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Abstract

The correct design and implementation of replicated database sereethadienging task. A repli-
cation protocol has to ensure consistency among different data iephea in case of failure, as well
as to retransmit lost data if a replica recovers after a failure. One-eqpivalence is the traditional
criterion to study the correctness of this kind of systems. Formal tecsigsieg simple and modular
models are necessary to provide clear specifications of distributedydé¢ans, although they are rarely
used. In fact, up to our knowledge, no previous work has tried to gathiiple isolation levels, integrity
constraints, crash failures and recovery in a same formal model. papisr presents a general frame-
work for modelling and verifying database replication schemes underétsi-recovery failure model
that covers a wide range of protocols. Using this model, we introduce&apy equivalence notion,
in which transactions can be executed under different isolation levalsyarprovide some criteria to
simplify the task of proving this equivalence for full replicated protocéldditionally, these criteria are
also applicable to partial replication protocols.

1 Introduction

In the last years, high availability and load balancing itatase servers have become increasingly im-
portant. The challenge in the design of these systems isdp Raultiple copies of data items in differ-
ent physical locations despite failures. Most replicatiechniques usually follow a Read One Write All
(ROWA) approach: transactions read from one replica, wdtetkeir write operations have to be applied
at all replicas. The primary copy approach is the easiedicedipn strategy, in which a replica, called
primary, is in charge of executing all the update transastiand the rest of replicas are used as backups
that can only perform read-only transactions. In contthstupdate everywhere strategy allows to perform
updates at any copy but makes coordination more complexer&gwotocols are based on deferred-update
replication: each update transaction executes first afaggations in one replica, called delegate, and then
the write operations are propagated to all replicas.

In order to ensure consistency among replicas, transaetiecutions have to be synchronized. Latest
solutions of database replication [1,9,14,17,18,19,2129, 33, 40] make use of Group Communication
Systems (GCS) to order transactions. These systems alldwetp track of the active replicas and to
communicate using a variety of reliability and ordering gedies, which are very useful for replication
and fault-tolerance.



When a server site fails, clients can redirect their tramsastto another available one, but possibility
of recovering sites that have failed must exist. The regotask basically consists in transferring the
information lost during the failure interval, from one or reaactive replicas to one or more recovering
sites, without interfering with the normal service of thetgm.

Motivation . When developing crash-recovery applications in a distedbgystem, its correctness must
be proven somehow. The correctness of replicated datapasars is traditionally linked to the notion
of one-copy equivalence [8], since a user should see a agpticsystem working as a single database.
The main idea is that every transaction in the replicatetesydehaves as if it had been executed in a
logical copy of the database maintaining its isolation lewel respecting the integrity constraints in case it
is committed. Currently, there exist different definitiavfthe one-equivalence concept depending on the
concrete isolation level considered, such as one-copglizatility [8] or one-copy snapshot isolation [25].
Moreover, many one-copy equivalence definitions do notidensany liveness properties, which entails
that if no events occurred in the system, it would be considless correct.

The adoption of formal design techniques to provide prespgifications of the problem, their so-
lutions and proof of correctness is an important issue todaessed, more so when the vast number of
algorithms and protocols for database replication showsaigreat complexity of the problem. It is highly
desirable to use a simple and compact mathematical modebwide clear specifications and formal ver-
ifications of the critical properties of distributed systenBesides, system specifications should be clear
and modular enough to describe precisely all the aspectsmhplex distributed system. However, formal
methods and modular descriptions are rarely used in repticiatabase systems.

Several solutions have been proposed to provide data aéiplic These solutions usually assume only
a single isolation level and do not manage integrity comgsd2, 13, 14, 22, 25, 28, 29, 34]; a few works
support multiple isolation levels, but again without calesing integrity constraints [6, 37]; and a last set
considers integrity constraints, but only related to eitheeplication protocol family [31, 35] or a single
isolation level [24]. Some of these works [2, 24, 25, 33] édesalso the effect of crash failures, but only a
few of them presents a strict formal model to reason abouh thigesides, other works [5,11, 18, 20] deal
with how to recover from replica failures, although they giynpropose some recovery mechanisms and
do not provide any formal reasoning about their correctness

Up to our knowledge, no previous work has tried to gathethalse details together in a formal model.
Furthermore, many correctness proofs either do not confadlares or no strict formal proofs are pre-
sented. Besides, the correctness of the recovery processnslly presented as a patch over the proof
for the replication protocol, although the recovery shcaddactually integrated into the replication proto-
col. Usually, stronger conditions are assumed to simplig/ study of failures, instead of considering the
peculiarities of the recovery process from the start.

Contributions. This paper tries to fill this void by presenting a general glddr a replicated database
system under the crash-recover failure model that suppottsmultiple isolation levels and integrity con-
straints. The model considers a distributed system whetle gite has a local DBMS that guarantees the
ACID properties [16]. Afull replication model is followed; i.e., each replica holds a full copy of the
database and all replicas share the same schema. Transantg be started at any time and any site, and
may read or write any item. In this model, transactions magtecuted under any isolation level sup-
ported by the DBMSs. Thus, applications may combine setsaogactions with different isolation levels.
Moreover, databases admit the declaration of integritystraints that must be respected by committed
transactions. Furthermore, this general model accomrasdaty kind of replication protocol that fulfills
a very simple set of properties, which most existing repilicaapproaches actually do. With the aim to
provide a rigorous and modular specification, we make uskef© automaton model [26, 27].

Using this general model, we provide the one-copy equivaerotion based on a legal relation that
transforms the behaviors of the replicated system, in waitnsaction is executed in different sites, into
a one-copy behavior, in which the transaction appears toxdeuted in a single database. Thus, to prove
the correctness of a particular solution, we only need teklehether it is possible to find this relation.
However, proving the correctness of a particular systerhisiway can be an arduous task; but it can be
simplified if some simple properties that the system behaviave to fulfill are provided.

Thus, in order to narrow the gap between the implementafiogpdication and recovery protocols and
their formal proofs, this paper proposes a set of four comess criteria, which are proven to be the nec-
essary and sufficient conditions to be imposed on a repticddgabase system (using ROWA replication)



supporting the crash-recover model for achieving one-@wpjvalence. These criteria, consisting of both
safety and liveness properties, can serve as a basis foallgrpmoving the correctness of protocols under
the considered model in a modular and well-defined way. Toetsia require that:¢1 - local transaction
progres3 every transaction that starts in its delegate site evéptgi@es a termination response (commit-
ted or aborted) at some site of the system unless that sgbesaC2 - uniform decisiojif a transaction is
committed (aborted) at one site, then it cannot be aboriaifutted) at other sitesC@ - uniform prefix
order consistengyfor every two distinct sites, the sequence of committedatgdransactions at one site
is a prefix of the sequence of the committed update transectibthe other site or vice versa providing
that the writesets of remote and local transactions areahsand C4 - non-contradictiohif a remote
transaction is committed, then it does not conflict with ahthe transactions that were committed at its
delegate replica between the beginning and commitment Aftlhough they are quite intuitive, they have
never been formalized or proved as valid for such a generdeivad data replication.

Related works Previous works with a similar aim have not reached the lef/glenerality proposed
in this paper. Some works [3, 24] based on histories of ofmersiexecuted on Sl databases provide some
sufficient conditions for a replicated history of a ROWA systto be one-copy equivalent. Additionally,
in [24], integrity constraints and crash failures are aleasidered. However, failures are studied as a
separate case of the replication process and hence theatépli and recovery processes are considered
individually although they are very interrelated. Anothark [38] based on TLA+ [23] provides a general
serializable database specification to study the serilizaof deferred-update protocols. Thus, they
propose an abstract algorithm that makes it easy to thinktaddficient and necessary requirements for
them to work correctly. Their system model is based on seaible databases and it does not consider
either integrity constraints nor crash failures. Finailty[2], we tried to propose some criteria to achieve
the one-copy equivalence of a replicated database systemidering crash failures from the beginning,
but the system model was based on Sl replicas and it did nsidemintegrity constraints. Nevertheless,
these criteria failed again to discuss the uncertainty efdrash failure despite its importance, which
requires every remote transaction not to conflict with anyhef transactions that were committed at its
delegate replica.

Structure of the paper. The rest of this paper is organized as follows. Section@thices the spec-
ification framework used throughout this work. Section 3laxys the basic definitions for understanding
single database systems by means of the specification ofaigesingle database system with no fail-
ures. In Section 4, the previous system is extended to stigpocrash-recover failure model. Section 5
presents the specification of an abstract replicated degedyestem with the crash-recover model. Section 6
formalizes the notion of one-copy equivalence. Section deioted to the correctness criteria that must
be imposed in order to achieve one-copy equivalence, alatigtihe formal proof that shows that such
criteria are the necessary and sufficient conditions faaiabtg one-copy equivalence. Section 8 extends
the model presented in previous sections to include pagaication. Finally, Section 9 presents some
concluding remarks.

2 Specification Framework

This paper makes use of tih® automaton moddP7] with the aim to provide a rigorous framework. In
order to promote a modular design, each component is modsled I/O automaton module [27]. Each
module)M is specified by its external signaturg; (1) and a set of behaviotehs(M) delimited by safety
and liveness properties.

The signature of a modul®/ consists of two different kinds of actions that alldd/ to communicate
with other modules: input actiong{( 1)) and output actions{it(M)). Thus,sig(M) = (in(M), out(M)).
The set comprising all the possible actions\éfis acts(M) = in(M) U out(M).

An infinite (finite) behavior3 of a moduleM is denoted by = 71 - ... (B = 71 - m2...7p)
with 7; € acts(M). The set of all acceptable behaviorsidfis denoted byehs(M). We say thatr; is in
G if the i-th event ing3 is 7;, and thatr is in § if there exists an indek such thatr, = = andny is in 8.
For any0 < j < |8| (where|s| stands for the length af), 5(j) represents the finite prefix (denoted’)
of lengthj of 3, i.e.,6(j) < B and|5(j)| = j. By its definition,5(0) = empty. Moreover, we define a
function nameand() that returns the last element of a given sequence,e.d(3(j)) = ;.



Let o C acts(M), By is the subsequence ¢f including only the actions of in g, i.e., Blp =
iy * Tig---Tiy, ... SUCh thatr;, is in § andm;, € ¢. Note that we can also use the original indexes of the
actions of when describing the sequence of actionggf. Wheny = acts(M’) for a moduleM’, we
simply write 5| M.

In this paper, a replicated system is represented as theasitiop of a set of compatible modules [27].
A composition operation of several modulé$; whose sighatures are compatible results in a module
M = 1I,(M;) which has a signature composed by the se/pkignatures and a set of behavibeds(M)
such that each behavigre behs(M) satisfies tha|M; € behs(MM;), i.e., the behavior of the composition
satisfies the properties of each of its components.

On the other hand, if a module is a more detailed refinement of another modulgé M must satisfy
M’ in the sense thatig(M)=sig(M') andbehs(M)Cbehs(M'). Thus, the properties satisfied By’
will also be satisfied by/.

Finally, although some variables used in the propertieh@behaviors may be unbounded, it is under-
stood that they are universally quantified in their domaaorstiie entire scope of the formulas, unless we
explicitly specify them for a better comprehension.

3 Database System Model

This section presents the specification of a generic sirgfigbdise system with no failures, which is mod-
eled by means of a module denoted BYB(Z,7). This module is needed for introducing some basic
definitions and notations which are used throughout thiskwor

3.1 Database Transactions

A databaseconsists of a set of items that can be accessed by concusestttions. Lef be the set of
database items. The identifier of each item is assumed toiheainThe set of possible values for each
itemz € 7 is represented by.

Let 7 be the set of all possible transaction identifiers in any nedwhere the identifier of each
transaction is assumed to be unique. A transactian 7 is a sequence of read and write operations
over the database items, starting withegin operation (denoted by3(¢)) and ending with ambort or
commit operation. Each operatiasp is actually a(request_op,response_op) pair. The response of a
commit operation corresponding to a transactiimeither acommitted or anaborted notification C'(t)
andA(t) respectively), whereas the response ofiburt operation (i.e., a rollback request) always reports
anaborted notification.

If ¢ completes a write operation on an itenby setting its value t@ and is committed afterwards, a
new version(z, v, t) is installed on the database. Thusgasion(x, v, t) relates an itemr € 7 to the value
v € V, installed by a committed transactiore 7. LetV the set of all possible versions of the database.
For each iteme € Z, its initial version is the first version installed by the ficommitted transaction
creating it. The model assumes that several versions ofine slata item can be available in the database.
Therefore, when a transaction completes a read operatian itemz;, it can get any versiofw, v,t') € V
previously installed by’'.

An execution of a set of concurrent transactions over thaldese is usually represented by an inter-
leaved sequence of completed transaction operations.dbr ¢o delimit which of the executions are the
possible valid executions on the database, some obligdtiave to be imposed to define that set of correct
executions [8, 32]. However, from a mathematical perspecii is also possible to provide a complete de-
scription of the execution without specifying the sequenicall individual operations for each transaction
in the execution. To this end, we can include certain pararaéh the notification of commit and abort
operations, so as to obtain a complete semantic descriptiesich transaction. More precisely, each trans-
actiont that commits in a certain behavior must specify its readset the set of versions read byand
its writeset (i.e. the set of versions installedi)y A transaction is said to be read-only in a behayiaf
its writeset is an empty set throughgtjtotherwise, it is called an update transaction. Moreowatialobses
require a certain amount of information to establish whethgansaction can be committed or not. This
control information may be the readset or the writeset tiedwves, it may be inferred from these sets (e.g.



the items of the writeset) or it may even be related with oitiermation of the execution. To represent this
information in a general way, we define a ahat contains all the possible control information eleragnt
which will depend on the kind of control information used.

Thus, the notification of a committed transactiotaking place in an execution is now denoted by
C(t,d), whered includes the setd.rs € 2V, d.ws € 2¥ andd.inf € £ (which stand for the readset,
writeset and control information used for establishing winas been committed). In the followingp, =
2Y x 2Y x &£; henced € D.

It would also be possible to change the aborted notificatié) by A(t, ¢) where parameter would
explain the abort cause af However, it is unnecessary in this paper.

3.2 A Generic Single Database Module

The moduleDB(Z,T) is defined by its external action signature and the set ofassiple behaviors,
behs(DB(Z,T)). We omit(Z,T) when itis clear in the context. The external signatur®df is defined
in such a way thain(DB) is arbitrary and{ B(t), C(t,d), A(t) : t € T,d € D} C out(DB). By means
of B(t), the DB module notifies the beginning of a new transactioActionsC(t, d) and A(t) represent
the database’s final decision on the transaction effects.

In the following, we present the main definitions used fotrieting the set of possible behaviors of the
rest of modules specified in this paper.

Definition 3.1. (Well-formedness)

e Atransactiort € 7T is said to be well-formed in a behavi@re behs(D B) if the sequencg|{ B(t), A(t),
C(t,d) : d € D} is a prefix of one of the following sequenceB(t) - C(t,d) for somed € D, or
B(t) - A(t).

o A behaviorg € behs(DB) is said to be well-formed if evetye 7 is well-formed ins.

If a behaviors € behs(DB) is well-formed, then after the beginning of a transactioceih only be
either committed or aborted, and such actions can only agpeaost once irg.

The database specification is based on the concept of cozdrattite, also called snapshot. A snapshot
provides a view of the installed versions of the databasestexisting at a certain time in a behavior.

To determine the versions that comprise the snapshot, weeddie log of a behavior for a certain set
of items. Given a writesabs € 2V, and a subset of iten’, C Z, ws(Z;) represents the elementswof
related to the items dfy,, i.e. ws(Zy) = {(z,v,t) : (z,v,t) € ws Ax € Zi}. The log of DB for a subset
of items1I}, is defined as follows.

Definition 3.2. (Log of DB for Z;) Let 5 be a well-formed behavior dB(Z,7) andZ; be a subset of
7. For each prefix3(j) of 8, with0 < j < |3|, the log of3(j) for the subset of item$, is defined as
log(B(4),Z) = log(B(j — 1), Zx) - (dws(Zy)) < (m; = C(t,d) Adws(Zy) # O A j > 0). Otherwise,
log(B(j),Zx) = log(B(j — 1),Zy), beinglog(5(0),Zy) = empty.

WhenZ, = Z, log(6(j),Z) represents the sequence of writesets that were installétebgll the
committed update transactions/iij). We can omit theZ,, parameter when representing the log for the
whole set of itemg, i.e.,log(8(5)) = log(B(4),T).

By making use of the previous definition, the database smapshdefined as the set of the latest
installed versions existing at a certain time in a behavior.

Definition 3.3. (Database Snapshdtgt 5 be a well-formed behavior dPB. For each prefix3(;) of 3,
with 0 < j < |3, the snapshot of(;) is defined asS(3(j)) = U,z end(log(B(5), {=})).

Legal Database BehaviorsA database management system must guarantee all the AGfenpies [15]

for each transaction. The log represents the set of versi@mishave been persistently installed on the
database, which can be seen as an abstraction of data dyrabibrder to guarantee atomicity, the model
establishes that aborted transactions must never interfith committed transactions, i.e., the operations

1For simplicity reasons, it is assumed thaid(log(3(5), {x})) can be interpreted as a set. Thesd(log(3(5), {=})) will only
contain the latest version of item regardless of the number of versionswahstalled by a given writeset.



of aborted transactions are appropriately rolled back. greeented definitions satisfy atomicity. In addi-
tion, real database management systems admit the defioftiarvariety of isolation levels under which
transactions can be executed, and it is also possible téfgmewhole range of integrity constraints to
maintain data consistency. Instead of assuming a spedfatiisn level for each transaction, the presented
database model considers weak conditions from which nieligplation levels can be derived (within the
limits of the proposed mathematical formulation). The daéins of predicatesompatible(), isolated()
andconsistent() allow us to achieve this degree of generality.

First, we define the semantic data of a transactiona behavior3 by means of the following function,
which specifies the point at which the readset, writeset antral information of a transaction in a certain
behavior become meaningful and never change from then on.

Definition 3.4. Letd : 7 x behs(DB) — D. Given a well-formed behavigf € behs(DB) and a
transactiont € 7, thend (¢, ) = d if and only ifC (¢, d) is in 5. Otherwisej(¢, 8) is undefined.

Definition 3.5. Let 3 be a well-formed behavior dDB, ¢',t € 7 be two transactions and j be two
indexes off such thatd <i < j < |g:

e compatible(t,i,5(j)) =
8(t.8(5))rs € (Uscpe,; S(B(K)) UO(t, B())-ws

e isolated(t',t,i,8(j)) =3k i<k <j:mp=C{,d)= P(d.inf, it 0(j)).inf)

e consistent(t, 3(j)) =Vz: K. (S(8(j—1)),4(t, B(§)).ws) whereK () is an integrity constraint defined
in the database.

Predicatecompatible(t,i, 3(j)) shows that the versions that can belong to the reat{gg8(j)).rs
must have been installed on the database between indamdg of 5 or must be its own writes(t, 5(j)).ws.

On the other handsolated(t', t, i, 3(j)) determines the conditions that may happen in the context of
a transactiort between indexesand; of 3 with regard to another transactionthat may be concurrently
committed in that context. If those conditions happen, thisrable to reach the committed status (see Def-
inition 3.6 below). By its definition, if’ is not committed betweehandj, then it will never conflict with
t. Note that, in this case, the predicate becomes true. Ihtqpens for every transactione 7, it entails
thatt has been executed completely isolated from the rest ofactioss betweenandj. Otherwise, the
control information of the involved transactions will detene if their isolation level permits them to be
concurrently committed, by means B{d'.inf, d(t, 8(j)).inf) in isolated(t', t, i, 3(j)).

Finally, consistent(t, 8(j)) holds if and only if the writeset of, 6(¢, 3(j)).ws, does not infringe any
integrity constraint demanded by the databasg @ach constraint depends on the previous committed
state (snapshot) of the database and the writeset to béedsta

By making use of the aforementioned predicates, DefinitighBovides the obligations for every
committed transaction inlagal behavior

Definition 3.6. (Legal Behavior)A well-formed behaviof € behs(DB) is legal, if for eacht € 7 such
thatm; = B(t) andn; = C(t,d) are in 3, the following conditions hold:

(@) compatible(t,i, 5(j))

(b) isolated(t',t,i,6(j)), forall t' e T

(c) consistent(t, 3(5))

Thus, Definition 3.6 establishes that in a legal behavia,tifansactiort is committed: (a) its readset
is obtained from the committed states seen within its can{bxthere is no other transactiohconflicting
with ¢; and (c) all the integrity constraints hold at the time ttengaction is committed.

Table 1 shows several isolation levels that can be definedréisylar cases of Definition 3.6.

The following example displays a legal behavior with coment transactions executed under different
isolation levels.

Example 1. Let us consider four update transactiofys, t2, t3, t4} such thatt; is executed under Weak
Read Committed, under Snapshot Isolations under Dynamic-Serializable artd under Serial. Assum-
ing that transactions satisfy all the integrity constrairsnd are compatible, one of the possible behaviors
could be, as shown in Figure 1:



P(d'.inf,d.inf) inisolated(t',t, i, 3(5)) compatible(t,i, 3(5))

Weak Read Committed [7 true d.rs C Ui<k<j {S(B(k))} Udws
Snapshot Isolation [14, 25| items(d .ws) Nitems(d.ws) = () d.rs C (8(B(7)) Ud.ws)
Dynamic-Serializable [14] items(d’.ws) N (items(d.ws) U d.rs C(S(B(2)) Ud.ws)

items(d.rs)) =0

Serial false d.rs C (8(B(7)) Ud.ws)

Table 1: Predicates depending on the isolation level censitl(wherer; = B(t), m; = C(t,d) and
mr = C(t',d")areingwithi < k < j)

— t, (READ COMMITTED) |
4| t, (SNAPSHOT ISOLATION) } >
—| t; (DYNAMIC SERIALIZABLE) |7_,

} t, (SERIAL) } >
B __o. ...... o. ...... o. ...... o. ..................... o ....... _o_ ....... O. _______ o._*
B(t) B(t) B(t) B(ty) C(tyds) Aty C(tsds) C(t:,dy)
T 173 T3 Ty 15 s T, Tl

Figure 1: Example of a behavior with transactions executetarrently under different isolation levels.

> ﬁ = B(tl) . B(tz) . B(tg,) . B(f4) . C(tz,dg) . A(t4) . C(t37 dg) . C(tl, dl)

Since transaction, is executed under Weak Read Committedsitéated predicate is always true. As
for t5, which is executed under Snapshot Isolatiaolated(t’, t2, 2, 3(5)) is also true, because there is no
transactiont’ that commits during its execution. Transactignwhich runs under Dynamic-Serializable,
would make solated(ts, t3, 3, 5(7)) false in cas@tems(ds.ws) N (items(ds.ws) U items(ds.rs)) # 0,
sincew; = C(t2,ds). However, we can infer that there is no such intersection @b b, and ¢; are
committed. Finallyt, can never be commited, éslated(ts,t4,4, 3(6)) is false becauses = C(t2, d2).

3.3 Generalized Legal Behavior

The definition for legal behaviors can be generalized in gknway to make it suitable for replicated set-
tings. In a generalized legal behavior, a transaction @matl to perform operations with stale information
about database versions, as if it had been started befotartbet actually did. This idea was originally
introduced by [14] for Snapshot Isolation under the name efi€dalized Snapshot Isolation. We extend
this notion to make it valid under other isolation levels.

Definition 3.7. (Generalized Legal BehavioA well-formed behavios € behs(DB) is a generalized
legal behavior, if for eaclt € 7 such thatr; = B(t) andr; = C(t) are in 3, there exist$) < s < i such
that the following conditions hold:

(@) compatible(t, s, 5(5))

(b) isolated(t',t,s,0(j)), forallt’ € T

(c) consistent(t, 5(5))

4 A Crash-Recovery Database Module

The generic modul® B(Z, 7') can be adapted to support the crash-recovery failure mdtelD B¢ %(Z, T')
module, defined in Figure 2, hasash andrecover as input actions. The new system is crash-prone: it



may fail and stop its execution at any time. Furthermores{tstem may recover after crashing and resume
the execution of transactions.

e Signature:
in(DBYR) = {crash, recover}
out(DBYR) = {B(t),C(t,d),A(t) : t € T,d € D}

o A setbehs(DBCF) of behaviors such that evesyc behs(DBCF) is well-formed(Definition 3.1),
legal (Definition 3.6),progressiveProperty 4.1), and fulfill@xecution integrityfProperty 4.2).

Figure 2: ModuleD BCE(Z, T)

Apart from being well-formed and legal, the behaviorsIaB¢ " must fulfill the following liveness
property, which states that if a transaction begins and doegrovide any output, then the system must
have crashed.

Property 4.1. (Progressive BehavioBvery behavio € behs(DBC) is progressive: for every € T,
m=B(t)=3j:j>i:m; € {C(t,d), A(t),crash : d € D}.

Moreover, we need to adequately model the behavior of atieash and recover, as specified
in Property 4.2.

Property 4.2. (Execution Integrity)Every3 € behs(DBCF) holds the two following conditions:

(@) mj = crash = (8 = B(j) V 741 = recover)
(b) m; = recover = mj_1 = crash

Property 4.2 ensures that: (a) aftetrash action, either the system stops its activity and no further
actions are performed, orr@cover action is executed after the system crashed to restart Htersyand
(b) the immediate predecessor of@over action is always arash action. Thus, no actions can occur
between arash and arecover action.

5 A Replicated Database System

This section provides the specification of an abstract cefdid database system supporting the crash-
recovery failure model, name®lS. The components of theS module are a group of databadesS (7, 7),
beingn € N (whereA' = {1..N} represents the set of site identifiers). All the databasésersystem
have the same set of iterisand the same set of valu&s for each itemr € Z, as well as the same
integrity constraints. Thus, they all have the same set s§ipte versiond’ for the set of transactioris.
Under these condition$uyll database replicationis assumed. From this point onwards, we ofm#nd7

in DBSR(T,T).

The DBS'E module is the same as theB“F module of Section 4, with the only difference that,
since theDBSE is intended for replicated settings, its specification isjeet to its site identifier, i.e.,
the actions of its signature are labeled with the site ifienti Thus,in(DBS®)={crash,,, recover,};
out(DBSE)={B,(t),Cy(t,d), A,(t) : t € T,d € D}; and everys € behs(DBSF) is well-formed,
legal, progressive and fulfills execution integrity.

The RS module results from the module composition [27] of the grefig BS'? modules: RS
I, DBSE. Therefore, the signature d@S hasin(RS) = (U, in(DBST)) and out(RS)
(Upen out(DBST)) as input and output actions.

The signature of theRS module is well-defined, as the signatures of the componemutas are
compatible [27]. Moreover, by the definition of module corapion, every € behs(RS) satisfies
B|DBET € behs(DBST) .

Several works [10, 29, 36] point out the convenience of oy databases with extended features to
simplify the replication task. These features are modelethb DBS'T in an abstract way, regardless
of their implementation. Thus, in the resultifgS, the database at each site handles transactions with
independence from the rest of sites. As depicted in Figuie réplication protocol will be responsible



for coordinating them adequately, and a recovery protodbhmanage sites that recover from a crash, so
that they can catch up with the rest of sites. By leaving tipdigation and recovery protocols in charge of
these tasks, thRS focuses on the valid behaviors that transactions can hadeyides the distribution and
communication issues that depend on the concrete implat@mbf the protocols.
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RS N R
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: el 2=l 1, !
| | <|S] ! & <5 L
'+ crashy Vi crashy crashy \ AT
. recover. D CR | recover recover, D CRI .
1 1 2 - Enan N 1
LD 1 —> —> N .

Figure 3: Replicated Database System. Solid arrows irelibat observable actions of this model, whereas
dashed arrows represent hidden actions.

This paper focuses on protocols in which each transactaitssit a certain system site, calldglegate
site of that transaction, which is in charge of executing all repdrations. In contrast, the effects of write
operations of committed transactions must be applied aitak (which entails that the writeset of each
transactiort is the same at all sites that comntjjit Similarly, the control information of a transaction in a
certain behavior is the same at all sites that commit thas#etion.

Transactions are said to hecal transactionst their respective delegate sites, amahote transactions
at the other sites. Each local transaction and all its agsstremote transactions share the same transaction
identifier. In order to distinguish between local and remiasactions, we assume a functiate : 7 —

N such thatsite(t) (the delegate site @ is unique:(site(t) = n A site(t) = n’) & n = n/. There are
no further assumptions restricting the way in which locahfactions can appear in the system; therefore,
they may begin anytime at any site and read/write any iteneuady isolation level.

We define a new module, nam&#”, which is a refinement of thBS. Hencesig(RST) = sig(RS)
andbehs(RST) C behs(RS). The behaviors of th& ST module are restricted by Property 5.1, which
establishes the conditions that model the consideredegjan protocols. This property states that a remote
transaction can begin only after the corresponding loealtaction began at the delegate site (thus avoiding
the spontaneous creation of remote transactions). Morethesemantic data regarding a transaction is
the same at all sites in which it is committed, with the eximepof the readset (which is empty at remote
sites).

Property 5.1. (P: Protocol Abstractionffor every behaviop € behs(RST) and every transactione 7,
the following conditions hold:

(@7 = By(t) = 3j:j <i:7mj = Bgjre(t)

by m =Ch(t,d) ANy = Cp (t,d') = dws = d . ws ANd.inf = d'inf

() m = Cp(t,d) An # site(t) = d.rs =)

We now define the semantic data of a transactiona behavior of theR.S*, which is the union of the
semantics of at all system sites.

Definition 5.1. Given a behaviop € behs(RS”) and atransaction € 7, 6(t, 3).rs =, (6(t, B/ DBS).rs),
o(t, B)ws = U7L€N(6(t,/6’|DBSR).ws) andi(t, B).inf = UneN(é(t,ﬂ\DBgR).inf).

The following remark allows us to ignore read-only trangag for the rest of the paper.

Remark 5.1(Read-only transactions}f ¢ is a read-only transaction, by its definition(i;. ;) (¢, d) isina
behavior of theR ST, it holds thatd.ws = () (therefore it does not appear at the logate(t)). Moreover,



by Property 5.1(b-c), for any. # site(t), if Cgper)(t,d’) is in a behavior of theRS, thend'.rs =
d'.ws = (). However, in order for a read-only transactierio be purely localjsolated(t,t', 4, 3(j)) must

be true for anyt’. Assuming that read-only transactions never conflict witteotransactions, no control
information has to be sent to remote transactions, thus taeybe executed locally. Consequently, read-
only transactions can be ignored. From now on, we considar ¢iwery transactiont € 7 is an update
transaction.

The RST is just the composition oV > 1 databases with a basic property to model the replication
protocol abstraction. Since there are not any other gl@stictions, any pattern is possible, e.g., although
a remote transaction is committed, its local transactioy & aborted or may not give any response
because of a crash. Therefore, other global conditions bristemanded in order to obtain a correct
replicated database system.

6 One-Copy Equivalence

The correctness criterion commonly used to prove that dcegpd database system works correctly is
the one-copy equivalence notion [8]. Following this notiancommitted or aborted transaction is also
committed or aborted in the one-copy database, but if noorespis produced for a transaction which
started in the replicated system because of a crash, theathe happens in the one-copy database. In this
paper, the one-copy database attempts to provide an eXiplafar each transaction in a behavior of the
replicated system.

6.1 The 1CDB Module

The 1CDB module is defined in Figure 4. This module bears some sinyilami the DB module
presented in Section 3. However, as flieD B module represents a system withreplicas, instead of
the execution integrity specified by Property 4.2, the betravof the1C DB module must satisfy Prop-
erty 6.1, which models the occurrencemfish andrecover actions. It ensures that the numberofish
actions cannot be lower than the numberafover actions in any prefix of a behavior (i.e. evemtover
must have a matchingrash action that happened before, to represent that a replicaeex after having
crashed). Moreover, Property 6.1 states that the numheuef, actions without a correspondimgcover
cannot be higher thatv (as there can be at moat crashed replicas), and that when there idrerash
actions without a matchingecover, the 1C' D B module cannot perform any more actions unless the next
action is arecover (thus representing that all replicas are crashed and orfeeof tecovers, although in
the1C' D B model there is no notion of system sites).

e Signature:

in(1CDB) = {crash,recover}
out(1CDB) = {B(t), A(t),C(t,d): t € T,d € D}

e A setbehs(1CDB) such that everyy € behs(1CDB) is awell-formed(Definition 3.1),gener-
alized legal(Definition 3.7), progressive(in the sense given in Property 4.1), aNecrash-stop
(Property 6.1) behavior.

Figure 4: Module 1CDB

Property 6.1. (N-crash-stop Behavior$jor every behaviory € behs(1CDB), being#crash(v(j)) =
[(v(j){crash})| and #recover(v(j)) = [(v(j){recover})|, foranyj : 0 < j < ||, the following
conditions hold:

o 0 < #crash(v(j)) — #recover(v(j)) < N
o #crash(y(j)) — #recover(y(j)) = N = (wj41 = recover V v = y(j))

Note also that th&éC' D B module considers generalized legal behaviors insteadjaf behaviors. This
is due to the fact that a transaction that begins in a site raagee the most current versions of the database
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items in the whole system, and the transaction may be coeuhdtally by working with stale versions of
those items.

ThelC DB module is the most abstract specification of a correct rafgitdatabase system. It does not
impose any conditions regarding its implementability. Fstance, there are no restrictions on the number
of sites that may be simultaneously crashed. The additimmaditions imposed on replicated systems are
necessary to achieve one-copy equivalence, but are natfthe one-copy model itself.

6.2 One-copy Equivalence Definition

Given a list of conditionsp, the RS} module is defined asig(RS.)=sig(RS”) andbehs(RSL)={f :
B € behs(RST) andg satisfies all the conditions ip}. Any RSj; is called a (refined) module of the
RS", sincebehs(RSL) C behs(RST).

The RSf; module represents all possible systems that can be builgy tise RS” module as a basis.
We now have to state when leSf: module is correct according to the notion of one-copy edence.
In an RSf; module, a transactioh € T° may appear i3 € behs(RSf;) as either a local or a remote
transaction. However, in theC'D B module eacht € T' can only appear once without making reference
to any site. Thus, it is necessary to relate the actions ohrsséctiont in both modules and also their
semantics. Consequently, in order to study the one-copiyaguce we have to define a relation between
the behaviors of akS? and thelCDB.

Definition 6.1. (Legal Relation) et RS”’ be a refined module dtS”. LetI” be arelation inbehs(RSY)
xbehs(1CDB). I'is alegal relation if for eactt € behs(RSY) there exists at least onge behs(1CDB)
such that:

(1) a(t, 5) = 6(t,7)

(2)In e N: B,(t)ising < B(t)isiny

(3)In e N: C,(t,d) isin g for somed € D < C(t,d') is in~ for somed’ € D.

@A) IneN: A, (t)ising & A(t)isiny

(5) |(Bl{crashn: n € N'})| = [(Y{crash})|

(6) |(B){recover, : n € N'})| = |(v[{recover})|

Note that, according to Definition 6.1(1), the semantic ddi@ given transaction in behaviofisand~y
is the same. By the definition 6ft, 5) and Property 5.1, it holds théft, 5).ws = d.ws andi(t, 8).inf =
d.inf in caseC,(t,d) exists in3. Moreover, ifn = site(t), 6(¢, 5).rs = d.rs. On the other hand, if a
transactiory is committed iny, C(¢,d") will happen only once iny, as it is well-formed. Thusd’ must
contain all the semantic dataofi.e. §(¢,v) = d'.

To define the relation in a more general way, Definition 6.1rperto choose arbitrarily the order of
the actions iny regardless of the order established/bfor these actions. By its definition, the image of
3 by the legal relatior?”, denotedl"(3), satisfies!"(3) C behs(1C'DB). Since transactions in € I'(3)
have the same readset, writeset and control information &s as well as the same isolation level as in
3, this legal relation can be somehow considered a generat@meequivalence notion between a system
characterized bj;ehs(RSj,’) and thelC' DB module. This allows us to define the one-copy equivalence
between arRSi module and the C' D B module.

Definition 6.2. (One-Copy Equivalence)et RSP be a refined module aRS”. The RS module is
one-copy equivalent to theC' D B module if and only if there exists a legal relatidh C behs(RSSf) X
behs(1CDB).

Figure 5 shows an example of a behavioof an RS, module and a behavior of the 1C'DB module
obtained froms. It is worth noting that a transactiagrthat begins in a site that crashes before producing
a response fot can be committed (or aborted) after that transaction resdias in Figure 5, where site
crashes before executirdg (¢, d})). In fact, when a sitex crashes before executing thg, (¢, d) action
for a pending transactioh) the model does not distinguish between the case whers not committed in
n before it crashed and the case whevas actually committed but crashed before producing a response.
The recovery protocol will be in charge of appropriatelydiing transactions that were active before the
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Figure 5: Example of a behavigt € behs(RST) and its corresponding one-copy equivalent behavior
v € I'(B).

site crashed (e.g. if messages corresponding to pendingairtions are persistently delivered [30], the
recovery protocol will be able to apply transactions thatendelivered at the replica but were not applied
before crashing, by accessing the queue of delivered messag

7 Correctness Criteria

This section details the set of conditiopsthat must be fulfilled by the behaviors of tﬂéS{;’ module
to provide one-copy equivalence (see Definition 6.2). Asiit e proven, the proposed conditions are
necessary and sufficient to guarantee one-copy equivalEncéhis reason, they are correctness criteria.

Criterion 1 (C1: Local Transaction Progress)et 3 € behs(RST), it holds thatr; = Bgitery(t) =
In:neN: Ik k> i: mp € {Cn(t,d), An(t), crash, : d € D}

Criterion C1 indicates that if a transaction begins, thenilitbe committed or aborted at least at one
site, or that site will crash otherwise. This liveness cidte entails that if a transaction begins and does
not provide any output then there must have been at leastragl m the system. Note that every formal
specification requires such kind of properties, since agys$h which nothing happens is always safe.

Criterion 2 (C2: Non-Contradictory Decision).et3 € behs(RST), it holds that-(r; = C,,(t,d) Am; =
Ap(t))in g, foranyt € 7,d € Dandn,n’ € N.

Criterion C2 states that if a transaction is committed (&z)rat one site, either correct or faulty, it
cannot be aborted (committed) at any site. Thus, C2 guasuitait the decision on the outcome of a
transaction is not contradictory in the system.

Criterion 3 (C3: Uniform Prefix Order Consistency).et 3 € behs(RST). For every3(j) < 3, it holds
thatlog(3(5)|DBST) < log(B(5)|DBSE) or vice versa.

n’

Criterion C3 forces the system to build the same snapshatlttate databases. If a database fails, this
criterion ensures that the last installed snapshot is alsdidisnapshot for the rest of correct sites.

When it comes to considering crash failures, the previousr@imay not prevent some undesirable
behaviors. For example, if a local transactiowas going to be aborted locally by another conflicting
transaction, but the delegate site crashed before pragliticeabort notification, a remote transaction of
t may be committed at other site. Criterion C4 avoids such \ielaby ensuring that the behavior of
remote transactions is equivalent to that of their localgeations even if the local ones fail to notify their
termination. To simplify the formulation, we defidest (i, n, 3) as the last transaction that committed in a
siten before an actiom; in a behavior3 € behs(RST).

Definition 7.1 (Last Transaction)Let 3 be a behavior o2S”. The last committed transaction gfat a
site n beforer; is defined asast(i,n, §) = tias ifand only if35: j < i: 7; = Cy(tiast, d) (for some
deD)NVEk: j<k<i:mp¢{Cn(t,d):teT,d € D}. Otherwiselast(i,n, ) = fo.

By Definition 7.1, either there exists a transactigg,; which is the last committed one just before
action; in 3, or there does not exist a previous committed transactitnigehe latter case, in order to
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simplify some of the proofs, we assume that forrale N, if 7; = C,(fo) thenj = 0; i.e., a fictitious
transactionfy, has been committed at every site at the initial point.

Criterion 4 (C4: Remote Equivalence)l et 3 € behs(RST), it holds thatm; = Bgitery(t) N m; =
Cr(last(i, site(t), B),d") A mp = Cy (t,d) An' # site(t) =Vt € T: isolated(t",t, j, 3(k)| DBSF).

It is worth noting that Criterion C4 is only necessary whesidation levels may cause conflicts.

We denote byRSE, the moduleRS] whose behaviors satisfy C1-C4. Such criteria are provereto b
the necessary and sufficient conditions that must be imposélde RS” to be one-copy equivalent to the
1C DB module in the next subsections.

7.1 Proof of Necessity

In order to study whether Criteria C1-C4 are necessary tiondito get thed C'D B equivalent system, we
assume the existence of a legal relatidrsuch that a refined module &S” is one-copy equivalent to
1C DB, and prove by contradiction that such equivalence is natiptsswhen supposing that each criterion
does not hold.

Theorem 7.1. Let RS] be a refined module aRS”. If either C1, C2, C3 orC4 does not hold for
behs(RSY), thenRS? is not one-copy equivalent i@’ D B.

Proof. We prove that when any of the correctness criteria does Hdt tieere exists no legal relatioh
(so by Definition 6.2RS§ is not one-copy equivalent taC' D B), i.e. there is at least ong e behs(RSf)
such that anyy obtained using the conditions of Definition 6.1 from any ploissrelation I satisfies
v ¢ behs(1CDB).

e If C1 does not hold, then there exigiss behs(RSf;) suchthatforsomee T': m; = Byjrer)(t) AV €
N:VEk: k> i:m ¢ {Cn(t,d), An(t), crash, : d € D}. Sincel is a legal relation, every € I'(3)
holds thaty|{C,.(t,d), A.(t), crash, : d € D} = B(t). Thus,y ¢ behs(1CDB) because it is not
progressive with regard 9 so there cannot exist a legal relatibni.e. C1 is necessary.

¢ In case C2 does not hold, then there exists behs(RSj;) such that for some transactioi 7" and some
d e D, m = Cy(t,d) andr; = A,/ (t) are ing, withn # n’. For anyy € I'(5), v|{B(t), C(t,d), A(t) :
d € D} iseitherB(t)-C(t,d)- A(t) or B(t)- A(t)-C(t,d) for somed € D; therefore;y is not well-formed.
Thus, C2 is a necessary condition.

« If C3 does not hold, then there exists a finite: behs(RSE) suchthatog(3|DBS®,I) £ log(8|DBS?, I)
with n # n’. Let us consider thg of Figure 6.

980 87 082
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n' n'
?So ©S2
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n=site(t,) Bu(t)  Cu(t0%)Bn(t)  Bu(t) Cu(tsdd) C(t,dh)

.
031

Figure 6: Example of a behavior in which transactions arerondted in different order at two sites.

According to the system model, transactions can be exeautddr any isolation level and they can
read/write any item at any time. Then, we establish the falig additional conditions to the considered
behaviors:

(1) dt.rs C Sy andd?,.rs C Sg" with S§ = Sg’
(2) items(d}.ws) € items(d?,.ws) anditems(d?, .ws) € items(d}.ws)
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(3)d3.rs C ST andd?,.rs C SS/
(4) items(d2.rs) Nitems(ds.ws) # 0 Aitems(d>.rs) Nitems(d2,.ws) # 0
(5) items(dt,.rs) Nitems(dl.ws) # O A items(dt,.rs) Nitems(d?,.ws) #

Recall that, by Property 5.4} .ws = d},.ws andd?.ws = d2,.ws. Any possibley € behs(1CDB)
considering the transformation of Definition 6.1 produces of the snapshot sequend#s- 7' or S7-S3.
SinceST # S} andSy # ST, for anyy’ € I'(3) that could be built includings andt, over~, eitherts
is incompatible ot is incompatible and thereforg ¢ behs(1CDB).

e As Criteria C1-C3 have already been proven to be necessaditmms, anyRSf: which is one-copy
equivalent tolC'D B must fulfill o © {C1, C2, C3}. Thus, we can consider a one-copy equivalent system
that fulfills these properties. First, we strengthen C1 hystering the following progress condition:

(C'1: Transaction Progress) For every € behs(RST): m; = B,(t) = Jk 1 k > i : m, € {Cn(t,d),

A (t), crashy, : d € D}

Let RS{ty o3y PE @module?S” whose behaviors satisfy Criteria C'1, C2and C3. B[/, ¢y ¢y
module satisfies Criteria C1-C3 (as C'1 implies C1 trivipllyLet us assume that th@S{.,, o, o3
is one-copy equivalent téC DB and that C4 does not hold deS{C,l C2,03})- Therefore, there ex-
ists 8 € behs(RS{cq,cz,cs}) (and g € behs(RS{c1,cz,c3})) such thatr; = By (t) A 5 =
Ch (last(i, site(t), 8),d") A, = Cps (t,d) A site(t) #n' ATt € T ﬂisolated(t” t, 4, B(k)|DBSE).
The following proof shows that this is a contradiction, sireverys3 < behs(RS c1,02,03y) fulfills C4
when for anyn € N there is no actiorrash,, in 3.

By C'1,3s: 5 > i: my € {Cyireqn) (t,d), Agireqy (t) : d € D} in B. By C2: my = Clyjpeqr)(t, d) since
T = Cn/ (t,d/).

By its definition there exists & = Ci;c(t)(last(i, site(t), 3), diast). Since everyB’|Dng(t) is legal,
Vit € T: isolated(t",t,i, (s |DBme ) and thervt” € T': isolated(t” t,1, 3(s)|DBSE

»)- By C3,
log(B(k) DBSF, T) = log(5(s >|DBS£2( o D)-
If there exists a transactia), € T'such thatl < m < s andm,, = Cye(r) (tm, dm), then there exists

anm’ suchtha < m’ < kandr,,, = Cy/(t,m,d),). Recall thatl,,,.ws = d,, .ws andd,,,.inf = d.,,.inf
for every site. Thus, ifsolated(t,,t, j, 3(k)|DBSE) is false, then a contradiction is obtained because

isolated(tm, t,1,5(s)|DBGfL ;) is true.
Thus, if C4 does not hold, theémhs(l%”{c,1 co. 03}) is not one-copy equivalent ta” D B, and neither

is behs(RS{c1 ca2,c3))- As aconsequence, C4 is a necessary condition for the ebadfiRSY to be
one-copy equivalent tbtC' D B.

site(t

O

Remark 7.1. Although Criterion C1 is the weakest liveness condition dazorrect system, th&S”
module actually fulfills CriteriorC’ 1, which is stronger than C1, due to the fact that the behavibevery
DBSE are progressive in the sense of Property 4.1.

7.2 Proof of Sufficiency

In order to prove that Criteria C1 to C4 are sufficient comdisi for obtaining one-copy equivalence, the
criteria must ensure that any behavibof the RSE . module can be transformed in such a way that the
result is a behavioy of the1C' DB module.

We now study the structure of a transaction in a behavidret 5; be the subsequengk = 5|{ A, (t),
Biitery (1), Cn(t,d): n € N,d € D}. For each transactiane T, the 3; sequence will always be one of
the sequences defined in Theorem 7.2 due to the conditionscedfby C2.

Theorem 7.2. Let 3 € behs(RSE). For each transaction € T, the sequencg, is one of the following
sequences (whefe:, ..., ny) is a permutation of the site identifiers, IV):

e 3; = empty
.ﬁt = Bsz’te(t) (t) *Yey with Yer = Cnl (t, dl) e CnN (t, dN) (Wlth di...dy € D)
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o ﬂt = Bsz’tc(t) (t) *VYay with Va. = An1 (t) s AﬂN (t)

Proof. By Definition 3.1 and Property 5.1(a), for evelrg 7, either3; is empty (in case3;..(4)(t) is not

in B), or Byie(r) (t) is the first action involving in 3, i.e., Byjter)(t) =X Be. If 7¢, = 74, = empty, the
theorem holds; if not3; will be B,;..)(t) - 7. Then, letr;, 7; be in3 such that < j. Now suppose that
m; = Ay (t) is in . By contradiction, we assume that there also exists & C,,/(t,d) in -, for some

d € D. By Definition 3.1,n # n’. Sincef satisfies C2, such is not possible. The same happens if
m; = Cy(t,d) andr; = A, (t). Thus, the theorem holds. O

A transactiont € T is said to becommitted ina behavior3 € behs(RSE), denoted byt €
Committed(3), if and only if 8; has an actiorC,,(t,d) for some siten € N andd € D, formally:
Bt = Bitet)(t) - e, With 4., # empty. In the same way < T is aborted ing3 < behs(RSEL),
(t € Aborted(p)), if and only if 3, has an actiom,, (t) for any siten € N, formally: 8, =< Bge()(t) -
Ya, With 7y, # empty.

As a result of Theorem 7.2: (i) if € Committed(3), then Bser)(t) - Cy.(s,)(t, d) is a prefix of
B (for somed € D), wheref.(53;) is the first site at whichi is committed; and (ii) it € Aborted(0),
thenByiier) (t) - Aa,(8,)(t) is @ prefix ofg;, wheref,(5;) is the first site at which is aborted. Next, we
define the subsequence@ftomprising the beginning and the first output (committedlmrted) of each
transaction, as well as the crash and recover actions.

Definition 7.2 (Transaction’s First-Output Behavior).et 3 be a behavior oSt .. The subsequengs-
is defined agir = (| F'(3) whereF () = { Byite(r)(t): t € TYU{C%,(5,)(t,d): t € Committed(B),d €
D} U{Ay, (5, (t): t € Aborted(B)} U {crashy,: n € N} U {recover,: n € N'}.

The 5 sequence has some useful properties, shown in Lemma 7. hidf we will make use later.
Lemma 7.1. Let 3 be a behavior of2S£ .. In the subsequeng#- the following conditions hold:
1€ {C,)(t,d),As,,)(t) :d € D} = 3k: k < i: m = Byjrer (1)
2.7 = Byjte) (t) = 3k: k> i mp € {Cy (5, (t,6(t, 8)), Ay, (8,)(t), crash, : n € N',d € D}
3. Foreveryd < j < |8r|, the following conditions hold:

o 0 < #crash(B(j)r) — #recover(B(j)r) < N
o #crash(B(j)r)—#recover(8(j)r) = N = (8(j)r = BrVm41 = recover, for somen € N)

Proof. The first condition comes from Definition 7.2 6f and Theorem 7.2. Moreover, ds= behs(RSE )
satisfies C1, then by Definition 7.2 and Theorem 7.2 the secondition holds. Finally, the third con-
dition is proven by Property 4.2. Since in eve#yD BS T arecover,, action is always immediately pre-
ceded by acrash,, action, by the definition ofir, 0 < #crash(6(j)r) — #recover(8(j)r). Fur-
thermore, in everyS’\DBER the action following acrash,, action, if any, isrecover,. As a result,
#cerash(B(j)r) — #recover(B(7)r) < N; and in case#crash(8(j)r) — #recover(8(j)r) = N,
by Property 4.2 no action is possible aftgrat any site of theRS5 . unlessr; 1 = recover,, for some
nenN. O

The 8r sequence also satisfies thay (3| DBST) < log(Br) for alln € N, as stated in Lemma 7.2
(recall thatlog(3) = log(3,T)). This means thatr installs the same snapshots, and in the same order, as
the ones installed at each replica of the replicated systédns. consideration is possible due/fg being
trivially well-formed in the sense given by Definition 3.keésLemma 7.1) and the fact that the writeset of
a transaction is the same for all sites that commit it by Priigie1.

Lemma 7.2. Let 8 € behs(RSE). It holds thatlog(3(j)|DBS®) < log(B8(4) r) for every prefix3(j) <
B and everyn ¢ .

Proof. Let 3(5) be a finite prefix of3 for some indexj € Z*. By induction overj > 0.

- Basis j = 0. 8(0)|DBSF=p3(0) p=empty and, by definitionpg(3(0)|DBS ®)=log(3(0) r)=empty.
- Hypothesislog(3(j)| DB} =< log(B(j)r) andj>0.
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- Induction Stepwe only consider the events ., affecting the lemma statement.

emit1 = Cr.(s,)(t,d) (for somed € D) and f.(3;) = n. By Hypothesis,log(ﬁ(j)|DBSR) =
log(B(j)r). The only possible case from the Hypothesigig 3(5)| DBS ) = log(8(j) r).
Considetog(3(j)|DBS®) < log(B(j)r). Thereis at Ieastone different eleméditws) in log(B8(j)r).
Thus, 3(j) includes an actiom;: = Cy, (g, (t',d’) with j' < j which appears if#(j)» but not in
B(5)|DBSE. By C3, there is some replicg(3i) = n') n’ # n such thatlog(3(;')|DBST) <
log(B(j")|DBSE). Then,log(3(j)|DBSF) < log(B(j)|DBSE). By the definition of log (Defi-
nition 3.2), asﬁ(j + 1 |DBCR = B()|DBSE - 7;41 and 3(j + 1)|DBSE = B(5)|DBSE then
log(B(j +1)|DBSE ﬁ log(B(j + 1)|DBSE), which leads to a contradiction with C3. As a conclu-
sion, log(8()| DBER) = log(B(j)r). AS B(i+1)|DBSE = B()| DBYR - ;41 and B(j+1)r =
B(5)F - 7j+1, by the log definition (Definition 3.2)og(3(j+1)|DBSF) = log(8(j+1) ) holds.

e mjs1 = Cpp,)(t,d) and fo(8;) # n. By Hypothesisog(5(j)|DBS™) =< log(B(j)r). Since
B(j+1)|DBS" = B(j)|DBS " andB(j + 1) r = B(j) r - mj41, then by the log definitiorlpg(3(j +
1)|DBSE) < 1og(B(j + 1)) holds.

emiy1 = Cy, (t,d) andng, = n, beingni, # f.(6:). By Theorem 7.2, there exisig < j such
thatm; = Cy (g,)(t,d) is in B(j)p. This action is in3(j)r but not in 3(j)|DBSE. Moreover,
by Property 5.1d.ws = d’.ws. By induction Hypothesidog(3(j')|DBS®) < log(8(j')r) and also
log(B(5)|DBS®) < log(B(4)r). Thus, as3(j + 1)|DBSE = B(j)|DBSE - i1 andB(j + 1) p =
B(j) r, by the log Definition 3.2]og(3(j + 1)|DBSE) < log(B(j + 1)F).

e 11 = Cp, (t,d) andny # n, beingny, # f.(3:). In this casef(j + 1)|DBSE = 8(j)|DBSE and
B(j+1)r = B(4)r. Thus, triviallylog(3(j + 1)|DBST) < log(8(j + 1) r) by induction Hypothesis.

Thus, the lemma holds. O

Since our aim is to obtain by construction a behavior thatdaaecopy view of3, we slightly modify
Br according to Definition 6.1(1), in order to include the coatplsemantic of given byd (¢, 3).

Definition 7.3. Let 3 be a behavior oRS5 . The behaviop; ¢ is defined asr; = Ct.80)(t,6(t,3)) is
in Bi1c & m = Cy,p,)(t,d) isin Bp for somed € D; otherwiser; is in f1c < m; isin Bp.

Recall that, due to Property 5.1 and the definitiod @t 3), if =, = C,(¢,d) isin 8 for anyn € N,
o(t, B).ws = daws andd(t, B).inf = d.inf. Moreover, ifn = site(t), thend(t, 5).rs = d.rs (otherwise
d.rsis empty, and ifr; = Cy;e (1) (1, d) is noting, thend(t, 3).rs is undefined). Thus, by the definition of
B1c and Property 5.1, Lemmas 7.1 and 7.2 hold trivially fgg:.

As an example, Figure 7 shows thg and 3, of a certain behavior. Note that the actiongin for
each transaction € T (i.e., Byjte(r) (1), Cr.(5,)(t,d) and Ay, (,)(t)) are unique. The same happens for
Bic.

The actions of sequengk compose a behavior which somehow represents the way in viraictac-
tions behave in the replicated system. This behavior istniotly the same as the one of a single database
system (Definition 3.6), but it satisfies the generalizedliéghavior of Definition 3.7, in which transac-
tions may obtain older snapshots prior to their beginnifgedrem 7.3 covers this issue.

Theorem 7.3. Let 3 be a behavior oRSE .. For each transactiont € T such thatr; = Bigiteq)(t) and
7 = Cy.(3,)(t,4(t, 3)) are in B¢, there exist® < s < i such that the following conditions hold:

(a) compatible(t, s, B(§)1c)
(b) isolated(t',t, s, 3(j)1c), forallt' € T
(c) consistent(t, 5(j)1c)

Proof. By the Definition 7.3 of3,c, bothm; = Bye(4)(t) andm; = Cy (,)(t, d) with i < j existin3
for each considered € T, beingi(t, 8).ws = d.ws andd(t, 8).inf = d.inf. We can use the indexes
1,5 of g in B¢, although the properties to be proven are related only with. Lett, € T be the
transaction such that = last(i, site(t), ) andm;, = Sm(t)(to, dp) is in . By Theorem 7.2, there
existsty = Cf, (s,) (o, dy) With iy < 7, aslog(B(j )| DBCE ) =< log(B(j )|DBf (5. ))- Figure 8 depicts

; ) site(t)
the sequence of actions that are used in this proof.
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O— o—>
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c_0—0 o o >
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Figure 7: The3r and(,¢ for a behaviors
T T T
BlD fe( Bt) o ' o ' ? >
Cr.(gy(to,d) Crgy(tc,dk) Croey(t ,d)
B|DBCE oo B i LN
site()  Csite(t)(ty,dg) Bsite(t)(t) Csite(t)(t, 10 Csite(y(t ,d')
TES TCk

..................................................... )
B CfC (Bo) (to’ (t Bo)) snte t)(t) fo( ( (t Bk)) CfC (By) (t 6(t B))
Figure 8: Actions used for the proof of Theorem 7.3.

- Proof of Condition (a):
If 7, = Cgieqy(t,d’) is not in 3, then by the definition 0b(¢, 3) and Property 5.15(t, 3).rs = 0.
Thus, compatible(t, s, B(j)1c) is trivially true for anys. Otherwise,r, = Cgier)(t,d’) is in 3, thus
o(t, B).rs = d'rs. SinceB| DB ) is a legal behavior, it holds thabmpatible(t, i, 3(r)| DBGL ) )-
Note that, by its Definition 3.3, the snapshot only changesrwé transaction is committed. 2I'hus,
S(B(i )|DBW,U)) S(p (zo)|DB9Ltp(t)) Then, we have to be concerned about the transactions
which were committed between the commitmentoéndt at f.(5;) (wheret was committed first); i.e.,
tx € T'such thatry, = Cy,g,)(tk, ) isin 3 andip <) < j.
By C3, log(B(r )|DB&W(t)) log(B(j )|DBf (3))- Letmi, = Cyiteqr)(tr, di) be the committed ac-
tions atsite(t) of eacht, with iy: ig,41,...,%,..., i, andi,, < r. The sequence of snapshots in
site(t) which makescompatible(t, i, B(r )|DBSC;§§ (1)) true is: S(8 (io)|DBSE 0)S (6(i1)|DBg£(t))
S(B(ir) DB ) - -S(B(im) DB ,))- Note thatty and eacht, have been committed ifi and
also inB1c (by the definition of3;¢). Then, letr, = Cfc(ﬁto)(to, d(to, B)) andmy, = Cfc(,@t (tk,0(tk, B))

be inB¢, it is satisfied that < i < 7 and, by Lemma 7.2 < k < j sincelog(ﬁ(j)\DBJ??B )) =
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log(B(j)1c)-

Therefore, both behaviors have built the same snapshotsheBgrevious definition of-, andy, then
log(ﬁ(io)|DBgfi( )) = log(B(s)1c) andlog(ﬁ(ik)|DBg£(t)) = log(B(k)1c) for k: 1...m. By the
snapshot Definition 3.35(8(s)1c) - - S(B(k)1c) - - - S(B(m)1¢) is the same sequence of snapshots.
Then,compatible(t, s, B(m)1¢) holds and triviallycompatible(t, s, 3(j)1¢) holds too, sincd’.rs does
not change after actiofi;.(+)(t, d’) is executed, and therefore neither dégfs 3).

Proof of Condition (b):

Recall thatr;, = Clje(r)(to, do) and T = Ct.(8)(to,dy) are in3. By Property 5.1(b) and Defi-
nition 7.3, do.inf = dy.inf = d(to, B).inf. If f.(B;) = site(t), thenm;; = m;, and, since every
f € behs(DBY ) is legal, it holds thavt” € T': isolated(t", t,i, 3(j )\DBCR .))- Asty is the last
committed transaction igite(t) beforer; = By (1), thezsolated() predlcate can be extendedifp

e., it holds that't” € T': isolated(t",t,if, B(J )\DBf (3,))- On the other hand, if.(8;) # site(t),
then also, by C4, it holds that” € T': isolated(t”,t,if, 5(j )|DBC ). Then, we have to be again
concerned about the transactiags< T such thatyr/ = Cy.8) (tk, ) andz‘() < i, < j. Bythe
definition ofisolated(), these transactions sausfgolated(tk,t iy, B(J )|DB )

Then, recalling thatr, = Cy (g, )(to,d(to, 8)) andmr, = Cy (s,,) (tk,é(tk,ﬁ)) are in 31¢, since
log(B( )|DBf (ﬁt)) =< log(B(j)1c), s < k < j. Therefore,isolated(ty,t, s, 3(j)1c). For the rest
of committed transactiong such thatr,, = Cy_(s,,)(t',0(t', 8)) and thats < & < j does not hold,
isolated(t',t, s, (j)1¢) holds too.

Proof of Condition (c):

Finally, ast; = Cy, (5, (t, d) isin 3, since by definition every| DBY'{} , is legal,consistent(t, B(5)| DB§ ) =

Vi: Ki(S(ﬂ( DIDBSE, ), dws). By Lemma 7.2,og(3(j)| DB, ) = log(8(j)ic). Thus,

fe(Be)/?
log(B(5—1)] Dch(ﬁt ) = log(B(j—1)1c), sincer; = Cy_(5,)(t,d(t, 3)) isin Bic, beingd(t, 3).ws =
d.ws. Then,S(ﬂ( DIDB{ T, ) = S(B(5 — 1)1c) and thereforeonsistent(t, 5(j)1c) holds.
O

One can think that thg; - of eachs € behs(RSE) keeps the properties that prove the existence of
a one-copy equivalence of tHeSE . This is the conclusion drawn from Theorem 7.4, which prates
any behavior of thekS% - can be transformed to become a behavior ofltié B module.

Theorem 7.4. The RSE,, module satisfying Criteria C1 to C4 is one-copy equivalerthe1C D B.

Proof. Foreachs € behs(RSE ), we define the following legal relatiohi: behs(RSE,) — behs(1CDB);
I'(B) = R(G1c) whereR() is a renaming function which removes every reference ofaisithe ac-
tions of B1c. Thatis, B(t), C(t,4(t,3)), A(t), crash or recover appear inR(Bi1c) When B (t),
Ct.3)(t,0(t, B)), Ay, (3,)(t), crashy, or recover,, appear ind,c. Note that|31¢|{crash, : n € N'}| =
|R(B1c)|crash| and|Bic|{recover,, : n € N'}| = |R(Bic)|recover|. Thus,jc satisfies Lemma 7.1
and Theorem 7.3; the definition of the semantic ditg /) does not change for the transactions in
R(B1¢); and the actions iR (31¢) are included in tha C D B signature, i.e.acts(1CDB). Therefore,
I'(B) € behs(1CDB), i.e., I'(B) is a well-formed (Lemma 7.1.1), progressive (Lemma 7.1\2grash
stop (Lemma 7.1.3), and generalized legal (Theorem 7.3\eh O

7.3 Discussion

Abstraction of the recovery process:The aim of the recovery process is to obtain the effects ofittad
transactions that the recovering site lost during its déwre period, so that the recovering site can apply
them and become up-to-date. In the presented mathemaiickinthe effects of committed transactions
are represented by the evolution lof(3(j)|DBS®) at each of the system sitesc N. This log is,

by Definition 3.2, the sequence of writesets of committedda&tions at that site, i.e., it is defined by the
actionsC,, (t, d) that occur at sitee. According to this definition, after a siteexecutes aecover,, action,
the recovery protocol should ensure that all the missed#@ions are committed in a certain ordernat
so that Criterion C3 is fulfilled at the recovering site. Thsighe reason why, in the example of Figure 5,
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after sitel recoverst, cannot be committed at sitebeforet, is committed, since in sit2 ¢, is committed
beforet,. The model does not limit the implementation of correct veeg mechanisms, since the log
definition could be adapted to reflect the behavior of thewexgoprotocol, as long as the recovery protocol
provides a certain database snapshot from which the réogwste is considered to be up-to-date and can
start executing transactions normally. Put another way ptiesented model does not exclude the use of
known recovery mechanisms [20], as it only requires thaeffexts of the recovery process on the database
of the recovering site must be the same effects that transaowould have produced on the site if it had
not crashed.

It is also worth noting that, since Criterion C3 precludésssfrom diverging in the sequence of applied
writesets, this criterion does not allow sites to work irffatiént network partitions, i.e., there can be at
most one partition processing transactions. The most commay of dealing with this problem consists
of considering the primary partition system model [12], ihigh only a partition with at leastV/2) + 1
sites, called majority partition, is allowed to work.

On the other hand, Criterion C1 establishes a liveness ttondipon transactions (if a transaction be-
gins, either a site crashes or the transaction producestpathuHowever, there are no liveness conditions
regarding the progress of system sites. As a consequenti@simodel a site may never recover after
crashing, or it may even executeracover action but never execute all its pending transactions. Such
conditions can be added to implementation specificationsdar to ensure the termination of the recovery
protocol.

8 Extending the model for partial replication

Up until now, we have considered a fully replicated systenwhich each database stores a copy of all the
possible itemg. As shown in this section, it is possible to extend the modl@i¢lude partially replicated
systems.

Instead of holding a copy of the whole set of itethat each system site, the database of each site
n € N (denoted byDBSE(Z,,,T)) in a partially replicated system stores a subset of the fsi¢ms,

7., C I. The set of transaction identifie#Sis the same for all databases.

The partially replicated system, represented by modeleS, consists of the composition of the
DBSR(Z,,T) modules: PRS = Tl,,exDBS®(Z,,,T). The set of items of the global systemZis=
Unren Zn- The set of all possible versions of theB¢ % (7, T) is denoted by, thus the set of versions
of the system i3’ = | J,, . s V. In the following,Z,,,,, = Z,, N Z,./.

Using theP RS module as a basis, we define a basic protocol for partialagipdn. Since the system
is now partially replicated, the delegate site of a trarisagtmay not contain all the items affected hy
Thus, the delegate site may not be able to serve all the apesaift, which in that case will have to be
forwarded to other sites.

In order to model the basic properties of the partially giked system, we define a refinement of the
PRS module, name® RSP, whose behaviors are restricted by Property 8.1.

Property 8.1. (PP: Partial Replication Abstractiorffor every behavion € behs(PRSTT) and every
transactiont € 7, the following conditions hold:

(@7 = By(t) = 3j:j <i:7mj = Bgjre)(t)

(b)m =Ch(t,d) ANy = C (t,d') = dws(Tnn) = d' ws(Lpp) Adeinf(Znn) = dinf(Zun)

Similarly to Property 5.1, Property 8.1 states that a renvatesaction can begin only after the corre-
sponding local transaction began at the delegate site. derewhen a transaction is committed in two
different sites, the writeset and control information melijag the items that the two sites share in common
must be the same. There are no limitations on the readseg gimay be necessary to execute read op-
erations in different sites by means of remote transactiang therefore remote transactions may have a
non-empty readset.

The definition of the semantic data of a transaction in a behaf the PRST” is straightforwardly
obtained by replacing®S” by PRST? in Definition 5.1.
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Note that Remark 5.1 is no longer applicable, as read-oalystctions can read items from different
sites. However, in the development explained Rfif, there are no contradictions if read-only transac-
tions are included ihehs(RSE).

Let us consider every partial replication protocol than barbuilt using thePRS”” as a basis. This
can be done by specifying a set of propertiethat must be verified by th® RSTF. This is denoted by
PRSEP

Ofle—copy equivalence can be used as correctness critergraftially replicated systems. In order
to be one-copy equivalent to tHe& D B(Z,7) module, all transactions in thERSij must behave as
if they were executed in a single database system contaadirie items of the whole system. Defini-
tions 6.1 and 6.2 can be adapted by repladitfgf, by PRS.”. That is, PRSE? is one-copy equiv-
alent to thelCDB(Z,T) module if and only if there exists a legal relatidirp C behs(PRSf;P) X
behs(1CDB(Z,T)).

Recall that the C DB(Z, 7)) module has been used for proving that a fully replicatedesyss equiva-
lent to it. In particular, the?S5 .~ module is one-copy equivalent to th€' D B(Z, T') when every database
of RSE holds a copy of all the items ii. Moreover, ify € behs(1CDB(Z,T)), then there exists a
behavior3 € behs(RSE) such thaty € I'n(3), wherel'p is the legal relation between the behaviors of
RSE. and1CDB(Z,T). The proof is straightforward by construction of tiiérom the~y behavior. As a
result, we can state the following theorem:

Theorem 8.1. Leta € behs(PRSf;P). If PRSZ;P is one-copy equivalent to the” DB(Z,7) module,

then there exists a correct fully replicated systBiS{. . that is one-copy equivalent t&” D B(Z, T ), such
thatify € I'pp(c), theny € I'p(3) for somes € behs(RSE.).

The previous theorem states that a behawiof a correct partially replicated system is, in some sense,
indistinguishable from a behavigrof a correct fully replicated system. Every committed temt®nt in
«, whose semantic data é$t, ), appears irg with §(t, o) = 6(t, 3). Thus, regardless of the number of
sites that perform read operations of a transadctiony, all these read operations occur as if they had been
executed iNRSE, (i.e. fully replicated database system with replicationtpcol fulfilling Property 5.1
and correctness criteria C1-C4).

Obtaining a group of necessary and sufficient conditiongdento guarantee thatIaRSf;’ P is one-
copy equivalent tdCDB(Z,T) is not a simple task. However, the previous theorem allow® umtice
the dificulties of designing correct partial replicatiorofmrcols [4, 39]. For instance, if the isolation level
of a transaction requires read operations vfo be able to access the values writtentpthe writeset of
will have to be available at sites that execute read operaitidt, even if those sites do not store the items
of the writeset. Moreover, if the read operations of a tratisa retrieve item values from different sites,
in order to achieve one-copy equivalence those values baweldng to the same database snapshot.

9 Conclusion

This paper reviews the notion of one-copy equivalence fpticgated database systems supporting the
crash-recovery failure model. The considered replicagahnique (in which read operations are executed
at a delegate site of the transaction, whereas the effectsitf operations are propagated to all sites)
has been regularly used in the database replication fielde st is appropriate for update-everywhere
approaches. By executing transaction operations in aaeage and propagating later its writeset to other
replicas, this kind of replication protocols ensure a higlel of consistency and an asymmetric workload
management that boosts performance, since writeset afiphicat remote sites requires less effort than a
local transaction service.

Up to our knowledge, there exists no general formalizatibthiz kind of replication protocols that
considers transactions running under different isolaléwels, supporting both integrity constraints and
crash failures. By means of the I/O Automaton model, we haweiged a detailed specification of a repli-
cated database system that fills this void. We have estelligte necessary and sufficient conditions that
implementations of the considered model must fulfill in oriebe correct under the one-copy equivalence
notion. The stated properties can be considered as a newsaidpr one-copy equivalence criteria, which
can serve as a basis for the development and formal prooftbfldnd of protocols.
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