
Dynamic Total-Order Broadcast Protocol Replacement

Emili Miedes De Eĺıas, Francesc D. Mũnoz-Escóı

Instituto Universitario Mixto Tecnológico de Inforḿatica
Universidad Polit́ecnica de Valencia

46022 Valencia (SPAIN)

{emiedes, fmunyoz}@iti.upv.es

Technical Report TR-ITI-SIDI-2010/001

E
m

ili
M

ie
de

se
ta

l.:
D

yn
a

m
ic

To
ta

l-
O

rd
e

r
B

ro
a

d
ca

st
P

ro
to

co
lR

e
p

la
ce

m
e

n
t

T
R

-I
T

I-
S

ID
I-

20
10

/0
01





Dynamic Total-Order Broadcast Protocol Replacement

Emili Miedes De Eĺıas, Francesc D. Mũnoz-Escóı

Instituto Universitario Mixto Tecnológico de Inforḿatica
Universidad Polit́ecnica de Valencia

46022 Valencia (SPAIN)

Technical Report TR-ITI-SIDI-2010/001

e-mail:{emiedes, fmunyoz}@iti.upv.es

March 31, 2010

1 Introduction

Total-order broadcast protocols are a basicbuilding blockin order to develop highly available distributed
applications, since it is needed for ensuring that the updates to be applied by any given replica are ade-
quately propagated and applied in all other ones. This provides the needed basis for ensuring asequential
[18] consistency model, for both the active [32] and passive[6] replication models.

It is accepted that there is no single total order protocol that provides the best performance under any
working conditions [12, 11]. In practice, this means that the election of a total order protocol may have
a significant impact on the performance of the application. Specifically, the election of aninappropriate
protocol may lead the application to get a worse performance. For this reason, the election of the protocol
to use must be done carefully.

Nevertheless, there are some problems that must be considered. First of all, it is not easy toguess
the working conditions an application will have, unless it is a very specific application that has already
been carefully evaluated. On the other hand, even when the working conditions of the application are
known beforehand, the election of the most suitable protocol requires from the application designers some
knowledge about the available protocols. Moreover, it may happen that the working conditions of an
application change during its execution, so the protocol first chosen as the most suitable might become
unsuitabledue to these changes.

Due to this, there should be some mechanism that allows the applications to use, in every moment, the
most suitable total order protocol; i.e., aprotocol switchingtool. Suitability may be decided according to
different factors (application-dependent factors like the system load or message sendingpatterns, system-
dependent factors like the underlying network and its topology, etc.). Moreover, such a mechanism should
betransparentfrom the point of view of the protocols and the applications.

Such a mechanism offers several advantages. First of all, application designers do not need toguessthe
working conditions of the applications. They do neither need to know too many details about the protocols
available nor about the best settings for each one of them. Moreover, such mechanism would allow an
application toadapt tochanging working conditions and, in general, to get a betterperformance.

There already are multiple switching protocols of this kind[21, 8, 29, 28]. Most of them assume that
such switches will seldom arise and that consensus is neededin order to accept such expensive switch
operation. So, they are structured in two phases, leading toa blocking behavior [33]; i.e., no message can
be broadcast from the point when a process has requested the switch until the moment all of them have
accepted such switch and have delivered all previously broadcast messages.

We propose a different alternative. In it, all broadcast protocols might be known in advance and they
can be plugged into the switching protocol. Switches can be concurrently requested and all of them are
accepted, although such requesting order is recorded. To this end, each broadcast message should contain

1



in its headers which protocol was used to propagate it, and each process should know how many messages
should be managed by each running protocols. So, in the switching interval both protocols (old and new)
are able to work simultaneously: new messages can be broadcast with the new protocol and the old protocol
is still able to deliver its messages. As a result, no blocking interval arise and the switch action is usually
faster than in previous protocols. Additionally, this switching mechanism is also able to manage prioritized
total-order protocols, whose usefulness has been proven insome of our previous works [26, 27].

The rest of this paper is structured as follows. Section 2 presents our dynamic switching architecture.
Section 3 describes the switching protocol and Section 4 analyzes some of the issues that should be faced by
that protocol. Later, Section 5 states and proves the properties to be satisfied by the switching mechanism
and Section 6 discusses related work. Finally, Section 7 gives the conclusions.

2 A Dynamic Protocol Replacement Architecture

In [25], we presented an architecture for dynamically replacing Group Communication Protocols (GCPs).
Such an architecture was designed to allow the dynamic replacement of FIFO or total order broadcast
protocols.

In the following sections we review the work presented in [25] and discuss how such an architecture
could be adapted to fit the needs presented in Section 1.

In Figure 1 we show a reviewed version of the high level graphical description of the architecture
proposed in [25].

User process

Membership
service

0GCP 1GCP GCPk

Switching protocol

...

view change

Reliable transport

deliversend

AGCS broadcast deliver

Switching
manager

System
monitor

Figure 1: Architecture of a node

This architecture is composed of a main component, calledAdaptive Group Communication System
(AGCS). As shown in the figure, the user process sits on top of this architecture and this, in turn, relies
on a regular reliable message transport layer. TheAGCSwraps several standard group communication
components (a number of GCPs, for instance, total order protocols and a membership service) and also
specific components.

TheSwitching protocolimplements the mechanism of replacing the GCPs in runtime. It captures the
regular communication that occurs among the user process and the GCPs and performs the GCP replace-
ment. TheSwitching manageris a component that decides when GCP changes should take place and which
GCP should be installed. TheSwitching managerrelies on aSystem monitorthat keeps track of several
system and application measurable variables and parameters. TheSwitching managercollects the measures
provided by theSystem monitorand uses them to decide about GCP changes.

The original architecture presented in [25] and the one we present in Figure 1 include aMembership
servicecomponent and a reliable transport layer. TheMembership serviceprovides notifications about
changes on the set of nodes consideredalive (due to joins of new nodes, node failures or node discon-
nections). Finally, theReliable transportlayer offers a regularreliable andFIFO message transport layer

2



which ensures that a message sent to a destination is received by that destination unless it fails.

3 The Switching Protocol

In this Section we present theSwitching protocol. We first provide an overview of the protocol and then we
present some notation details and a pseudocode algorithm ofthe protocol. We finally discuss some details
not covered in the first overview.

3.1 Overview

During normal operation, when no GCP replacement is being carried on, theSwitching protocoltakes
charge of the messages sent by the user process, which are redirected to the current GCP. Incoming mes-
sages are received by the current GCP and directly handled tothe protocol, which in turns delivers them to
the user process. The core of theSwitching protocoldoes not take part in this process.

A GCP replacement starts when theSwitching managerinstructs theSwitching protocolin a particular
node to start a GCP change. TheSwitching protocolin this initiator nodeto–bcastsaPREPAREmessage to
inform all the nodes about the new change. At every node, theSwitching protocolstops relaying messages
with the current GCP, instances and initializes a new GCP andstarts relaying messages with it. Moreover,
each nodeto–bcastsaPREPARE ACK message to tell all nodes about the number of messages it has sent
with the previous GCP and waits for aPREPARE ACK from all the nodes.

In the meantime, theSwitching protocolgoes on receiving messages delivered to it by the previous GCP
and forwarding them to the user application. TheSwitching protocolmay also receive messages delivered
by the new protocol, as it has already been started in all nodes. These messages are not delivered to the user
process yet, but queued in a local queue, until all messages broadcast with the previous GCP are delivered
to the user process.

When theSwitching protocolreceives all thePREPARE ACK messages it knows how many messages
were sent with the previous GCP by each node. When all of them are finally received, theSwitching
protocol can finally discard the previous GCP. Then, it delivers to theuser application all the messages
broadcast with the new GCP, which were locally queued. When all of them are delivered, theSwitching
protocolcan go on using the new protocol as the only available one.

The protocol receives view changes from an independent membership service, for instance, when a
node failure happens. If such a notification is received during a protocol change, the protocol basically
stops waiting formessages from the failed node, so the protocol change can proceed when a node failure
happens. An additional discussion is provided in Section 4.3.

Moreover, the protocol is able to manage consecutive protocol change requests. The protocol ensures
that if a protocol change request is received by a node while aprevious request is being handled, the current
protocol change is completed and the next one is then handled. Additional details are given in Section 4.2.

3.2 Pseudocode

The pseudocode algorithm of the protocol is shown in Algorithms 1 and 2.
The protocol uses severalglobal variables. k is a counter of the GCP changes. It is initialized to0 and

incremented when a new GCP change is started.changing gcp is a flag to know if there is a GCP change
in progress or it has already finished.live nodes is the set of live nodes as notified by the membership
service.

The algorithm also uses a struct of typeP for each GCP it manages. Thus,P0 would be the struct for
the first GCP used,P1 would be the one for the second, etc. Such a struct contains several fields to store
some state related to a GCP. Given a structPk, the expressionPk.GCP is used to reference that GCP. The
Pk.k field is the number of the replacement by which thePk.GCP is installed. In general,Pk.k = k.
Pk.sent is the number of user messages that have been broadcast byPk.GCP . Pk.other sent is an array
that stores the number of messages sent by all the processes in iterationPk.k by means ofPk.GCP . Each
entry of the array is initialized to0 and updated when a new protocol replacement is started, using the
information received from each process. The number of messages sent by processq is Pk.other sent[q]

3



and it is initialized to0. Pk.delivered is an array that stores the number of messages sent by all the
processes delivered by the local process by means ofPk.GCP . Pk.delivered[q] is the entry corresponding
to the messages sent by processq. Each entry of the array is initialized to0 and updated by the local
process each time it receives a message fromPk.GCP . Pk.deliverable is a list of messages delivered to
the protocol byPk.GCP . If Pk.GCP is not the current protocol but a later one, the messages delivered by
it cannot be directly forwarded to the user process. Instead, they are stored inPk.deliverable, until all the
messages sent with all the previous GCPs are delivered.

We also assume that the managed GCPs provide ato–bcastsprimitive to broadcast a message to all the
nodes in the system. Given a messagem, m.sender denotes its sender.

The algorithm is composed by a set ofhandlersand functionswhich are executed as a response to
external messages (sent by other nodes) and events (e.g. view change events produced by theMembership
service) or called from other event handlers and functions. These handlers and functions areatomic, i.e.
we assume that two handlers or functions can not be executed concurrently.

TheINIT function is executed only once, when the whole system is started. TheTO-BCAST handler is
invoked by the user application in order to broadcast a message (in total order). TheHANDLER USER MSG
handler is invoked by the GCPs to deliver incoming totally ordered messages to theSwitching protocol.
The START function is executed when theSwitching managerdecides to start a new protocol change.
TheHANDLE PREPARE andHANDLE PREPARE ACK are invoked by the GCPs to deliverPREPARE or
PREPARE ACK messages, respectively, to theSwitching protocol. TheFINISH PENDING function is
invoked to try to finish as much pending protocol changes as possible. TheEND function is executed to
finish a protocol change. TheHANDLE VIEW CHANGE handler is invoked by some external membership
service to deliver notifications on the membership view. TheDELIVERY FINISHED function is invoked
to decide if all the pending messages needed to perform a protocol change have already been received.

4 Discussion

In this Section we discuss some issues that were not covered in Section 3 to simplify the presentation of
the protocol. These issues cover the normal operation of theprotocol and also its behavior in presence of
failures.

4.1 Normal operation

The protocol we are presenting offers a number of advantagesover the protocols reviewed in Section 6 and
the protocol we proposed in [25].

First of all, our solution does not block the sending of user messages. When a node is instructed to
start a protocol switch, the sending of messages with the current GCP is disabled but message sending is
immediately enabled with the new GCP.

Moreover, it allows both protocols to coexist and work (i.e.to order messages) in parallel during the
protocol change, until the old protocol is no longer needed.An important consequence is that the normal
flow of messages is not delayed by slower processes.

Even more, the delivery of messages to the user process is neither blocked. Indeed, when the old pro-
tocol is finally discarded and uninstalled, theSwitching protocolimmediatelly delivers to the user process
the queued messages delivered by the new GCP. After this step, regular delivery with the new protocol is
enabled, thus keeping anormal flowof messages delivered to the user process.

On the other hand, for this mechanism to properly work, some issues must be considered. These have
not been included in the protocol algorithm to simplify its presentation.

First of all, it is needed some way to distinguish the messages broadcast with each GCP. A first solution
consists in adding someheader datain the regular messages but this solution would imply the need of
knowing some implementation details, thus making theSwitching protocoldependent on specific GCP
implementations.

A second option, general enough to fulfill this requirement is to encapsulate the regular user messages
in other messages whose format is only known by theSwitching protocol. The protocol can include in
these messages additional headers with all the needed meta-data. One of these headers can be used to save

4



Algorithm 1 TheSwitching protocolpseudocode (part I)
1: CREATE P(p,g):
2: p.GCP ← g

3: p.k ← next k

4: p.sent ← 0
5: p.other sent[q] ← 0, for each processq in live nodes

6: p.ack received[q] ← false, for each processq in live nodes

7: p.delivered[q] ← 0, for each processq in live nodes

8: p.deliverable ← {}
9:

10: INIT(G):
11: current k ← 0
12: next k ← 0
13: changing gcp ← false

14: instance, prepare and initializeG
15: call CREATEP(Pnext k, G)
16:
17: TO-BCAST(m):
18: if changing gcp == true then
19: to-bcastm with Pnext k.GCP

20: Pnext k.sent + +
21: else
22: to-bcastm with Pcurrent k.GCP

23: Pcurrent k.sent + +
24: end if
25:
26: HANDLE USER MSG(m):
27: if m.k == current k then
28: deliverm to the local process
29: Pcurrent k.delivered[m.sender] + +
30: if changing gcp == true then
31: call FINISH PENDING
32: end if
33: else
34: queuem in Pm.k.deliverable

35: end if
36:
37: START(G′):
38: to-bcast PREPARE(G′) with Pcurrent k.GCP

39:
40: HANDLE PREPARE(G′):
41: next k + +
42: changing gcp ← true

43: instance, prepare and initializeG′

44: call CREATEP(Pnext k, G′)
45: bcast PREPAREACK(current k, Pcurrent k.sent) with Pcurrent k.GCP

46:
47: HANDLE PREPAREACK(k, sent) from processq:
48: Pk.other sent[q] ← sent

49: Pk.ack received[q] ← true

50: call FINISH PENDING()
51:
52: FINISH PENDING():
53: changing gcp aux ← false

54: for j = current k to next k do
55: if DELIV ERY FINISHED(j) then
56: call END(j)
57: current k + +
58: else
59: changing gcp aux ← true

60: break
61: end if
62: end for
63: changing gcp ← changing gcp aux

64:
65: END(j):
66: for all m in Pj+1.deliverable do
67: if m is a user messagethen
68: call HANDLE USER MSG(m)
69: else ifm is a PREPARE message thenthen
70: call HANDLE PREPARE(m)
71: else
72: call HANDLE PREPAREACK(m)
73: end if
74: removem from Pj+1.deliverable

75: end for
76: destroyPj .GCP

77:

5



Algorithm 2 TheSwitching protocolpseudocode (part II)
78: HANDLE VIEW CHANGE(failed nodes):
79: removefailed nodes from live nodes

80: call FINISH PENDING
81:
82: DELIVERY FINISHED(j):
83: totalOtherSent ← 0
84: totalDelivered ← 0
85: for all q in live nodes do
86: if Pj .ack received[q] == false then
87: return false
88: end if
89: totalOtherSent+ = Pj .other sent[q]
90: totalDelivered+ = Pj .delivered[q]
91: end for
92: if totalOtherSent == totalDelivered then
93: returntrue

94: else
95: returnfalse

96: end if
97:

Algorithm 3 TheSwitching protocolpseudocode (part III)
98: INIT(G, sending):
99: ...
100: provide sending view ← sending

101: changing view ← false

102:
103: TO-BCAST(m):
104: if changing view == true andprovide sending view == true then
105: block call
106: end if
107: if changing gcp == true then
108: to-bcastm with Pnext k.GCP

109: Pnext k.sent + +
110: else
111: to-bcastm with Pcurrent k.GCP

112: Pcurrent k.sent + +
113: end if
114:
115: HANDLE VIEW CHANGE(new nodes, failed nodes):
116: changing view ← true

117: removefailed nodes from live nodes

118: to-bcastNEW V IEW (new nodes, failed nodes) with Pnext k.GCP

119: call FINISH PENDING
120:
121: HANDLE NEW VIEW(new nodes, failed nodes):
122: addnew nodes to live nodes

123: for all q in new nodes do
124: for j = current k to next k do
125: Pj .other sent[q] ← 0
126: Pj .ack received[q] ← false

127: Pj .delivered[q] ← 0
128: end for
129: end for
130: deliver (new nodes, failed nodes) to the local process
131: if provide sending view == true then
132: unblock call to TO-BCAST (if any)
133: end if
134: changing view ← false

135:

6



an identifier of the GCP used to broadcast the encapsulated user message. From the point of view of the
GCPs managed by theSwitching protocol, these protocol-dependent messages are as opaque as the regular
user messages.

4.2 Concurrent starts

Another issue that can be discussed is the ability of theSwitching protocolto face concurrent starts of the
switching procedure. Indeed, in case several protocol switchs are started concurrently by different nodes or
even the same node, the use of a total order broadcast protocol to broadcast thePREPARE messages forces
that all the nodes receive the samePREPARE messages in the same order.

First of all, multiplePREPARE messages can be received by a node. When aPREPARE message is
received by a node, it starts a newnext k iteration, by creating a newPnext k structure. The protocol starts
sending messages with the new GCP and queueing inPnext k.deliverable the messages delivered by it.
Each time a newPREPARE message is received, a new iteration is started, even if there are some previous
GCPs receiving messages.

When the current GCP delivers a message to theSwitching protocolit checks if that message delivery
allows to finish the execution of one or more iterations. For this, theFINISH PENDING function is
invoked. The only issue to worry about is the proper finalization of the iterations, in the same order
they were started. This function checks that, for each iteration started, a correspondingPREPARE ACK
message has already been received from all the live processes and all the messages sent by them with the
corresponding GCP have also already been received. In this case, the iteration can be considered finished,
and the following iteration can be checked.

4.3 View management

When no node failure happens, the behavior of the protocol is that shown in Algorithms 1 and 2.
Nevertheless, theSwitching protocolis able to react to failure notifications provided by an independent

membership manager. These are received in theHANDLE VIEW CHANGE handler. In this handler, we just
update the local copy of the set of nodes considered alive andcall theFINISH PENDING function. This
call is needed because it may happen that the only messages required to finish one or more iterations were
sent by processes declared failed. In this call, all the pending iterations are checked, considering only the
alive nodes.

The reaction to view changes we present in these algorithms is actually minimum. In Algorithm 3 we
extend the initial pseudocode shown in Algorithms 1 and 2. These extensions allow the protocol to provide
view change notifications to the upper user process and also manage the join of new nodes. Regarding
the first issue, two different alternative guarantees can beprovided:Same View DeliveryandSending View
Delivery[9].

If the Sending View Deliveryproperty has to be provided, theSwitching protocolhas to ensure that
all the messages broadcast by the user processes are delivered to them in the view they were sent. In
particular, the protocol has to ensure that all the messagesbroadcast with any of thependingGCPs are
deliveredbeforedelivering the following view change notification to the user process. Moreover, once
the Switching protocollearns about a node failure, it has to prevent the user process from sending more
messages until the corresponding view change is delivered to it.

For this, we propose the following procedure. When theSwitching protocolis informed about a node
failure, it first blocks the sending of user messages. Then, it broadcasts a specialNEW VIEW message, with
the last GCP started (Pnext k.GCP ). This message is broadcast with the last GCP started because it is not
guaranteed that the previous GCPs are still available in allnodes. TheNEW VIEW message includes the set
of nodes that compose the new view. After delivering all the pending user messages (those broadcast with
any of the started GCPs, including the current one), thisNEW VIEW message is eventually delivered to the
Switching protocol. TheSwitching protocolcan then forward theNEW VIEW message to the user process,
in order to notify the new view. Finally, it unblocks the sending of user messages.

If the Sending View Deliveryproperty is not needed, then the sending of user messages does not need
to be blocked. The procedure to follow is thus the same than inthe previous case except that the sending
of user messages is not blocked. In this case, the user process can go on broadcasting messages after the

7



Switching protocolreceives the node failure notification. Nevertheless, these messages may be delivered
to the user process (once totally ordered) after theSwitching protocoldelivers the view change to the user
process, i.e., in a different view from the one they were sentin, although the total order property provided
by all the GCPs ensures that, at least, each message is delivered in the same view to all the user processes.
This way, theSame View Deliveryproperty is ensured.

TheSwitching protocolis also able to manage the join of new nodes. Joins are notifiedas view changes.
In fact, a view change can be viewed as a set of new nodes (nodesthat join the system) and a set of nodes
that fail.

To implement these features, we propose a number of changes,in Algorithm 3. First we add two new
global variables. Theprovide sending view variable is a flag used to know if theSending View Delivery
property has to be ensured. It’s value is set to the value of the sending parameter of theINIT handler.
This way, it can be decided externally. If it is set tofalse, then theSame View Deliveryproperty is offered
instead. Moreover, we use achanging view global flag, used to know if there is a view change in progress.

TheTO-BCAST handler is also modified. As a first action, it checks if a view change has been started
and if theSending View Deliveryproperty has to be ensured. In this case, the user call to theTO-BCAST
is blocked. The rest of the handler is the same that the one shown in Algorithm 2.

TheHANDLE VIEW CHANGE handler is also modified. First of all, a new parameter is added, to receive
a set of new nodes (i.e., nodes thatjoin the system). Then, it broadcasts a specialNEW VIEW message, by
means of the last GCP started. Finally, theFINISH PENDING function is invoked, as in Algorithm 2.

The NEW VIEW message is received in the newHANDLE NEW VIEW handler. First, the new nodes
are added to the local copy of the set of nodes considered alive. TheP data structures fromPcurrent k

to Pnext k are updated, to initialize the state corresponding to the new nodes. Then the view change is
delivered up to the user process. Finally, in case theSending View Deliveryproperty was required, it
unblocks the execution of theTO-BCAST handler.

Another issue related to the notification of node failures must be addressed. When a node fails, it may
happen that, in several nodes, the corresponding membership service notifies to theSwitching protocol,
which would broadcast itsNEW VIEW message. The result is a number ofNEW VIEW messages represent-
ing the same node failure are broadcast and received by all nodes. To avoid the multiple notification of a
view change to the user processes a simple solution can be adopted.

TheSwitching protocolkeeps aview counteras a global variable. It is initialized to0 and incremented
each time aNEW VIEW is delivered to theSwitching protocoland then forwarded to the user process. Each
NEW VIEW message is tagged with the current value of the counter when it is broadcast. If theSwitching
protocol receives differentNEW VIEW messages with the same value of theview counter, it considers the
first one and then discards the rest. As theNEW VIEW messages are broadcast in total order, using the last
GCP started, all nodes keep the sameNEW VIEW message and discard the same other messages.

5 Properties of theSwitching protocol

In this section we provide some properties of theSwitching protocoland some reasoning about their cor-
rectness. First, we propose some lemas used to prove the properties.

Lema 1: Downwards Validity. If a user process in a correct node broadcasts a messagem, then exactly
one of the GCPs of that node eventually broadcastsm exactly once.

Proof. In theTO-BCAST handler, each message sent by the user process is immediately broadcast exactly
once, by any of the GCPs currently managed by theSwitching protocol(lines 18–24).

If we consider the modifications presented in Algorithm 3, then, in case theSending View Delivery
property is requested and a view change happens, the following message broadcast by the user process
may be blocked. In this case, we have to show that the sending is not blocked infinitely.

First, when a view change is notified, then aNEW VIEWmessage is broadcast (line 118). By theValidity
property of the GCP used to broadcast theNEW VIEW message, this is eventually delivered by the local
node and handled in the HANDLENEW VIEW handler.

8



In this handler, the user process is finally unblocked (line 132) and the message can finally be broadcast,
exactly once and using exactly one GCP (lines 107–113).

Lema 2: Upwards Validity. If a GCP delivers a messagem to the Switching protocol, then the Switching
protocol eventually deliversm to the user process.

Proof. It has to be shown that theSwitching protocoldoes not indefinitely retain a message delivered to
it by a GCP.

First, if a messagem is delivered to theSwitching protocolby Pcurrent k.GCP , then it is immediately
delivered to the user process (line 28). If the message is delivered byPk′ .GCP (wherecurrentk < k′ ≤
nextk), then it is stored inPk′ .deliverable. In this case, it has to be shown that the message is not retained
in that queue infinitely. In other words, it has to be shown that all iterations of the protocol previous tok′

are eventually finished.
If m was broadcast withPk′ .GCP (with current k < k′), then we now that a finite number of message

were broadcast withPj .GCP (∀j : current k ≤ j < k′). By the Validity and Uniform Agreement
properties of these GCPs, it is known that all those messagesare eventually delivered to theSwitching
protocoland, by Lema 1, eventually delivered to the user process. Forthe same reason, we also know that
all the correspondingPREPARE ACK andPREPAREmessages (used to finish an iteration and start the next
one, respectively) are eventually delivered to theSwitching protocol. Then, all the iterations previous to
Pk′ are eventually finished. An iterationPj is finished when all the messages broadcast with thePj .GCP

are delivered to theSwitching protocol(as decided by theDELIVERY FINISHED function).
At the end of the iterationPj , all the pending messages broadcast withPj+1.GCP (those stored in

Pj+1.deliverable) are delivered to the user process (lines 66–75).
Then,current k is incremented (line 57). Eventually,current k reachesk′ and messagem is finally

delivered to the user process.

Lema 3: Local Integrity The Switching protocol delivers a messagem to the user process at most once,
and only ifm has been delivered to the Switching protocol by exactly one of the GCPs of the local node.

Proof. First of all, theSwitching protocoldelivers the message to the user process at most once. If
the message is delivered by the current GCP (Pcurrent k.GCP ) then, it is directly delivered (line 28). If
the message is delivered by a later GCP (Pk′ .GCP , with current k < k′), then it is first queued (in
Pk′ .deliverable).

By Lema 2, we know that the message is eventually delivered tothe user process, exactly once (lines
66–75).

On the other hand, it has to be proved that a single message cannot be delivered to theSwitching
protocolby more than one GCP. Let’s suppose that a message is delivered to theSwitching protocolby two
different GCPs. TheUniform Integrityproperty offered by these GCPs ensures that they previouslysent
the message.

Nevertheless, this is not possible since theSwitching protocolsends each message only with one of the
GCPs (lines 28 and 34).

Lema 4: Change Safety The Switching protocol does not deliver to the user process amessagem
delivered to the protocol byPk.GCP after having delivered to the user process a messagem′ which was
delivered to the protocol byPk′ .GCP , wherek < k′.

Proof. If no view change happens, theTO-BCAST handler broadcasts the user messages by means of
Pcurrent k.GCP (line 22). As theSwitching protocoldoes not keep aPk previous toPcurrent k, then no
message can be broadcast with a previous GCP.

If a GCP change happens, theTO-BCAST handler broadcasts the user messages by means ofPnext k.GCP

(line 19). The value ofnext k is incremented each time a GCP change is started (line 41), soPnext k.GCP

is always the last GCP that has been started. If a message is broadcast withPnext k.GCP , then we know
that any message subsequently broadcast will be sent with the same GCP or a later one.

9



Property 1: Validity. If a process in a correct node broadcasts a messagem, then the Switching protocol
eventually deliversm to it.

Proof. If no GCP change happens, messagem is sent with the current GCP (Pcurrent k.GCP ). By its
V alidity property, the GCP eventually deliversm to theSwitching protocol(in the same node). According
to Lema 3 (Local Integrity) stated above, theSwitching protocoleventually delivers the message to the user
process.

If a GCP change happens, Lemas 1 (Downwards Validity) and 2 (Upwards Validity) ensure that the
Switching protocoldoes not indefinitely retain theoutgoingmessages sent to it by the user process nor the
upgoingmessages delivered to it by the GCP.

Property 2: Uniform Agreement If the Switching protocol in a node, whether correct or faulty, delivers
a messagem to the user process, then the Switching protocol in all correct nodes eventually deliverm to
their corresponding user processes.

Proof. Let’s suppose that, in one of the nodes, theSwitching protocoldelivers a message to the user
process. By Lema 3 (Local Integrity), the message must have been delivered to theSwitching protocol
by one of the GCPs. By theUniform Agreementproperty of the GCPs, in all the correct nodes, the GCP
delivers the message to theSwitching protocoland by Lema 2 (Upwards Validity), theSwitching protocol
eventually delivers up the message to the user process in allcorrect nodes.

In case the GCPs do not satisfy theUniform Agreementproperty but just aNon-uniform Agreement
property, then the property satisfied by theSwitching protocolis notUniform Agreementbut just the corre-
spondingNon-uniform Agreementproperty.

Property 3: Uniform Integrity For any messagem, the Switching protocol of every node, whether
correct or faulty, deliversm at most once to the user process and only ifm was previously broadcast by its
sender.

Proof. First of all, it has to be shown that a user process does not deliver a message twice.
First, by Lema 3, we know that theSwitching protocolcan not deliver twice the same message. It

delivers a message twice only if the GCP has delivered twice that message to it.
By theUniform Integrityproperty of the GCP, this can only happen if the GCP in the sender node has

broadcast twice the message. By Lema 1 (Downwards Validity), we know that this is only possible if the
sender node broadcasts twice the same message through the GCP, and this can only happen if the user
process in the sender node broadcasts twice the same message.

Moreover, it has to be shown that theSwitching protocolonly delivers a message to the user process if
the message was previously broadcast by its sender node.

First, it is known that theSwitching protocolonly delivers to the user process messages that have
previously been delivered to it by one of the GCPs (lines 28).By theUniform Integrityof the GCPs, this
only happens after the GCP in the sender node has broadcast the message. TheSwitching protocolitself
ensures that this can only happen after it has broadcast the message through the corresponding GCP in the
sender node.

Property 4: Uniform Total Order If the Switching protocol in any nodesN andN ′, whether correct or
faulty, both deliver messagesm andm′, then the Switching protocol inN deliversm to its user process
beforem′ if and only if the Switching protocol inN ′ deliversm to its user process beforem′.

Proof. Let’s suppose that theSwitching protocolin both nodesN andN ′ deliver two messagesm and
m′. If N delivers bothm andm′ using the same GCP, by theUniform Total Orderproperty of the GCP
and by protocol construction, it is known that all the nodes will deliver m andm′ in the same order, using
the same GCP.

10



Now let’s suppose thatN deliversm usingPk.GCP and deliversm′ usingPk′ .GCP , with k < k′.
Then,N ′ also deliversm usingPk.GCP andm′ usingPk′ .GCP . Moreover, by Lema 4 (Change Safety),
asm has been broadcast usingPk.GCP , N ′ deliversm to the user process before delivering any other
message broadcast byPk′ .GCP , which means thatN ′ deliversm prior tom′.

The reasoning is also valid ifN or N ′ fail after deliveringm andm′, respectively. On one hand,N

andN ′ deliverm andm′, as long asPk.GCP andPk′ .GCP satisfy theUniform Total Orderproperty.
On the other hand, by Lema 4 (Change Safety), both nodes deliver all the messages broadcast byPk.GCP

before starting to deliver messages broadcast byPk′ .GCP . As a result, bothN andN ′ deliverm before
deliveringm′.

6 Related Work

In this Section we briefly review some previous work that is related to our concern. The reviewed papers
are divided into two different groups. In a first group, we include those papers that propose some con-
figurable architecture or mechanism that is able to adapt to changing environments or settings, by means
of tuning its behaviour, but without performing structural changes like the ones carried on by a switching
protocol. We also include some other work directly related to adaptable systems. In a second group, we
include those papers that use somedynamic switchingmechanism that is able to replace the current imple-
mentation of one or several services. The papers in both groups are presented chronologically. Some of
the references cited present a solution based on a switchingalgorithm while others present work related to
adaptive systems from a more general point of view.

6.1 Configurable systems

6.1.1 Composability in x-kernel (Hutchinson et al., 1991) and Coyote (Bhatti et al., 1995)

The x-kernel operating system kernel [15] was designed to ease the design and development of network
protocols. It is considered one of the first systems based oncomposablestacks of protocols. For instance,
it includes protocols that implement different communication standards like IP, UDP, TCP and even low
level protocols like ARP.

In x-kernel, the composition of the protocol stacks to use isdefined statically, in configuration time. In
boot time, each protocol communicates with its underlying protocol in order to agree on the relationship.
Once the kernel is booted, there is no mechanism to dynamically change the composition of the protocol
stacks used by x-kernel.

The Coyote system [3] is based on x-kernel and proposed the decomposition of regular x-kernel proto-
cols into a set ofmicro-protocols. In configuration time, a first construction step if performed, by combining
the micro-protocols of a protocol. Then, a regular x-kernelconfiguration step is carried, to build regular
x-kernel protocol stacks.

As in x-kernel, the configuration of Coyote is static and no dynamic reconfiguration mechanism is
available.

6.1.2 ADAPTIVE (Schmidt, 1993)

The ADAPTIVE system [31] is an environment to develop network protocols, designed to adapt to hetero-
geneous and changing environments. First of all, it offers anumber of high-level abstractions to specify the
behavior of the network services that will be finally offeredto the user application, according to the cur-
rent setting (e.g. the topology and type of the network) and the application quality-of-service needs. The
specifications of the services are used to instantiateprotocol machines, which are protocol implementa-
tions available in a repository and tuned to fit the such requirements and needs. Moreover, in configuration
time, user applications can refine the specification of the network protocols to use. The reconfiguration
mechanism is then able to tune the current protocol machinesor create new ones, in order to adapt to the
application needs.

11



6.1.3 About the use of standard interfaces (Wiesmann et al.,2003)

Several efforts have been made to propose a set of standard interfaces that express a wide range of group
communication related services like group membership, or communication primitives.

In [36], the authors propose the use of middleware architectures built up from components that follow
standard and well-known interfaces. The architecture theypropose can be used to build distributed systems
and it includes a membership service, a fault detector service and some messaging services. These services
are implemented by components that must offer well-defined and standard interfaces to the components
above them(i.e., components thatusethe services they offer). These components, in turn, use theservices
offered by the componentsbelowthem.

The benefit of using standard interfaces is twofold. First, as the knowledge of the standards to use can
be reused, the design and implementation of new components is easier and simpler. Moreover, the use of
standard interfaces allows the replacement of the implementation of a given component by a new one, as
justified in previous sections.

In [36], for each service, several standard alternatives are considered. For instance, TCP/IP UDP/IP,
IP-multicast, BEEP, APEX and JMS are considered as standards to define the behavior of the messaging
components while LDAP and SNMP standards are considered forthe membership service and SNMP and
CMIP, for the fault detection service.

6.1.4 A survey of middleware software (Sadjadi, 2003)

In [30], a survey of configurable and adaptive middleware is presented. This work is actually a first version
of [24], which is reviewed in a later section. In the survey, anumber of solutions are classified into different
classes.

The survey first identifies four key technologies that offercomposabilityandadaptability: a) compu-
tational reflection [22], based on the use of introspection,b) component-based design, c) aspect-oriented
programming [17] and d) software design patterns.

In a first taxonomy, it classifies middleware software depending on the abstraction layer in which they
may be placed: a)Host-infrastructure, b) distribution, c) common-servicesand d)domain-services.

A second classification proposed in [30] classified middleware software according to its adaptation
level: a)configurable, b) customizable, c) tunable, and d)mutable. Themutableclass is the only one that
can be considered completely dynamic and may include some techniques like introspection, aspect-based
programming and dynamic code loading.

Finally, in [30] a third classification is proposed that classifies middleware according to its application
domain: a)QoS-oriented systems, b) dependable systems, and c)embedded systems.

In the survey a big number of solutions are reviewed, many of them related to CORBA. Nevertheless,
none of them can be compared to the switching mechanism proposed in Section 3 or the other solutions
reviewed in this Section.

6.1.5 A taxonomy of compositional adaptation (McKinley et al., 2004)

In [24] (an extended version of [23]), a survey of adaptive systems is presented.
In this survey, two main types of adaptation are identified.Parameter adaptationis present in systems

that are able to modify the values of their parameters and variables in order to adapt to changes in their
settings, environments, working conditions, etc. On the other hand,compositional adaptationinvolves the
ability to algorithmically or structurally change a systemin order to perform such adaptation. In the survey,
a taxonomy of compositional adaptationis presented.

The taxonomy is multidimensional. The solutions surveyed are classified according three different
criteria: a) how, b) when and c) where tocompose(i.e. perform a system’s adaptation).

Regarding tohow to compose, several mechanisms can be used.

• Redirection of function pointers. The pointers that point to the functions that contain the code to
change oradaptcan beredirectedto point to different functions (for instance,proxyfunctions).

• Wrappers. The use of thewrapper patternallows business objects to be encapsulated bywrapper
objectsthat can control the original objects.

12



• Proxies. According to theproxy pattern, someproxy code can beinsertedin the original code, to
intercept and manage regular invocations to business logic.

• Thestrategy pattern. Each service implementation is encapsulated under an interface. This allows
the replacement of a given implementation by another one, aslong as both share the same interface.

• Virtual components. A virtual componentis a placeholder that allows the loading and unloading of
service code in an application-transparent manner.

• Meta-Object Protocols. A specific protocol can be used to dynamically replace the implementation
of a service.

• Aspect weaving. Aspect Oriented Programming can be used toinject orthogonal functionality to
existing service implementations.

• Middleware interception. Regular service requests and thecorresponding responses are intercepted
at a middleware-level layer. Adaptation can be performed insuch layer.

• Integrated middleware. Besides indirectly using a middleware layer, the user applications can also
explicitly make use of their services.

Additional criteria are considered regarding this criterion: transparency of the solution, granularity,
coverage and support of standards.

The transparencycriterion expresses the transparency level of the adaptation mechanism respect to
the functional code of the application, the adaptive code, the distribution middleware services (if any) and
the virtual machine (if any). Thegranularity criterion is useful to know the granularity of the adapta-
tion mechanism (per system, per class, per object, per method or per invocation). Thecoveragecriterion
distinguishes systems that only are appliable to local invocations from those that also consider remote in-
vocations. Moreover, the ability to apply the adaptive mechanism to just a subset of the invocations is also
checked. Finally, thestandards supportcriterion allows to know which standard like CORBA/CCM, Java
RMI/J2EE and DCOM/.NET are supported by the systems.

Regarding towhen to compose, two first categories can be distinguished:static compositionanddy-
namic composition. Static composition is performed in configuration, compilation, deployment, linking
or even loading time while dynamic composition, is performed in run-time. Static composition is usually
easier to perform but it is usually less flexible and powerfulthan dynamic composition, which is, on the
other hand usually more complex to perform.

As there are different levels of static composition, it can be achieved in different manners. Simpler
static composition can be performed by tuning hardwired parameters and code and recompiling the system.
More flexible mechanisms perform the adaptation in deploy time, by choosing the proper components and
modules to use. The most powerful alternatives include latebinding and dynamic class loading.

On the other hand, systems that use dynamic composition can be tunableor mutable. Tunable software
can be dynamically configured andadaptedby run-time tuning some of their parameters and variables.Mu-
table softwareoffers the possibility of altering the functionality of thesystem, for instance, by dynamicaly
replacing the code of some of their components.

Regarding towhere to compose, middleware-level and application-level alternatives can be considered.
Middleware-level alternatives include constructing a layer of adaptable software and attach it to the user
application and modifying a virtual machine in order to add some adaptive support. Application-level
alternatives imply adapting part of the application itself. Different alternatives exist like the use of pro-
gramming languages that natively offer someadaptation support(like CLOS or Python), the extension
of the programming language run-time mechanism used by the application or the use of Aspect Oriented
Programming libraries.

In the survey, more than forty solutions are classified according to this taxonomy, including classic
Group Communication Systems (Ensemble, Totem and others) and CORBA middlewares (ACE, TAO,
CIAO and others).

13



6.1.6 A standard GCS interface (GORDA project, 2007)

In [7], another proposal is presented. The idea is to have a middleware layer that provides an abstract
Application Program Interface to be used by conventional distributed systems. This layer is placed between
an application and a Group Communication System, thus acting as an adapter of the latter.

This strategy yields two major benefits. First, it avoids theuse of implementation-specific semantics
and interfaces. Moreover, it isolates applications from a specific GCS implementation and thus allowing
a future replacement of the current implementation. As a side effect, this independence also eases the
evaluation of the behavior and performance of an application using different GCS implementations, for
instance, in order to choose one of them.

This strategy is implemented in theGroup Communication Serviceproject [10]. Nowadays, this project
includes bindings to existing GCS implementations like Appia, JGroups and Spread and other communi-
cation services like an IP-based multicast service and NeEM.

Unfortunately, this middleware architecture can only be statically configured and no dynamic reconfig-
uration or switching is possible for the moment.

6.2 Dynamic switching systems

6.2.1 Ensemble’sProtocol Switch Protocol (van Renesse et al., 1998)

The Ensemble system [14] is a group communication system based on the configuration and use of astack
of protocols, as in its predecessor Horus [35]. Each protocol of the stackprovides a different service
(message transport, group membership, ordering, etc.) to the application or to other protocols of the stack.

In [34], the Protocol Switch Protocol (PSP) is proposed. ThePSP is an Ensemble protocol that allows
the dynamic replacement of the full protocol stack used by Ensemble.

The PSP is a two-phase commit protocol (2PC) [13, 19]. In the first phase, one of the participant
nodes takes a coordinator role and broadcasts aFINALIZE message, to ask to all nodes to start a protocol
stack replacement. This message includes the composition of the new protocol stack. Upon reception of
theFINALIZE message, each node stops the protocols in its current protocol stack, builds up the new
protocol stack and then sends back aFINALIZE-ACK message to the coordinator. When the coordinator
has received all the acknowledgement messages, it starts the second phase.

In the second phase, the coordinator broadcasts aSTART messages. When a node recives theSTART
message, it discards its current protocol stack and starts the regular operation with the new protocol stack.

The protocol includes some fault-tolerance support that tolerates the loss of messages (by means of
retransmissions) and the node failures or disconnections.

On the other hand, in the coarse description of the protocol in [34] no details are given about the
guarantees needed to multicast theFINALIZE andSTART control messages. Moreover, nothing is said
about the need to block incoming or outgoing messages.

The PSP present a significant disadvantage. As it is composedof two independent parts and the second
part is not started until the first one is completed, the regular operation of the application is somehow
blocked. The fact that the whole protocol stack is replaced is actually another inconvenience. Indeed, there
is no way to replace a single protocol in a given protocol stack without having to stop and replace all the
protocols of the stack.

6.2.2 Protocol switching based on state transformation (Liu et al., 2000)

In [20], the authors present a mechanism alternative to the switching protocols based on a 2PC technique.
The idea is to make the switching more scalable, by avoiding the dependency on a single coordinator node
and reduce the delay imposed by the transition from the olderprotocol to the new one. This alternative
consists in definingswitching functionsthat are used to switch from the state kept by a protocol to thestate
used by another protocol.

In runtime, during a dynamic protocol switching, the use of such functions allow the nodes to go on
working with the new protocol, which starts by managing the messagesinherited from the first protocol
and then goes on with the new messages.

14



6.2.3 Ensemble’s second switching protocol (Liu et al., 2001)

In [21] a secondSwitching Protocol(SP) is presented. Unlike the protocol presented in [34], the SP allows
the replacement of a single protocol of the Ensemble’s protocol stack.

The protocol is presented as awrappingprotocol that sits on top of a number of alternative protocols
that offer the same service, i.e. the same guarantees. This wrapping protocol offers those guarantees to the
protocol layered about it, which, in fact, does not need to know about itswrappingnature. When operates
in normal mode, it just forwards up and down the messages sent by and delivered to its neighbor layers.
When operates inswitching mode, it performs a protocol replacement. As in [34], the SP assumes some
mechanism that decides about when the current protocol has to be changed. Thus, the protocol replacement
starts when someoraclechooses a node as a replacementmanager.

The protocol operation is similar to that of [34] but there are some differences. First of all, the com-
munication among the manager and the rest of nodes is no longer based on broadcasts. Instead, a logical
ring is formed among all nodes and a token is forwarded from node to node along the ring. The token has
amodefield that identifies the phase of the protocol.

When no protocol change is being performed, the nodes forwarda token whose mode isNORMAL. To
start a protocol change, a manager node waits until it receives aNORMAL token. Then it changes the mode
toPREPARE and forwards the token to the next node in the ring. When a node receives aPREPARE token,
it saves in some field of the token the number of messages it hassent with the current protocol and then
forwards the token. When the manager node receives back thePREPARE token, it contains the numbers
from all nodes. Then, it changes the token toSWITCH and forwards it again.

When a node receives aSWITCH token, it gets the number of messages sent by each node. When the
manager node receives theSWITCH token, it changes the token mode toFLUSH and then forwards it once
more.

When a node receives theFLUSH token it waits until it has received all the messages sent by all nodes
with the current protocol. Then, it changes the current protocol to the new one and forwards the token.
When theFLUSH token is finally received by the manager node, the protocol replacement is finished.

This protocol has some drawbacks related to itsblockingnature. First of all, it prevents nodes from
sending messages with both the current and the new protocol until they are in the third token round. Indeed,
as the new protocol is not started until the third round of theswitching protocol, no messages can be sent
using the new protocol until then1. Moreover, the structure of the protocol, based on three rounds along the
ring imposes a significant delay. Furthermore, this delay isincreased by the blocking third round.

To argue about the correctness of the protocol, in [21] the authors formulate sixmetaproperties(safety,
asynchrony, delayable, send-enabled, memorylessand composable) which are properties that describe
other properties. Then, they argue that the switching protocol preservesthesemetaproperties. In short,
they argue that if two protocols (for instance, two total order protocols) offer some propertyP (for in-
stance, aTotal Orderproperty), and P satisfies those sixmetaproperties, then the switching protocolis a
protocol that in turn offersP. This is formally proved in [4], by means of the NuPRL theoremprover [1].

6.2.4 Adaptive architecture in Cactus (Chen et al., 2001)

In [8, 5], another adaptive architecture for run-time protocol switching is proposed. This architecture is
designed for Cactus [2], a framework for building distributed protocols and applications.

As in other distributed middlewares and frameworks, a Cactus application is based on a stack of layered
components and each one of these offers a service. Some of these components may beadaptive, which
means that they include different implementations of the same service. Initially, one of the available im-
plementations of a given component is chosen. This architecture allows to change, in run-time, the current
implementation of a service to one of the other available implementations of the service, in order to adapt
to changing environments or contexts. For this, each adaptive component also includes anadaptor, which
is a module that collaborates with the service implementations to perform the replacement.

The protocol change procedure is actually an abstract generic protocol, composed of three phases. A
first phase is the detection of some changing environment or application parameters. A second phase,

1Although it is not explicitly said in [34], it is assumed that once a protocol change is started, i. e. once a node receives aPREPARE
token, the message sending with the current protocol is stopped.

15



closely related to the first one, includes the election of thenew implementation of the service. As in the
solutions proposed by other authors, very little detail about these phases is given.

The third phase is theadaptationphase, which in turns consists of three steps: a) preparation, b)outgo-
ing switchoverand c)incoming switchover. This is a general scheme and the basic idea is that any protocol
change can be decomposed in these steps, regardless the kindand nature of the service implementations
that are to be replaced.

The preparation step includes all the actions needed to start and prepare the switching from one imple-
mentation of the service to the new one. It finishes with asynchronization barrier. Once all the participating
nodes reach this barrier, they can proceed with the next step. The outgoing switchover is the step by which
the flow of outgoing messages that arrive to a service implementation areredirectedto a different imple-
mentation of the service. The incoming switchover is a similar messageredirection, applied to incoming
messages.

The generic protocol change scheme is implemented in the adaptor module of the adaptive component.
This module depends on the semantics and nature of the service implementations to replace. In [8], the
replacement of the total order broadcast service is given asan example of a implementation of the general
scheme. Basically, the replacemente procedure is the one specified by the general scheme. A significant
detail is that once reached the synchronization barrier, atthe end of the first step and before performing the
outgoing switchover, the outgoing messages that could not be sent with the previous total order protocol
are broadcast, by means of the new total order protocol.

One of the main drawbacks of the solution presented in [8] is that it forces the service implementations
to fulfill a given interface. Actually, this requirement is not too strong, since this adaptive architecture was
designed for Cactus systems, that are already forced to follow this requirement. Anyway, such a drawback
may be solved by means of additional indirection layers thatcould be placed on top of each particular
service implementation, thus acting asadaptors.

In essence, our proposal shares the general idea behind thisproposal and itsstructureorganized in
three different parts. The broadcast of thePREPARE message in the algorithm proposed in Section 3
can be compared to thesynchronization barrierused in [8]. Moreover, both solutions need to queue the
outgoing messages that could not be sent with the previous protocol and send them later, with the new
protocol, once it has been activated.

6.2.5 Dynamic Protocol Update (R̈utti et al., 2006)

In [29] the problem ofDynamic Protocol Updateis considered, as a particular case of the more general
Dynamic Software Updateproblem.

The solution proposed is based on twoswitching algorithmsthat allow the dynamic replacement of
one of the protocols of the protocol stack used by a user application. There is a switching protocol to
replace the consensus protocol of the stack and another switching protocol to replace the atomic broadcast
protocol. This solution is aimed at the SAMOA framework [37]but the basic idea may be applied to other
protocol stack-oriented frameworks. The goal of the architecture presented is to allow the dynamic replace-
ment of software components, thus easing the software maintenance and upgrade tasks. Nevertheless, this
architecture can also help to improve the performance of theapplications, as proposed in Section 1.

According to the architecture proposed, one of the switching protocols is placed in the protocol stack,
just above the protocol to change. When no protocol change is to be done, the switching protocol simply
forwards up and down the messages sent by and delivered to theapplication. During a protocol change, the
switching protocol intercepts the application messages. The general idea ofinterceptionincludes delaying
and resending messages. Although some minor differences exist, the operation of the protocols is basically
very similar. For instance, both algorithms guarantee thattheservice requestsperformed with the current
protocol (consensus or atomic broadcast) are finished before starting the operation with the new protocol.
A service requestis either a consensus instance or the broadcast of a message,depending on the protocol
to replace.

The operation of the atomic broadcast switching protocol actually relies on the atomic broadcast proto-
col to be replaced. When a node decides to start a protocol change, it broadcasts a special message with the
current atomic broadcast protocol. When a node recives this special message, it performs the protocol re-
placement, by installing and activating the new protocol. If there are some pending messages sent with the

16



old protocol they will be discarded by all nodes at delivery time and resent by their corresponding senders,
using the new protocol. This way, the switching protocol avoids the need of an additional acknowledgment
message round (as in other proposals like the presented in this Section or the one presented in Section 3).
As in other proposal, nothing is said about how is decided to start a protocol change or which criteria is
considered.

In [29], a discussion of the properties guaranteed by the switching protocols is also provided. These
properties are expressed in terms ofmodules, servicesandmodule bindings. A protocol stack is modelled
as a stack ofmodules. Each module is configured as a provider of aserviceby means of amodule binding.
A binding can be done statically, in configuration time, or dynamically, during a protocol change.

First, two properties of the switching protocols are proposed. Both properties have astrong and a
weakvariant. Thestack well-formednessproperty expresses the need to have all the services bound toany
module. The strong variant of this property requires that ifa service is invoked it must have been bound to
any module. The weak variant of the property requires that ifa service is invoked, it iseventuallybound to
any module.

The protocol operationabilityproperty requires the need to have the required module installed in a
stack when a protocol change is issued. Informally, the strong variant of this property requires that if a
module (protocol) is bound in the stack of a node, then the stacks of all nodes contain that module. The
weak variant of the property requires that this binding is just eventually done.

In [29] (and also [38]), it is shown that the atomic broadcastswitching protocol ensures thestrong stack
well-formednessand theweak protocol operationabilityproperties. Moreover, it is also shown that the
regular properties of the atomic broadcast protocols (Validity, Uniform Agreement, Uniform Integrityand
Uniform Total Order) are preserved by the atomic broadcast switching protocol.

Finally, some performance evaluation of both protocols is also presented. This evaluation includes
the analysis of the latency of a series of messages broadcastby a set of nodes, during which an atomic
broadcast protocol replacement is requested. As shown in the graphical results, the need to resend some
messages during the execution of the protocol change algorithm has a negative impact on the latency of a
number of messages.

6.2.6 Mocito’s run-time switching (Mocito et al., 2006)

In [28] another switching protocol for total order protocols is proposed. This is, in essence it is very similar
to the one presented in [25].

In particular, they share some relevant features. First, itavoids blocking message sending with the
new protocol so the flow of application messages is never blocked. It also sets a point in time from which
no more messages are sent with the current total order protocol. Moreover, incoming messages broadcast
with the new protocol are queued until all the pending messages are delivered with the current total order
protocol and the protocol switching is completed.

They differ in the way the participant nodeslearn about when they mustdeactivatethe current total
order protocol. In [25], the nodes count the number of messages broadcast with the current protocol
and when a protocol change is started, this information is spread so all nodes know how many messages
have to be delivered with the current protocol before deactivating it. In [28], each node broadcast an
acknowledgement message as the last message broadcast using the current total order protocol. Upon
reception of all such acknowledgement messages, a given node knows that no more messages will be sent
with the current total protocol so the node can deactivate it.

6.2.7 Broadcast protocol switching (Karmakar et al., 2007)

In [16], the authors deal with the use of a switching protocolto dynamically change the broadcast protocol
used by a network of nodes. A broadcast protocol based on a Breadth-First Search tree yields lower
message latencies when the network load is low. On the other hand, a broadcast protocol based on a
Deep-First Search reduces the load on individual nodes whenthe global network load is higher.

The mechanism discussed in [16] can switch between two broadcast protocols, one based on a BFS
tree and another based on a DFS tree. The core of the mechanismis the construction of the spanning

17



tree used by the broadcast protocol. In the paper, a protocolis shown to build a new DFS spanning tree.
Nevertheless, no protocol is shown to build a BFS spanning tree.

7 Conclusion

In this paper we review the problem of dynamically replacingthe total order broadcast protocol used by a
distributed application. As a result, we provide a new, non-blocking, highly concurrent switching protocol,
fully integrable with existing independent membership services. Moreover, this protocol admits concurrent
starts of the switching procedure.

In this paper we provide an extensive description of the switching protocol, a pseudocode algorithm
and a discussion of the properties offered by the switching protocol that allow it to behave like a regular
total order protocol.

Although this switching protocol was designed to allow the dynamic replacement of regular total order
broadcast protocols and the use of prioritized total order protocols is not mentioned, the switching protocol
can also be used to replaceprioritized total order broadcast protocols, without any further modifications.

To argue about this, we must consider that prioritized protocols behave like regular total order protocols
and thatPrioritization is a property that can be observed on the sequence of messagesthey totally order.
These protocols can be wrapped in an architecture like the one presented in Figure 1. As long as the order
of the sequence of messages provided by a given GCP is preserved by this architecture, thePrioritization
property will be preserved. Moreover, as the switching protocol only relies in the regular properties offered
by common total order protocols (Validity, Uniform Agreement, Uniform IntegrityandTotal Order) and
does not specifically rely in any other properties likePrioritization, it can be isolated from specific total
order broadcast implementations and additional semanticsoffered by them.

Acknowledgements

This work has been partially supported by EU FEDER and Spanish MICINN under grant TIN2009-14460-
C03.

References

[1] Stuart F. Allen, Rich Eaton, Christoph Kreitz, and Lori Lorigo. The nuprl open logical environment.
In 17th International Conference on Automated Deduction, volume 1831 ofLecture Notes of Artificial
Intelligence, pages 170–176. Springer Verlag, 2000.

[2] Nina T. Bhatti. A system for constructing configurable high-level protocols. PhD thesis, Department
of Computer Science, The University of Arizona, Dec. 1996.

[3] Nina T. Bhatti and Richard D. Schlichting. A system for constructing configurable high-level proto-
cols. InSIGCOMM, pages 138–150, 1995.

[4] Marck Bickford, Christoph Kreitz, Robbert van Renesse,and Xiaoming Liu. Proving hybrid protocols
correct.Lecture Notes in Computer Science, 2152/2001:105–120, 2001.

[5] Patrick G. Bridges, Wen-Ke Chen, Matti A. Hiltunen, and Richard D. Schlichting. Supporting coor-
dinated adaptation in networked systems. InEigth Workshop on Hot Topics in Operating Systems,
2001.

[6] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.The primary-backup approach. In S. J.
Mullender, editor,Distributed Systems, chapter 8, pages 199–216. Addison-Wesley, Wokingham, UK,
2nd edition, 1993.

18



[7] Nuno Carvalho, Jośe Pereira, and Lúıs Rodrigues. Towards a generic group communication service.
In Distributed Objects and Applications International Conference (DOA’06), volume 4276 ofLecture
Notes in Computer Science, pages 1485–1502, 2006.

[8] Wen-Ke Chen, Matti A. Hiltunen, and Richard D. Schlichting. Constructing adaptive software in
distributed systems. InProceedings of the 21st International Conference on Distributed Computing
Systems (ICDCS-21), pages 635–643, Mesa, Arizona, USA, 2001.

[9] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a com-
prehensive study.ACM Computing Surveys, 33(4):427–469, 2001.

[10] The GORDA Consortium. Group communication service in sourceforge.net.
http://jgcs.sourceforge.net.

[11] Xavier Défago, Andŕe Schiper, and Ṕeter Urb́an. Comparative performance analysis of order-
ing strategies in atomic broadcast algorithms.IEICE Trans. on Information and Systems, E86-
D(12):2698–2709, 2003.

[12] Xavier Défago, Andŕe Schiper, and Ṕeter Urb́an. Total order broadcast and multicast algorithms:
Taxonomy and survey.ACM Comput. Surv., 36(4):372–421, 2004.

[13] Jim Gray. Notes on database operating systems. InOperating Systems, An Advanced Course, pages
393–481. Springer-Verlag, 1978.

[14] Mark Hayden.The Ensemble System. PhD thesis, Cornell University, 1998.

[15] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: an architecture for implementing net-
work protocols.IEEE Transactions on Software Engineering, 17(1):64–76, 1991.

[16] Sushanta Karmakar and Arobinda Gupta. Adaptive broadcast by distributed protocol switching. In
ACM symposium on Applied computing (SAC’07), pages 588–589, New York, NY, USA, 2007. ACM.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. M. Loingtier, , and J. Irwin.
Aspect-oriented programming. InEuropean Conference on Object-Oriented Programming (ECOOP),
number 1241 in LNCS. Springer-Verlag, 1997.

[18] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess pro-
grams.IEEE Trans. Computers, 28(9):690–691, 1979.

[19] Butler W. Lampson and Howard E. Sturgis. Crash recoveryin a distributed data storage system.
Technical report, Xerox Palo Alto Research Center, June 1979.

[20] Xiaoming Liu and Robbert van Renesse. Fast protocol transition in a distributed environment
(brief announcement). In19th Annual ACM Symposium on Principles of Distributed Computing
(PODC’00), page 341, New York, NY, USA, 2000. ACM.

[21] Xiaoming Liu, Robbert van Renesse, Mark Bickford, Christoph Kreitz, and Robert Constable. Pro-
tocol switching: Exploiting meta-properties. In Luı́s Rodrigues and Michel Raynal, editors,Interna-
tional Workshop on Applied Reliable Group Communication (WARGC 2001). IEEE CS Press, 2001.

[22] Pattie Maes. Concepts and experiments in computational reflection. ACM SIGPLAN Notices,
22(12):147–155, 1987.

[23] Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. Composing
adaptive software.IEEE Computer, 37(7):56–64, July 2004.

[24] Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. A taxonomy
of compositional adaptation. Technical Report MSU-CSE-04-17, Software Engineering and Network
Systems Laboratory, Department of Computer Science and Engineering, Michigan State University,
East Lansing, Michigan 48824, July 2004.

19



[25] Emili Miedes, Mari-Carmen Bãnuls, and Pablo Galdámez. Group communication protocol replace-
ment for high availability and adaptiveness. InAdvanced Distributed Systems: 6th International
School and Symposium, ISSADS 2006, 2006.

[26] Emili Miedes and Francesc D. Muñoz-Escóı. Managing priorities in atomic multicast protocols.
In International Conference on Availability, Reliability and Security (ARES 2008), pages 514–519,
Barcelona, Spain, 2008.

[27] Emili Miedes, Francesc D. Mũnoz-Escóı, and Hendrik Decker. Reducing transaction abort rates with
prioritized atomic multicast protocols. In14th International European Conference on Parallel and
Distributed Computing (Euro-Par 2008), pages 394–403, Las Palmas de Gran Canaria, Spain, 2008.
Also available as a Technical Report ITI-ITE-07-22.

[28] Jośe Mocito and Lúıs Rodrigues. Run-time switching between total order algorithms. InEuroPar
2006, 2006.

[29] Olivier Rütti, Pawel Wojciechowski, and André Schiper. Structural and algorithmic issues of dy-
namic protocol update. In20th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), April 2006.

[30] Seyed Masoud Sadjadi. A survey of adaptive middleware.Technical Report MSU-CSE-03-35, Soft-
ware Engineering and Network Systems Laboratory, Department of Computer Science and Engineer-
ing, Michigan State University, East Lansing, Michigan 48824, 2003.

[31] Douglas C. Schmidt, Donald F. Box, and Tatsuya Suda. ADAPTIVE: A dynamically assembled proto-
col transformation, integration and evaluation environment. Concurrency: Practice and Experience,
5(4):269–286, 1993.

[32] F. B. Schneider. Replication management using the state-machine approach. In S. J. Mullender, editor,
Distributed Systems, chapter 7, pages 166–197. Addison-Wesley, Wokingham, UK,2nd edition, 1993.

[33] Dale Skeen. Nonblocking commit protocols. InSIGMOD Intnl. Conf. on Management of Data, pages
133–142, Ann Arbor, Michigan, April 1981. ACM Press.

[34] Robbert van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd, and David Karr. Building adap-
tive systems using ensemble.Software Practice and Experience, 28(9):963–979, 1998.

[35] Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus: a flexible group communica-
tion system.Communications of the ACM, 39(4):76–83, 1996.

[36] Matthias Wiesmann, Xavier D́efago, and Andŕe Schiper. Group communication based on standard
interfaces. In IEEE, editor,2nd IEEE International Symposium on Network Computing and Applica-
tions (NCA-03), 2003.

[37] Pawel T. Wojciechowski, Olivier R̈utti, and Andŕe Schiper. SAMOA: a framework for a
synchronisation-augmented microprotocol approach.18th IEEE Parallel and Distributed Process-
ing Symposium (IPDPS2004), April 2004.

[38] Pawel T. Wojciechowski and Olivier R̈utti. On correctness of dynamic protocol update. In
Springer LNCS 3535, editor,7th IFIP Conference on Formal Methods for Open Object-BasedDis-
tributed Systems (FMOODS05), June 2005.

20


