|DBCR
n) = log(β(j)F).

Considerlog(β(j)|DBCR
n) ≺ log(β(j)F). There is at least one different element〈d′.ws〉 in log(β(j)F).

Thus,β(j) includes an actionπj′ = Cfc(βt′
)(t

′, d′) with j′ < j which appears inβ(j)F but not in
β(j)|DBCR

n . By C3, there is some replica (fc(βt′) = n′) n′ 6= n such thatlog(β(j′)|DBCR
n) ≺

log(β(j′)|DBCR
n′). Then, log(β(j)|DBCR

n) ≺ log(β(j)|DBCR
n′). By the definition of log (Defi-

nition 3.2), asβ(j + 1)|DBCR
n = β(j)|DBCR

n · πj+1 andβ(j + 1)|DBCR
n′ = β(j)|DBCR

n′ then
log(β(j + 1)|DBCR

n) ± log(β(j + 1)|DBCR
n′), which leads to a contradiction with C3. As a conclu-

sion, log(β(j)|DBCR
n) = log(β(j)F). As β(j+1)|DBCR

n = β(j)|DBCR
n · πj+1 andβ(j+1)F =

β(j)F · πj+1, by the log definition (Definition 3.2)log(β(j+1)|DBCR
n) = log(β(j+1)F) holds.

• πj+1 = Cfc(βt)(t, d) and fc(βt) 6= n. By Hypothesis,log(β(j)|DBCR
n) ¹ log(β(j)F). Since

β(j + 1)|DBCR
n = β(j)|DBCR

n andβ(j + 1)F = β(j)F ·πj+1, then by the log definition,log(β(j +
1)|DBCR

n) ≺ log(β(j + 1)F) holds.
• πj+1 = Cnk

(t, d) and nk = n, beingnk 6= fc(βt). By Theorem 7.2, there existsj′ < j such
that πj′ = Cfc(βt)(t, d

′) is in β(j)F . This action is inβ(j)F but not inβ(j)|DBCR
n . Moreover,

by Property 5.1,d.ws = d′.ws. By induction Hypothesis,log(β(j′)|DBCR
n) ≺ log(β(j′)F) and also

log(β(j)|DBCR
n) ≺ log(β(j)F). Thus, asβ(j + 1)|DBCR

n = β(j)|DBCR
n · πj+1 andβ(j + 1)F =

β(j)F , by the log Definition 3.2,log(β(j + 1)|DBCR
n) ¹ log(β(j + 1)F).

• πj+1 = Cnk
(t, d) andnk 6= n, beingnk 6= fc(βt). In this case,β(j + 1)|DBCR

n = β(j)|DBCR
n and

β(j +1)F = β(j)F . Thus, triviallylog(β(j +1)|DBCR
n) ¹ log(β(j +1)F) by induction Hypothesis.

Thus, the lemma holds.

Since our aim is to obtain by construction a behavior that is aone-copy view ofβ, we slightly modify
βF according to Definition 6.1(1), in order to include the complete semantic oft given byδ(t, β).

Definition 7.3. Letβ be a behavior ofRSP
CC . The behaviorβ1C is defined as:πi = Cfc(βt)(t, δ(t, β)) is

in β1C ⇔ πi = Cfc(βt)(t, d) is in βF for somed ∈ D; otherwiseπj is in β1C ⇔ πj is in βF .

Recall that, due to Property 5.1 and the definition ofδ(t, β), if πi = Cn(t, d) is in β for anyn ∈ N ,
δ(t, β).ws = d.ws andδ(t, β).inf = d.inf . Moreover, ifn = site(t), thenδ(t, β).rs = d.rs (otherwise
d.rs is empty, and ifπi = Csite(t)(t, d) is not inβ, thenδ(t, β).rs is undefined). Thus, by the definition of
β1C and Property 5.1, Lemmas 7.1 and 7.2 hold trivially forβ1C .

As an example, Figure 7 shows theβF andβ1C of a certain behavior. Note that the actions inβF for
each transactiont ∈ T (i.e., Bsite(t)(t), Cfc(βt)(t, d) andAfa(βt)(t)) are unique. The same happens for
β1C .

The actions of sequenceβ1C compose a behavior which somehow represents the way in whichtransac-
tions behave in the replicated system. This behavior is not strictly the same as the one of a single database
system (Definition 3.6), but it satisfies the generalized legal behavior of Definition 3.7, in which transac-
tions may obtain older snapshots prior to their beginning. Theorem 7.3 covers this issue.

Theorem 7.3. Let β be a behavior ofRSP
CC . For each transactiont ∈ T such thatπi = Bsite(t)(t) and

πj = Cfc(βt)(t, δ(t, β)) are inβ1C , there exists0 ≤ s ≤ i such that the following conditions hold:

(a) compatible(t, s, β(j)1C)

(b) isolated(t′, t, s, β(j)1C), for all t′ ∈ T

(c) consistent(t, β(j)1C)

Proof. By the Definition 7.3 ofβ1C , bothπi = Bsite(t)(t) andπj = Cfc(βt)(t, d) with i < j exist inβ
for each consideredt ∈ T , beingδ(t, β).ws = d.ws andδ(t, β).inf = d.inf . We can use the indexes
i, j of β in β1C , although the properties to be proven are related only withβ1C . Let t0 ∈ T be the
transaction such thatt0 = last(i, site(t), β) andπi0 = Csite(t)(t0, d0) is in β. By Theorem 7.2, there
existsπi′

0
= Cfc(βt)(t0, d

′
0) with i′0 < j, aslog(β(j)|DBCR

site(t)) ¹ log(β(j)|DBCR
fc(βt)

). Figure 8 depicts
the sequence of actions that are used in this proof.

16

t1(remote)

t2 (local)

t2 (remote)

β|DB

β|DB1

2

B (t)1 1

B (t)2 2 B (t)2 1

B (t)1 2

B (t)1 1 B (t)2 2
β B (t)2 1 B (t)1 2

CR

CR

C (t ,d')2 1 1

C (t ,d')2 1 1

C (t ,d)1 1 1

C (t ,d)1 1 1

B (t)1 1

βt1
C (t ,d')2 1 1 C (t ,d)1 11

C (t ,d)2 2 2

C (t ,d)2 2 2

B (t)11 B (t)2 2

β
F

C (t ,d')2 1 1 C (t ,d)2 2 2

C (t ,d')1 2 2

C (t ,d')1 2 2

B (t)2 2

βt2 C (t ,d)2 2 2 C (t ,d')1 2 2

1t (local)

B (t)11 B (t)2 2

β1C
C (t ,δ(t ,β))2 1 1 C (t ,δ(t ,β))2 2 2

Figure 7: TheβF andβ1C for a behaviorβ

sπ

kπ

C (t , (t,β))f (β)c 0 0 0
B (t)site(t) C (t ,δ(t,β))f (β)c t k kk

C (t ,δ(t,β))f (β)c t

C (t ,d)site(t) 0 0 B (t)site(t) site(t) kC (t ,d)k C (t ,d')site(t)

C (t ,d')f (β)c t 0 0 C (t ,d')f (β)c t k k C (t ,d)f (β)c t

iπ 0 iπ

kπ

i'π 0

iπ k

i'π k

rπ

β|DB
f (β)c t

CR

β1C

site(t)
β|DBCR

Figure 8: Actions used for the proof of Theorem 7.3.

- Proof of Condition (a):
If πr = Csite(t)(t, d

′) is not in β, then by the definition ofδ(t, β) and Property 5.1,δ(t, β).rs = ∅.
Thus,compatible(t, s, β(j)1C) is trivially true for anys. Otherwise,πr = Csite(t)(t, d

′) is in β, thus
δ(t, β).rs = d′.rs. Sinceβ|DBCR

site(t) is a legal behavior, it holds thatcompatible(t, i, β(r)|DBCR
site(t)).

Note that, by its Definition 3.3, the snapshot only changes when a transaction is committed. Thus,
S(β(i)|DBCR

site(t)) = S(β(i0)|DBCR
site(t)). Then, we have to be concerned about the transactionstk

which were committed between the commitment oft0 andt atfc(βt) (wheret was committed first); i.e.,
tk ∈ T such thatπi′

k
= Cfc(βt)(tk, d′k) is in β andi′0 < i′k < j.

By C3, log(β(r)|DBCR
site(t)) = log(β(j)|DBCR

fc(βt)
). Let πik

= Csite(t)(tk, dk) be the committed ac-
tions atsite(t) of eachtk with ik : i0, i1, . . . , ik, . . . , im and im < r. The sequence of snapshots in
site(t) which makescompatible(t, i, β(r)|DBCR

site(t)) true is: S(β(i0)|DBCR
site(t))S(β(i1)|DBCR

site(t))

. . .S(β(ik)|DBCR
site(t)) . . .S(β(im)|DBCR

site(t)). Note thatt0 and eachtk have been committed inβ and
also inβ1C (by the definition ofβ1C). Then, letπs = Cfc(βt0

)(t0, δ(t0, β)) andπk = Cfc(βtk
)(tk, δ(tk, β))

be inβ1C , it is satisfied thats ≤ i0 < i and, by Lemma 7.2,s < k < j sincelog(β(j)|DBCR
fc(βt)

) ¹

17

log(β(j)1C).
Therefore, both behaviors have built the same snapshots. Bythe previous definition ofπs andπk, then
log(β(i0)|DBCR

site(t)) = log(β(s)1C) andlog(β(ik)|DBCR
site(t)) = log(β(k)1C) for k : 1 . . . m. By the

snapshot Definition 3.3,S(β(s)1C) · · · S(β(k)1C) · · · S(β(m)1C) is the same sequence of snapshots.
Then,compatible(t, s, β(m)1C) holds and triviallycompatible(t, s, β(j)1C) holds too, sinced′.rs does
not change after actionCsite(t)(t, d

′) is executed, and therefore neither doesδ(t, β).
- Proof of Condition (b):

Recall thatπi0 = Csite(t)(t0, d0) andπi′
0

= Cfc(βt)(t0, d
′
0) are inβ. By Property 5.1(b) and Defi-

nition 7.3, d0.inf = d′0.inf = δ(t0, β).inf . If fc(βt) = site(t), thenπi′
0

= πi0 and, since every
β ∈ behs(DBCR

fc(βt)
) is legal, it holds that∀t′′ ∈ T : isolated(t′′, t, i, β(j)|DBCR

fc(βt)
). As t0 is the last

committed transaction insite(t) beforeπi = Bsite(t)(t), theisolated() predicate can be extended toi′0,
i.e., it holds that∀t′′ ∈ T : isolated(t′′, t, i′0, β(j)|DBCR

fc(βt)
). On the other hand, iffc(βt) 6= site(t),

then also, by C4, it holds that∀t′′ ∈ T : isolated(t′′, t, i′0, β(j)|DBCR
fc(βt)

). Then, we have to be again
concerned about the transactionstk ∈ T such thatπi′

k

= Cfc(βt)(tk, d′k) and i′0 < i′k < j. By the
definition ofisolated(), these transactions satisfyisolated(tk, t, i′k, β(j)|DBCR

fc(βt)
).

Then, recalling thatπs = Cfc(βt0
)(t0, δ(t0, β)) and πk = Cfc(βtk

)(tk, δ(tk, β)) are in β1C , since

log(β(j)|DBCR
fc(βt)

) ¹ log(β(j)1C), s < k < j. Therefore,isolated(tk, t, s, β(j)1C). For the rest
of committed transactionst′ such thatπk′ = Cfc(βt′

)(t
′, δ(t′, β)) and thats < k′ < j does not hold,

isolated(t′, t, s, β(j)1C) holds too.
- Proof of Condition (c):

Finally, asπj = Cfc(βt)(t, d) is inβ, since by definition everyβ|DBCR
fc(βt)

is legal,consistent(t, β(j)|DBCR
fc(βt)

) =

∀i : Ki(S(β(j − 1)|DBCR
fc(βt)

), d.ws). By Lemma 7.2,log(β(j)|DBCR
fc(βt)

) = log(β(j)1C). Thus,

log(β(j−1)| DBCR
fc(βt)

) = log(β(j−1)1C), sinceπj = Cfc(βt)(t, δ(t, β)) is in β1C , beingδ(t, β).ws =

d.ws. Then,S(β(j − 1)|DBCR
fc(βt)

) = S(β(j − 1)1C) and thereforeconsistent(t, β(j)1C) holds.

One can think that theβ1C of eachβ ∈ behs(RSP
CC) keeps the properties that prove the existence of

a one-copy equivalence of theRSP
CC . This is the conclusion drawn from Theorem 7.4, which provesthat

any behavior of theRSP
CC can be transformed to become a behavior of the1CDB module.

Theorem 7.4. TheRSP
CC module satisfying Criteria C1 to C4 is one-copy equivalent to the1CDB.

Proof. For eachβ ∈ behs(RSP
CC), we define the following legal relationΓ : behs(RSP

CC) → behs(1CDB);
Γ (β) = R(β1C) whereR() is a renaming function which removes every reference of a site in the ac-
tions of β1C . That is,B(t), C(t, δ(t, β)), A(t), crash or recover appear inR(β1C) whenBsite(t)(t),
Cfc(βt)(t, δ(t, β)), Afa(βt)(t), crashn or recovern appear inβ1C . Note that|β1C |{crashn : n ∈ N}| =
|R(β1C)|crash| and |β1C |{recovern : n ∈ N}| = |R(β1C)|recover|. Thus,β1C satisfies Lemma 7.1
and Theorem 7.3; the definition of the semantic dataδ(t, β) does not change for the transactions in
R(β1C); and the actions inR(β1C) are included in the1CDB signature, i.e.,acts(1CDB). Therefore,
Γ (β) ∈ behs(1CDB), i.e., Γ (β) is a well-formed (Lemma 7.1.1), progressive (Lemma 7.1.2),N-crash
stop (Lemma 7.1.3), and generalized legal (Theorem 7.3) behavior.

7.3 Discussion

Abstraction of the recovery process:The aim of the recovery process is to obtain the effects of committed
transactions that the recovering site lost during its down-time period, so that the recovering site can apply
them and become up-to-date. In the presented mathematical model, the effects of committed transactions
are represented by the evolution oflog(β(j)|DBCR

n) at each of the system sitesn ∈ N . This log is,
by Definition 3.2, the sequence of writesets of committed transactions at that site, i.e., it is defined by the
actionsCn(t, d) that occur at siten. According to this definition, after a siten executes arecovern action,
the recovery protocol should ensure that all the missed transactions are committed in a certain order atn,
so that Criterion C3 is fulfilled at the recovering site. Thisis the reason why, in the example of Figure 5,

18

after site1 recovers,t4 cannot be committed at site1 beforet2 is committed, since in site2 t2 is committed
beforet4. The model does not limit the implementation of correct recovery mechanisms, since the log
definition could be adapted to reflect the behavior of the recovery protocol, as long as the recovery protocol
provides a certain database snapshot from which the recovering site is considered to be up-to-date and can
start executing transactions normally. Put another way, the presented model does not exclude the use of
known recovery mechanisms [20], as it only requires that theeffects of the recovery process on the database
of the recovering site must be the same effects that transactions would have produced on the site if it had
not crashed.

It is also worth noting that, since Criterion C3 precludes sites from diverging in the sequence of applied
writesets, this criterion does not allow sites to work in different network partitions, i.e., there can be at
most one partition processing transactions. The most common way of dealing with this problem consists
of considering the primary partition system model [12], in which only a partition with at least(N/2) + 1
sites, called majority partition, is allowed to work.

On the other hand, Criterion C1 establishes a liveness condition upon transactions (if a transaction be-
gins, either a site crashes or the transaction produces an output). However, there are no liveness conditions
regarding the progress of system sites. As a consequence, inthis model a site may never recover after
crashing, or it may even execute arecover action but never execute all its pending transactions. Such
conditions can be added to implementation specifications inorder to ensure the termination of the recovery
protocol.

8 Extending the model for partial replication

Up until now, we have considered a fully replicated system, in which each database stores a copy of all the
possible itemsI. As shown in this section, it is possible to extend the model to include partially replicated
systems.

Instead of holding a copy of the whole set of itemsI at each system site, the database of each site
n ∈ N (denoted byDBCR

n (In, T)) in a partially replicated system stores a subset of the set of items,
In ⊆ I. The set of transaction identifiersT is the same for all databases.

The partially replicated system, represented by modulePRS, consists of the composition of the
DBCR

n (In, T) modules:PRS = Πn∈NDBCR
n (In, T). The set of items of the global system isI =

⋃

n∈N In. The set of all possible versions of theDBCR
n (In, T) is denoted byVn, thus the set of versions

of the system isV =
⋃

n∈N Vn. In the following,Inn′ = In ∩ In′ .
Using thePRS module as a basis, we define a basic protocol for partial replication. Since the system

is now partially replicated, the delegate site of a transaction t may not contain all the items affected byt.
Thus, the delegate site may not be able to serve all the operations of t, which in that case will have to be
forwarded to other sites.

In order to model the basic properties of the partially replicated system, we define a refinement of the
PRS module, namedPRSPP , whose behaviors are restricted by Property 8.1.

Property 8.1. (PP : Partial Replication Abstraction)For every behaviorα ∈ behs(PRSPP) and every
transactiont ∈ T , the following conditions hold:

(a) πi = Bn(t) ⇒ ∃j : j ≤ i : πj = Bsite(t)(t)
(b) πi = Cn(t, d) ∧ πj = Cn′(t, d′) ⇒ d.ws(Inn′) = d′.ws(Inn′) ∧ d.inf(Inn′) = d′.inf(Inn′)

Similarly to Property 5.1, Property 8.1 states that a remotetransaction can begin only after the corre-
sponding local transaction began at the delegate site. Moreover, when a transaction is committed in two
different sites, the writeset and control information regarding the items that the two sites share in common
must be the same. There are no limitations on the readset, since it may be necessary to execute read op-
erations in different sites by means of remote transactions, and therefore remote transactions may have a
non-empty readset.

The definition of the semantic data of a transaction in a behavior of thePRSPP is straightforwardly
obtained by replacingRSP by PRSPP in Definition 5.1.

19

Note that Remark 5.1 is no longer applicable, as read-only transactions can read items from different
sites. However, in the development explained forRSP

CC there are no contradictions if read-only transac-
tions are included inbehs(RSP

CC).
Let us consider every partial replication protocol than canbe built using thePRSPP as a basis. This

can be done by specifying a set of propertiesϕ that must be verified by thePRSPP . This is denoted by
PRSPP

ϕ

One-copy equivalence can be used as correctness criterion for partially replicated systems. In order
to be one-copy equivalent to the1CDB(I, T) module, all transactions in thePRSPP

ϕ must behave as
if they were executed in a single database system containingall the items of the whole system. Defini-
tions 6.1 and 6.2 can be adapted by replacingRSP

ϕ by PRSPP
ϕ . That is,PRSPP

ϕ is one-copy equiv-
alent to the1CDB(I, T) module if and only if there exists a legal relationΓPP ⊆ behs(PRSPP

ϕ) ×
behs(1CDB(I, T)).

Recall that the1CDB(I, T) module has been used for proving that a fully replicated system is equiva-
lent to it. In particular, theRSP

CC module is one-copy equivalent to the1CDB(I, T) when every database
of RSP

CC holds a copy of all the items inI. Moreover, ifγ ∈ behs(1CDB(I, T)), then there exists a
behaviorβ ∈ behs(RSP

CC) such thatγ ∈ ΓP (β), whereΓP is the legal relation between the behaviors of
RSP

CC and1CDB(I, T). The proof is straightforward by construction of theβ from theγ behavior. As a
result, we can state the following theorem:

Theorem 8.1. Let α ∈ behs(PRSPP
ϕ). If PRSPP

ϕ is one-copy equivalent to the1CDB(I, T) module,
then there exists a correct fully replicated systemRSP

CC that is one-copy equivalent to1CDB(I, T), such
that if γ ∈ ΓPP (α), thenγ ∈ ΓP (β) for someβ ∈ behs(RSP

CC).

The previous theorem states that a behaviorα of a correct partially replicated system is, in some sense,
indistinguishable from a behaviorβ of a correct fully replicated system. Every committed transactiont in
α, whose semantic data isδ(t, α), appears inβ with δ(t, α) = δ(t, β). Thus, regardless of the number of
sites that perform read operations of a transactiont in α, all these read operations occur as if they had been
executed inRSP

CC (i.e. fully replicated database system with replication protocol fulfilling Property 5.1
and correctness criteria C1-C4).

Obtaining a group of necessary and sufficient conditions in order to guarantee that aPRSPP
ϕ is one-

copy equivalent to1CDB(I, T) is not a simple task. However, the previous theorem allows usto notice
the dificulties of designing correct partial replication protocols [4, 39]. For instance, if the isolation level
of a transactiont requires read operations oft to be able to access the values written byt, the writeset oft
will have to be available at sites that execute read operations oft, even if those sites do not store the items
of the writeset. Moreover, if the read operations of a transaction retrieve item values from different sites,
in order to achieve one-copy equivalence those values have to belong to the same database snapshot.

9 Conclusion

This paper reviews the notion of one-copy equivalence for replicated database systems supporting the
crash-recovery failure model. The considered replicationtechnique (in which read operations are executed
at a delegate site of the transaction, whereas the effects ofwrite operations are propagated to all sites)
has been regularly used in the database replication field, since it is appropriate for update-everywhere
approaches. By executing transaction operations in a delegate site and propagating later its writeset to other
replicas, this kind of replication protocols ensure a high level of consistency and an asymmetric workload
management that boosts performance, since writeset application at remote sites requires less effort than a
local transaction service.

Up to our knowledge, there exists no general formalization of this kind of replication protocols that
considers transactions running under different isolationlevels, supporting both integrity constraints and
crash failures. By means of the I/O Automaton model, we have provided a detailed specification of a repli-
cated database system that fills this void. We have established the necessary and sufficient conditions that
implementations of the considered model must fulfill in order to be correct under the one-copy equivalence
notion. The stated properties can be considered as a new proposal for one-copy equivalence criteria, which
can serve as a basis for the development and formal proof of such kind of protocols.

20

Acknowledgment

This work has been supported by the Spanish Government underresearch grant TIN2009-14460-C03.

References

[1] Yair Amir and Ciprian Tutu. From total order to database replication. InICDCS, pages 494–, 2002.

[2] Jośe Enrique Armend́ariz-́Iñigo, Jośe Raḿon Gonźalez de Mend́ıvil, Jośe Raḿon Garitagoitia, and
Francesc D. Mũnoz-Escóı. Correctness proof of a database replication protocol under the perspective
of the I/O automaton model.Acta Inf., 46(4):297–330, 2009.

[3] Jośe Enrique Armend́ariz-́Iñigo, Júarez-Rodŕıguez, Jośe Raḿon Gonźalez de Mend́ıvil, Jośe Raḿon
Garitagoitia, Luis Iŕun-Briz, and Francesc D. Muñoz-Escóı. A formal characterization of SI-based
ROWA replication protocols.Data Knowl. Eng., 70(1):21 – 34, 2011.

[4] Jośe Enrique Armend́ariz-Iñigo, A. Mauch-Goya, José Raḿon Gonźalez de Mend́ıvil, and
Francesc D. Mũnoz-Escóı. SIPRe: a partial database replication protocol with si replicas. In Roger L.
Wainwright and Hisham Haddad, editors,SAC, pages 2181–2185. ACM, 2008.

[5] Jośe Enrique Armend́ariz-Iñigo, Francesc D. Mũnoz-Escóı, Jośe Raḿon Júarez-Rodŕıguez, Jośe
Raḿon Gonźalez de Mend́ıvil, and Bettina Kemme. A recovery protocol for middlewarereplicated
databases providing gsi. InARES’07: Proceedings of the 2nd International Conference on Availabil-
ity, Reliability and Security, pages 85–92, Washington, DC, USA, 2007. IEEE Computer Society.

[6] Josep M. Bernab́e-Gisbert, Rául Salinas-Monteagudo, Luis Irún-Briz, and Francesc D. Muñoz-Escóı.
Managing multiple isolation levels in middleware databasereplication protocols. InISPA ’06: Pro-
ceedings of th 4th International Symposium on Parallel and Distributed Processing and Applications,
pages 511–523, 2006.

[7] J.M. Bernab́e-Gisbert, J.E. Armendáriz-Iñigo, Rub́en de Juan-Marı́n, and F.D. Mũnoz-Escóı. Provid-
ing read committed isolation level in non-blocking rowa database replication protocols. InJCSD ’07:
Proceedings of XV Jornadas de Concurrencia y Sistemas Distribuidos, 2007.

[8] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,USA, 1987.

[9] Michael J. Carey and Miron Livny. Conflict detection tradeoffs for replicated data.ACM Trans.
Database Syst., 16(4):703–746, 1991.

[10] N. Carvalho, A. Correia Jr., J. Pereira, L. Rodrigues, R. Oliveira, and S. Guedes. On the use of a
reflective architecture to augment database management systems. Journal of Universal Computer
Science, 13(8):1110–1135, 2007.

[11] Francisco Castro-Company, Luis Irún-Briz, F́elix Garćıa-Neiva, and Francesc D. Muñoz-Escóı. Fobr:
A version-based recovery protocol for replicated databases. InPDP, pages 306–313, 2005.

[12] Gregory V. Chockler, Idid Keidar, and Roman Vitenberg.Group communication specifications: a
comprehensive study.ACM Comput. Surv., 33(4):427–469, 2001.

[13] Khuzaima Daudjee and Kenneth Salem. Lazy database replication with snapshot isolation. InVLDB
’06: Proceedings of the 32nd International Conference on Very Large DataBases, pages 715–726.
VLDB Endowment, 2006.

[14] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. Database replication using generalized
snapshot isolation. InIEEE Symposium on Reliable Distributed Systems, pages 73–84, Washington,
DC, USA, 2005. IEEE Computer Society.

21

[15] Jim Gray and Andreas Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 1992.

[16] Theo Ḧarder and Andreas Reuter. Principles of transaction-oriented database recovery.ACM Comput.
Surv., 15(4):287–317, 1983.

[17] JoAnne Holliday, Robert C. Steinke, Divyakant Agrawal, and Amr El Abbadi. Epidemic algorithms
for replicated databases.IEEE Trans. Knowl. Data Eng., 15(5):1218–1238, 2003.

[18] Ricardo Jiḿenez-Peris, Marta Patiño-Mart́ınez, and Gustavo Alonso. Non-intrusive, parallel recovery
of replicated data. InSRDS, pages 150–159. IEEE Computer Society, 2002.

[19] Bettina Kemme and Gustavo Alonso. A new approach to developing and implementing eager database
replication protocols.ACM Trans. Database Syst., 25(3):333–379, 2000.

[20] Bettina Kemme, Alberto Bartoli, and̈Ozalp Babaoglu. Online reconfiguration in replicated databases
based on group communication. InDSN, pages 117–130. IEEE Computer Society, 2001.

[21] Bettina Kemme, Fernando Pedone, Gustavo Alonso, AndreSchiper, and Matthias Wiesmann. Using
optimistic atomic broadcast in transaction processing systems.IEEE Trans. on Knowl. and Data Eng.,
15(4):1018–1032, 2003.

[22] Konstantinos Krikellas, Sameh Elnikety, Zografoula Vagena, and Orion Hodson. Strongly consistent
replication for a bargain. InICDE, pages 52–63, 2010.

[23] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

[24] Yi Lin, Bettina Kemme, Ricardo Jiḿenez-Peris, Marta Patiño-Mart́ınez, and Jośe Enrique Ar-
mend́ariz-Iñigo. Snapshot isolation and integrity constraints in replicated databases.ACM Trans.
Database Syst., 34(2):1–49, 2009.

[25] Yi Lin, Bettina Kemme, Marta Patiño-Mart́ınez, and Ricardo Jiḿenez-Peris. Middleware based data
replication providing snapshot isolation. InSIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pages 419–430, New York, NY, USA, 2005. ACM.

[26] Nancy A. Lynch.Distributed Systems. Morgan Kaufmann Publishers, 1996.

[27] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.CWI-Quarterly,
2(3):219–246, 1989.

[28] Takeshi Mishima and Hiroshi Nakamura. Pangea: An eagerdatabase replication middleware guaran-
teeing snapshot isolation without modification of databaseservers.PVLDB, 2(1):1066–1077, 2009.

[29] F. D. Muñoz-Escóı, J. Pla-Civera, M. I. Ruiz-Fuertes, L. Irún-Briz, H. Decker, J. E. Armendáriz-
Íñigo, and J. R. Gonźalez de Mend́ıvil. Managing transaction conflicts in middleware-based database
replication architectures. InIEEE Symposium on Reliable Distributed Systems, pages 401–420, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[30] Francesc D. Mũnoz-Escóı, Ruben de Juan-Marin, José Enrique Armend́ariz-Iñigo, and Jośe
Raḿon Gonźalez de Mend́ıvil. Persistent logical synchrony. InNCA ’08. Seventh IEEE Interna-
tional Symposium on Network Computing and Applications, pages 253 –258, July 2008.

[31] Francesc D. Mũnoz-Escóı, Maŕıa Idoia Ruiz-Fuertes, Hendrik Decker, José Enrique Armend́ariz-
Iñigo, and Jośe Raḿon Gonźalez de Mend́ıvil. Extending middleware protocols for database repli-
cation with integrity support. In Robert Meersman and ZahirTari, editors,OTM Conferences (1),
volume 5331 ofLecture Notes in Computer Science, pages 607–624. Springer, 2008.

[32] Christos H. Papadimitriou.The Theory of Database Concurrency Control. Computer Science Press,
1986.

22

[33] Marta Patĩno-Mart́ınez, Ricardo Jiḿenez-Peris, Bettina Kemme, and Gustavo Alonso. MIDDLE-R:
Consistent database replication at the middleware level.ACM Trans. Comput. Syst., 23(4):375–423,
2005.

[34] Christian Plattner, Gustavo Alonso, and M. TamerÖzsu. Extending DBMSs with satellite databases.
The VLDB Journal, 17(4):657–682, 2008.

[35] Maŕıa Idoia Ruiz-Fuertes, Francesc D. Muñoz-Escóı, Hendrik Decker, Jośe Enrique Armend́ariz-
Iñigo, and Jośe Raḿon Gonźalez de Mend́ıvil. Integrity dangers in certification-based replication
protocols. In Robert Meersman, Zahir Tari, and Pilar Herrero, editors,OTM Workshops, volume 5333
of Lecture Notes in Computer Science, pages 924–933. Springer, 2008.

[36] J. Salas, R. Jiḿenez-Peris, M. Patiño-Mart́ınez, and B. Kemme. Lightweight reflection for
middleware-based database replication. InIEEE Symposium on Reliable Distributed Systems, pages
377–390, Washington, DC, USA, 2006. IEEE Computer Society.

[37] R. Salinas, F. D. Mũnoz-Escóı, J. E. Armend́ariz-Iñigo, and J. R. Mend́ıvil. A performance evaluation
of g-bound with a consistency protocol supporting multipleisolation levels. InOTM ’08: Proceed-
ings of the OTM Confederated International Workshops, pages 914–923, Berlin, Heidelberg, 2008.
Springer-Verlag.

[38] Rodrigo Schmidt. Deferred-Update Database Replication: Theory and Algorithms. PhD thesis,
EPFL, 2008.

[39] Damían Serrano, Marta Patiño-Mart́ınez, Ricardo Jiḿenez-Peris, and Bettina Kemme. Boosting
database replication scalability through partial replication and 1-copy-snapshot-isolation. InPRDC,
pages 290–297. IEEE Computer Society, 2007.

[40] Shuqing Wu and Bettina Kemme. Postgres-R(SI): Combining replica control with concurrency con-
trol based on snapshot isolation. InICDE ’05: Proceedings of the 2005 IEEE International Confer-
ence on Data Engineering, pages 422–433, Washington, DC, USA, 2005. IEEE Computer Society.

23

