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1 Introduction

Total-order broadcast protocols are a bdmidding blockin order to develop highly available distributed
applications, since it is needed for ensuring that the gsdat be applied by any given replica are ade-
guately propagated and applied in all other ones. This gesvthe needed basis for ensuringeguential
[18] consistency model, for both the active [32] and pasgiyeeplication models.

It is accepted that there is no single total order protocal gnovides the best performance under any
working conditions [12, 11]. In practice, this means that ghection of a total order protocol may have
a significant impact on the performance of the applicatiopecHically, the election of amappropriate
protocol may lead the application to get a worse performaRoethis reason, the election of the protocol
to use must be done carefully.

Nevertheless, there are some problems that must be coedid€irst of all, it is not easy tguess
the working conditions an application will have, unlesssitai very specific application that has already
been carefully evaluated. On the other hand, even when thkingoconditions of the application are
known beforehand, the election of the most suitable prétecires from the application designers some
knowledge about the available protocols. Moreover, it maggen that the working conditions of an
application change during its execution, so the protocst fihosen as the most suitable might become
unsuitabledue to these changes.

Due to this, there should be some mechanism that allows thlecafions to use, in every moment, the
most suitable total order protocol; i.e.peotocol switchingool. Suitability may be decided according to
different factors (application-dependent factors like slystem load or message sendadterns system-
dependent factors like the underlying network and its toggl etc.). Moreover, such a mechanism should
betransparentfrom the point of view of the protocols and the applications.

Such a mechanism offers several advantages. First of plicafion designers do not needgaesshe
working conditions of the applications. They do neitherdheknow too many details about the protocols
available nor about the best settings for each one of themre®er, such mechanism would allow an
application toadapt tochanging working conditions and, in general, to get a b@ieformance.

There already are multiple switching protocols of this kjad, 8, 29, 28]. Most of them assume that
such switches will seldom arise and that consensus is neadeder to accept such expensive switch
operation. So, they are structured in two phases, leadiagtocking behavior [33]; i.e., no message can
be broadcast from the point when a process has requesteditich sntil the moment all of them have
accepted such switch and have delivered all previouslydwast messages.

We propose a different alternative. In it, all broadcastg@rols might be known in advance and they
can be plugged into the switching protocol. Switches candmearrently requested and all of them are
accepted, although such requesting order is recorded.i§erid, each broadcast message should contain



in its headers which protocol was used to propagate it, ackl gecess should know how many messages
should be managed by each running protocols. So, in thetengtdinterval both protocols (old and new)
are able to work simultaneously: new messages can be bistaditiathe new protocol and the old protocol
is still able to deliver its messages. As a result, no blaglinterval arise and the switch action is usually
faster than in previous protocols. Additionally, this sthing mechanism is also able to manage prioritized
total-order protocols, whose usefulness has been prov&mie of our previous works [26, 27].

The rest of this paper is structured as follows. Section 8gurts our dynamic switching architecture.
Section 3 describes the switching protocol and Section aessome of the issues that should be faced by
that protocol. Later, Section 5 states and proves the piepdo be satisfied by the switching mechanism
and Section 6 discusses related work. Finally, Section &sgiive conclusions.

2 A Dynamic Protocol Replacement Architecture

In [25], we presented an architecture for dynamically reiplg Group Communication Protocols (GCPs).
Such an architecture was designed to allow the dynamic cepiant of FIFO or total order broadcast
protocols.

In the following sections we review the work presented in][@8d discuss how such an architecture
could be adapted to fit the needs presented in Section 1.

In Figure 1 we show a reviewed version of the high level graghdescription of the architecture
proposed in [25].
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This architecture is composed of a main component, calidgptive Group Communication System
(AGCS. As shown in the figure, the user process sits on top of thilitecture and this, in turn, relies
on a regular reliable message transport layer. A& Swraps several standard group communication
components (a number of GCPs, for instance, total ordeppotg and a membership service) and also
specific components.

The Switching protocolmplements the mechanism of replacing the GCPs in runtimeagdtures the
regular communication that occurs among the user procesthanGCPs and performs the GCP replace-
ment. TheSwitching manages a component that decides when GCP changes should talkegpldavhich
GCP should be installed. THgwitching managerelies on aSystem monitothat keeps track of several
system and application measurable variables and paran&teSwitching managetollects the measures
provided by theSystem monitoand uses them to decide about GCP changes.

The original architecture presented in [25] and the one vesgnt in Figure 1 include embership
servicecomponent and a reliable transport layer. TWembership servicprovides notifications about
changes on the set of nodes consideabeke (due to joins of new nodes, node failures or node discon-
nections). Finally, th&eliable transportayer offers a regulareliable andFIFO message transport layer



which ensures that a message sent to a destination is rédsjivtbat destination unless it fails.

3 The Switching Protocol

In this Section we present ti8witching protocal We first provide an overview of the protocol and then we
present some notation details and a pseudocode algoritiime pirotocol. We finally discuss some details
not covered in the first overview.

3.1 Overview

During normal operation, when no GCP replacement is beimgechon, theSwitching protocoltakes
charge of the messages sent by the user process, which aeeted to the current GCP. Incoming mes-
sages are received by the current GCP and directly handtbeé farotocol, which in turns delivers them to
the user process. The core of tB@itching protocotioes not take part in this process.

A GCP replacement starts when tBeitching manageinstructs theSwitching protocoin a particular
node to start a GCP change. T®witching protocoin thisinitiator nodeto—bcastsa PREPARE message to
inform all the nodes about the new change. At every nodeSttigching protocostops relaying messages
with the current GCP, instances and initializes a new GCPstartks relaying messages with it. Moreover,
each nodeo—bcastsa PREPARE_ACK message to tell all nodes about the number of messages iehas s
with the previous GCP and waits foRREPARE_ACK from all the nodes.

In the meantime, thBwitching protocoyoes on receiving messages delivered to it by the previodd GC
and forwarding them to the user application. Twitching protocomay also receive messages delivered
by the new protocol, as it has already been started in allsi10b0gese messages are not delivered to the user
process yet, but queued in a local queue, until all messagasitast with the previous GCP are delivered
to the user process.

When theSwitching protocoteceives all thd?REPARE_ACK messages it knows how many messages
were sent with the previous GCP by each node. When all of thenfirally received, theSwitching
protocol can finally discard the previous GCP. Then, it delivers touker application all the messages
broadcast with the new GCP, which were locally queued. Whieof &hem are delivered, th8witching
protocolcan go on using the new protocol as the only available one.

The protocol receives view changes from an independent reship service, for instance, when a
node failure happens. If such a notification is receivedrdye protocol change, the protocol basically
stops waiting fomessages from the failed node, so the protocol change caegatavhen a node failure
happens. An additional discussion is provided in Secti@n 4.

Moreover, the protocol is able to manage consecutive pobtdtange requests. The protocol ensures
that if a protocol change request is received by a node wigitexdous request is being handled, the current
protocol change is completed and the next one is then handlidditional details are given in Section 4.2.

3.2 Pseudocode

The pseudocode algorithm of the protocol is shown in Algponis 1 and 2.

The protocol uses sevemglobal variables k is a counter of the GCP changes. It is initialized tand
incremented when a new GCP change is staitkdnging_gcep is a flag to know if there is a GCP change
in progress or it has already finishedve_nodes is the set of live hodes as notified by the membership
service.

The algorithm also uses a struct of typefor each GCP it manages. Thug, would be the struct for
the first GCP usedP; would be the one for the second, etc. Such a struct contanesadields to store
some state related to a GCP. Given a stiggtthe expressio,.GC P is used to reference that GCP. The
Py .k field is the number of the replacement by which tReGCP is installed. In generalPy.k = k.
Py,.sent is the number of user messages that have been broadcBst®¢' P. Py;.other_sent is an array
that stores the number of messages sent by all the processesitionP;,.k by means of?,.GCP. Each
entry of the array is initialized t0 and updated when a new protocol replacement is startedy tisn
information received from each process. The number of ngesssent by processis Py.other_sent|q]



and it is initialized to0. Pyx.delivered is an array that stores the number of messages sent by all the
processes delivered by the local process by meals.61C P. Py.delivered|q] is the entry corresponding

to the messages sent by procgssEach entry of the array is initialized tband updated by the local
process each time it receives a message ffana:C P. Py.deliverable is a list of messages delivered to
the protocol byP,.GCP. If P,.GCP is not the current protocol but a later one, the messagesdeti by

it cannot be directly forwarded to the user process. Instibay are stored i.deliverable, until all the
messages sent with all the previous GCPs are delivered.

We also assume that the managed GCPs provideliastgprimitive to broadcast a message to all the
nodes in the system. Given a messagen.sender denotes its sender.

The algorithm is composed by a setfdndlersand functionswhich are executed as a response to
external messages (sent by other nodes) and events (exgchémge events produced by tiembership
servicg or called from other event handlers and functions. Thesellees and functions ar@omig i.e.
we assume that two handlers or functions can not be execatediaently.

Thel NI T function is executed only once, when the whole system igestalheTO- BCAST handler is
invoked by the user application in order to broadcast a nges@a total order). Th&lANDLER_USER M5G
handler is invoked by the GCPs to deliver incoming totallgeyed messages to tisavitching protocal
The START function is executed when thewitching managedecides to start a new protocol change.
The HANDL E_.PREPARE and HANDL E_.PREPARE_ACK are invoked by the GCPs to delivBREPARE or
PREPARE_ACK messages, respectively, to tBevitching protocal The FI NI SH.PENDI NG function is
invoked to try to finish as much pending protocol changes asipe. TheEND function is executed to
finish a protocol change. TH8ANDL E_VI EWCHANGE handler is invoked by some external membership
service to deliver notifications on the membership view. Deel VERY_FI NI SHED function is invoked
to decide if all the pending messages needed to perform aquiathange have already been received.

4 Discussion

In this Section we discuss some issues that were not covergdation 3 to simplify the presentation of
the protocol. These issues cover the normal operation gribtecol and also its behavior in presence of
failures.

4.1 Normal operation

The protocol we are presenting offers a number of advantaggshe protocols reviewed in Section 6 and
the protocol we proposed in [25].

First of all, our solution does not block the sending of usessages. When a node is instructed to
start a protocol switch, the sending of messages with theesuGCP is disabled but message sending is
immediately enabled with the new GCP.

Moreover, it allows both protocols to coexist and work (ite.order messages) in parallel during the
protocol change, until the old protocol is no longer need&dimportant consequence is that the normal
flow of messages is not delayed by slower processes.

Even more, the delivery of messages to the user processlieenblocked. Indeed, when the old pro-
tocol is finally discarded and uninstalled, tBeitching protocolmmediatelly delivers to the user process
the queued messages delivered by the new GCP. After thisretgdar delivery with the new protocol is
enabled, thus keepingreormal flowof messages delivered to the user process.

On the other hand, for this mechanism to properly work, s@seds must be considered. These have
not been included in the protocol algorithm to simplify itepentation.

First of all, itis needed some way to distinguish the messageadcast with each GCP. A first solution
consists in adding someeader datan the regular messages but this solution would imply thedrefe
knowing some implementation details, thus making 8wétching protocoldependent on specific GCP
implementations.

A second option, general enough to fulfill this requiremertbiencapsulate the regular user messages
in other messages whose format is only known by $fétching protocal The protocol can include in
these messages additional headers with all the neededdaeta©ne of these headers can be used to save



Algorithm 1 The Switching protocopseudocode (part I)

1. CREATEP(,g):

2: p.GCP «— g

3 p.k — next_k

4. p.sent «— 0

5: p.other_sent[q] < 0, for each procesgin live_nodes

6: p.ack.received|q] < false, for each procesgin live_nodes
7 p.delivered[q] < 0, for each procesgin live_nodes

8 p.deliverable — {}

9

10: INIT(G):

11: current_k «— 0

12: next_k «— 0

13: changing_gcp «— false

14: instance, prepare and initialize

15:  call CREATEP(P e, G)

16:

17: TO-BCAST(mn):

18: if changing_gcp == true then
19: to-bcastm with Py, cp¢ . GC P
20: Prextk-sent + +

21: else

22: to-bcastm with P,y yrent-GCP
23: Pewrrent.k-sent + +

24: end if

25:

26: HANDLE_USERMSG(m):

27: if m.k == current_k then

28: deliverm to the local process
29: Peyrrent.k-deliveredm.sender] + +
30: if changing_gcp == true then
31: call FINISH.PENDING

32: end if

33: else

34 queuem in Py, i.deliverable
35: end if

36:

37: START(G'):
38: to-bcast PREPARER’) with P.yrrentk-GCP

40: HANDLE_PREPAREG’):

41: next_k + +

42: changing_gcp «— true

43: instance, prepare and initializg’

44:  call CREATEP(Pyent i, G')

45: bcast PREPARRACK (current_k, Peyrrent.k-s€nt) With Peyrrent k-GC P

47; HANDLE _PREPAREACK(k, sent) from process;:

48: Py .other_sent[q] < sent

49: Py.ack_received|q] < true

50: call FINISH.PENDING()

51:

52: FINISH.PENDING():

53: changing-gcp-auzr — false

54: for j = current_k to next_k do

55: if DELIVERY _FINISHED(j) then
56: call END(j)

57: current_k + +

58: else

59: changing_gcp-aux «— true
60: break

61: end if

62: end for

63: changing-gcp < changing-gcp-aux
64:

65: END(j):

66: forall m in P;11.deliverable do

67: if m is a user messadken

68: call HANDLE_USERMSG(m)
69: else ifm is a PREPARE message thtren
70: call HANDLE_PREPARE(n)

71: else

72: call HANDLE_PREPAREACK(m)
73: end if

74: removem from P; 1 .deliverable
75: end for

76:  destroyP;.GCP

77




Algorithm 2 The Switching protocopseudocode (part Il)

78: HANDLE_VIEW_CHANGE(failed-nodes):

79: removefailed-nodes from live_nodes
80: call FINISH.PENDING
81:

82: DELIVERY _FINISHED(j):
83: totalOtherSent «— 0
84: total Delivered «— 0

85: for all qin live_-nodes do

86: if Pj.ack.received|q] == false then
87: return false

88: end if

89: totalOtherSent+ = Pj.other_sent[q]
90: total Delivered+ = Pj.delivered[q]
91: end for

92: if totalOtherSent == total Delivered then
93: returntrue

94: else

95: return false

96: end if

97:

Algorithm 3 The Switching protocopseudocode (part 111)

98: INIT(G, sending):
99:

100: provide_sending-view «— sending

101: changing-view «— false

102:

103: TO-BCAST(m):

104: if changing_view == true andprovide_sending_view == true then
105: block call

106: end if

107: if changing-gcp == true then

108: to-bcastm with Py ezt 1. GCP

109: Pewir.sent + +

110: else

111: to-bcastm with P.yyrenti-GCP

112: Peyrrentk-sent + +

113: end if

114:

115: HANDLE_VIEW_CHANGE(new-nodes, failed-nodes):
116: changing_view + true

117: removefailed-nodes from live_nodes

118: to-bcastN EW _VIEW (new-nodes, failed-nodes) with Py ¢yt 1. GCP
119: call FINISH.PENDING

120:

121: HANDLE_NEW_VIEW(new_-nodes, failed-nodes):
122: addnew-nodes tolive-nodes

123: for all ¢ in new_nodes do

124: for j = current_k to next_k do

125: Pj.other_sent[q] — 0

126: Pj.ack._received[q] — false

127: Pj.delivered[q] <— 0

128: end for

129: end for

130: deliver (new_nodes, failed_nodes) to the local process
131: if provide_sending-view == true then

132: unblock call to TO-BCAST (if any)

133: end if

134: changing_view < false

135:




an identifier of the GCP used to broadcast the encapsulaszdnessage. From the point of view of the
GCPs managed by ti&witching protocqlthese protocol-dependent messages are as opaque asihe reg
user messages.

4.2 Concurrent starts

Another issue that can be discussed is the ability ofWwéching protocoto face concurrent starts of the
switching procedure. Indeed, in case several protocothwiare started concurrently by different nodes or
even the same node, the use of a total order broadcast prtiadwoadcast th®REPARE messages forces
that all the nodes receive the saPREPARE messages in the same order.

First of all, multiple PREPARE messages can be received by a node. WhEREPARE message is
received by a node, it starts a newrt_k iteration, by creating a new,,...; ;. structure. The protocol starts
sending messages with the new GCP and queueitig, ip; . .deliverable the messages delivered by it.
Each time a neW’PREPARE message is received, a new iteration is started, even & drersome previous
GCPs receiving messages.

When the current GCP delivers a message tdthéching protocolt checks if that message delivery
allows to finish the execution of one or more iterations. Hus,ttheFl NI SH.PENDI NG function is
invoked. The only issue to worry about is the proper finalaof the iterations, in the same order
they were started. This function checks that, for eachtitarsstarted, a correspondiRREPARE_ACK
message has already been received from all the live pracasskall the messages sent by them with the
corresponding GCP have also already been received. Inahés the iteration can be considered finished,
and the following iteration can be checked.

4.3 View management

When no node failure happens, the behavior of the protocbhisshown in Algorithms 1 and 2.

Nevertheless, thBwitching protocols able to react to failure naotifications provided by an inelegient
membership manager. These are received itikidDLE_VI EWCHANGE handler. In this handler, we just
update the local copy of the set of nodes considered aliveealhtheFlI NI SH.PENDI NG function. This
call is needed because it may happen that the only messaggerkto finish one or more iterations were
sent by processes declared failed. In this call, all the jpgniterations are checked, considering only the
alive nodes.

The reaction to view changes we present in these algorithrastually minimum. In Algorithm 3 we
extend the initial pseudocode shown in Algorithms 1 and Z2sEtrextensions allow the protocol to provide
view change notifications to the upper user process and ads@mge the join of new nodes. Regarding
the first issue, two different alternative guarantees caorbeided: Same View DelivergndSending View
Delivery[9].

If the Sending View Deliverproperty has to be provided, tt®&witching protocohas to ensure that
all the messages broadcast by the user processes are ettligethem in the view they were sent. In
particular, the protocol has to ensure that all the messhigegicast with any of thpendingGCPs are
deliveredbeforedelivering the following view change notification to the ugeocess. Moreover, once
the Switching protocolearns about a node failure, it has to prevent the user psdeas sending more
messages until the corresponding view change is deliveried t

For this, we propose the following procedure. When$iwatching protocols informed about a node
failure, it first blocks the sending of user messages. Thémnpadcasts a specidEWVI EWmessage, with
the last GCP started¥,.,.; ».-GC P). This message is broadcast with the last GCP started begdssot
guaranteed that the previous GCPs are still available imoales. TheNEWVI EWmessage includes the set
of nodes that compose the new view. After delivering all teeging user messages (those broadcast with
any of the started GCPs, including the current one),XE¥/VI EWmessage is eventually delivered to the
Switching protocal The Switching protocotan then forward th&lIEWVI EWmessage to the user process,
in order to notify the new view. Finally, it unblocks the sérglof user messages.

If the Sending View Delivergroperty is not needed, then the sending of user messagesidbreed
to be blocked. The procedure to follow is thus the same thahdrprevious case except that the sending
of user messages is not blocked. In this case, the user groaagjo on broadcasting messages after the



Switching protocoteceives the node failure notification. Nevertheless,ehlmessages may be delivered
to the user process (once totally ordered) afterStitching protocotlelivers the view change to the user
process, i.e., in a different view from the one they were serdlthough the total order property provided
by all the GCPs ensures that, at least, each message isrdélinghe same view to all the user processes.
This way, theSame View Delivergroperty is ensured.

TheSwitching protocois also able to manage the join of new nodes. Joins are ncai§ie@tew changes.

In fact, a view change can be viewed as a set of new nodes (tlvatgsin the system) and a set of nodes
that fail.

To implement these features, we propose a number of chaing&fgorithm 3. First we add two new
global variables. Therovide_sending_view variable is a flag used to know if ti&ending View Delivery
property has to be ensured. It's value is set to the valueefdhding parameter of thé NI T handler.
This way, it can be decided externally. If it is setftalse, then theSame View Delivergroperty is offered
instead. Moreover, we usechanging_view global flag, used to know if there is a view change in progress.

The TO BCAST handler is also modified. As a first action, it checks if a vidvarmge has been started
and if theSending View Deliverproperty has to be ensured. In this case, the user call t6@h8CAST
is blocked. The rest of the handler is the same that the onersimAlgorithm 2.

TheHANDL E_VI EWCHANCE handler is also modified. First of all, a new parameter is ddidereceive
a set of new nodes (i.e., nodes tf@h the system). Then, it broadcasts a spedENVI EWmessage, by
means of the last GCP started. Finally, BieNl SH.PENDI NGfunction is invoked, as in Algorithm 2.

The NEWVI EWmessage is received in the né¥dNDLE_NEWVI EWhandler. First, the new nodes
are added to the local copy of the set of nodes considereel. alihe P data structures fron®.,,,-cn¢
to P,..tr are updated, to initialize the state corresponding to tlve medes. Then the view change is
delivered up to the user process. Finally, in caseSkading View Deliverproperty was required, it
unblocks the execution of thEO- BCAST handler.

Another issue related to the notification of node failurestiie addressed. When a node fails, it may
happen that, in several nodes, the corresponding mempesshiice notifies to th&witching protocal
which would broadcast itNSEWVI EWmessage. The result is a numbeNEWYVI EWmessages represent-
ing the same node failure are broadcast and received by @dlsnolo avoid the multiple notification of a
view change to the user processes a simple solution can ipéeado

The Switching protocokeeps aview counteras a global variable. It is initialized ®and incremented
each time &NEWVI EWis delivered to th&witching protocond then forwarded to the user process. Each
NEWYVI EWmessage is tagged with the current value of the counter wihemioadcast. If th&witching
protocolreceives differenNEWVI EWmessages with the same value of tew counterit considers the
first one and then discards the rest. AsiE&\VVI EWmessages are broadcast in total order, using the last
GCP started, all nodes keep the sVl EWmessage and discard the same other messages.

5 Properties of theSwitching protocol

In this section we provide some properties of Bwitching protocond some reasoning about their cor-
rectness. First, we propose some lemas used to prove therfiesp

Lema 1: Downwards Validity. If a user process in a correct node broadcasts a messaglen exactly
one of the GCPs of that node eventually broadcasesxactly once.

Proof. IntheTO BCAST handler, each message sent by the user process is immgbiataticast exactly
once, by any of the GCPs currently managed byStétching protoco(lines 18—-24).

If we consider the modifications presented in Algorithm Zrthin case th&ending View Delivery
property is requested and a view change happens, the faljomiessage broadcast by the user process
may be blocked. In this case, we have to show that the senslimgt blocked infinitely.

First, when a view change is notified, theNBNVI EWmessage is broadcast (line 118). By Madidity
property of the GCP used to broadcast N&NVI EWmessage, this is eventually delivered by the local
node and handled in the HANDLEEW_VIEW handler.



In this handler, the user process is finally unblocked (IiB2)and the message can finally be broadcast,
exactly once and using exactly one GCP (lines 107-113).

Lema 2: Upwards Validity. If a GCP delivers a message to the Switching protocol, then the Switching
protocol eventually delivers: to the user process.

Proof. It has to be shown that th&witching protocotloes not indefinitely retain a message delivered to
it by a GCP.

First, if a message: is delivered to thé&witching protocoby P...ent k- GC P, then it is immediately
delivered to the user process (line 28). If the message igedet by P, .GC P (wherecurrenty, < k' <
nexty), then itis stored irPy .deliverable. In this case, it has to be shown that the message is notedtain
in that queue infinitely. In other words, it has to be showrt #ikiterations of the protocol previous g
are eventually finished.

If m was broadcast witi,.GC P (with current_k < k'), then we now that a finite number of message
were broadcast wittP;.GC'P (V5 : current.k < j < k). By the Validity and Uniform Agreement
properties of these GCPs, it is known that all those messaigesventually delivered to tH&witching
protocoland, by Lema 1, eventually delivered to the user processtheasame reason, we also know that
all the correspondinBREPARE_ACK andPREPARE messages (used to finish an iteration and start the next
one, respectively) are eventually delivered to 8witching protocal Then, all the iterations previous to
P, are eventually finished. An iteratiaf is finished when all the messages broadcast wittFh€'C' P
are delivered to th8witching protoco(as decided by thBELI VERY_FI NI SHED function).

At the end of the iteratior;, all the pending messages broadcast with,.GCP (those stored in
Pj+1.deliverable) are delivered to the user process (lines 66—75).

Then,current_k is incremented (line 57). Eventuallyurrent_k reacheg’ and message: is finally
delivered to the user process.

Lema 3: Local Integrity The Switching protocol delivers a messagédo the user process at most once,
and only ifm has been delivered to the Switching protocol by exactly énlesoGCPs of the local node.

Proof. First of all, the Switching protocoldelivers the message to the user process at most once. If
the message is delivered by the current GER, (-cn:_x-GC P) then, it is directly delivered (line 28). If
the message is delivered by a later GAR/ (GCP, with current_k < k'), then it is first queued (in
Py .deliverable).

By Lema 2, we know that the message is eventually deliverédgaiser process, exactly once (lines
66-75).

On the other hand, it has to be proved that a single messageotdie delivered to th&witching
protocolby more than one GCP. Let's suppose that a message is ddlieetfeeSwitching protocoby two
different GCPs. Th&Jniform Integrity property offered by these GCPs ensures that they previcasly
the message.

Nevertheless, this is not possible since 8wgtching protocosends each message only with one of the
GCPs (lines 28 and 34).

Lema 4: Change Safety The Switching protocol does not deliver to the user processeasagen
delivered to the protocol by,.GC P after having delivered to the user process a messagehich was
delivered to the protocol by, .GC P, wherek < k.

Proof. If no view change happens, ti&©- BCAST handler broadcasts the user messages by means of
P.yrrent x-GCP (line 22). As theSwitching protocoboes not keep &, previous toP.,rent k., then no
message can be broadcast with a previous GCP.

If a GCP change happens, th® BCAST handler broadcasts the user messages by medts of,.GC P
(line 19). The value ofiext_k is incremented each time a GCP change is started (line 4B),.50.GC P
is always the last GCP that has been started. If a messageaiddast withP, .., .GC P, then we know
that any message subsequently broadcast will be sent witbetime GCP or a later one.



Property 1: Validity.  If a process in a correct node broadcasts a messagthen the Switching protocol
eventually deliversn to it.

Proof. If no GCP change happens, messagés sent with the current GCPP(y,,-ent - GC P). By its
Validity property, the GCP eventually deliversto theSwitching protoco(in the same node). According
to Lema 3 [Local Integrity) stated above, thBwitching protocokventually delivers the message to the user
process.

If a GCP change happens, LemasDogwnwards Validity and 2 Upwards Validity ensure that the
Switching protocotloes not indefinitely retain theutgoingmessages sent to it by the user process nor the
upgoingmessages delivered to it by the GCP.

Property 2: Uniform Agreement If the Switching protocol in a node, whether correct or fguttelivers
a messagen to the user process, then the Switching protocol in all cctrreddes eventually deliven to
their corresponding user processes.

Proof. Let's suppose that, in one of the nodes, 8witching protocoldelivers a message to the user
process. By Lema 3 (Local Integrity), the message must haea elivered to th&witching protocol
by one of the GCPs. By theniform Agreemenproperty of the GCPs, in all the correct nodes, the GCP
delivers the message to tBavitching protocobnd by Lema 2 (Upwards Validity), tHewitching protocol
eventually delivers up the message to the user processdaradict nodes.

In case the GCPs do not satisfy tbaiform Agreemenproperty but just &Non-uniform Agreement
property, then the property satisfied by 8witching protocols notUniform Agreemenibut just the corre-
spondingNon-uniform Agreemergroperty.

Property 3: Uniform Integrity = For any messagen, the Switching protocol of every node, whether
correct or faulty, deliversn at most once to the user process and only iivas previously broadcast by its
sender.

Proof. First of all, it has to be shown that a user process does netdal message twice.

First, by Lema 3, we know that th8witching protocokan not deliver twice the same message. It
delivers a message twice only if the GCP has delivered twiaerhessage to it.

By the Uniform Integrityproperty of the GCP, this can only happen if the GCP in the sendde has
broadcast twice the message. By Lem@®bwnwards Validity, we know that this is only possible if the
sender node broadcasts twice the same message through Bye@Cthis can only happen if the user
process in the sender node broadcasts twice the same message

Moreover, it has to be shown that tB&vitching protocobnly delivers a message to the user process if
the message was previously broadcast by its sender node.

First, it is known that theSwitching protocolonly delivers to the user process messages that have
previously been delivered to it by one of the GCPs (lines B8)the Uniform Integrityof the GCPs, this
only happens after the GCP in the sender node has broadeastettsage. Th8witching protocoitself
ensures that this can only happen after it has broadcastdehsage through the corresponding GCP in the
sender node.

Property 4: Uniform Total Order  If the Switching protocol in any nodeé and N, whether correct or
faulty, both deliver messages andm’, then the Switching protocol itV deliversm to its user process
beforem’ if and only if the Switching protocol iV’ deliversm to its user process befora’.

Proof. Let's suppose that thBwitching protocoin both nodesV and N’ deliver two messages and
m'. If N delivers bothm andm’ using the same GCP, by théniform Total Orderproperty of the GCP
and by protocol construction, it is known that all the noddsdeliver m andm’ in the same order, using
the same GCP.
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Now let's suppose tha¥ deliversm using P,.GC P and deliversn’ using P,,.GC P, with k < k'.
Then,N’ also deliversn using P,.GC P andm’ using P, .GC P. Moreover, by Lema 4Ghange Safe}y
asm has been broadcast usiiy. GC P, N’ deliversm to the user process before delivering any other
message broadcast B..GC P, which means thav’ deliversm prior tom/'.

The reasoning is also valid i¥ or N’ fail after deliveringm andm/, respectively. On one han@/
and N’ deliverm andm/, as long asP,.GC P and P;,.GC P satisfy theUniform Total Orderproperty.

On the other hand, by Lema €ljange Safejyboth nodes deliver all the messages broadcast§/C P
before starting to deliver messages broadcasPpyGCP. As a result, bothV and N’ deliverm before
deliveringm'.

6 Related Work

In this Section we briefly review some previous work that iated to our concern. The reviewed papers
are divided into two different groups. In a first group, welimte those papers that propose some con-
figurable architecture or mechanism that is able to adapbhamging environments or settings, by means
of tuningits behaviour, but without performing structural changks the ones carried on by a switching
protocol. We also include some other work directly relate@daptable systems. In a second group, we
include those papers that use satiyaamic switchingnechanism that is able to replace the current imple-
mentation of one or several services. The papers in bothpgrate presented chronologically. Some of
the references cited present a solution based on a switalgogthm while others present work related to
adaptive systems from a more general point of view.

6.1 Configurable systems
6.1.1 Composability in x-kernel (Hutchinson et al., 1991) ad Coyote (Bhatti et al., 1995)

The x-kernel operating system kernel [15] was designed $e &z design and development of network
protocols. It is considered one of the first systems basemboposabletacks of protocols. For instance,
it includes protocols that implement different commurimatstandards like IP, UDP, TCP and even low
level protocols like ARP.

In x-kernel, the composition of the protocol stacks to usdeiined statically, in configuration time. In
boot time, each protocol communicates with its underlyimgtqcol in order to agree on the relationship.
Once the kernel is booted, there is no mechanism to dyndsniienge the composition of the protocol
stacks used by x-kernel.

The Coyote system [3] is based on x-kernel and proposed ttwgmosition of regular x-kernel proto-
cols into a set ofnicro-protocols In configuration time, a first construction step if perfodniey combining
the micro-protocols of a protocol. Then, a regular x-kewgwifiguration step is carried, to build regular
x-kernel protocol stacks.

As in x-kernel, the configuration of Coyote is static and naayic reconfiguration mechanism is
available.

6.1.2 ADAPTIVE (Schmidt, 1993)

The ADAPTIVE system [31] is an environment to develop netwamotocols, designed to adapt to hetero-
geneous and changing environments. First of all, it offersraber of high-level abstractions to specify the
behavior of the network services that will be finally offetedthe user application, according to the cur-
rent setting (e.g. the topology and type of the network) &edapplication quality-of-service needs. The
specifications of the services are used to instanpet&ocol machineswhich are protocol implementa-
tions available in a repository and tuned to fit the such meguénts and needs. Moreover, in configuration
time, user applications can refine the specification of the/ork protocols to use. The reconfiguration
mechanism is then able to tune the current protocol machineseate new ones, in order to adapt to the
application needs.
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6.1.3 About the use of standard interfaces (Wiesmann et aR003)

Several efforts have been made to propose a set of standarfhaes that express a wide range of group
communication related services like group membershippomunication primitives.

In [36], the authors propose the use of middleware architestbuilt up from components that follow
standard and well-known interfaces. The architecture inegose can be used to build distributed systems
and it includes a membership service, a fault detectorseamnd some messaging services. These services
are implemented by components that must offer well-defimetlsdandard interfaces to the components
above thenti.e., components thatsethe services they offer). These components, in turn, ussghéces
offered by the componentelowthem.

The benefit of using standard interfaces is twofold. Firsthe knowledge of the standards to use can
be reused, the design and implementation of new comporeatsier and simpler. Moreover, the use of
standard interfaces allows the replacement of the impléattien of a given component by a new one, as
justified in previous sections.

In [36], for each service, several standard alternativescansidered. For instance, TCP/IP UDP/IP,
IP-multicast, BEEP, APEX and JMS are considered as staadardefine the behavior of the messaging
components while LDAP and SNMP standards are consideraidanembership service and SNMP and
CMIP, for the fault detection service.

6.1.4 A survey of middleware software (Sadjadi, 2003)

In [30], a survey of configurable and adaptive middlewareaésented. This work is actually a first version
of [24], which is reviewed in a later section. In the survegumber of solutions are classified into different
classes.

The survey first identifies four key technologies that offemposabilityandadaptability a) compu-
tational reflection [22], based on the use of introspectijrzomponent-based design, ¢) aspect-oriented
programming [17] and d) software design patterns.

In a first taxonomy, it classifies middleware software dejp@nadn the abstraction layer in which they
may be placed: ajlost-infrastructureb) distribution, ¢) common-serviceand d)domain-services

A second classification proposed in [30] classified middlewsoftware according to its adaptation
level: a)configurable b) customizablec) tunable and d)mutable The mutableclass is the only one that
can be considered completely dynamic and may include sochaeitpies like introspection, aspect-based
programming and dynamic code loading.

Finally, in [30] a third classification is proposed that cifies middleware according to its application
domain: a)QoS-oriented systemis) dependable systemend c)embedded systems

In the survey a big humber of solutions are reviewed, manheftrelated to CORBA. Nevertheless,
none of them can be compared to the switching mechanism gedpa Section 3 or the other solutions
reviewed in this Section.

6.1.5 A taxonomy of compositional adaptation (McKinley et al, 2004)

In [24] (an extended version of [23]), a survey of adaptivetemns is presented.

In this survey, two main types of adaptation are identiflearameter adaptatiors present in systems
that are able to modify the values of their parameters anidhlas in order to adapt to changes in their
settings, environments, working conditions, etc. On tephandcompositional adaptatiomvolves the
ability to algorithmically or structurally change a systenorder to perform such adaptation. In the survey,
ataxonomy of compositional adaptatiepresented.

The taxonomy is multidimensional. The solutions surveyesl dassified according three different
criteria: a) how, b) when and c) wheredomposdi.e. perform a system’s adaptation).

Regarding tdhow to composeseveral mechanisms can be used.

e Redirection of function pointers. The pointers that pomthe functions that contain the code to
change oadaptcan beredirectedto point to different functions (for instancproxyfunctions).

e Wrappers The use of thevrapper patternallows business objects to be encapsulategviapper
objectsthat can control the original objects.
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e Proxies According to theproxy pattern someproxy code can bénsertedin the original code, to
intercept and manage regular invocations to business.logic

e Thestrategy pattern Each service implementation is encapsulated under arfanée This allows
the replacement of a given implementation by another onlenasas both share the same interface.

¢ Virtual componentsA virtual components a placeholder that allows the loading and unloading of
service code in an application-transparent manner.

¢ Meta-Object ProtocolsA specific protocol can be used to dynamically replace th@émentation
of a service.

e Aspect weaving Aspect Oriented Programming can be usedhject orthogonal functionality to
existing service implementations.

e Middleware interception. Regular service requests anaddnesponding responses are intercepted
at a middleware-level layer. Adaptation can be performeslich layer.

e Integrated middleware. Besides indirectly using a middienlayer, the user applications can also
explicitly make use of their services.

Additional criteria are considered regarding this craari transparency of the solution, granularity,
coverage and support of standards.

The transparencycriterion expresses the transparency level of the adaptatiechanism respect to
the functional code of the application, the adaptive cdae distribution middleware services (if any) and
the virtual machine (if any). Thgranularity criterion is useful to know the granularity of the adapta-
tion mechanism (per system, per class, per object, per methper invocation). Theoveragecriterion
distinguishes systems that only are appliable to localdations from those that also consider remote in-
vocations. Moreover, the ability to apply the adaptive nagidm to just a subset of the invocations is also
checked. Finally, thetandards supportriterion allows to know which standard like CORBA/CCM, dav
RMI/J2EE and DCOM/.NET are supported by the systems.

Regarding tavhen to composédwo first categories can be distinguishediatic compositiorand dy-
namic composition Static composition is performed in configuration, comla, deployment, linking
or even loading time while dynamic composition, is perfodnie run-time. Static composition is usually
easier to perform but it is usually less flexible and powetffisin dynamic composition, which is, on the
other hand usually more complex to perform.

As there are different levels of static composition, it candehieved in different manners. Simpler
static composition can be performed by tuning hardwiredipaters and code and recompiling the system.
More flexible mechanisms perform the adaptation in deplmgfiby choosing the proper components and
modules to use. The most powerful alternatives includeldatding and dynamic class loading.

On the other hand, systems that use dynamic compositionedamableor mutable Tunable software
can be dynamically configured andaptedby run-time tuning some of their parameters and variates.
table softwareoffers the possibility of altering the functionality of tisgstem, for instance, by dynamicaly
replacing the code of some of their components.

Regarding tavhere to composeniddleware-level and application-level alternatives ba considered.
Middleware-level alternatives include constructing aelagf adaptable software and attach it to the user
application and modifying a virtual machine in order to adetne adaptive support. Application-level
alternatives imply adapting part of the application itsdlfifferent alternatives exist like the use of pro-
gramming languages that natively offer soamaptation supporflike CLOS or Python), the extension
of the programming language run-time mechanism used byppkcation or the use of Aspect Oriented
Programming libraries.

In the survey, more than forty solutions are classified atiogrto this taxonomy, including classic
Group Communication Systems (Ensemble, Totem and othats)CORBA middlewares (ACE, TAO,
CIAO and others).
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6.1.6 A standard GCS interface (GORDA project, 2007)

In [7], another proposal is presented. The idea is to havedaleware layer that provides an abstract
Application Program Interface to be used by conventiorgttitiuted systems. This layer is placed between
an application and a Group Communication System, thusgasran adapter of the latter.

This strategy yields two major benefits. First, it avoids tise of implementation-specific semantics
and interfaces. Moreover, it isolates applications fronpecdic GCS implementation and thus allowing
a future replacement of the current implementation. As a sifiect, this independence also eases the
evaluation of the behavior and performance of an applinatising different GCS implementations, for
instance, in order to choose one of them.

This strategy is implemented in ti@roup Communication Serviggoject [10]. Nowadays, this project
includes bindings to existing GCS implementations like iapdGroups and Spread and other communi-
cation services like an IP-based multicast service and NeEM

Unfortunately, this middleware architecture can only laisally configured and no dynamic reconfig-
uration or switching is possible for the moment.

6.2 Dynamic switching systems
6.2.1 Ensemble’rotocol Switch Protocol (van Renesse et al., 1998)

The Ensemble system [14] is a group communication systeedb@sthe configuration and use o$tack
of protocols as in its predecessor Horus [35]. Each protocol of the sfaokides a different service
(message transport, group membership, ordering, etchetagplication or to other protocols of the stack.

In [34], the Protocol Switch Protocol (PSP) is proposed. PB® is an Ensemble protocol that allows
the dynamic replacement of the full protocol stack used bsefble.

The PSP is a two-phase commit protocol (2PC) [13, 19]. In tt& fihase, one of the participant
nodes takes a coordinator role and broadcaBIsSNAL| ZE message, to ask to all nodes to start a protocol
stack replacement. This message includes the composttire mew protocol stack. Upon reception of
the FI NALI ZE message, each node stops the protocols in its current ptatack, builds up the new
protocol stack and then sends badklaNAL|I ZE- ACK message to the coordinator. When the coordinator
has received all the acknowledgement messages, it starsetiond phase.

In the second phase, the coordinator broadcaSIBART messages. When a node recives SH&RT
message, it discards its current protocol stack and stertegular operation with the new protocol stack.

The protocol includes some fault-tolerance support thiarates the loss of messages (by means of
retransmissions) and the node failures or disconnections.

On the other hand, in the coarse description of the protatd84] no details are given about the
guarantees needed to multicast FHENALI ZE and START control messages. Moreover, nothing is said
about the need to block incoming or outgoing messages.

The PSP present a significant disadvantage. As it is compdse independent parts and the second
part is not started until the first one is completed, the r@gaperation of the application is somehow
blocked. The fact that the whole protocol stack is replasexttually another inconvenience. Indeed, there
is no way to replace a single protocol in a given protocollstaithout having to stop and replace all the
protocols of the stack.

6.2.2 Protocol switching based on state transformation (lu et al., 2000)

In [20], the authors present a mechanism alternative towlitelsing protocols based on a 2PC technique.
The idea is to make the switching more scalable, by avoidiegiependency on a single coordinator node
and reduce the delay imposed by the transition from the gid®ocol to the new one. This alternative
consists in definingwitching functionshat are used to switch from the state kept by a protocol tetéte
used by another protocol.

In runtime, during a dynamic protocol switching, the use wéhsfunctions allow the nodes to go on
working with the new protocol, which starts by managing theseage#herited from the first protocol
and then goes on with the new messages.
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6.2.3 Ensemble’s second switching protocol (Liu et al., 20

In [21] a secondSwitching Protoco(SP) is presented. Unlike the protocol presented in [34] 3R allows
the replacement of a single protocol of the Ensemble’s patstack.

The protocol is presented asnaiapping protocol that sits on top of a number of alternative protscol
that offer the same service, i.e. the same guarantees. Tajpimg protocol offers those guarantees to the
protocol layered about it, which, in fact, does not need tovkabout itswrappingnature. When operates
in normal modeit just forwards up and down the messages sent by and dativerits neighbor layers.
When operates iswitching modeit performs a protocol replacement. As in [34], the SP agsigome
mechanism that decides about when the current protocobhmsesdhanged. Thus, the protocol replacement
starts when someracle chooses a node as a replacenraahager

The protocol operation is similar to that of [34] but there abome differences. First of all, the com-
munication among the manager and the rest of nodes is norlbaged on broadcasts. Instead, a logical
ring is formed among all nodes and a token is forwarded froderto node along the ring. The token has
amodefield that identifies the phase of the protocol.

When no protocol change is being performed, the nodes forawémlen whose mode NORMAL. To
start a protocol change, a manager node waits until it reseaORMAL token. Then it changes the mode
to PREPARE and forwards the token to the next node in the ring. When a neclives &2REPARE token,
it saves in some field of the token the number of messages #dratswith the current protocol and then
forwards the token. When the manager node receives badRREBARE token, it contains the numbers
from all nodes. Then, it changes the tokersitf TCH and forwards it again.

When a node receives@W TCH token, it gets the number of messages sent by each node. Wen th
manager node receives tB&Y TCHtoken, it changes the token modeRbUSH and then forwards it once
more.

When a node receives tiié. USH token it waits until it has received all the messages sentlmodes
with the current protocol. Then, it changes the currentquoitto the new one and forwards the token.
When theFLUSH token is finally received by the manager node, the protogdaoement is finished.

This protocol has some drawbacks related tdltekingnature. First of all, it prevents nodes from
sending messages with both the current and the new prototibthey are in the third token round. Indeed,
as the new protocol is not started until the third round ofdivéching protocol, no messages can be sent
using the new protocol until thénMoreover, the structure of the protocol, based on threedsalong the
ring imposes a significant delay. Furthermore, this delaydseased by the blocking third round.

To argue about the correctness of the protocol, in [21] thleaas formulate sixnetapropertiegsafety
asynchrony delayable send-enabledmemorylessand composable which are properties that describe
other properties. Then, they argue that the switching patpreserveshesemetaproperties In short,
they argue that if two protocols (for instance, two totalergrotocols) offer some proper® (for in-
stance, aotal Orderproperty), and P satisfies those sietapropertiesthen the switching protocas a
protocol that in turn offer®. This is formally proved in [4], by means of the NuPRL theoneraver [1].

6.2.4 Adaptive architecture in Cactus (Chen et al., 2001)

In [8, 5], another adaptive architecture for run-time poatioswitching is proposed. This architecture is
designed for Cactus [2], a framework for building distrédipprotocols and applications.

As in other distributed middlewares and frameworks, a Gaapplication is based on a stack of layered
components and each one of these offers a service. Somesef ¢benponents may telaptive which
means that they include different implementations of thaesaervice. Initially, one of the available im-
plementations of a given component is chosen. This ardhiteallows to change, in run-time, the current
implementation of a service to one of the other availabldémentations of the service, in order to adapt
to changing environments or contexts. For this, each adaptimponent also includes adaptor, which
is a module that collaborates with the service implemeunatio perform the replacement.

The protocol change procedure is actually an abstract gepeatocol, composed of three phases. A
first phase is the detection of some changing environmenpplication parameters. A second phase,

1Although itis not explicitly said in [34], it is assumed thatae a protocol change is started, i. e. once a node receRRERARE
token, the message sending with the current protocol is stbpp
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closely related to the first one, includes the election ofrtee implementation of the service. As in the
solutions proposed by other authors, very little detailudlibese phases is given.

The third phase is thedaptationphase, which in turns consists of three steps: a) prepardtjoutgo-
ing switchoveiand c)incoming switchoverThis is a general scheme and the basic idea is that any ptotoc
change can be decomposed in these steps, regardless trenkiméture of the service implementations
that are to be replaced.

The preparation step includes all the actions needed toestdmprepare the switching from one imple-
mentation of the service to the new one. It finishes witlirachronization barrierOnce all the participating
nodes reach this barrier, they can proceed with the next Stepoutgoing switchover is the step by which
the flow of outgoing messages that arrive to a service impi¢atien areredirectedto a different imple-
mentation of the service. The incoming switchover is a simihessageedirection applied to incoming
messages.

The generic protocol change scheme is implemented in th@daodule of the adaptive component.
This module depends on the semantics and nature of the sémjiiementations to replace. In [8], the
replacement of the total order broadcast service is givemaxample of a implementation of the general
scheme. Basically, the replacemente procedure is the @u#fied by the general scheme. A significant
detail is that once reached the synchronization barri¢hea¢nd of the first step and before performing the
outgoing switchoverthe outgoing messages that could not be sent with the prevaial order protocol
are broadcast, by means of the new total order protocol.

One of the main drawbacks of the solution presented in [8{dsit forces the service implementations
to fulfill a given interface. Actually, this requirement istrtoo strong, since this adaptive architecture was
designed for Cactus systems, that are already forced tmwfoHis requirement. Anyway, such a drawback
may be solved by means of additional indirection layers tvatld be placed on top of each particular
service implementation, thus actingadaptors

In essence, our proposal shares the general idea behingrtiiesal and itstructureorganized in
three different parts. The broadcast of tRREPARE message in the algorithm proposed in Section 3
can be compared to theynchronization barrieused in [8]. Moreover, both solutions need to queue the
outgoing messages that could not be sent with the previcateqml and send them later, with the new
protocol, once it has been activated.

6.2.5 Dynamic Protocol Update (Ritti et al., 2006)

In [29] the problem oDynamic Protocol Updatés considered, as a particular case of the more general
Dynamic Software Updateroblem.

The solution proposed is based on tawitching algorithmghat allow the dynamic replacement of
one of the protocols of the protocol stack used by a user @gjwin. There is a switching protocol to
replace the consensus protocol of the stack and anothextsmgtprotocol to replace the atomic broadcast
protocol. This solution is aimed at the SAMOA framework [®it the basic idea may be applied to other
protocol stack-oriented frameworks. The goal of the aecthiitre presented is to allow the dynamic replace-
ment of software components, thus easing the software em@inte and upgrade tasks. Nevertheless, this
architecture can also help to improve the performance ofjipdications, as proposed in Section 1.

According to the architecture proposed, one of the switglpirotocols is placed in the protocol stack,
just above the protocol to change. When no protocol changelie tlone, the switching protocol simply
forwards up and down the messages sent by and deliveredappltieation. During a protocol change, the
switching protocol intercepts the application messages. general idea ahterceptionincludes delaying
and resending messages. Although some minor differenésstive operation of the protocols is basically
very similar. For instance, both algorithms guarantee theservice requestperformed with the current
protocol (consensus or atomic broadcast) are finished éefarting the operation with the new protocol.
A service requess either a consensus instance or the broadcast of a messggsnding on the protocol
to replace.

The operation of the atomic broadcast switching protoctlaly relies on the atomic broadcast proto-
col to be replaced. When a node decides to start a protocoyehamroadcasts a special message with the
current atomic broadcast protocol. When a node recives plisial message, it performs the protocol re-
placement, by installing and activating the new protodahére are some pending messages sent with the
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old protocol they will be discarded by all nodes at deliveénye and resent by their corresponding senders,
using the new protocol. This way, the switching protocolidsdhe need of an additional acknowledgment
message round (as in other proposals like the presentetiSeistion or the one presented in Section 3).
As in other proposal, nothing is said about how is decideddd a protocol change or which criteria is
considered.

In [29], a discussion of the properties guaranteed by théchimig protocols is also provided. These
properties are expressed in termsyaddules servicesandmodule bindingsA protocol stack is modelled
as a stack ofmodules Each module is configured as a provider aeaviceby means of anodule binding
A binding can be done statically, in configuration time, ondmically, during a protocol change.

First, two properties of the switching protocols are praubs Both properties have strongand a
weakvariant. Thestack well-formednegsoperty expresses the need to have all the services bowamy to
module. The strong variant of this property requires thatsérvice is invoked it must have been bound to
any module. The weak variant of the property requires thasirvice is invoked, it isventuallybound to
any module.

The protocol operationabilityproperty requires the need to have the required modulelledta a
stack when a protocol change is issued. Informally, thengtraariant of this property requires that if a
module (protocol) is bound in the stack of a node, then thekstaf all nodes contain that module. The
weak variant of the property requires that this binding & pventually done.

In [29] (and also [38]), it is shown that the atomic broadsagitching protocol ensures tisérong stack
well-formednessind theweak protocol operationabilitproperties. Moreover, it is also shown that the
regular properties of the atomic broadcast protocddidity, Uniform AgreementUniform Integrityand
Uniform Total Orde) are preserved by the atomic broadcast switching protocol.

Finally, some performance evaluation of both protocolsl$® @resented. This evaluation includes
the analysis of the latency of a series of messages brodogasset of nodes, during which an atomic
broadcast protocol replacement is requested. As showreigrdphical results, the need to resend some
messages during the execution of the protocol change #digotias a negative impact on the latency of a
number of messages.

6.2.6 Mocito’s run-time switching (Mocito et al., 2006)

In [28] another switching protocol for total order protog@ proposed. This is, in essence it is very similar
to the one presented in [25].

In particular, they share some relevant features. Firgyadids blocking message sending with the
new protocol so the flow of application messages is nevekblbclt also sets a point in time from which
no more messages are sent with the current total order plotiloreover, incoming messages broadcast
with the new protocol are queued until all the pending message delivered with the current total order
protocol and the protocol switching is completed.

They differ in the way the participant node=arn about when they musteactivatethe current total
order protocol. In [25], the nodes count the number of messdgoadcast with the current protocol
and when a protocol change is started, this information risapso all nodes know how many messages
have to be delivered with the current protocol before deatitig it. In [28], each node broadcast an
acknowledgement message as the last message broadcasthesicurrent total order protocol. Upon
reception of all such acknowledgement messages, a givemkmavs that no more messages will be sent
with the current total protocol so the node can deactivate it

6.2.7 Broadcast protocol switching (Karmakar et al., 2007)

In [16], the authors deal with the use of a switching protaoalynamically change the broadcast protocol
used by a network of nodes. A broadcast protocol based on adBré-irst Search tree yields lower
message latencies when the network load is low. On the otlued,ha broadcast protocol based on a
Deep-First Search reduces the load on individual nodes tieeglobal network load is higher.

The mechanism discussed in [16] can switch between two besagbrotocols, one based on a BFS
tree and another based on a DFS tree. The core of the mechi&nthm construction of the spanning
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tree used by the broadcast protocol. In the paper, a prot®abiown to build a new DFS spanning tree.
Nevertheless, no protocol is shown to build a BFS spannawgy tr

7 Conclusion

In this paper we review the problem of dynamically repladimg total order broadcast protocol used by a
distributed application. As a result, we provide a new, btotking, highly concurrent switching protocol,
fully integrable with existing independent membershivems. Moreover, this protocol admits concurrent
starts of the switching procedure.

In this paper we provide an extensive description of theahwily protocol, a pseudocode algorithm
and a discussion of the properties offered by the switchiogopol that allow it to behave like a regular
total order protocol.

Although this switching protocol was designed to allow tlyaamic replacement of regular total order
broadcast protocols and the use of prioritized total ordetggols is not mentioned, the switching protocol
can also be used to replapgoritized total order broadcast protocols, without any further modifons.

To argue about this, we must consider that prioritized pmigbehave like regular total order protocols
and thatPrioritization is a property that can be observed on the sequence of megshagdstally order.
These protocols can be wrapped in an architecture like thepogsented in Figure 1. As long as the order
of the sequence of messages provided by a given GCP is peedey\this architecture, tHerioritization
property will be preserved. Moreover, as the switchinggeot only relies in the regular properties offered
by common total order protocol¥dlidity, Uniform AgreementUniform Integrityand Total Order) and
does not specifically rely in any other properties IReoritization, it can be isolated from specific total
order broadcast implementations and additional semaoiffiesed by them.
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