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?Instituto Tecnológico de Informática
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Abstract
Although the need of saving messages in secondary storage once they have been received has been

stated in several papers that assumed a recoverable failure model, none of them analysed the overhead
implied by such operation. At first glance, it seems an excessive cost for its apparently limited ad-
vantages, but there are many scenarios that contradict this intuition. This paper surveys some of these
configurations and outlines some benefits of this persistence-related approach.

1 Introduction
When a recoverable model is being assumed in order to develop a dependable application, several problems
require the usage of stable storage in order to be solved. A first and important example is consensus [1],
since most reliable protocols are built on top of it [29]. Atomic broadcast is a second example and the need
of agreement on the set of alive processes is another one. Many dependable applications do use a group
communication system [6] in order to deal with reliable communication. So, the logging requirements
could be set on such basic building block.

At a glance, persistently saving messages at delivery time introduces a non-negligible overhead. But
such cost mainly depends on the way such message saving is done —for instance, uniform reliable broad-
cast protocols need multiple rounds of messages in order to guarantee all their delivery properties and that
saving can be completed in the meantime—, and on the network bandwidth/latency and the secondary
storage device’s transfer time. Thus, collaborative applications being executed in smart-phones and/or lap-
tops have access to slow wireless networks (e.g., up to 14.4 Mbps in case of HSDPA for smart-phones;
54 Mbps for 802.11g, and 248 Mbps with 802.11n wireless networks) and have also access to fast flash
memories in order to save such messages being delivered (e.g., current (micro)SD-HC class-6 memory
cards for smart-phones can write data at a minimum rate of 48 Mbps, whilst CompactFlash memory cards
have write-throughput up to 360 Mbps). So, in such cases the overhead being introduced will not be high.

This paper analyses the costs introduced by the need of logging messages. In some of the first systems
[13] such persisting actions were applied at both sender and receiver sides, but they required complex
garbage collection techniques. Modern approaches have moved such persisting actions to the receiver
side, and we will centre our study in this latter case showing that, besides implying a negligible cost in
some settings, this also introduces some relevant advantages when relaxed consistency and scalability are
considered.

1



The rest of this paper is structured as follows. Section 2 summarises the assumed system model.
Section 3 analyses the performance overhead involved in saving messages at delivery time. Later, Section
4 presents some related work, whilst Section 5 describes some distributed problems whose solutions could
be enhanced if messages are logged at delivery time. Finally, Section 6 concludes the paper.

2 System Model
We assume an asynchronous distributed system, complemented with some unreliable failure detection
mechanism [5] needed for implementing its membership service. For instance, if a precise membership [6]
needs to be provided, a �P failure detector is needed. Each system process has a unique identifier. The state
of a process p (state(p)) consists of a stable part (st(p)) and a volatile part (vol(p)). A process may fail
and may subsequently recover with its stable storage intact. Processes may be replicated. In order to fully
recover a replicated process p, we also need to update its st(p), ensuring its consistency with the stable
state of its other replicas (a common approach for recovering replicated database systems, for instance).

Our aim is to provide support for dependable applications. To this end, a Group Communication System
(GCS) [6] is also assumed, providing virtual synchrony to the applications built on top of it. Modern GCSs
are view-oriented; i.e., besides message multicasting they also manage a group membership service and
ensure that messages are delivered in all system processes in the same view (set of processes provided as
output by the membership service).

A crash recovery with partial amnesia [7] failure model is assumed. Additionally, we assume that
processes do not behave outside their specifications when they remain active [37].

Finally, a primary component membership [6] model is assumed; i.e., only the component with a major-
ity of nodes (if any) is allowed to progress in case of a network partition. This has also been the approach
commonly followed in the database replication field, where the results of this paper could be easily applied.

3 Overhead Comparison
Dependable applications need to ensure the availability of their data. To this end, a recoverable failure
model may be assumed. When the data being managed is large, typical applications (e.g., replicated
databases [4, 8, 19, 22, 24, 36]) rely on uniform [17] or safe [6] broadcasts in order to propagate up-
dates among replicas; i.e., if a destination process is able to deliver a broadcast message, then all correct
processes will be able to deliver it. This implies that, in order to deliver each message, its destination
processes should know that it has been already received in some of the other target processes.

Thus, in our system we will assume that messages need to be persisted and also they need to be safely
or uniformly delivered. So, there will be two different performance penalties:

• Messages should be persisted by the GCS between the reception and delivery steps in the receiver
domain. This introduces a non-negligible delay.

• On the other hand, safe delivery introduces the need of an additional round of message exchange
among the receiving processes in order to deal with message delivery, and this also penalises perfor-
mance.

Note, however, that such additional round only uses small control messages; i.e., they do not carry
the request or update-propagation contents of the original message, so their size is small and such
message round can be completed faster than the contents-propagation one in the regular case. Since
our model requires that message stability is guaranteed at the same time a message is persisted, such
extra round of messages and the write operation on stable storage may be executed in parallel. In
such case, if a process p crashes before the message is safe, such message should be discarded since
it will be delivered in the next view and p will not be one of its members. So, if it was already
persisted, it has to be ignored. To this end, we might use the following procedure, based on having a
little amount of battery-backed RAM that holds an array of 〈msg id, is safe〉 pairs:
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1. As soon as a message is received from the network, its identifier is inserted in the array and its
is safe flag is set to false.

2. It is immediately written in stable storage.

3. When its safety is confirmed, its is safe flag is set to true, and it is delivered to its target process.

4. Finally, the message is deleted from stable storage when the application p calls the ack(p,m)
operation, once it has been completely processed. When this happens, its entry in this array is
also removed.

As a result, in case of failure and recovery, all those messages whose is safe flag is false are simply
ignored. Note that this procedure does not introduce any overhead, since it only implies to write a
boolean in main memory.

So, in a practical deployment, the overhead introduced by the message saving at delivery time is par-
tially balanced by the additional communication delay needed for ensuring safe, uniform or fully-stable
delivery. So, this section surveys in which distributed settings the applications can afford the logging
overhead.

In order to develop efficient uniform broadcasts, modern GCSs have used protocols with optimistic
delivery [32, 31]. This allows an early management of the incoming messages, even before their delivery
order has been set. Thus, Rodrigues et al. [34] propose an adaptive and uniform total order broadcast
based on optimistic delivery and on a sequencer-based [11] protocol. In such protocol, uniform delivery is
guaranteed when the second broadcast round —used by the sequencer for spreading the message sequence
numbers— has been acknowledged by (a majority of) the receiving nodes. We assume a protocol of this
kind in this section.

This overhead analysis starts in Section 3.1 with the expressions and parameters used for computing the
time needed to persist the message contents and to ensure its uniform delivery. Note that in order to deal
with message sizes in this study, we have considered a database replication protocol as a relevant applica-
tion example in our system. Section 3.2 presents multiple kinds of computer networks and storage devices,
showing the values they provide for the main parameters identified in Section 3.1. Finally, Section 3.3
compares the time needed for persisting messages in the storage device with the time needed for ensuring
such uniform or fully-stable delivery. In some cases message persistence does not introduce any overhead,
since it can be completed before such uniformity-ensuring message round is terminated and the message
delivery can proceed. This confirms that message logging could make sense in such environments.

3.1 Persistence and Stability Costs
In order to compute the time needed to persist a message in a storage device, the expression to be used
should consider the typical access time of such device (head positioning and rotational delay, in case of
hard disks or simply the device latency for flash-memory devices), its bandwidth, and the message size.
In practice, such message could be persisted in a single operation since we could assume that it could be
written in a contiguous sequence of blocks.

On the other hand, for ensuring fully-stable delivery, a complete message round is needed; i.e., assum-
ing the sequencer-based protocol outlined above, the sequencer should send a small message containing
the message sequence number and the receivers would return their acknowledgement. Anyway, we should
analyse such cost from the receiver’s side, so a single sequencing message is needed, once the previous
update-propagating message has been received, starting then its saving step. But such previous update-
propagating message has been acknowledged before the sequence number could be sent. So, a complete
round-trip delay should be considered for ensuring this fully-stable delivery.

So, both times can be computed using the following expression:

time = latency +
message size

bandwidth

but we should consider that the message sizes in each case correspond to different kinds of messages. When
persistence is being analysed, such message has been sent by the replication protocol in order to propagate
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state updates (associated to the execution of an operation or a transaction). So, messages of this kind are
usually big. On the other hand, for ensuring fully-stable delivery, the sender has been the GCS and both
messages needed in such case are small control messages.

3.2 Latency and Bandwidth
Different storage devices and networks are available today. So, we present their common values for the two
main parameters discussed in the previous section; i.e., latency and bandwidth. In case of storage devices,
such second parameter considers the write bandwidth. Such values are summarized in Table 1 for storage
devices and in Table 2 for computer networks.

ID Device Latency Bandwidth
(sec) (Mb/s)

SD-1 SD-HC Class-6 2*10−3 48
SD-2 CompactFlash 2*10−3 360
SD-3 Flash SSD 0.1*10−3 960
SD-4 SATA-300 HDD 10*10−3 2400
SD-5 DDR-based SSD 15*10−6 51200

Table 1: Values for storage devices.

In both tables, we have used a first column in order to assign a short identifier for each one of those
devices. Such identifiers will be used later in Table 4 and Figure 1. Five different kinds of storage devices
have been considered. The initial three ones are different variants of flash memory devices. Thus, SD-HC
Class-6 refers to such kind of memory cards, where its bandwidth corresponds to the minimal sustained
write transfer rate in those cards. The third row corresponds to one of the currently available flash-based
Solid State Disks (the Imation S-Class Series [21]), whilst the fifth one refers to SSDs based on battery-
backed DDR2 memory (concretely, such values correspond to a disk based on PC2-6400 DDR2 memory,
but there are faster memories nowadays). Note that there are some other commercially available SSD disks
that combine these two last technologies and that are able to provide a flash write bandwidth quite close
to the latter, or even better. For instance, the Texas Memory Systems’ RamSan-500 SSD was available in
2008 providing a write bandwidth of 16 Gbps [39], whilst its RamSan-620 SSD variant is able to reach
a write bandwidth of 24 Gbps [40] in October 2009, that might be also clustered in order to build the
RamSan-6200 SSD with a global write bandwidth of 480 Gbps.

ID Interface/Network Bandwidth
(Mb/s)

N-1 HSDPA 14.4
N-2 HSPA+ 42
N-3 802.11g 54
N-4 802.16 (WiMAX) 70
N-5 Fast Ethernet 100
N-6 802.11n 248
N-7 Gigabit Ethernet 1000
N-8 Myrinet 2000 2000
N-9 10G Ethernet 10000
N-10 SCI 20000

Table 2: Values for phone interfaces and computer networks.

Table 2 shows bandwidths for different kinds of computer/phone networks. No latencies have been
presented there. In any network there is a delivery latency related to interrupt processing in the receiving
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node. Besides such delivery latency there will be another one related to data transmission, but this is
mainly distance-dependent. In order to consider the worst-case scenario for a persistence-oriented system,
we would assume for such second latency that information can be transferred at the speed of light and that
as a result, it is negligible for short distances, and that the first one —interrupt processing— needs around
15 µs ([46] reports a minimal interrupt processing time of 20 µs in a IA-32/PCI based computer running 4.4
BSD, but current PCs can complete such tasks faster) although such time is highly variable and depends
on the supported workload and scheduling behaviour of the underlying operating system. Additionally,
there will be other latencies related to routing or being introduced by hubs or switches if they were used,
although we do not include such cases in this analysis; i.e., we are interested in the worst-case scenario,
proving that our logging proposal is interesting even in that case.

3.3 Persistence Overhead
Looking at the data shown in Tables 1 and 2, and the latency than can be assumed for interrupt processing
in network-based communication, it is clear that storage times will be longer than network transfers except
when a DDR-based SSD storage device is considered.

Let us start with a short discussion of this last case. Note that the control messages needed for ensuring
message delivery stability are small. Let us assume that their size is 1000 bits (that size is enough for
holding the needed message headers, tails and their intended contents; i.e., two long integers: one for
the identifier of the message being sequenced and another for its assigned sequence number). Assuming
that the interrupt processing demands 15 µs, the total time needed for a round-trip message exchange
consists of 30 µs devoted to interrupt management and the time needed for message reception assuming
the bandwidths shown in Table 2. Note that such latter time corresponds to a 2000-bit transferral, since
we need to consider the delivery of two control messages (one broadcast from the sequencer to each group
member and a second one acknowledging the reception of such sequencing message). Moreover, such cost
would be multiplied by the number of additional processes in the group (besides the sequencer), although
we will assume a 2-process group in order to consider the worst-case scenario for the persisting approach.

So, using the following variables and constants:

• nbw: Network bandwidth (in Mbits/second).

• nl: Network latency (in seconds). As already discussed above, we assume a latency of 15*10−6

seconds per message in the rest of this document, except in Figure 1.

• psbw: Persistent storage bandwidth (in Mbits/second). In this case, the single device (DDR-based
SSD) of this kind that we are considering provides a value of 51.2*103 for this parameter.

• psl: Persistent storage latency (in seconds). Again, a single device has been considered, with a value
of 15*10−6 for this parameter.

• rtt: Round-trip time for the control messages (assumed size: 1000 bit/msg) that ensure uniform/stable
delivery.

we could compute the maximum size of the broadcast/persisted update messages (msum, expressed in
KB) that does not introduce any performance penalty (i.e., that can be persisted while the additional control
messages are transferred) using the following expressions (being 0.002 the size of the two control messages,
expressed also in Mbits):

rtt =
0.002
nbw

+ 2 ∗ nl

msum = (rtt− psl) ∗ psbw ∗ 1000/8

So, for each one of the computer/phone networks depicted in Table 2 the resulting values for those two
expressions have been summarized in Table 3.

As it can be seen, all computed values provide an acceptable update message size using this kind of
storage device. In the worst case, with the most performant network, 96.64 KB update messages could be
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Network rtt (sec) Msg. size (KB)
HSDPA 168.88*10−6 984.89
HSPA+ 77.62*10−6 400.76
802.11g 67.04*10−6 333.04
802.16 (WiMAX) 58.57*10−6 278.86
Fast Ethernet 50*10−6 224
802.11n 38.06*10−6 147.61
Gb Ethernet 32*10−6 108.8
Myrinet 2000 31*10−6 102.4
10G Ethernet 30.2*10−6 97.28
SCI 30.1*10−6 96.64

Table 3: Maximum persistable message sizes.

persisted without introducing any noticeable overhead. This size is far larger than the one usually needed
in database replication protocols (less than 4 KB), as reported in [42]. In the best case, such size could
reach almost 1 MB. This is enough for most applications. So, logging is affordable when a storage device
of this kind is used for the message persisting tasks at delivery time.

Note, however, that these computed message sizes depend a lot on the interrupt processing time that
we have considered as an appropriate value for the nl (network latency) parameter. So, Figure 1 shows the
resulting maximum persistable message sizes when such nl parameter is varied from 5 to 20 µs. As we
can see, when the interrupt processing time exceeds 7.8 µs, the SD-5 storage device does not introduce any
overhead, even when it is combined with the fastest networks available nowadays.
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Figure 1: Maximum persistable message sizes.

Let us discuss now which will be the additional time (exceeding the control messages transfer time;
recall that such messages ensure message delivery safety) needed in the persisting procedure, in order
to log the delivered update messages in the system nodes. Such update message sizes do not need to
be excessively large. For instance, [42, page 130] reports that the average writeset sizes in PostgreSQL
for transactions being used in the standard TPC-C benchmark [41] are 2704 bytes in the largest case.
When a transaction requests commitment, regular database replication protocols need to broadcast the
transaction ID and writeset. So, we will assume update messages of 4 KB (i.e, 0.032 Mbits) and the
following expressions will provide such extra time (pot, persistence overhead time) introduced by the
persistence actions:
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pot = psl +
0.032
psbw

− rtt

Storage Devices
Network SD-1 SD-2 SD-3 SD-4
HSDPA 2497.8 1920 -35.6 9844.4
HSPA+ 2589.0 2011.3 55.7 9935.7
802.11g 2599.6 2021.9 66.3 9946.3
802.16 2608.1 2030.3 74.8 9954.8
Fast Ethernet 2616.7 2038.9 83.3 9963.3
802.11n 2628.6 2050.8 95.3 9975.3
Gb Ethernet 2634.7 2056.9 101.3 9981.3
Myrinet 2000 2635.7 2057.9 102.3 9982.3
10G Ethernet 2636.5 2058.7 103.1 9983.1
SCI 2636.6 2058.8 103.2 9983.3

Table 4: Persistence overhead in low-bandwidth storage devices (in µs/msg).

We summarise all resulting values (for each one of the remaining storage devices) in Table 4. In the
best device (SD-3; i.e., a fast flash-based SSD drive), it lasts 103.2 µs using the best available network.
This means that we need an update arrival rate of 9615.4 msg/s in order to saturate such device using
such fast network. However, using the worst network, no persistence overhead is introduced (it is able to
persist each update message 35.6 µs before the control messages terminate the uniform delivery). On the
other hand, some of these devices generate a non-negligible overhead (i.e., they can saturate the persisting
service) when update propagation rates exceed moderately high values (e.g., 400 msg/s using SD-1 or
SD-2 devices, and 100 msg/s for SD-4 ones; i.e., flash memory cards and SATA-300 HDD, respectively).
As a result of this, we consider that the SD-3 device provides also an excellent compromise between the
overhead being introduced and the availability enhancements that logging ensures, and that even the SD-1
and SD-2 devices could be accepted for moderately loaded applications. This proves that logging can be
supported today in common reliable applications that assume a recoverable failure model.

4 Related Work
The need of message logging was first researched in the context of rollback-recovery protocols [38, 25, 13]
for distributed applications. In such scope, processes (that do not need to be part of a replicated server) need
to checkpoint their state in stable storage and, when failures arise, the recovering process should rollback
its state to its latest checkpointed state, perhaps compelling other processes to do the same. In order to
reduce the need of rolling back the state of surviving processes, state needs to be checkpointed when a
non-deterministic event happens, allowing thus the re-execution of deterministic code in the recovering
steps. When communication is quasi-reliable, this leads to taking state checkpoints when processes send
messages to other remote processes, combined with message logging at the receiving processes. Garbage
collection is an issue in this kind of systems since each process may interact with many others and such
logging release will depend on that set of previously contacted processes.

The first paper that presented the need of message logging as a basis for application recoverability in
a group communication system —concretely, Psync— was [33]. Psync provided a mechanism integrated
in the GCS that was able to ensure causal message delivery, and recovery support, whilst policies could
be set by the applications using the GCS, adapting such mechanisms to their concrete needs. For instance,
total order broadcast could be easily implemented as a re-ordering policy at application level. However, its
recovery support [33] demanded a lot of space in case of long executions and did not guarantee a complete
recovery (i.e., messages could be lost) in case of multiple process failures.
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Aguilera et al. [1] proved that logging is also needed for solving consensus in some system config-
urations where the crash-recovery model is assumed. This implies that many other dependable solutions
based on consensus –e.g., atomic broadcast– do also need to persist messages. Indeed, the Paxos protocol
[27] presented also a similar result, although applied to implement an atomic broadcast based on consen-
sus. It gives as synchronisation point the last decision —delivered message— written —i.e., applied— in
a learner. This approach provides a recovery synchronisation point. It forces the acceptors that participate
in the quorum for a consensus instance to persist their vote —message to order— as previous step to the
conclusion of such consensus instance —which will imply the delivery of the message—. So, if a learner
crashes losing some delivered messages, when it reconnects it asks the system to run again the consen-
sus instances subsequent to the last message it had applied, relearning then the messages that the system
has delivered afterwards. This forces the acceptors to hold the decisions adopted for long, till all learners
acknowledge the correct processing of the message.

Different systems have been developed using the basic ideas proposed in [27]. Sprint [3] is an example
of this kind. It supports both full and partial replication using in-memory databases for increasing the
performance of the replicated system, and it uses a Paxos-based mechanism for update propagation.

Other papers have dealt with persistently storing messages at their receiving side, according to the prin-
ciples set in [1, 27]. Thus, Mena and Schiper [28] specify atomic broadcast when a crash-recovery model
is assumed. Such specification adds a commit operation that persists the application state, and synchro-
nises the application and GCS state, providing thus a valid recovery-start point. Their strategy adapts the
amount of checkpoints being made by a process to the semantics of the application being executed, and
this can easily minimize the checkpointing effort. Logging was also used in [35] in order to specify atomic
broadcast in the crash-recovery model.

A typical application that relies on a view-based GCS and assumes crash-recovery and primary-com-
ponent-membership models is database replication. Multiple replicated database recovery protocols exist
[19, 24, 22, 36] and regularly they do not rely [8] on virtual synchrony in order to manage such recovery.
Instead, practically all of them use atomic broadcast as the update propagation mechanism among replicas
[45] and can persistently maintain which was the last update message applied in each replica. However,
this might lead to lost transactions in some executions [8].

Wiesmann and Schiper [44] analysed which have been the regular safety criteria for database replication
[16] (1-safe, 2-safe and very safe), and compared them with the safety guarantees provided by current
database replication protocols based on atomic broadcast (named group-safety in their paper). Their paper
shows that group-safety is not able to comply with a 2-safe criterion, since update reception does not imply
that such updates have been applied to the database replicas. As a result, they propose an end-to-end atomic
broadcast that is able to guarantee the 2-safe criterion. Such end-to-end atomic broadcast consists in adding
an ack(m) operation to the interface provided by the GCS that should be called by the application once it
has processed and persisted all state updates caused by message m. This implies that the sequence of steps
in an atomically-broadcast message processing should be:

1. A-send(m). The message is atomically broadcast by a sender process.

2. A-receive(m). The message is received by each one of the group-member application processes. In a
traditional GCS, this sequence of steps terminates here.

3. ack(m). Such target application processes use this operation in order to notify the GCS about the
termination of the message processing. As a result, all state updates have been completed in the target
database replica and the message is considered successfully delivered [44]. The GCS is compelled to
log the message in the receiver side until this step is terminated. Thus, the GCS can deliver again such
message at recovery time if the receiving process has crashed before acknowledging its successful
processing.

This last paper also ensures that messages have persisted their effects before they can be forgotten.
Previous papers [23] proposed that messages were persisted at delivery time in a GCS providing virtual
synchrony [2], as assumed in Section 3 and that they were logged until the application had processed them.
This simplifies process recovery when a recoverable model is assumed. In this workline, Fekete et al. [14]
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presented a specification for partitionable group communication service providing recoverability, but they
do not mention the necessity of persisting.

Logging has been also a technique proposed for providing fault tolerance in middleware servers [43].
Its authors comment that two common techniques for providing high availability in middleware servers are:
replication and log-based recovery.

In regard to replication solution they explain that it implies to duplicate the infrastructure and introduces
a relative overhead due to the communications that must be performed between replicated servers but avoid
outages completely. They propose in this paper a log-based recovery for saving the middleware state –
session and shared variables– when a crash occurs. They argue that it is a relatively cheap technique. As the
servers can work in a collaborative way, when a server crashes and recovers, later other –non failed– servers
of the same service domain must check if their state is consistent with the state reached after the recovery
in the crashed server. The idea is to provide inter server consistency avoiding orphan messages. This can
imply sometimes a roll back process in a non crashed server for ensuring the inter server consistency.

Later they perform several experimental results where compare their solution with other solutions in-
cluding: persisting sessions in a local DBMS or storing session states in the main memory of a different
computer which are commercial approaches for session state recovery.

On one hand, when they use optimistic logging –between the servers inside a domain service– some-
times after a recovery process some sessions of non-crashed servers can become orphans –in other words
are inconsistent– in regard to the state reached in the recovered node. Therefore, these orphan sessions
must be rolled back to avoid such inconsistencies. On the other hand, when they use pessimistic logging
–communications outside the service boundaries– orphans can not be created because messages are flushed
before generating an event that can become orphan. So, after a recovery process can not appear inconsis-
tencies among servers in different service domains. It must be precised, that they do not tell anything about
the necessity of persisting messages atomically in the delivery process when using a pessimistic logging
approach.

When considering commercial applications in database and application servers fields in general, they
have used traditionnally simpler ways of providing recoverability and high availability based on the persist-
ing technique. However, in this case they do not care about messages but in processed updates, therefore
the guarantees provided are lower. They usually adopt a primary–slave(s) configuration where the primary
state is transferred to slaves normally in an asynchronous way. For instance, MySQL [30] provides differ-
ent replication configurations which use a master binary log as source of information replication. For each
slave the master keeps track of the last position in the binary log that has been replicated, updating it after
the slave correct processing. In this case, as it can be seen, if the system has a high workload there is no
guarantee of having a complete copy in the slave leading to undesired inconsistencies.

5 Applicability
Besides recovery protocols, one of the basic building blocks in order to develop dependable applications
where state persistence was considered is consensus when unreliable failure detectors [5] are used and a
recoverable failure model is assumed. In that area, the first papers [12, 20] demanded state persistence in all
cases; the involved processes should remember which were their proposed or decided values. Later, such
a requirement was relaxed in [1] proposing new types of failure detectors (concretely, �Su). Indeed there
are some system configurations that allow to solve consensus even when no stable storage is available, but
these configurations are more restrictive (they demand that the number of processes that remain up –na– is
strictly greater than the number of “bad” processes –nb–; i.e., those that crash or are unstable) than those
demanded when stable storage can be used (where it is only required that na >

n
2 ). As a result, the usage of

a fast logging mechanism makes the consensus solutions more fault-tolerant. Note that from a pragmatic
point of view, saving process proposals in stable storage is equivalent to logging sent messages, whilst
saving the values decided by a process is also equivalent to logging a summary of the received messages.

Consensus is a problem equivalent to total-order (also known as atomic) broadcast. Thus, other papers
[35, 28] have also used stable storage in order to implement atomic broadcast in a recoverable failure
model.

According to [29] both consensus and total order should be taken as the basis in order to develop a
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reliable GCS with view-synchronous communication. So, the next step consists in considering persistence
in any layer of such GCS. As a result, in this paper we have assumed that messages were logged once they
had been received but prior to their delivery to the application process (see Section 2). To our knowledge,
the first paper suggesting this approach was [23], although it did not study the overhead implied by these
persisting actions that might be negligible if the appropriate persisting media is chosen, as we have seen in
Section 3. Such message logging is also able to provide a valid synchronisation point in order to manage
the start of the recovery procedure of recently joined processes. Unfortunately, in [23] only total-order
broadcasts were considered and this makes trivial to set such recovery starting point as many modern
replicated database recovery protocols [4, 36] have already shown. So, we have extended such logging
approach as described in [10] in order to define a Persistent Logical Synchrony (PLS) execution model that
introduces the following benefits:

• Since it requires (i) virtual synchrony, (ii) safe delivery and (iii) logging before delivery, all correct
processes agree on the set of messages delivered in a particular view, ensuring thus a valid synchro-
nisation point in order to start recovery procedures when a process re-joins the system. Indeed, if
a node fails once it has agreed the safe reception of a given message, but before it delivers such
message to its target process, it was at least able to persist such message. Later, when such node ini-
tiates its recovery it is able to deliver such logged message to its intended receiver, as it was logically
assumed by all other group processes.

• No message can be lost if a primary component model [6] and quasi-reliable channels are used. This
ensures progress [9] in a system of this kind, even when multiple failures arise, if more than a half
of the processes are eventually alive and at least one process is up in each pair of consecutive views.
If messages were not logged, progress could not be fulfilled in some cases, as it is illustrated in [9].

• Any kind of broadcast can be used, not necessarily total-order broadcasts (but the latter are still
needed in order to reach an agreement at the membership layer leading to a view change, although
they are not mandatory for regular broadcast communication that can use more relaxed semantics
[29]). We extend the contributions described in [23] to systems that do not require sequential con-
sistency [26]. For instance, our results still hold when causal or FIFO broadcasts are used, combined
with virtual synchrony. This still maintains the starting synchronisation points [10] to deal with
recovery procedures.

As a result, PLS is able to simplify a lot the recovery protocols needed for replication systems based on
relaxed consistency models. Some recent papers [15, 18] have suggested that data should be managed in a
relaxed way when scalability is a must. So, PLS matches perfectly such requirements.

6 Conclusions
Message logging has been a requirement in recoverable failure models for years in order to solve some
problems like consensus, but it has been always considered as an expensive effort. When such logging step
is implemented in a GCS providing virtual synchrony, the recovery tasks can also be simplified, even when
relaxed consistency models are used and each replica applies a given set of updates in an order different to
that being used in other replicas.

This paper analyses the costs implied by such logging tasks and it shows that they do not introduce a
noticeable delay when using a fast enough storage system. In fact, the transfer speed requirements of the
stable storage will depend on the communications load and the network bandwith. So, solutions based on
message logging, besides being needed from a theoretical point of view, can nowadays be implemented
without compromising performance in many practical settings.
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