
Parallel Interconnection of Broadcast Systems

with Multiple FIFO Channels

R. de Juan-Marı́n(1), V. Cholvi(2), E. Jiḿenez(3), F. D. Muñoz-Escóı(1)

(1)Inst. Tecnoĺogico de Inforḿatica (2)Depto. de Lenguajes y Sistemas Informáticos
Univ. Politécnica de Valencia Universitat Jaume I, Campus de Riu Sec

46022 Valencia (Spain) 12071 Castellón (Spain)

(3)Escuela Universitaria de Inforḿatica
Univ. Politécnica de Madrid, Ctra. Valencia, km 7

28031 Madrid (Spain)

rjuan@iti.upv.es, vcholvi@uji.es, ernes@eui.upm.es, fmunyoz@iti.upv.es

Technical Report ITI-SIDI-2009/005

R
.d

e
Ju

an
-M

arı́n
et

al
.:

P
a

ra
lle

lI
n

te
rc

o
n

n
e

ct
io

n
o

fB
ro

a
d

ca
st

S
ys

te
m

s
w

ith
M

u
lti

p
le

F
IF

O
C

h
a

n
n

e
ls

IT
I-

S
ID

I-
20

09
/0

05





Parallel Interconnection of Broadcast Systems with Multiple
FIFO Channels

R. de Juan-Marı́n(1), V. Cholvi(2), E. Jiḿenez(3), F. D. Muñoz-Escóı(1)

(1)Inst. Tecnoĺogico de Inforḿatica (2)Depto. de Lenguajes y Sistemas Informáticos
Univ. Politécnica de Valencia Universitat Jaume I, Campus de Riu Sec

46022 Valencia (Spain) 12071 Castellón (Spain)

(3)Escuela Universitaria de Inforḿatica
Univ. Politécnica de Madrid, Ctra. Valencia, km 7

28031 Madrid (Spain)

Technical Report ITI-SIDI-2009/005

e-mail: rjuan@iti.upv.es, vcholvi@uji.es, ernes@eui.upm.es, fmunyoz@iti.upv.es

August 6, 2009

Abstract

This paper proposes new protocols for the interconnection of FIFO- and causal-ordered broadcast
systems, thus increasing their scalability. They use several interconnection links between systems, which
avoids bottleneck problems due to the network traffic, since messages are not forced to go throughout a
single link but instead through the several links we establish. General architectures to interconnect FIFO-
and causal-ordered systems are proposed. Failure management is also discussed and a performance
analysis is given, detailing the benefits introduced by these interconnectionapproaches that are able to
easily increase the resulting interconnection bandwidth.

1 Introduction

There have been multiple papers [1, 4, 10, 13, 7, 2] that had devoted their attention to the interconnection
of message broadcast systems. Some of them [1, 4, 10, 13, 7] were focused on causal-ordered systems,
thus reducing both the size of the vector clocks [15] being used in the broadcast protocols and the amount
of needed messages (since smaller groups were used). Most ofthem have relied on either FIFO intercon-
nection links [1, 10, 7] or on causal broadcast among the interconnection servers [4].

The aim of such solutions is to enhance the scalability of theresulting broadcast mechanisms. Such
scalability might be needed in different current distributed applications, like P2P applications or the data
centres being used to implementcloud computingsystems.

Other scalability efforts have been focused on other aspects of causal communication, introducing some
principles that have guided the design of the interconnection solutions. One example is the usage of causal
separators [16] that divide the global system into causal zones (i.e., subgroups) and reduce the size of the
vector clocks needed for guaranteeing causal delivery. Another example is the solution described in [11],
that also interconnects previously existing systems and ensures causal delivery, but without requiring that
all messages were broadcast; i.e., point-to-point communication among different systems is also consid-
ered. To this end, such global system also relies on a set of causal servers, each one from a different
local system, and using vector clocks to ensure causal delivery in such set of servers, whilst system-local
communication does only rely on linear logical clocks or on physical synchronisation.

1



Network

application
process

application
process

application
process

application
process

application
process process

application

Interconnection System

Network Network

Broadcast
Service

process
IS IS

process

Broadcast
Service

BroadcastLocal

Service

Local Local Local
Broadcast Broadcast Broadcast
Service Service Service

Figure 1: Interconnection System.

Similar efforts can be found in order to interconnect FIFO-ordered systems [10, 2], although in such
case the interconnection is almost trivial, since it only depends on local information from the sender node.

However none of such papers has proposed any technique for increasing the usable bandwidth of such
interconnecting protocols, implementing some technique for using simultaneously several interconnecting
channels able to transmit multiple messages in parallel. Note that in most cases, each broadcast system is
deployed over a very fast LAN, whilst the interconnecting links are far slower. In the common case, we
might assume that such solution could be provided by the network layer, using multiple paths between each
pair of interconnected servers, and selecting an appropriate path per message in order to avoid congestion.
But this cannot be assumed in all scenarios. For instance, the set of data centres in a cloud computing
environment might use dedicated inter-centre channels; i.e., there will be a single path between each pair
of centres. Thus, we do not obtain any bandwidth improvementtrying to set up multiple logical paths in
such scenario. So, in some cases, a transport or application-level parallelisation of these interconnections
might enhance the overall system performance. This paper scans this alternative, providing interesting
results.

The rest of the paper is organised as follows. In Section 2, weintroduce our framework for the inter-
connection of message-passing systems. In Section 3, we show how to interconnect FIFO-ordered systems
by using several interconnection links between systems. InSection 4, we introduce the architecture with
which interconnect FIFO-ordered systems. Sections 5 and 6 repeat the same for causal-ordered systems,
whilst Section 7 describes how process failures can be managed. Finally, Section 8 provides a performance
analysis and in Section 9, we present some concluding remarks.

2 Model

In this paper, we use a model similar to the one in [2]. From a physical point of view, we consider distributed
systems made up of a set ofnodesconnected by acommunication network. The logical system we consider
consists ofprocesses(executed in the nodes of the system) which interact by exchanging messageswith
one another (using the communication network). The interface between the processes and the network has
two types of events [3]: by usingbc-sendi(m), processi broadcasts the messagem to all processes of the
system. Similarly, by usingbc-recvi(m), processi receives the messagem.

The basic broadcast service specification forn processes consists of sequences ofbc-sendi andbc-recvi
events,0 ≤ i ≤ n − 1. In these sequences, eachbc-recvi(m) event is mapped to an earlierbc-sendj(m)
event, every message received was previously sent, and every message that is sent is received once and
only once in each process. For the sake of simplicity, we alsoassume that any given message is sent once,
at the most. This assumption does not introduce any new restriction, since it can be forced by associating
a (bounded) timestamp with every send operation [9].

Following, we defineFIFO-orderedsystems, according to the ordering requirements of the broadcast
services they implement.

Definition 1. We say that a system isFIFO-orderedif, for all messagesm1 andm2 and all processespi

andpj , if pi sendsm1 before it sendsm2, thenm2 is not received atpj beforem1.

The definition ofcausally orderedsystems requires us to firstly introduce thehappens-before(denoted

2



with →) relation between messages. The important property of the happens-before relation is that it com-
pletely characterizes the causality relations between messages.

Given a sequence ofbc-sendi andbc-recvi events,0 ≤ i ≤ n−1, messagem1 is said tohappen-before
messagem2 if either:

1. Thebc-recvi event form1 happens before thebc-sendi event form2.

2. m1 andm2 are sent by the same process andm1 is sent beforem2.

Now, we define a causally ordered system as follows.

Definition 2. We say that a system iscausally orderedif for all messagesm1 andm2 and every process
pi, if m1 happens-beforem2, thenm2 is not received atpi beforem1 is.

We consider systems in which each message sent must eventually be received in every process of the
system. This is a very natural property (usually known asLiveness) which is preserved by every system that
we have found in the literature. In our terminology it means that for eachbc-sendi(m) event, abc-recvj(m)
event will eventually occur for every processj in the system.

Now, we define what we understand byproperly interconnectingseveral equally ordered systems.
Roughly speaking, this consists in interconnecting these systems (without modifying any of them) by using
an interconnection system(denotedIS), so that the resulting system behaves as a single one and preserves
the same ordering. Such an interconnection system is made upof a set ofinterconnecting system processes
(denotedIS processes) that execute some distributed algorithm or protocol. Eachof these processes re-
ceives all the messages broadcast in its system and can itself broadcast new messages received from the
interconnection link, but it cannot generate and broadcastnew messages on its own. More specifically, a
value broadcast by an application process in some system canonly be received by an application process
in another system if the interconnecting process of the latter system broadcasts it. The interconnecting
processes can communicate among themselves via message passing. However, they cannot interfere with
the protocol in their original local message-passing system in any way. Figure 1 presents an example of an
IS interconnecting two systems with the above-mentioned architecture and twoIS processes.

3 Interconnection of FIFO-Ordered Systems

By using the model introduced in the previous section, [2] provided a simple protocol to properly intercon-
nect FIFO-ordered systems. However, the aim of such a protocol was not focused on having a very efficient
protocol, but on proving that it is in fact possible to interconnect FIFO systems. Therefore, to interconnect
any pair of systems, the protocol used twoIS processes. Clearly, this could generate bottleneck problems,
since all messages must pass throughout the single link formed by this pair ofIS processes. Thus, this
raised the question as to whether it is possible or not to use severalIS processesper interconnected sys-
tem. In this section, we provide an interconnecting protocol for FIFO-ordered systems that uses severalIS
processesin each system.

First, we consider the case when there are only two systems. Later, we will consider the case of several
systems. Let us denote each of the FIFO ordered systems asSk (with k ∈ {0, 1}). The interconnecting
protocol consists of several processes, denotedispk

v (with k ∈ {0, 1} andv denoting theIS processwithin
systemSk), that are part of each of the two systems. Note that the number of IS processesmay be different
in S0 and inS1.

These interconnecting processes are only in charge of the interconnecting protocol. It is worthwhile
remarking that eachispk

v is part of the systemSk and, for that reason, can use the communication system
implemented inSk. Note also that the introduction of those processes does notrequire any modification
of the original systems. We consider that the set of processes in the resulting systemST includes all the
processes inS0 andS1, with the exception of theIS processes, which are only used to interconnectS0 and
S1.

Each ispk
v process executes two concurrent atomic tasks, namelyPropagate out(ispk

v ,m) and
Propagate in(ispk

v ,m) (atomicity is needed in order to avoid race conditions).

3



• Propagate out(ispk
v ,m) transfers the messagem issued by a process insetw(ispk

v) to Sk (we use
k to denote1 − k). Each process in systemSk (except for theIS processes) must be included in
one transfer set (associated with only oneIS process). Furthermore, the transfer of messages from
processes insetw(ispk

v) is performed to a singleIS processin Sk, denotedlinkw(ispk
v). However, an

IS processmay transfer messages to manyIS processesand receive transfers from many of them, but
they are not necessarily the same.

Bothsetw(ispk
v) andlinkw(ispk

v) are set up prior to running the protocol.

• Propagate in(ispk
v ,m) forwards the messages received fromSk to within Sk. Note that whenispk

v

receives a transfer, it performs the broadcast to the whole set of processes in systemSk, regardless
of the transfer sets these processes belong to.

Propagate out(ispk
v , m) :: task which is Propagate in(ispk

v , m) :: task which is
activated oncebc-recvispk

v
(m) is executed activated immediately after message

begin m is received fromSk

if m was sent by a process insetw(ispk
v) begin

then transferm to linkw(ispk
v) bc-sendispk

v
(m)

end end

Figure 2: The interconnecting protocol inispk
v

Fig. 2 shows the implementation of thePropagate out(ispk
v ,m) andPropagate in(ispk

v ,m) tasks.
It must be noted that the link between pairs ofIS processes, one in each system, needs to be FIFO-

ordered. However, nothing has been said about how to implement this. In a practical case, this channel
could be implemented in a number of ways, either by using shared memory or by using message passing.
Figure 3 shows an illustrative example of how transfer linksare established between two interconnected
FIFO systems. EachIS process ispkv is in charge of transferring the messages issued by processes in
setw(ispk

v) to systemSk. There are threeIS processesin systemS0 and twoIS processesin systemS1.
Both isp0

1
and isp0

2
transfer messages toisp1

1
, and isp0

3
transfers messages toisp1

2
. In turn, isp1

1
transfers

messages toisp0

1
andisp1

2
transfers messages both toisp0

2
andisp0

3
.

set1(isp
1
2)

S
1

isp0
1

isp0
3

isp0
2

set1(isp
0
1)

set1(isp
0
2)

set1(isp
0
3) isp1

2

set1(isp
1
1)

set2(isp
1
2)

isp1
1

S
0

Figure 3: Example of the interconnecting protocol for two systems.

The following theorem shows that the systemST , obtained by connecting any two FIFO-ordered sys-
temsS0 andS1 by using the above-mentioned interconnecting protocol, isalso FIFO ordered.

Theorem 1. Any two FIFO-ordered systems can be properly interconnected by using the protocol in Fig. 2.

Proof. By contradiction. Assume there are two messages,m1 andm2, sent in that order by, say, process
pi in systemS0. Now, assume they are received by, say, processpj in systemS1 in the reverse order.

4



SinceS1 is a FIFO-ordered system,m2 must have been sent by someIS processin S1 beforem1.
Therefore, since the two systems are connected by a FIFO-ordered communication channel, we have that
m2 must have been transferred by someIS processin S0 beforem1. This implies that, sinceS0 is a FIFO-
ordered system system,m2 must have been sent (bypi) beforem1. Thus, we reach a contradiction.

Note that the same interconnecting protocol can be used to properly interconnect any number of FIFO-
ordered systems. This can be easily shown by induction on thenumber of systems. LetST denote the
resulting system. Forn = 1 the claim is clearly true, sinceST = S0. For n = 2 it is immediate from
Theorem 1. Now, assume that we can obtain a FIFO-ordered systemS′ by properly interconnecting the
systemsS0, S1, ..., Sn−2. Then, from Theorem 1, we can properly interconnectS′ andSn−1 to obtain a
FIFO-ordered systemST .

Similarly to what happened with the interconnection protocol proposed in [2], our interconnecting
protocol should not affect theresponse timea process observes when issuing a broadcast operation, since
its broadcast protocol is not affected by the interconnection. The latency (i.e., the time until a broadcast
value is visible in any other process) is also the same.

However and contrary to the interconnection protocol proposed in [2], we can now avoid bottleneck
problems due to thenetwork traffic, since messages are not forced to go through a single link butthrough
the several links we establish.

4 An Architecture to Interconnect FIFO-Ordered Systems

In this section, we describe a general architecture to interconnect FIFO-ordered systems. Such an architec-
ture can be built following these steps:

Step 1: For each processp in systemSk, choose anIS processin systemSk. Call such a processisp(p).

Step 2: For eachisp(p), set up a series of paths to someIS processes, denotedpaths(p). A path is formed
by a series of subsequent FIFO-ordered links that connect a pair of IS processes. Such paths should
have only oneIS processper system they interconnect. Note that different paths (either from the
sameIS processor not) may share some of their links.

Step 3: Transfer the messages issued by processp (to other systems) by usingisp(p) throughpaths(p).

Step 4: When anIS processreceives a transfer, it broadcasts that message to every process within its own
system.

The correctness proof of the above-mentioned architectureis very similar to the proof of Theorem 1
(only S0 andS1 must be changed by two arbitrary pairs of systems, saySk andSk′

), and we omit it here.
Note that the protocol proposed in the previous section fits into the proposed architecture. However,

other interconnection protocols that adhere to the proposed architecture could be implemented. Fig. 4
shows an illustrative example with four systems and three different ways of interconnecting them. In
the example, we show the case where threeIS processesin systemS0 (denotedisp0

1
, isp0

2
and isp0

3
) are

respectively used to transfer the messages issued by processesp, q andr in S0 (i.e., isp(p) = isp0

1
, isp(q) =

isp0

2
and isp(r) = isp0

3
). As can be seen,isp0

1
sets up three links directly toisp1

1
, isp2

1
and isp3

2
(in red).

Moreover,isp0

2
establishes a link toisp2

1
; then, this one establishes another link toisp1

2
, and this one to

isp3

2
(in black). Finally,isp0

3
establishes a link toisp3

1
; then, this one establishes two links, one toisp2

1
and

another one toisp1

2
(in blue).

5 Interconnection of Causal-Ordered Systems

Contrary to what happens with totally ordered systems, thatcan not be interconnected in any way [2]1,
and similar to what happens with FIFO ordered systems, causally ordered systems can always be prop-

1This result does not contradict theFIFO forwardingtheorem of [10] that states that total order systems can be interconnected with
a FIFO total order interconnecting protocol, since such a protocol needs to be intrusive; i.e., it needs to modify the regular behaviour
of the local total order protocol in each system, and such degree of intrusiveness is not allowed in our system model assumptions.

5



r

isp3
1

S
2

S
0

S
3

isp1
1

S
1

isp1
2

isp3
2

isp0
2

isp0
1

isp0
3

p

q

isp2
1

Figure 4: Example of the architecture to interconnect FIFO-ordered systems.

erly interconnected. As in the case of FIFO ordered systems,in order to avoid bottleneck problems it
would be interesting to design an interconnecting protocolthat uses severalIS processesat each system.
Unfortunately, the next theorem shows than in causally ordered systems this is not possible.

Theorem 2. Any two causally ordered systems cannot be properly interconnected if there is more than one
IS process at each system, and such IS processes are not coordinated.

Proof. By contradiction. Let us now assume the existence of a protocol that properly interconnects two
causally ordered systemsS0 andS1 such that there are two IS processesisp0

1
andisp0

2
in S0 (not coordi-

nated in any form) and two IS processisp1

1
andisp1

2
in S1 (not coordinated in any form).

Assume that a processi in S0 issues messagem. Let isp0

1
theIS processthat will transfer such message

to isp1

1
. Now, consider a processj in S0 that receives messagem and after it, issues messagem′ that will

be transferred, by means ofisp0

2
, to isp1

2
.

It could happen thatisp0

2
transfers messagem′ to isp1

2
beforeisp0

1
transfers messagem to isp1

1
. If isp1

2

sends messagem′ before isp1

1
sends messagem, it could happen that some process inS1 receivesm′

beforem. This breaks causality and we reach a contradiction.

As a consequence of this theorem, if we want to interconnect causally ordered systems we are forced
to use only oneIS processper system (there are multiple samples of such protocols [10, 4, 13, 11, 2]), or
to coordinate in some way suchIS processes. Let us explore this second alternative.

As shown in the proof of Theorem 2, when multiple interconnection links are used, we need to guaran-
tee that causally related messages are delivered in the destination system in the appropriate order. Concur-
rent messages do not introduce any problem, they can be delivered without any constraint. At a glance, the

6



resulting interconnecting protocol should take care of ensuring an appropriate delivery order for causally
related messages.

Most causally ordered interconnection protocols based on asingleIS processper system simply relied
on a single FIFO link in order to implement the interconnection [10, 4, 2] of two causal systems. If multiple
IS processesare used, with multiple interconnection links, we might ensure that all such links deliver all
forwarded messages in a global FIFO order (i.e., the messages are delivered in the receiver system in the
same order they were sent from the sender system). This trivially ensures that the semantics of Theorem 2
are maintained, and also complies with theFIFO forwardingtheorem of [10].

In order to comply with this requirement, the interconnection protocol presented in Section 3 is taken
as a basis and is extended in the following way:

1. In each systemSk, one of itsIS processesis selected as a sequencer with a deterministic criterion;
e.g., that with the lowest node identifier. Let us nameispk

seq suchIS process. It maintains the number
of broadcast messages, in a local variableseq num, and it will assign a sequence number to each
message broadcast by such system. This follows the same principle described in [5] in order to
implement the Isis ABCAST protocol (with causal total orderguarantees) on top of its CBCAST
one (with reliable causal delivery). But there is a big difference in our approach. We do not want to
extend the underlying causal broadcast protocol being usedin the local system. Instead of this, we
will tag with such sequence numbers the messages being forwarded by theIS processes; i.e., such
sequence numbers are internally maintained in the interconnecting protocol, and they are completely
unknown in the causal broadcast protocols being used in eachinterconnected system.

2. When a messagem sent by any processpk
i of the local system is delivered in its associatedIS process

(i.e.,isp(pk
i )), suchisp(pk

i ) waits untilispk
seq sends toisp(pk

i ) the appropriate sequence number for
m; i.e., sn(m). Oncesn(m) is known,isp(pk

i ) sends〈m, sn(m)〉 through its interconnection link
to Sk.

3. In the systemSk that plays the receiver role form, all IS processesalso need to maintain a local
variablereceived that accumulates the amount of received messages fromSk. To this end,received

was initialised to zero, and it is increased each time a message being sent by anyispk
x is delivered.

4. Once〈m, sn(m)〉 is received by its associatedispk
j , such process will causally broadcastm in Sk

as soon assn(m) = received + 1 holds inispk
j . This ensures FIFO global delivery of all messages

forwarded through all interconnection links betweenSk andSk, but they can be propagated in a
parallel way, so the bandwidth of such system interconnection can be greatly enhanced.

The resulting interconnecting protocol is summarised in Figure 5, as a set of four atomic concurrent
tasks.

Sequence out(ispk
seq, m) :: task which is Receive(ispk

v , m) :: task activated
activated oncebc-recvispk

seq
(m) is executed oncem is received from anyispk

j

begin begin
sn(m) =++seq num received++
send〈id(m), sn(m)〉 to isp(sender(m)) end

end
Propagate out(ispk

v , m) :: task which is Propagate in(ispk
v , 〈m, sn(m)〉) :: task

activated oncebc-recvispk
v
(m) is executed activated once message〈m, sn(m)〉

begin is received fromSk

if m was sent by a process insetw(ispk
v) begin

then wait for receiving〈id(m), sn(m)〉 wait until sn(m) =received+1

transfer〈m, sn(m)〉 to linkw(ispk
v) bc-sendispk

v
(m)

end end

Figure 5: The interconnecting protocol inSk

7



The following theorem shows that the systemST , obtained by connecting any two causal-ordered
systemsS0 andS1 by using this interconnecting protocol is also causal-ordered.

Theorem 3. Any two causal-ordered systems can be properly interconnected by using the protocol in Fig.
5.

Proof. By contradiction. Assume there are two messagesm1 andm2 sent in systemS0 and verifying that
m1 → m2. Now, assume they are received by, say, processpj in systemS1 in the orderm2 < m1.

Due to taskSequence out in S0, it is guaranteed by the interconnecting protocol that ifm1 → m2

thensn(m1) < sn(m2). Due to tasksReceive andPropagate in in S1, no process inS1 will be able
to deliverm2 beforem1 sincePropagate in compels that theisp1

v process that receivesm2 does not
broadcast such message inS1 until it has deliveredm1 (due to their sequence numbers order, and the
management of variablereceived in both tasks). If so happens,m1 → m2 also holds inS1 and no process
can break such causal order, since it is assumed thatS1 is a causal broadcast system. As a result, allS1

processes deliverm1 before deliveringm2 and this raises a contradiction with the assumption given inthe
previous paragraph, proving thus the theorem.

6 An Architecture to Interconnect Causal-Ordered Systems

The interconnecting protocol presented in Sect. 5 is able tointerconnect two causal systems. Such in-
terconnection mechanism could be easily extended to multiple causal systems. Thus, if there is a set of
causal systems{So, S1, ..., Sn−1} that have been interconnected in order to achieve a global causal-order
systemST , then we can interconnect another systemSn by setting one or several interconnecting links
between itself and one of the systems that belong toST . Note that in case of setting multiple links, such
links can not be set with differentSi, Sj systems ofST since this will define cycles in the resulting global
system. When a cycle exists, there will be at least two different paths for connecting two different nodes
(i.e., causal-ordered subsystems) in such global system. If two paths are available in order to interconnect
two different systemsSn andSj , Theorem 2 arises again, and the implicit coordination between theIS
processeschosen in the sending system (e.g.,Sn) disappears, since each message travels along a different
path and the sequence numbers of two causally related messages inSn is not maintained in the receiver
systemSj . Note that in order to preserve such dependencies in the sequence numbers all messages should
be forwarded along the same path.

These constraints can be formalised in the following Lemma and Theorem.

Lemma 1. Given a set of N causal systemsST = {So, S1, S2, ..., Sn−1} interconnected in pairs with
the interconnecting protocol shown in Fig. 5,ST is properly interconnected if it does not contain any link
cycle.

Proof. By contradiction. Let us assume thatST is a causal-ordered global system and that there exists a
cycle inST , and that at least two of its systemsSi andSj belong to such cycle. If so happens, there are at
least two different FIFO pathspath1 andpath2 for interconnectingSi andSj . At least one of such paths
has a length greater than one link. Note that otherwise both paths would have been the same (a single link
connecting directlySi andSj).

Let us assume that processes inSi have sent two different messagesm1 andm2 causally related in the
following way m1 → m2. So,m1 is forwarded toSj beforem2, but using a different path. For instance,
m1 was forwarded alongpath1 whilst m2 was alongpath2. Since both paths are FIFO ordered, but they
are not coordinated in order to ensure a global causal order (recall that such coordination was ensured for
a single link, but not for different paths of multiple links that have traversed through different systems), it
is possible thatm2 be delivered inSj beforem1 is delivered. This breaks the causal order, and contradicts
the initial assumption ofST being a causal global system. Thus, this proves the lemma.

Theorem 4. n causal-ordered systemsS0, S1, ..., Sn−1, can be pair-wise interconnected with our causal
IS protocol to obtain a systemST that is also causal-ordered.

8



Proof. We use induction onn to show the result. Forn = 1 the claim is trivially true. Then, if we have
a causal-ordered systemS′ by interconnecting systemsS0, S1, ..., Sn−2, then we can interconnectS′ and
Sn−1 in a pair-wise manner following both Theorem 3 and Lemma 1, and the resulting systemST is
causal-ordered, proving this theorem.

7 Fault Tolerance

The interconnecting protocols previously outlined can easily tolerate failures. Note that most recover-
able applications (e.g., replicated databases [12]) demand uniform [8], stable[5] or safe[6] delivery for
broadcast messages. This means that a message is not delivered until the group communication system
can ensure that it has been received by all message target processes2. Moreover, such message can not be
“garbage recycled” in the sender process until such stable delivery is ensured. In [4], such uniform delivery
is also taken as the key principle in order to achieve fault tolerance.

The rules to follow are these:

• An IS processispi
v does not report the uniform delivery of a messagem broadcast in its systemSi

until it gets a uniform confirmation from all otherIS processesispj
w to which it previously forwarded

m.

• A messagem that has been forwarded to a systemSj is reported as uniform in such systemSj

following the regular protocol being used inSj . This means that the receivingIS processispj
w

knows about such message uniformity at that time, and needs to report such issue to its senderispi
v

once this step is completed.

• If such receivingispj
w fails, it will be replaced by another process inSj that will play suchisp role.

Two different scenarios arise:

– The oldispj
w was able to broadcast all messages received fromispi

v. If so happens, the new
ispj

w will be able to report such messages as uniform, using the regular protocols ofSj . No
problem arises in this case.

– The oldispj
w failed before being able to broadcast all messages receivedfrom ispi

v. If so hap-
pens, systemSj does not know anything about such messages and the newispj

w will be unable
to report any of such messages as uniformly delivered. If so happens,ispi

v will forward again
such unreported messages to (the new)ispj

w process, once a given time-out is exhausted. More-
over, in case of interconnecting causal systems, the otherIS processesin Sj will be blocked
waiting for the delivery of those missed messages, and they will be able to tell such newispj

w

which were thesn(m) of such messages. So,ispj
w will be able to askispi

v for the messages
associated to thosesn(m).

- If one of the forwardingispi
v nodes crashes, a newispi

v process will be created. If there were some
forwarded messages not yet reported as uniform, such newispi

v process knows which were such
messages and it forwards them again and resets their time-outs. So, such messages are appropriately
managed.

These rules avoid any message loss, and uniform delivery ensures that all broadcast messages are
eventually delivered to all their destination processes. So, node failures are easily overcome.

8 Performance Analysis for Causal-Ordered Systems

The usage of FIFO interconnecting links in order to implement interconnection protocols for two causal
and/or FIFO broadcast systems have been previously proposed in several papers [10, 13, 2]. Note also that

2In modern systems, this constraint is relaxed: the message can be delivered as soon as it is received and complies with the
intended order semantics. Later on a uniform/stable/safe notification is delivered to the receiver process, indicating that such message
delivery is already uniform/stable/safe.

9



the daisy architecture described in [4] also becomes a single FIFO link when only two causal systems need
to be interconnected.

However, none of such papers explored the alternative of using more than oneIS processper system.
In most cases, the intra-system links will be far more efficient than the inter-system ones. Imagine, for
instance that each system is deployed in a given laboratory or enterprise site, using a fast LAN (e.g., SCI has
a bandwidth of 20 Gbps, and there are also 10Gb Ethernet LANs nowadays, with delays far below one ms in
both cases), whilst inter-system links might have the regular bandwidth and delays of a WAN (less than 100
Mbps of bandwidth and more than 50 ms of delay, in most cases).As a result, the interconnecting protocols
and links could be easily overloaded using a negligible workload in the systems being interconnected, since
the latter are two orders of magnitude faster than the former. So, the parallelisation of such interconnections
is able to multiply the resulting bandwidth without increasing the transmission delays. Such benefit is
directly applicable to the protocol described in Sect. 3. Itdoes not need any further analysis, since the
interconnecting protocol does not demand any synchronisation among theIS processesof the systems
being interconnected.

Let us concentrate in the analysis of the causal interconnection protocol described in Section 5, assum-
ing that only two causal-ordered systems need to be interconnected. To this end, the following parameters
are needed:

• n isps: Number ofIS processesin the sender system; i.e., number of interconnection linksbeing
used. Since there is a single sequencer process needed for synchronising allIS processesof such
sender system, and such synchronisation requires a single additional message in some cases (when
theIS processthat forwards the message is not the sequencer), we need thisparameter in order to set
the probability of requiring such extra message.

• ibw: Intra-system bandwidth (in Mbps).

• id: Intra-system message transmission delay (in seconds).

• sr: The average sending rate at one broadcast system; i.e., thenumber of messages sent per time unit
(in seconds).

• ms: Message size, in Mb (megabits). So, the productsr × ms is an expression that provides the
required bandwidth (in Mbps). So, the following should be ensured:

sr <
ibw

ms
(1)

• ebw: Inter-system link bandwidth (in Mbps). This parameter sets an important constraint in the
global system, since the interconnection will usually be the bottleneck of such system. Such con-
straint is:

sr <
ebw × n isps

ms
(2)

• ed: Inter-system message transmission delay (in seconds).

Using such parameters, sections 8.1 and 8.2 evaluate the optimal number of interconnecting links and
compare the performance of our parallelised interconnection with the daisy architecture proposed in [4],
respectively.

8.1 Optimal Number of Links

In order to find out which is the optimal number of interconnecting links, let us explore the time needed for
broadcasting a message in the whole system and how such time depends on the number of links. Thus, the
implementation of a global causal-ordered broadcast only needs a system-local reliable broadcast protocol
complemented with tagging all messages with vector clocks and considering such clocks in the delivery

10



step. Such kind of protocol [5] can be implemented using a single round of messages; i.e., if there aren

nodes in a system, onlyn − 1 messages are needed.
Once each message is delivered in its associatedIS process, such process needs to wait for the sequence

number that should tag such message. This sequence number issent by the sequencer process using a point-
to-point message. Note, however, that the sequencer is alsoan IS process. So, this additional message is
only needed with a probability of1 − 1

n isps
. Moreover, such message is smaller than all other messages

considered in the next expressions, requiring thus a smaller transmission time. However, we have not
considered such issue in those expressions.

Later, the message is forwarded through the interconnection link and re-broadcast in the receiving
system. This implies, again, a single round of messages. So,if no additional workload is considered, the
minimal time needed for receiving a message broadcast by systemSi in a node of systemSj (trans time)
is:

trans time =

(

3 −
1

n isps

)

×
(

id +
ms

ibw

)

+
(

ed +
ms

ebw

)

(3)

Thus, with a negligible workload, the optimal number ofIS processesper system is 1, since this elimi-
nates the need of a synchronisation (intra-system) message(i.e., that carrying the sequence number), as it
can be seen in expression (3).

However, when workload is considered, we could use a queueing model [14] in order to represent such
system, but as it is already mentioned in [14, Chapter 5], in aqueueing network we only need to identify
its bottleneck centre in order to set upper bounds to the global system throughput. In our system, and with
the assumptions given above, such bottleneck centre is the interconnecting channel. In the best case, the
bandwidth of the interconnecting links could be the same as the internal bandwidth of each interconnected
system; i.e., constraints (1) and (2) generate the same thresholds whenn isps is 1. If so happens, the
optimal number of senderIS processeswill be one, as seen above in (3). Otherwise, we need to set as many
interconnecting links as given by expression (4):

n isps =

⌈

ibw

ebw

⌉

(4)

Note that bothid anded are modeled as “delay centres” [14]; i.e., a link can be shared by multiple
messages being forwarded along it, and we do not need a queue in order to model such delay. As a result,
they do not appear in expression (4), where only queueing servers need to be considered. Indeed, such
queueing centres are modelling the bandwidth of each kind oflink. They have a service demand ofms

ibw

seconds in the intra-system communications andms
ebw

seconds in the inter-system links. This explains how
expression (4) is derived: its target is to balance the serving time of both kinds of servers, and this can be
achieved increasing the number of interconnecting links.

8.2 Comparison with Other Solutions

To our knowledge, no other paper has proposed a parallelisedinterconnection of causal-ordered broadcast
systems. However, the technique described in [4] can be considered as a close approach. Despite propos-
ing a single interconnecting server for each existing system, it recommends that systems were split into
multiple subsystems when they have grown excessively. So, this is an indirect way of introducing multiple
interconnecting servers in each original system. Moreover, this provides the advantage of reducing the
size of the vector clocks being used in each subsystem for their local broadcasts. In order to implement
the global interconnection, the daisy architecture buildsan upper-layer causal-ordered system composed
by the interconnecting servers of all broadcast systems. Each time a message is broadcast in one of the
systems, its interconnecting server re-broadcasts such message to all other interconnecting servers, who
broadcast again such message to all nodes in their respective systems. So, such global broadcast consists
of three different causal broadcast interactions.

Let us compare the daisy architecture with our solution described in Sect. 5. To this end, let us assume
a global system where there are initially two causal-ordered broadcast systemsS0 andS1, with 3n nodes
each one. The intra-system bandwidth and link delays areibw andid, respectively, whilst the inter-system

11



bandwidth and link delays areebw anded, respectively. We also assume thatibw > ebw andid < ed.
Due to the size of such systems, each of them has been divided into three sets ofn nodes per set using
our approach, or into three separate new systems (S00, S01, S02, andS10, S11, S12) using the daisy
architecture, again withn nodes per system.

In such scenario, the broadcast of a messagem sent inS0 with our solution implies:

• 3n − 1 messages in order to broadcast such message intoS0.

• One additional message (in the worst case) in order to assigna sequence number to such message
and notify it to the associatedIS process.

• One inter-system message through the interconnecting link.

• 3n − 1 messages in order to broadcastm into S1.

Globally, this has required6n−1 messages (that might be6n−2 if the isp being used inS0 is also the
sequencer process) transmitted through intra-system links and one single message traversing inter-system
(and slower) links. Additionally, it has required three hops in the best case, or four, in the worst one.

On the other hand, with the daisy architecture, such broadcast needs these messages:

• Let us assume that the sender of messagem belongs toS00. It requiresn − 1 messages in order to
broadcastm into such system.

• As a result,m can be broadcast in the system composed by all interconnecting servers of the six
newly created broadcast systems. Five messages are needed to this end. Two of such messages
forwardm to other systems that initially belonged toS0. So, they are fast messages. On the other
hand, the other three need to use the assumed slow interconnecting links.

• Into each system,n− 1 messages are needed to locally re-broadcastm. Since there are five systems
of this kind,5n − 5 messages are needed in this step.

At the end, this architecture needs the same global amount ofpoint-to-point messages; i.e.,6n − 1
messages. But in our approach, only one of such messages needto use the slow links, whilst in the daisy
architecture, three messages have been forwarded through such links. This implies that with additional
workload, such slow interconnecting links will be saturated sooner using the daisy approach. If the differ-
ence between the original intra-system and inter-system bandwidths is important, our solution guarantees
better scalability than a daisy architecture.

On the other hand, the daisy architecture needs only three logical hops to broadcast a message between
different systems, whilst our approach might need four logical hops in some cases. However, using our
solution only one hop is needed into each of the initial systems S0 andS1 in order to locally broadcast
a given message, whilst the daisy architecture introduces also three hops between processes located in
different parts of such original systems.

9 Conclusions

In this paper, we have studied the interconnection of broadcast systems that are either FIFO or causally
ordered. We have provided interconnection protocols that can use several interconnection links between
systems, which avoid bottleneck problems due to the networktraffic, since messages are not forced to
go through a single link but throughout the several links we establish. Furthermore, we have proposed a
general architecture with which to interconnect multiple broadcast systems. The usage of multiple inter-
connection links is specially convenient when scalabilityis a must and such interconnection links provide
a limited bandwidth (compared to that of intra-system links).

12



References

[1] N. Adly and M. Nagi. Maintaining causal order in large scale distributed systems using a logical
hierarchy. InProc. IASTED Int. Conf. on Applied Informatics, pages 214–219, 1995.

[2] Ángel Álvarez, Sergio Aŕevalo, Vicent Cholvi, Ernesto Jiḿenez, and Antonio Fernández. On the
interconnection of message passing systems.Information Processing Letters, 105(6):249–254, 2008.

[3] Hagit Attiya and Jennifer Welch.Distributed Computing Fundamentals, Simulations and Advanced
Topics. McGraw Hill, 1998.

[4] Roberto Baldoni, Roberto Beraldi, Roy Friedman, and Robbert van Renesse. The hierarchical daisy
architecture for causal delivery.Distributed Systems Engineering, 6(2):71–81, 1999.

[5] Kenneth P. Birman, André Schiper, and Pat Stephenson. Lightweight causal and atomic group multi-
cast.ACM Trans. Comput. Syst., 9(3):272–314, 1991.

[6] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a com-
prehensive study.ACM Comput. Surv., 33(4):427–469, 2001.

[7] Antonio Ferńandez, Ernesto Jiḿenez, and Vicent Cholvi. On the interconnection of causal memory
systems.J. Parallel Distrib. Comput., 64(4):498–506, 2004.

[8] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullender, editor,
Distributed Systems, chapter 5, pages 97–145. ACM Press, 2nd edition, 1993.

[9] Sibsankar Haldar and Paul M. B. Vitányi. Bounded concurrent timestamp systems using vector clocks.
Journal of the ACM, 49(1):101–126, 2002.

[10] Scott Johnson, Farnam Jahanian, and Jigney Shah. The inter-group router approach to scalable group
composition. InIntnl. Conf. on Distr. Comp. Syst. (ICDCS), pages 4–14, Austin, TX, USA, June
1999. IEEE-CS Press.

[11] Satoshi Kawanami, Tomoya Enokido, and Makoto Takizawa. A group communication protocol for
scalable causal ordering. In18th Intnl. Conf. on Adv. Inform. Netw. and Appl. (AINA), pages 296–302,
Fukuoka, Japan, March 2004. IEEE-CS Press.

[12] Bettina Kemme, Alberto Bartoli, and̈Ozalp Babaoglu. Online reconfiguration in replicated databases
based on group communication. InIntnl. Conf. on Dependable Systems and Networks (DSN), pages
117–130, G̈oteborg, Sweden, July 2001. IEEE-CS Press.

[13] Philippe Laumay, Eric Bruneton, Noel De Palma, and Sacha Krakowiak. Preserving causality in a
scalable message-oriented middleware. InIFIP/ACM Intnl. Conf. on Distr. Syst. Platforms (Middle-
ware), pages 311–328, Heidelberg, Germany, November 2001.

[14] Edward D. Lazowska, John Zahorjan, G. Scott Graham, andKenneth C. Sevcik.Quantitative System
Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., 1984.

[15] Friedemann Mattern. Virtual time and global states of distributed systems. In M. Cosnard et al., editor,
Proc. Workshop on Parallel and Distributed Algorithms, pages 215–226, North-Holland / Elsevier,
1989. (Reprinted in: Z. Yang, T.A. Marsland (Eds.), ”GlobalStates and Time in Distributed Systems”,
IEEE, 1994, pp. 123-133.).

[16] Luı́s Rodrigues and Paulo Verı́ssimo. Causal separators for large-scale multicast communication. In
Intnl. Conf. on Distr. Comp. Syst. (ICDCS), pages 83–91, Vancouver, Canada, May 1995. IEEE-CS
Press.

13


