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Abstract

Several applications of distributed systems need to be highly scalable. For achieving high availability
and fault tolerance, such applications typically replicate their data. Due to the dynamics of growth and
volatility of the customer markets of such applications, they need to be hosted by highly scalable and
adaptive systems. In particular, the scalability of the reliable broadcast mechanisms used for supporting
the consistency of replicas is of crucial importance. Reliable broadcasts propagate updates in a pre-
determined order (e.g., FIFO, total or causal). Since total order needs more communication rounds than
causal order, the latter appears to be the preferable candidate for achieving broadcast scalability, although
the consistency guarantees based on causal order are weaker than those of total order. This paper provides
a historical survey of different approaches used in reliable causal broadcast protocols. In particular, we
focus on protocol mechanisms for enhancing both scalability and adaptability.

1 Introduction
A growing number of dependable applications ensure their high availability and reliability by replicating
their components. Typical contemporary examples are web search, grid computing and cloud computing.
To various extent, the replicas of such applications have to maintain some degree of consistency. So, when
an update operation is initiated in one replica, the same operation (or its results) should be propagated to all
other replicas and applied there. The degree of replica consistency depends on the particular application,
on how the replicas are organised, and on the order of update propagation.

Nowadays, causal [36], sequential [43] and linearisable (or atomic) [35] consistency are three of the
most frequently employed consistency models. The former two require causal broadcast [21] and FIFO
total-order broadcast [21], respectively, while the latter consistency mode necessitates specialised or more
complex protocols (e.g., [7, 22, 63, 68, 82]).

Sometimes, dependable applications should deal with a large number of clients being therefore neces-
sary that they scale properly. Scalability implies that when a system increases its number of replicas (i.e.,
when it scales out) it is able to serve more clients (i.e., it should also scale up) with the same QoS character-
istics. However, in many cases communication is the bottleneck that prevents these systems from scaling
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up. Scalability can be seen also as adaptability. In this sense, the application has to scale properly when the
number of users increases and it has to free infrastructure resources when the number of users decreases.
This adaptability concept is quite important for current trends like cloud computing where applications are
run in huge virtualised systems in order to provide efficient solutions.

Thus, a scalable broadcast protocol for propagating updates to all replicas is needed. Whilst total-order
broadcast is able to provide sequential consistency, it demands consensus in order to decide the message
delivery order. Unfortunately, consensus entails additional communication rounds, which compromises
scalability. On the other hand, reliable causal broadcast ensures causal consistency, and its protocols only
need a single communication step in the regular case. So, causal broadcast appears to provide an advanta-
geous basis for scalable communication.

At an early stage, broadcasting systems such as Isis [16] recommended causal communication in order
to achieve good performance. They coped with the resulting weakenings of causal consistency by adding
other synchronisation mechanisms when needed. Later, regular database replication protocols insisted
on stronger consistency guarantees and adopted sequential consistency and total-order broadcasts [78].
However, many recent data management applications have a significantly increased need of scalability,
while being flexible enough to partially sacrifice consistency [30, 34]. Such a need of consistency relaxation
in order to improve the scalability of services have also been recalled in several theoretical papers [17,
32]. So, they advocate for some kind of weak consistency instead of a strong one. Note that the data
storage systems being used in cloud computing are able to perfectly deal with large peaks of read-only
requests (e.g., with Amazon S3 [53], since that kind of storage service is highly efficient and affordable for
static/immutable contents), but might still be overloaded when write-intensive peaks arise (as illustrated
by the Asirra application1 in [26, page 181]). As a result, causal broadcast would regain some interest in
scalable and/or dynamic distributed applications, as suggested by several recent works from both theoretical
[9, 49] and practical [26] viewpoints.

To the best of our knowledge, there is yet no published survey of the different mechanisms that are used
in the numerous reliable causal broadcast protocols existing today. This paper attempts to fill this void, by
identifying approaches that are better suited and thus preferable for high scalability needs of applications
with dynamic network topologies. To this end, Section 2 specifies what is understood as reliable causal
broadcast. Section 3 provides a historical review of the related literature, whilst Section 4 summarises the
main characteristics of the proposed approaches. Later, Section 5 describes other scalability approaches
that generally do not match the requirements stated in Section 2 but that could foster the development
of new scalable protocols able to comply with causal order. Finally, Section 6 sums up comparing the
surveyed causal broadcast mechanisms and Section 7 concludes the paper.

2 Reliable Causal Broadcast
We assume the existence of a distributed application that needs causal propagation of messages to all
its nodes, where that application components are executed. Such an application is deployed in multiple
centres, and each one consists of multiple computers/clusters interconnected by a fast and dedicated LAN.
Despite this, the system is still dynamic, since it is composed of a very large amount of computers that
might fail and recover, and that could join and leave the system at will, depending on the amount of clients
requesting simultaneous service. Due to this, we are talking about application-level broadcast, instead of
multicast, since messages should be delivered to all these system nodes and we are assuming that these
protocols are deployed on top of the transport layer. Due to this implementation at the application layer, on
top of TCP in most cases, almost all surveyed papers have assumed reliable FIFO channels; i.e., message
delivery is guaranteed as long as the receiver is correct, independently of what happens in the sender side.
For the sake of concision, we have also followed such assumption in Section 4 in order to describe the
protocols being followed in each broadcast class. Note, however, that there have been a few exceptions that
have assumed more realistic quasi-reliable channels [75, 1, 71]; i.e., both sender and receiver need to be
healthy to guarantee message delivery.

1Asirra is a CAPTCHA application that authenticates users by asking them whether the contents of a photograph is a cat or a dog.
So, it initially needs to read several images from S3, being read-intensive at that step, but it also needs to maintain some session state,
and S3 was not appropriate to this end, since the information being stored needs to be resilient and consistent but for a brief interval.
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We assume that the broadcast protocols presented in the next sections have been implemented inside a
group communication system (GCS) [21] that includes a group membership service (GMS). Most protocols
need the number of processes that participate in the network, or in a group of network nodes, within which
messages are to be broadcast. In some cases, concretely in all protocols mentioned in Sections 3.2 and 3.3,
knowledge of this number is crucial for correct behaviour. Hopefully, that information is provided by the
GMS, and we will use the identifier n to refer to such value. Once a process join or leave occurs, these
protocols take note of the membership change and react accordingly by updating their data structures.
In some protocols (e.g., [16, 15, 50, 75]), nothing beyond such a reaction is needed for enabling failure
resilience upon the leave of a group member. In that case, we shall not discuss anything else regarding fault
tolerance. Otherwise, a brief discussion on failure management will be given.

Since a GCS exists, three different events can be distinguished regarding the transmission of a given
message:

1. broadcast(m). The message is being broadcast by its sender process (sender(m)).

2. receive(m). The message is being received by a GCS module in the node where a process belonging
to the group exists. It is temporarily buffered in such GCS module, until causal order is guaranteed.

3. deliver(m). The message is received by its intended target process from its underlying GCS mod-
ule. Such delivery complies with the intended causal order. Note that message reception (assuming
as such the state reached in the previous receive(m) event) can not always guarantee causal order.
Sometimes this third step will be named also message reception, but it will be clear in that case that
the receiver is the actual process, and not its underlying GCS; i.e., no ambiguity will arise.

Note that a node join or failure implies a view change event (i.e., a view encompasses the set of nodes
that constitute the group/system, and such a set is changed each time a node either joins or leaves the group)
in a GCS that provides virtual synchrony [16]. This property was already proposed in the first generation
of broadcast systems described in Section 3.1. The view-change events have important implications on a
reliable broadcast specification: what should be understood as a correct process? one that never fails or one
that does not fail in the current system view? This was answered by [69], and we use his specifications in
this paper. To begin with, a definition of process correctness into a given view v for a group g is needed:

• v-correct process: Let us consider some view v, with p ∈ v. Process p is v-correct if:

1. p installs view v, and

2. p does not crash while its view is v, and

3. if v is not the last view of some process in v, then exists view v′ installed immediately after v
by some process in v and p ∈ v′.

and p is g-correct if p is v-correct in all its views; i.e., p does not fail nor is excluded from g since it joined
g.

With this, reliable broadcast is specified using these four properties:

R1 (Validity). If a g-correct process p broadcasts a message m, it eventually delivers m.

R2 (Agreement). If a g-correct process p delivers a message m in view vp then all vp-correct processes
eventually deliver m.

R3 (Integrity). For any message m, every g-correct process delivers m at most once, and only if m was
previously broadcast by sender(m).

R4 (Same-view delivery). If two g-correct processes p and q deliver m in view vp (for p) and vq (for q),
then vp = vq .
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So, this implies that a reliable broadcast needs to be delivered by all current group living processes (that
will also be alive in the next view), and not only by those processes that never fail.

In this paper we are also interested in causal delivery, inspired by the happens before relation defined
in [42]. Such relation can be summarised as follows.

Let us assume a distributed system consisting of a set P of processes whose execution could be repre-
sented by a sequence of events in each process. Quoting [42], the happens before relation denoted by “→”
has this definition:

The relation “→” on the set of events of a system is the smallest relation satisfying the follow-
ing three conditions:

1. If a, b are events in the same process, and a comes before b, then a→ b.

2. If a is the sending of a message by one process and b is the receipt of the same message
by another process, then a→ b.

3. If a→ b and b→ c then a→ c.

Two distinct events a and b are said to be concurrent if a 6→ b and b 6→ a .

Note that 6→ is the negation of→. Clearly, this definition entails that→ is anti-reflexive, anti-symmetric,
anti-cyclic and transitive.

So, a reliable causal broadcast protocol should comply with all properties defined above for reliable
broadcasts, plus the next one:

R5 (Causal order). If the broadcast of a message m causally precedes (i.e., “happens before”) the
broadcast of a message m′, then if some g-correct process p delivers both messages in view vp then
no vp-correct process delivers m′ unless it has previously delivered m.

3 Historical Review
Let us discuss some different solutions that have been proposed for enabling the scalability of causal broad-
cast in the course of time, without entering into technical details. Those will be addressed in Section 4.

3.1 Inclusion of Causally-Precedent Messages
The first generation of causal broadcast protocols was initiated by the Isis project [14], based on the
happens-before relation. Those first protocols ensured that no message could be delivered before any
of its potential causal predecessors. To this end, an integer label was assigned to each message, following
the principles of Lamport’s logical clocks (to be described in Section 4.1). Note that logical clocks were
devised for processes using point-to-point communication, and not for process groups using broadcasts.
So, logical clocks need to be complemented with other techniques in order to ensure causal delivery in
this environment, and the inclusion of precedent messages in the broadcast event was the first technique
of this kind. Thus, when a message was broadcast, such event also included all its causally previous mes-
sages not yet reported as delivered to all their destinations. As a result, each broadcast event could transfer
many messages. However, a high sending rate may introduce serious problems, since the amount of added
messages in each broadcast could also grow prohibitively high.

So, the next logical step in this evolution seems to be the design of a mechanism that still preserves
some notion of the causal history in each broadcast message, but without requiring the inclusion of entire
past messages in such sendings. Thus, Psync’s conversations [56] provided a first solution in this line. It
consisted in including only the identifiers of such precedent messages, but not their contents. This was able
to reduce the size of the messages being sent but blocking delivery when any of those past and required
messages was not yet received. Such solution was generalised with the introduction of vector clocks.

In the context of this survey, blocking delivery means that a message, once received, is prevented from
being delivered until all its causally precedent messages have already been delivered, and such unordered
reception is possible in that protocol, introducing additional delays in such delivery step. Additionally,
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non-blocking delivery means that each message can be delivered as soon as it has been received; to this
end, the broadcast protocol should ensure that all messages are received by their intended targets in the
appropriate causal delivery order.

3.2 Using Vector Clocks
The message-size problem was partly solved when vector clocks were introduced by [29, 47]. Tagging
messages with such clocks, the receivers were able to infer whether there were other causally preced-
ing messages not yet delivered. Thus, such pending messages do not need to be included each time a
subsequent message was broadcast, and their receivers can block the delivery of any causally subsequent
messages until they are delivered. This considerably reduced the size of transferred messages, but intro-
duced other problems. The amount of nodes in the group now has to be known by each group member (that
information was provided by the underlying group membership service [21]), and the used vector clocks
need to have a slot per group member. Thus, if the amount of processes in the group is very large, the
size of the vector clocks will be correspondingly large, which compromises scalability. Nevertheless, the
broadcast protocols developed for the vector-clock-based approach in [15, 62] (both anticipated in [70],
though for point-to-point communication instead of broadcasts) turned out to be efficient and scaled much
better than those of the previous generation. To this day, most current group communication systems seem
to still use causal protocols of this kind (e.g., Transis [5], JGroups [11], Spread [74],...).

Other recent protocols have been also based on this kind of causal history information in order to tag
their messages, but they have also addressed other important issues. For instance, in [71] a protocol that
assumes quasi-reliable channels and open groups is provided. In open groups [25], not only the members of
the system group can multicast messages to its members, but any other process can. Most of the surveyed
broadcast protocols were intended for closed groups where only group members are able to broadcast
messages, compelling external clients to forward their messages to any internal node that later broadcasts
each message.

3.3 General Vector Compaction
As already indicated, the main problem of this new generation of protocols was the length of the vector
clocks being used. A first solution was already presented in [15]: to compact such clocks by incremental
changes. To this end, each sender only sets in its new broadcast messages those vector slots (and their
positions in the vector) that had changed from its last broadcast message. However, this does not always
reduce the size of the resulting vector clock. It depends on the message transmission rate from each sender
and the number of nodes in the system. As a result, other compacting approaches were needed.

Similar in principle to the compacting approach of [15], [73] proposed a general (i.e., it also considers
point-to-point communication and this requires clock-matrices instead of vector clocks) and optimal com-
pacting solution for dynamic groups. It was later refined, formalised and proved optimal in [59, 41]. The
degree of compaction of these solutions was evaluated in [20]. That evaluation showed that, in all analysed
scenarios, their solution can avoid any penalty of additional space requirements, and that, in an optimal
scenario, it is able to reduce the vector length to only 8% of its original size. In [57], the compacted causal
clock information is propagated in (sometimes separate) light control messages (LCM). The performance
evaluation exposed in [57] also proves that these mechanisms are able to enhance scalability.

Another compacting solution was described in [50]. Although it focused on the particular case of
multiple groups that share some of their processes, it essentially used the same key ideas described above.
It was able to manage multiple groups using a single vector clock, with as many entries as groups. This is
cheaper than the solutions described in [15, 75], but sometimes it also needs resynchronisation messages.

3.4 System Interconnection
Inspired in a technical report version of [73], [48] proposed different and improved compacting solutions
for static system topologies; i.e., they proved that when all interconnections are known in advance, vector
clocks can be highly compacted. They specified general rules to accomplish such compaction and showed
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that several topologies (e.g., a star) are able to generate minimal clock-related information, whilst others
(e.g., a ring) cannot reduce it at all.

Such rules were used in [1], where a hierarchical topology was proposed, compacting the used vector
clocks and enhancing thus its scalability.

This solution was further improved in [66] by the introduction of the causal separator concept. Causal
separators act as communication gateways, forwarding the messages transmitted among two or more sub-
groups, named causal zones. Any causal history information (e.g., vector clocks) used in such a causal zone
does not need to be known by the nodes belonging to other causal zones. As a result, a system consisting
of many nodes could be divided into multiple causal zones with several causal separators. Hence, the size
of the vector clocks managed by each node could be reduced, making thus practical the usage of the causal
protocols described already in Section 3.2, since the causal history overhead may become negligible with
an appropriate system division. Finally, [66] also shows that FIFO point-to-point communication is enough
for interconnecting the causal separators.

The usage of causal separators, as proposed in [66], was later refined in [8]. The latter limited the
number of causal separators in a given causal zone to be a single one, its causal server. In order to
interconnect the causal servers of multiple groups, a regular causal broadcast protocol should be used.
This generates a hierarchical structure named daisy architecture [8]. There may be many layers in such an
architecture; i.e., the resulting structure is not limited to two layers.

This was the first example of a new kind of scalability approach that was later known as systems in-
terconnection [28] in the context of Distributed Shared Memory (DSM) systems. The best property of an
interconnecting solution is that the interconnected systems may internally use the protocol of their choice
that provides a suitable semantics (reliable causal delivery in the context of this paper, but system inter-
connection can also be applied to other ordered delivery properties). There should be an interconnecting
protocol that is compatible with the same semantics, but it does not depend on the protocols being used
in each interconnected system. Although the protocols described in [66] were already able to ensure this
property, [8] were the first to explicitly state it.

Other papers presenting other system interconnection solutions were published later. For instance, [38]
describes solutions to interconnect causal and total-order broadcast protocols.

Causal interconnection protocols only demanded reliable FIFO communication when two systems are
interconnected, and also the avoidance of interconnection cycles when more than two systems are managed
[38, Theorem 7]. Similarly, [48] also proved that the amount of clock-related information to be included in
broadcast messages can be reduced if the connecting paths are acyclic; also [50, 75] proved that acyclicity
is needed. On the other hand, when total-order interconnection is intended, [50, 75] show that an intrusive
interconnecting protocol is necessary; i.e., a broadcast message can not be locally delivered in the sending
system until the forwarder node has propagated the message and a global total order has been decided.
Formal proofs of the impossibility of achieving total-order interconnection in a non-intrusive way were
later given in [44, 4].

An alternative kind of interconnecting approach that also illustrates its modularity is described in [39,
40, 52]. It does not use any protocol inside each interconnected system. To this end, it timestamps all
broadcast messages with the local clock of its sender node. That requires a physical clock synchronisation,
which can be achieved using GPS modules in the host computers. Many authors argue that such level of
physical synchronisation is sufficient for most applications, at least when causality is required [58]. In
order to implement the interconnection, a regular vector clock-based protocol is used in [39], as in [8],
whilst the approaches in the other two papers either work with nothing but the original Lamport clocks
[52], or such clocks need to be combined with the physical timestamp used in the sender system [40].

The mentioned modularity enables the protocols to be appropriately tailored and optimised with regard
to the particularities of each system in which they are used; e.g., those described in [39] based on GPS-
based physical clock synchronisation. Thus, if an intra-system local network has high bandwidth and low
delays, then its performance can be very high, providing high message broadcast rates. In the regular case,
however, inter-system networks are not able to provide high bandwidth. So, having a single interconnecting
server per system may easily become a bottleneck that limits the overall scalability of this approach. In
order to overcome this limitation, multiple servers per system could be deployed, thus setting multiple
interconnecting channels between each pair of systems. That option has been proposed and analysed in
[23], involving a simple subprotocol that ensures an overall FIFO order among all interconnection channels
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for each pair of interconnected systems.

4 Reliable Causal Scaling Mechanisms
Most current group communication systems use a one-round protocol in order to implement causal broad-
casts, tagging each message with a vector clock [29, 47].

At this stage, we could continue with a technical description of the different mechanisms used for
improving the broadcast service scalability. However, for completeness, a brief technical description of
each generation of solutions presented in the previous section is going to be given now, highlighting the
advantages and inconveniences of each of them.

4.1 First Generation
The first generation of reliable causal broadcasts was directly based on the logical clocks proposed by [42].
Such clocks were defined as follows:

Let clock Ci for each process pi to be a function which assigns a number Ci(a) to any event a
in that process. The entire system of clocks is represented by the function C which assigns to
any event b the number C(b) where C(b) = Cj(b) if b is an event in process pj .

And such definition also requires the following clock condition, where E is the set of system events,
and→ represents the happens before relation:

∀a, b ∈ E : a→ b⇒ C(a) < C(b) . (1)

The condition (1) can be maintained by adhering to the following two implementation rules:

IR1 Each process pi increments Ci between any two successive events.

IR2 (a) If event a is the sending of a message m by process pi, then the message m contains
a timestamp Tm = Ci(a). (b) Upon delivering a message m, process pj sets Cj greater
than or equal to its present value and greater than Tm.

Note however that logical clocks were intended for point-to-point communication, not for causal broad-
cast protocols. So, in the mid-eighties, the first broadcast protocols complemented such logical clocks with
other constraints in order to ensure causality. To this end, the CBCAST protocol described in [14] requires
the following data structures:

• Each process pi needs to maintain a buffer BUFpi
in order to hold the messages it has received and

also the messages it has sent.

• Each message m, besides its regular contents, holds an identifier ID(m) and the set of its intended
receivers REM DESTS(m).

In order to broadcast a message, this protocol uses the “→” relation defined by Lamport. CBCAST
was designed as a multicast protocol; i.e., the message might be multicast to a subset of the current group
membership. This demands the inclusion of additional checks and steps to the resulting protocol. The
protocol can be summarised by the following steps:

1. When pi broadcasts a message m:

(a) A transfer packet 〈m1, m2, m3, . . .〉 is created, including all messages m′ in BUFpi
such that

m′ → m and REM DESTS(m′) 6= ∅.
(b) This transfer packet is transmitted to all other group members.

(c) When the packet has been sent to another process pj in the previous step, such process pj is
removed from the REM DESTS(m′) contained in BUFpi

for each m′ in the packet.

7



2. When a process pj receives packet 〈m1, m2, m3, . . .〉, the following is done for each mi, in increas-
ing order of i:

(a) If ID(mi) already exists in BUFpj , mi is a duplicate and is ignored.

(b) If pj ∈ REM DESTS(mi), mi is placed in the delivery queue for pj , pj is removed from
REM DESTS(mi) and a copy of mi is placed in BUFpj .

(c) Otherwise, mi is placed in BUFpj
.

Note that this approach demands the inclusion of all not-yet-stable causally-precedent messages in the
packet built for broadcasting a new message. Note also that message stability detection is optimistic in
this algorithm: it is only based on local delivery or retransmission, but not on a remote reception acknowl-
edgement. Hopefully, such remote reception acknowledgement is finally used in the garbage collection
subalgorithm described in [14, Section 4.4]. So, message losses never arise.

4.1.1 Advantages

When regular logical clocks are used, Lamport’s clock condition (1) can be ensured, but not its reverse; i.e.,
C(a) < C(b) 6⇒ a→ b. Note that when two events a and b are concurrent, nothing can be said about their
logical clock values. So, in some cases (assuming that a and b have been generated by different processes)
C(a) < C(b) will arise being a and b two concurrent events. Summarising, it is impossible to find out
(using only such logical clocks) whether two messages are concurrent or not.

To solve this issue, CBCAST includes all causally-precedent messages whose reception in each target
process has not yet been confirmed. Additionally, all messages included in the transmitted packets are
appropriately ordered. So, causal order is ensured in this protocol and such causal delivery never demands
that messages were blocked at their delivery step, since when a message is received all its causally precedent
messages have also been received and delivered. Note that none of the protocols explained in the following
sections are able to maintain this non-blocking behaviour.

4.1.2 Inconveniences

Although the inclusion of precedent messages is able to ensure the protocol correctness and its non-
blocking behaviour, there is a high price to pay: the size of the packets being transmitted could be very
large when both the message sending rate and the group size are increased. This seriously compromises
scalability and explains why this approach was abandoned when vector clocks were introduced in order to
track message causality. Additionally, such causally-precedent messages are maintained in a buffer in each
intended receiver until they can be garbage-collected. In order to implement such garbage collection an
additional round of messages (a message should be sent by each group member) is needed. Hopefully, this
extra round can be piggybacked in other new regular broadcasts, but this still demands a non-negligible
amount of memory for keeping such buffers in each node.

4.2 Vector Clocks
In the regular protocols based on vector clocks, each node maintains a vector clock with as many com-
ponents as nodes exist in the system. Such clock entries are updated according to the rules described in
[15]:

• Each time a message m is broadcast by pi, it is tagged with the local vector clock of its sender
(i.e., V C(m) = V C(pi)), once such vector clock has increased its local entry (i.e., V C(pi)[i] =
V C(pi)[i] + 1).

• When m is received by pj , it is checked whether entry i (the sender’s one) in the message vector
clock is one unit greater than the value of this same entry in pj’s clock, and all other entries are
greater or equal in pj’s clock than in the message clock; i.e., the following should be respected:

V C(m)[i] = V C(pj)[i] + 1
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and ∀k ∈ {1..n} : k 6= i
V C(m)[k] ≤ V C(pj)[k]

Note that this implies that all causally preceding messages already sent by other group members have
already been delivered in this receiving node.

This means that the message is buffered and not yet delivered as long as these conditions are not
satisfied. When pj delivers m, it also increases the local entry belonging to pi (i.e., V C(pj)[i] =
V C(m)[i]).

This algorithm explains how vector clocks are used. They are intended for collecting the knowledge
about the logical clocks maintained in all system nodes. Thus, each broadcast message is tagged with the
knowledge of its sender about the clocks of each system process. Note also that these vector clock slots
are only updated when a given process broadcasts a message (it increases its own slot) or when a process
delivers a remote broadcast (it increases the slot of its sender). So, they do not hold all process execution
events, but only those directly related to broadcast management: the sending events (even the delivery
events are not recorded). Moreover, the constraints being set in order to deliver a received message are able
to ensure that no causally-precedent message has been missed. If so arises, message delivery is blocked
until such precedent messages are received, accepted and delivered.

4.2.1 Advantages

Vector clocks [29, 47] were able to extend the clock condition (1) given by [42]. With them, the reverse of
such condition can also be guaranteed; i.e., V C(a) < V C(b) ⇒ a → b. But the rules to compare clocks
are also more complex. Thus:

V C(a) ≤ V C(b) iff ∀i, i ∈ {1..n} : V C(a)[i] ≤ V C(b)[i]

And:

V C(a) < V C(b) iff V C(a) ≤ V C(b) ∧ ∃i : V C(a)[i] < V C(b)[i]

Thanks to this, all causal dependencies among broadcast messages can be easily tracked by such vector
clocks. This removes the need of including the causally precedent messages in each broadcast. As a result,
message sizes are compacted and scalability on size is improved.

4.2.2 Inconveniences

Unfortunately, the non-blocking behaviour of the previous family of protocols has been lost in this case.
When a message is dropped or when the routing being used leads to unordered reception, messages are
prevented from being delivered until the missed messages are appropriately re-sent, received and delivered.
As a result, this kind of protocols do block message delivery in some cases.

Moreover, although message size has been reduced, vector clock size still depends on the amount of
processes that compose the system where such messages are broadcast. Note also that this broadcast service
is commonly used by highly available applications that will exist for a long time. Thus, the vector clock
slots need to hold long integer numbers. If there are a lot of processes, vector clocks will still be very large,
and this might again compromise the scalability of this service.

4.3 Compaction Approach
The vector compaction approach tries to minimise the size of the vector clocks being transferred in each
broadcast. To this end, only those slots that have changed and are still unknown for the receiving processes
are included in the message timestamp. But there are two different mechanisms able to decide which slots
need to be included: one for general causal communication [73] that also admits point-to-point sendings,
and another specific to broadcast-based communication [15].
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Although several optimisations were proposed later [41, 20], the basic point-to-point compaction ap-
proach, not intended for broadcasts, as described in [73] consists of the following. Each process pi

should maintain two additional vector clocks, named LU(pi) –last update– and LS(pi) –last sent–, be-
sides V C(pi) as explained above. The LU(pi)[j] holds the value of V C(pi)[i] when pi last updated its
component j. In other words, to remember the last message sent by pi when it delivered the last message
from pj . On the other hand, LS(pi)[j] maintains the value of V C(pi)[i] when pi sent its last message to
pj . Finally, when pi sends a new message to pj it only needs to transfer the entries V C(pi)[k] such that
LS(pi)[j] < LU(pi)[k]; i.e., it only needs to transfer the sequence of pairs 〈k, V C(pi)[k]〉 that comply
with such condition.

In case of using only causal broadcasts, the LS(pi) vector clock will not be needed since all its entries
will hold the value V C(pi)[i]− 1. On the other hand, the LU(pi)[j] entries maintain in this case the value
of V C(pi)[i] when pj broadcast its last message. This allows a trivial optimisation: instead of maintaining
such LU(pi) vector clock, pi only needs to recall the value of its V C(pi) clock when it broadcast its
last message (let us name it as LM(pi)), and pi only needs to transfer those entries k 6= i such that
LM(pi)[k] < V C(pi)[k]. So, this compacting approach is equivalent to the one described in [15] that has
been also outlined in Section 3.3.

4.3.1 Advantages

The described compaction approach makes sense when the set of nodes that broadcast messages in a given
group is localised; i.e., not all group members attain the same sending rates and many of them hardly send
any message, at least at times. Thus, the nodes that broadcast more frequently will be able to compact a lot
the vector clocks associated to their messages.

Assuming that n is the number of system nodes, b is the number of bits needed to maintain a sequence
number (i.e., the value of a vector clock entry), m is the number of bits needed to maintain a node identifier,
and k is the proportion of clock entries that need to be propagated in each broadcast, this technique is
convenient when [73]: k < n∗b

m+b . This expression is easily held in most systems, as shown in [20].
Finally, although it was initially presented as a technique to improve scalability, it is able to provide

important memory saves even in systems that consist of not a huge number of nodes (for instance, the
performance analysis given in [20] does only consider systems with less than 100 nodes).

4.3.2 Inconveniences

In the general case, the usage of the described compaction approach reduces the needed bandwidth. How-
ever, this does not come for free since each node needs to maintain an additional copy of its vector clock.
Nevertheless, that is a negligible cost since the same amount of memory is added in every message when
this compaction technique is not used.

4.4 Interconnection Approach
In an interconnection scenario [28, 4], we assume that there are multiple systems that already have an
internal causal broadcast service. At least one node (i.e., process) in each such system is chosen as its
interconnection server (IS). The IS runs an interconnection protocol, ensuring that all messages initially
broadcast in its local system are eventually delivered in all other interconnected systems. Analogously, the
messages broadcast in remote systems are also eventually delivered in the local system. Note that the IS
provides a regular application process interface to its local broadcast service; i.e., it should not interfere
with the local broadcast protocol execution.

Causal separators [66] provide the basis needed to implement this kind of interconnection protocols,
since they isolate each one of the systems as different causal zones. As a result, the usage of vector clocks is
an internal issue in each one of such systems and many systems can be composed using an interconnection
protocol. From the point of view of vector clock compaction, as studied in Section 4.3, the interconnection
approach provides an ideal scenario, since interconnection servers can completely “forget” the values of
the vector clocks in each system. They are not needed at all in order to implement such an interconnection
protocol.
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The fact that such causal history (implemented either by vector clocks, as suggested in Section 4.2,
or as a set of precedent messages, as addressed in Section 4.1) does not need to be forwarded to other
subsystems was proven in [65]. The resulting interconnection protocol only needs a FIFO transmission of
the messages [38] when the interconnection servers are paired, or an independent (i.e., not related in any
way to the internal protocols used in the subgroups) causal broadcast protocol executed by the set of all
interconnection servers [8].

Although the complete proofs can be found in the cited papers, their justification is intuitive. Let us
assume that our system S consists in the interconnection of k subsystems Si (1 ≤ i ≤ k). Let prec(m) be
the set of messages that causally precede message m. Let IS(Si) be the interconnection server process of
subsystem Si. Message m only needs to carry as its causal history some subset of prec(m), and it is easy to
argue that this subset can be empty. Without loss of generality, let us assume that m was initially broadcast
in S1. For each m′ in prec(m), m′ was delivered to IS(S1) before m, since m′ → m. Thus, IS(S1)
was able to propagate m′ to all other Si (i 6= 1) before m was propagated, since IS processes use FIFO
channels [38] or a causal interconnection protocol [8] for message propagation. As a result, all messages
in prec(m) have been transferred and rebroadcast in each subsystem Si before m is propagated. Since
each message in prec(m) has been rebroadcast in each subsystem Si (i 6= 1) by the same IS(Si) process,
all of them are causally related in such subsystems (since they have all been sent by the same sender, and
causal order implies FIFO order). Thus, they should and will be delivered in their rebroadcast order. This
eliminates the need of any causal history in the interconnection protocol.

Failures can be tolerated when a non-recoverable fail-stop model [72] is assumed. To this end, an
interconnection protocol needs [8] to demand safe [21] delivery of broadcast messages; i.e., although the
message can be optimistically delivered once it has been received, it is not discarded until all its destinations
have acknowledged its reception. As a consequence, all its receivers still need to buffer such messages until
notified as safe; i.e., they are not garbage-collected. In case a sender fails while broadcasting a message
that thus could not yet be reported as safe, any of its receivers is still able to rebroadcast it to all intended
receivers. So, no message is lost. In order to consider a message as safe by its sending subsystem, it needs
to be reported as safe in all other subsystems. This is easily ensured by the interconnection servers, as
detailed in [8].

4.4.1 Advantages

The first advantage of an interconnection solution is that it limits the scope of the causal history needed for
implementing causal delivery. It is only used internally, in each interconnected system. This guarantees
that the size of such causal history is always kept small and does not depend on the overall size of the
complete system, but only on the size of each interconnected subsystem. So, that facilitates the scalability
of the causal broadcast service.

An interconnection protocol may also allow [38] that a particular sender chooses either to multicast a
message to its local subsystem or to broadcast it to the entire system.

Usually, each one of the interconnected systems has internal access to a very fast computer network,
whilst the links used for implementing the interconnection have limited bandwidth. Compared with de-
ploying a single causal broadcast protocol among all nodes, the interconnection approach minimises the
number of packets needed for implementing the broadcast service through these links with limited band-
width. Recall that the interconnection protocol only requires either a FIFO or a causal communication
among the interconnection servers of each connected system, and that only requires a single message to be
communicated for each broadcast message. Without an interconnection solution, the sender would have to
emit multiple point-to-point messages, one for each receiver, and this could require that those inter-system
links (with severely limited bandwidth) were traversed multiple times for a given broadcast. Thus, without
interconnection the overall delivery delay would increase, since such low-bandwidth links will be easily
saturated.

Finally, the interconnection approach seems to be the ideal candidate for dealing with dynamic dis-
tributed systems (either when this concept refers to systems whose membership varies with time, but can
be known [69], or when it refers to systems whose composition cannot be recorded and whose algorithms
might not depend on such membership [31, 2, 6, 51]). Examples of such systems are those mentioned in
the introduction: cloud computing data centres, grid applications, web search engines, etc. Note that the
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modularity of this approach allows that each interconnected system may use internally any reliable causal
broadcast protocol. So, the implementation of such intra-system protocols is not concerned with the full
system membership. Additionally, some of the surveyed papers have shown that intra-system protocols
may also not depend on its own membership (e.g., the protocols [39] based on GPS modules for achieving
a physical clock synchronisation, thus ensuring causal delivery by timestamping messages). As a result,
that kind of solutions is able to easily deal with dynamic systems, ensuring thus an acceptable level of
scalability for modern applications.

4.4.2 Inconveniences

Although the interconnection server introduces only a short forwarding step, some papers (e.g., [57]) crit-
icise that such application-level processing introduces a delay that might not be affordable by all kinds of
applications. For instance, media stream broadcasting should comply with soft real-time constraints and
demand specific causal broadcast protocols [79, 10, 12] that tolerate message losses.

If failures arise, the reconfiguration and recovery of the system could need a non-negligible time if any
of the interconnection servers has crashed. In such case, another server process should be chosen in that
affected subsystem and its identity should be reported to all other subsystems.

5 Other Scalability Approaches
Besides scalability, all causal delivery mechanisms assessed up to this point have also guaranteed reliability;
i.e., the message needs to be delivered to all living destinations (R2 (Agreement)), no message can be
lost and all of them should be delivered in the appropriate order (R5 (Causal order)). Moreover, most
of those protocols are integrated into a group communication system providing virtual synchrony [16].
In the last decade there have been new kinds of broadcast protocols able to enhance their scalability by
relaxing those constraints: gossiping [13, 45, 27, 54, 64, 55, 46] and structured-overlay-based multicast
[37, 81, 61, 18, 19, 46]. Note that they do not strictly comply with reliable causal broadcast as it has
been specified in Section 2; thus, they do not perfectly match the aim of this paper. Indeed, they are also
intended for dynamic distributed systems although not as those described in [69], but to those where full
system membership cannot be recorded. In such context, Tucci-Piergiovanni defines (in Section 2.3 of
[77]) dynamic reliable broadcast in a relaxed way. To this end, she maintains R3 (Integrity), although
specifying it in two different properties DRB2 (No creation) and DRB3 (No duplication), whilst relaxing
R2 (Agreement), encompassing it into a new DRB1 (Validity) property that is specified as:

DRB1 (Validity). If, at time moment t, a stable node i broadcasts a message m, then m is
eventually delivered by each stable node j such that j ∈ O(t).

where O(t) is the system overlay at time t (i.e., a structured set that comprehends all system nodes), and
a stable node is a node that remains alive from an instant t onwards. Note that such specification does not
require that nodes that eventually leave the system do deliver reliable broadcasts, even if they would remain
in the system at time t and still for an interval after t.

Nonetheless, gossip and structured-overlay multicast could be encompassed into a new research goal:
to complement them with causal order without compromising scalability. So, for the sake of completeness
they are described in the sequel.

5.1 Gossiping
Examples of alternative scalability techniques can be found in collaborative real-time distributed applica-
tions that need to broadcast multiple video or audio streams from different sources. Each message carries
a fragment of one of the streams and its delivery is supposed to respect a given deadline. If the message is
delayed and violates the deadline, it will be discarded when finally received. The ∆-causal protocol [10],
inspired by a previous protocol from [79], is able to ensure such property. For timely message delivery, it
also demands some optimisations such as message size reduction. To this end, the protocol replaces the
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common vector clocks by a list of identifiers of the direct causally-precedent messages needed to ensure
causal delivery, using a technique similar to that described in the conversations of [56].

This first example opened the door to a new class of broadcast protocols: the probabilistic, epidemic,
or gossip-based ones [13, 45, 27, 54, 64, 55]. They share an important characteristic with ∆-causality:
messages might be lost, and full delivery to all intended receivers is not mandatory. That relaxes a lot
the reliability of such broadcasts, but boosts scalability and throughput stability [13], since the overall
performance of the broadcast protocol does no longer depend on the capability of the slowest node, which
usually imposes a severe contention in standard reliable protocols. Thus, gossip protocols are based on
sending the message to a random subset of processes (some of the sender neighbours). Each such process
sends again the message to a randomly selected subset of processes, and so on. Eventually, the message is
received by all (or at least, most) system processes.

Note that this kind of broadcast proceeds in several rounds and it does not demand a complete knowl-
edge of the system membership, but only of a subset of directly connected neighbours that will forward
the message again. As a result, these protocols deal comfortably with highly dynamic environments where
processes join or leave the system very often, as those presented in the introduction.

There are several gossip-based protocol variants. For instance, bimodal multicast [13] is based on two
different broadcast approaches. In a first attempt, each message is multicast using an unreliable diffusion
targeted to all system nodes. Later, each of its receivers uses gossiping. Gossiping is optimised in several
ways in order to guarantee throughput stability, since bimodal multicast is used in soft real time distributed
applications. To begin with, message retransmissions are structured in rounds, and are supposed to be
requested by those receiver nodes that have detected some message losses. Note that the original protocol
was intended for FIFO multicasting, which demands a local counter for tagging each message, so that
localising missed messages becomes trivial. In order to ensure throughput stability, the amount of data to
be retransmitted in a single round is bound, and retransmission follows a most-recent-first policy. Thus, a
faulty or saturated process does not compel any healthy process to wait for it. In case of trouble, messages
are considered as lost and the pace of the faster processes is adopted by the slowest ones.

A second variant is directional gossip [45], specifically tailored for WANs consisting of multiple in-
terconnected LANs. In this variant, each message is gossiped inside each receiving LAN using any local
gossiping mechanism. In order to reduce inter-LAN traffic, each LAN has a gossip server that forwards
received messages to other remote gossip servers using a directional protocol. In such directional gossip,
each server assigns some weight to each one of its accessible remote gossip servers that is proportional to
the number of paths existing between them. Once a server needs to gossip a message m, it forwards m to
all neighbour servers with a weight lower than K. Once that has been done, it forwards m to up to B remote
servers in ascending order of weight. Each message also stores the path it has traversed in the broadcast.
With this information, each receiver updates the set of paths that interconnect it with the rest of gossip
servers. Whenever any path in a node has not been used for a certain while, it is removed from the node’s
set of paths, and the remote servers’ weights are recomputed accordingly. That way, a fast adaptation of
this algorithm to dynamic networks is enabled. Note that this strategy has several similarities to the inter-
connection approach described in Section 3.4, since inter-LAN or inter-system traffic is highly reduced in
both cases.

The lightweight probabilistic broadcast (lpbcast) protocol is another approach, described in [27]. Be-
sides scalability, delivery latency and throughput stability, it also optimises memory consumption. To this
end, lpbcast imposes bounds on the number of nodes that may be known by each process, forcing them to
always work with a reasonably small-sized partial view of the system. In order to avoid membership parti-
tions, each broadcast message also carries (part of) such partial view in its contents, and receivers update
randomly their membership sets with such information. Additionally, the number of buffered messages
is also limited. Other gossip protocols bound the set of buffered messages and implement some garbage
collection mechanism. But in most of them, the purged messages are randomly selected. In lpbcast, the
selection criterion consists in estimating the actual propagation of each message, thus discarding those
messages that have already been received by most processes.

There has been some work on how to ensure complete reliability with gossiping. To this end, [33]
propose two different techniques, hierarchical gossiping and adaptive dissemination. Both need less mes-
sages for completing a broadcast than regular gossiping. However, there is still a price to pay for these
optimisations: delivery latency is increased, since the number of needed rounds is not reduced, and a
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topologically-aware membership scheme is needed in order to ensure reliability. Thus, the partial view
known by each node can not be chosen at random, and this might introduce some overhead. Similar solu-
tions are described in [46], where the focus is on both reliability and inter-LAN traffic reduction (as with
directional gossip and systems interconnection).

As we have seen, many papers have studied message propagation through gossip. Each of them pro-
poses one or several optimisations in order to enhance throughput stability, delivery latency or memory
consumption. Such optimisations could be merged into a single protocol. That way, scalability can be
improved. Unfortunately, gossip protocols commonly do not deal with ordered delivery, although there are
a few exceptions. For instance, bimodal multicast [13] implements FIFO order. Causally ordered delivery
has been attempted in [3], combining gossip-based propagation with the inclusion of causal history infor-
mation, as in the first Isis algorithm [14]. Thus, this combination maintains a non-blocking delivery, which
is mandatory in a gossip-based broadcast, but relies on deterministic view change notifications in order to
implement message garbage collection (which is almost impossible to implement in a large-scale system).
So, to the best of our knowledge, there has not been any gossip-based protocol able to ensure both the
agreement and causal order properties presented in Section 2.

5.2 Structured-Overlay-based Multicasts
Structured peer-to-peer systems [6] provide an overlay or communication infrastructure with which both
routing and a precise (although in most cases, still partial) membership in a large-scale system can be
managed. In particular, frequent joins or leaves of processes are easily dealt with. Thus, on that basis,
scalable multicast protocols (e.g., Overcast [37], Bayeux [81], CAN Multicast [61], Scribe [18], ...) can be
implemented that have better reliable message delivery guarantees than gossiping.

Multicast protocols used in this kind of systems heavily depend on the overlay infrastructure and on the
message propagation strategy. According to [19], there are the following alternatives:

• Regarding the overlay infrastructure, all structured systems are able to generate node IDs that deter-
mine the location of each node in the overlay. Such an overlay can be organised as follows:

– Hypercube routing. Each participating process plays the role of a node in such a hypercube,
which also determines its set of direct neighbours. Besides holding the identifiers of (some
of) the direct neighbours, the routing tables maintained in each node also record the addresses
of other nodes situated at relative exponential distances. That reduces the size of the routing
tables to an amount which is proportional to the logarithm of the system size, and optimises the
number of rounds needed for message propagation.
This kind of overlay has been used in Chord [76], Pastry [67], and Tapestry [80], to name a few
systems.

– Cartesian hyper-space. Each node is identified by its coordinates in Cartesian hyper-space, and
receives the “ownership” of some part of the hyper-space around its coordinates. The routing
table in a node A then consists of the coordinates (and IP addresses) of the nodes placed around
the space owned by A. Routing then means to forward messages to the neighbour node with
least distance to the intended message receiver.
Such kind of overlays have been used in CAN [60].

• Regarding the message propagation strategy:

– Flooding. The message is re-sent through some nodes held in the routing tables. That is similar
to gossiping, since the number of entries in such routing tables is small, and multiple rounds
are needed in order to complete such multicast. Indeed, there are some gossip protocols that
can be included here, e.g. [46].

– Spanning tree. Based on the information contained in the routing tables of each system member,
a so-called spanning tree is built, for covering the intended group where multicasts should be
sent (the full system in case of broadcasts). Later, that tree is used to appropriately propagate
the messages being multicast. This strategy minimises (and in some cases even eliminates)
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the reception of duplicate messages in the target nodes of a multicast, but introduces a non-
negligible effort for building the spanning tree and adapting it in case of node failures.

The combination of these two parameters, each with two possible variants, yields four classes of mul-
ticast strategies based on structured overlays: (a) Hypercube routing + flooding propagation (HF), (b)
Hypercube routing + spanning tree propagation (HS), (c) Cartesian hyper-space + flooding propagation
(CF), (d) Cartesian hyper-space + spanning tree propagation (CS).

Although the resulting algorithms are able to multicast messages to all living group members, there are
some problems that endanger performance. On one hand, messages might need an excessive number of
propagation rounds in order to reach all of their destinations, introducing a severe delay. In [37, 18, 19],
that is measured by a relative delay penalty (RDP), which rates its delivery delay against that generated by
regular IP multicast protocols [24] used in WANs. On the other hand, a given message might be received
multiple times in each target process. That introduces unnecessary network traffic (i.e., link stress) and
complicates reception management.

A performance evaluation of the four overlay-based multicast strategies is also given in [19], where it
is shown that all strategies highly depend on multiple configuration parameters. After selecting an optimal
combination of such parameters for each class, the cited evaluation showed that HS is the best choice,
giving RDP values below 2 that are between 20% to 50% better than those measured for CS.

When the link stress metric is considered, the use of a spanning tree still seems to be the best option
for message propagation. That same optimal combination (HS) for RDP is the best one regarding average
link stress (ALS) (up to 15% better than using CS), but CS is the best one regarding maximum link stress
(MLS) (up to 25% lower than using HS).

Note that, similar to gossiping, flooding reached almost 13000 duplicate messages per multicast in a
system consisting of 80000 nodes [19], when its best configurations for RDP and link stress were used.
Since the usage of a spanning tree strongly reduces the amount of duplicate messages, this illustrates how a
structured overlay might surpass the performance achieved by regular gossiping protocols when scalability
is considered.

Unfortunately, causal order is still difficult to ensure in the general case. However, some protocols [18]
based on spanning-tree propagation use always the same root node for initiating multicasts, independently
of its actual sender (i.e., such sender needs a first step to propagate the message to be broadcast to the
tree root). With that, it guarantees a causal total order in such multicasts, but at the price of using a single
initiator that sequences all such messages, which again might compromise the scalability of the resulting
approach.

6 Summary
In order to sum up, Table 1 is provided specifying the most important characteristics of each presented
solution. The broadcasting mechanisms shown in that table are: First Generation (FG), Vector Clocks
(VC), Compaction Approach (CA), Interconnection Approach (IA), Gossiping (GO), and Overlays (OV).
Note that no protocol in the two latter classes (both GO and OV) is currently able to comply with the
causal order property (R5) of reliable broadcast protocols, except when a specific topology is used an total
order is also ensured. They are included in this summary since they are scalable mechanisms relevant for
comparison purposes.

The characteristics being considered in such table rows are:

Membership. Membership management has important implications on the broadcast performance. Firstly,
in some cases membership knowledge is required in order to record the causal history of a given
message being broadcast. Secondly, a precise and complete membership information requires an
appropriate failure detector and consensus on the membership set. This demands a non-negligible
effort. So, two different issues are considered regarding membership. To begin with, if such member-
ship knowledge needs to be complete (Com); i.e., it needs to record the identity of all system living
nodes, or suffices to be partial (Par). Later, whether such knowledge needs to be precise (Pre), and
this requires consensus on the notifications provided to the processes, or it can be relaxed (Rel). Note
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that in this latter aspect, common reliable broadcast protocols provide virtual synchrony [16, 21] and
this requires precise membership.

Causal History. This characteristic refers to how the solution ensures causal order. The possible values
are: inclusion of causal precedent messages (PM), vector clocks (VC) or compacted vector clocks
(CC). It is worth noting that some of the approaches (e.g., IA) have a modular design and can use
any causal history management (Any). Note also that PM is the unique policy that always prevents
receiver processes from blocking when they deal with causal message delivery.

Structure. This highlights whether the solution should have a logical structure of nodes (Yes) or not (No).
This characteristic does not have an important implication in the regular performance of the broadcast
protocols. However, it might introduce some overhead in case of failures, since such structure needs
to be (partially) rebuilt when some node crashes arise.

Advantages. The advantages observed can be the following: non-blocking delivery (NB), or usage of
small messages (SM) due to a minimisation of the causal history information being appended to
each message.

Drawbacks. Different drawbacks are considered: usage of large messages (LM), need of garbage col-
lection (GC), blocking behaviour (B), or non-causal delivery (NC). Note that the IA alternative is
not necessarily blocking, since it can use inside each subsystem any causal history format, even the
inclusion of non-stable causally precedent messages (the approach followed in the first protocols
generation). Moreover, the interconnecting protocol may either use another reliable causal broadcast
protocol (that can again be based on precedent message inclusion) or on paired FIFO communication
(that is also non-blocking at the application layer).

Broadcasting Approaches
FG VC CA IA GO OV

Membership Com
Pre

Com
Pre

Com
Pre

Par
Pre

Par
Rel

Par
Rel

Causal Hist. PM VC CC Any – –
Structure No No No Yes No Yes
Advantages NB SM SM SM NB

SM
NB
SM

Drawbacks LM
GC

B B – GC
NC

NC

Table 1: Characteristics summary.

Finally, regarding the adaptability of these approaches to varying workloads, the two latter (GO and
OV) provide the best results since they are able to easily accept new nodes in the system (when high peaks
of read-only requests are received) and drop existing nodes when the number of client requests is reduced.
This adaptability is facilitated by its relaxed and partial membership management. On the other hand, when
reliable message delivery and virtual synchrony are needed, the IA is the unique useful option since it does
not demand a full membership management (view management is accomplished in each subsystem) and
this allows a precise implementation with negligible overhead, since in a subsystem all the communication
channels will provide similar delays and bandwidth, using a fast network in most cases. Additionally,
workload variations are easily managed, even when a lot of nodes are involved in them (i.e., when many
nodes should join or leave the existing system at once). To this end, administrators do only require an
appropriate subsystems deployment, adding or removing entire subsystems to the current system state.
Note that in case of a subsystem join, the mechanisms needed for implementing the state transference
that ensures system consistency are already provided by most modern view-oriented group communication
systems.
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7 Conclusions
We have historically reviewed and surveyed several mechanisms used for ensuring reliable causal delivery
in broadcast services. The first protocols included in each broadcast message its own causal history; i.e., a
set of precedent messages not yet fully delivered in all system processes. Thus, the causal order could be
enforced in all receivers. That was simplified when vector clocks were introduced, which reduced the size
of the broadcast messages. Still, some amount of causal information (the vector clocks themselves) needs
to be kept, in proportion of the system’s size. In order to improve the scalability of these protocols, some
kind of vector clock compaction mechanism may be used. We have found two types of compaction. The
first only transmits the vector entries that have been modified since the last message broadcast by the same
sender. The second uses the interconnection principle in order to manage vector clocks only inside the
interconnected systems. Thus, the vector size only depends on the amount of processes in each subsystem
but not on the global size of the full set of nodes. Both approaches can be easily combined, for enabling
reliable message broadcasts in systems consisting of a large number of processes, and for facilitating the
use of causal consistency in large-scale applications. Some of the revised papers [38] also propose some
interconnection variations (basically, to use an intrusive interconnecting protocol that requires a slight patch
in the local broadcast protocol) for ensuring total instead of causal order. With such an approach, sequential
consistency can be supported.

There are other approaches for ensuring the scalability of broadcast services, like gossiping or overlay-
based multicasts. However, such strategies are bound to applications that may relax agreement or ordered
delivery because they do not require fully reliable communication. Nonetheless, there currently are some
gossip-based protocols that are able to ensure a high degree of reliability at moderate costs (regarding both
latency and bandwidth). They could be combined with non-blocking causal delivery strategies (based on
carrying only some recent fragment of the causal history within each message), in order to design effi-
cient and scalable causal broadcast algorithms. However, the development of efficient garbage collection
mechanisms for pruning causal histories is still an open issue for highly-reliable gossip-based broadcast
protocols. On the other hand, overlay-based multicasts allow the implementation of causal total order
broadcasts. They build spanning trees on such overlays, with a single root for all broadcasts [18]. That
generates a scalable sequencer-based [25] protocol, with moderate management costs and acceptable de-
lays.

To conclude, there is no clear winner among the diverse scalability approaches. The interconnection
solution, accompanied by a compaction approach if some of the interconnected systems have a large mem-
bership set, is able to minimise causal history information in the broadcast messages, whilst it is still able
to provide some support for virtual synchrony, without requiring a full system membership management.
That is an excellent basis for highly-available applications, since it simplifies their recovery protocols. On
the other hand, when reliability is not a must, both gossiping and overlay-based protocols are favourable,
mainly because they are able to guarantee immediate delivery, sacrificing thus a strict causal order compli-
ance, but boosting scalability.
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