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Abstract

A prioritized atomic multicast protocol allows an application to tag messages witha priority that
expresses their urgency and tries to deliver first the ones with a higher priority. For instance, such a
service can be used in a database replication context, to reduce the transaction abort rate when integrity
constraints are used. We present a study of the three most important and well-known classes of atomic
multicast protocols in which we evaluate the cost imposed by the prioritization mechanisms, in terms of
additional latency overhead, computational cost and memory use. Thisstudy reveals that the behavior
of the protocols depends on the particular properties of the setting (number of nodes, message sending
rates, etc.) and that the extra work done by a prioritized protocol does not introduce any additional la-
tency overhead in almost all of the settings evaluated. This study is also a performance comparison of
these classes of total order protocols and can be used by system designers to choose the proper prioritized
protocol for a given setting.

KEYWORDS: Broadcast protocols, atomic broadcast, total order broadcast, priority management

NOTE: This report supersedes the previous TR-ITI-ITE-08/17 report.

1 Introduction

A group communication service (GCS) is a middleware component that provides a set of services that can
be used as building blocks to design and build distributed systems. A GCS usually offers an atomic (i.e.,
total order) multicast message delivery service which enables an application to send messages to a set of
destinations such that they are delivered in the same order to each destination. Group communication and
total order topics have been studied for more than two decades from both a theoretical [4, 6] and a practical
[3, 7, 12, 1] point of view. A useful additional guarantee a GCS may offer is priority-based delivery
[16, 15, 13], which allows a user application to prioritize the sending and delivery of certain messages.

Such a service can be used in a scenario like the following. Consider an application that runs on top
of a database replication system and is physically distributed among several sites. Such systems usually
follow a constant interactionmodel [18], according to which, updates made by a transaction are broadcast
in total order to all the database replicas at the end of the transaction, using a single message. The order
in which a set of messages corresponding to different transactions are delivered by the replicas determines
the final order in which a set of transactions are applied to the database. This order has a deep impact on
the evaluation of the integrity constraints defined in the database. The idea is to alter the order in which
transactions are committed for achieving a favorable constraint evaluation, thus reducing the transaction
abort rate. Note that the database replication protocol is able to know which database tables and fields
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have been accessed by a given transaction, and it is able to use such information for assigning priorities.
To do so, the replication protocol should be also aware of thesemantic integrity constraints defined in the
database schema. MADIS [8] is an example of database replication middleware where all these issues can
be managed. A transaction implementation based on stored procedures is another alternative for providing
all the information needed by the replication protocol in order to assign priorities (accessed tables and
fields, values being used in the updates, etc.).

Non-prioritizing total order broadcast policies have beenwidely studied, while, as far as we know, only
a few studies exist for priority-based protocol variants. In [15] and [13], two priority-based total order
protocols are presented. Low priority messages may suffer starvation if too many high priority messages
are sent. The problem of message starvation is dealt with specifically in [14]. In [2, 17] another common
problem of this kind of protocols, known aspriority inversion, is addressed.

We studied recently atomic multicast prioritization from both a theoretical and a practical point of view.
In [11] we presented some techniques to modify existing total order broadcast protocols to take into account
message priorities. We also showed how these techniques canbe applied to existing total order protocols
and identified which technique is the most suitable for each of the classes of total order broadcast protocols
presented in [6]. Then, in [10] we proved that total order prioritization is able to reduce transaction abort
rates in replicated databases, thus showing the utility of atomic multicast prioritization. In this paper we
show that atomic multicast prioritization techniques do not impose a significant overhead on the latency
of the multicast messages. As a result, this reinforces the usefulness of this approach, since its advantages
proved in [10] do not introduce any performance degradation.

The paper is organized as follows. In Section 2 we describe the system we use in this experimental
work. In Section 3 we present some experimental work we have done to show that the overhead added by
the prioritization techniques is not significant. Finally,we conclude the paper in Section 4. Sections 1 to
4 are included in a paper that we are going to send to a conference. In Appendix A we include additional
results that could not be included in that paper, due to spacelimitations.

2 System Description

The system is composed of a set of processes that communicatethrough message passing. Each process
has a multilayer structure, whose topmost level is a user application that accesses a replicated DBMS,
which in turn uses the services offered by a group communication system. The latter is composed of one
or more group communication protocols, which use the underlying network’s services to send and deliver
messages. In Section 3.1 we provide additional informationrelated to the physical environment we used.

Processes run on different physical nodes and the drift between two different processors is not known.
The time needed to transmit a message from one node to anotheris bounded but the bound is unknown.
In practice, the system does not need more synchrony than that offered by a conventional network which
offers a reasonably bounded message delivery time. Processfailures and network partitions may occur.
However, since we are focusing on the comparison of prioritization techniques, we do not address failure
handling (which can be realized by mechanisms such as group membership services and fault-tolerance
protocols).

3 Experimental Work

In this section, we present the experimental work we have done to observe the performance of the total
order protocols and evaluate the cost overhead of their prioritized versions. First of all, we describe the
testbed, including the physical setting. Then, we describethe parameters and the methodology used to run
the tests and finally we present and discuss the results.

3.1 Testbed

To evaluate the prioritization techniques, we implementedthree total order protocols: a sequencer-based,
a privilege-based and a communication history one. We also implemented their corresponding prioritized
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versions, according to the techniques proposed in [11]. To analyze the performance of the total order
protocols, we use a test application that uses the services of a total order protocol which in turn uses a
reliable transport layer.

The experiments have been conducted in a system of eight nodes with an Intel Pentium D 925 proces-
sor at 3.0 GHz and 2 GB of RAM, running Debian GNU/Linux 4.0 andSun JDK 1.5.0. The nodes are
connected by means of a 24-port 100/1000 Mbps DLINK DGS-1224T switch that keeps the nodes isolated
from any other node, so no other network traffic can influence the results.

3.2 Methodology

To evaluate the performance of the prioritization techniques, in each node, the application broadcasts a
series of messages to all the nodes in the system, by means of atotal order protocol. The messages are
broadcast at a uniform sending rate which is constant duringthe whole test. As explained below, we have
performed tests with different sending rates. Besides this, we have no other flow control mechanism neither
in the application nor in the total order protocols.

Each message is tagged with a uniformly-distributed randompriority which is an integer number. As
discussed later, prioritized total order protocols use this value to prioritize the delivery of some messages
over others.

The length of the messages is not fixed, but depends on the headers saved in them by the total order
protocols. Nevertheless, in all the cases it is less than theMTU of the network we are using (1500 bytes),
so all the application messages fit into one wire-level packet.

Each message is totally ordered and delivered by all the nodes in the system. To evaluate the perfor-
mance of a given protocol, we measure thedelivery timeof each message, i.e., the time observed by the
application in a given node, between the moment in which it broadcasts the message and the moment in
which it receives back the message, once totally ordered.

For each message we have a delivery time and for each node we have a series of delivery times, cor-
responding to all the messages sent by that node. If we merge all the delivery times from all the nodes,
we can compute a global mean and median delivery time. Such a mean (median) time expresses the mean
(median) time needed by messages to get totally ordered.

This test is run with different total order protocols and also with their corresponding prioritized versions.
With these values we analyze the dispersion of the series of delivery times. A significant difference between
the mean and the median values, especially when the median islower than the mean, implies that there is
a number of (low priority) messages that have a high deliverytime, which means that the prioritization
mechanism is working as expected and has been able to prioritize a number of messages. Nevertheless,
the mean value of the test should not exceed some bound. An excessively high value for the mean delivery
time implies that too many messages are being delayed and this delay is extending their delivery times. In
this case we say that the protocol becamesaturated.

In order to get more trustworthy results, we discard the first3200 messages1 recorded in each node.
These values correspond to delivery times of messages delivered during a period of time in which the total
order protocol is being initialized so the system is not yet in a steady-state regime.

During the execution of these tests we also analyzed two additional indicators: a) the processing time
employed by the prioritization mechanisms and b) the memoryuse. In Section 3.4 we provide additional
details.

3.3 Parameters

The considered parameters are the class of total order protocol, the number of nodes and the sending rate
at which the test application broadcasts messages. These are described in the following subsections. We
also include a discussion about the number of messages to be delivered by each node.

1This number has been chosen empirically, after analyzing the behavior of the data structures managed by the total order protocol
implementations.
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Protocol type. We have implemented three non-prioritized total order protocols and a prioritized version
for each. TheUB protocol is an implementation of the UB sequencer-based total order algorithm proposed
by [9]2. TheTR protocol implements a token ring-based algorithm. It is similar to the ones of [12] and
[1] and theTR protocol implemented in [11] but there is a significant difference. In theTR protocol,
when a node receives the token, it broadcasts just a message,as in [5], instead of broadcasting a number of
messages, as in [12] and [1]. Finally, theCH protocol is an implementation of the causal history algorithm
in [6].

The corresponding prioritized versions areUBprio, TRprio andCHprio, respectively. They have been
implemented according to thepriority sequencing, priority sendingandpriority deliveringtechniques pro-
posed in [11], respectively.

Number of nodes. The application has been run with 4 and 8 nodes, each node running in a different
physical node of the cluster.

We decided not to evaluate bigger systems for several reasons. First of all, we must consider our base
context. The system is a replicated database environment and our final goal is to have proper tools that ease
data replication and offer a high degree of data availability. In such a context, the use of more than three or
four data node replicas is questionable. On the other hand, scalability is not a concern of this paper. We are
only interested in the overhead being introduced by the prioritization techniques and such overhead does
mainly depend on the behavior of the total order protocol taken as its basis.

Sending rate. In each test, a node broadcasts messages using a uniform sending rate. We have run tests
with 4 and 8 nodes and sending rates of 10, 40, 60, 80 and 100 messages sent per second and node. Note
that this generates maximum global sending rates of 400 msg/s and 800 msg/s, in systems with 4 and 8
nodes, respectively.

Number of messages delivered by each node. To ease the comparison, in each test, each node receives
the same sequence of messages. This sequence has 32000 messages. A test ends when all the nodes deliver
those messages.

To ensure a stable operation of the protocols during a test, each node sends more messages than those
strictly necessary. For instance, in a test with 4 nodes, each node would only need to send 8000 messages.
In practice, as the nodes deliver messages at a rate lower than the sending rate, there is a final period of
time in a test in which the system is no longerstable, because the queues of the protocols are getting empty
and this may affect the measuring of the delivery times. Moreover, the difference between the sending
rate and the delivery rate is different in each test, and depends basically on all the parameters (the protocol
used in the test, the number of nodes and the sending rate itself) and this poses additional difficulties to the
protocol comparison.

To solve this issue, each node sends as many messages as needed, to ensure a continuous flow of
messages during the whole test. This approach also solves the lack of liveness shown by theCH and
CHprio protocols, as described in [6].

3.4 Cost Evaluation

To evaluate the cost employed by the prioritization mechanisms, for each original protocol and its cor-
responding prioritized version we measure the time employed to run certain parts of both protocols. We
call this time theprioritization time. The sections measured are semantically equivalent, so we can get
comparable measures.

For instance, to evaluate the sequencer-based protocols, we measure the time lapse between the time
when the sequencer starts to handle a message and the time when it broadcasts the message, once se-
quenced. The corresponding prioritized protocol has an equivalent section, in which prioritization takes
place. Measuring the time needed to run both sections and comparing both times, we can get a very tight
approximation of the time needed by the prioritization mechanism applied by the prioritized protocol.

2UB stands forUnicast-Broadcast, as in [6].
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UB UBprio TR TRprio CH CHprio
4 nodes

mean 1.45 1.25 6.69 6.33 76.77 77.00
10 1st q. 1.20 1.08 0.89 0.89 65.13 65.16

msg/s med. 1.28 1.18 1.26 1.28 81.10 81.35
3rd q. 1.36 1.26 9.30 7.52 93.38 93.44
mean 1.50 1.46 1.29 1.27 17.77 17.86

40 1st q. 1.11 1.09 0.72 0.72 13.13 13.10
msg/s med. 1.24 1.31 1.02 1.02 17.12 17.01

3rd q. 1.34 1.54 1.27 1.27 20.84 20.84
mean 1.30 1.51 1.70 1.70 12.22 11.95

60 1st q. 0.97 1.09 0.75 0.76 8.83 8.77
msg/s med. 1.09 1.32 1.07 1.08 12.60 12.61

3rd q. 1.24 1.53 1.32 1.35 12.88 12.91
mean 3.43 2.20 2.36 2.75 9.13 9.29

80 1st q. 1.17 1.27 0.87 0.77 4.97 4.96
msg/s med. 1.27 1.42 1.20 1.09 8.66 8.62

3rd q. 1.53 1.70 1.51 1.37 8.98 8.96
mean 134.25 487.36 4.85 26.14 7.10 6.71

100 1st q. 1.12 1.35 0.83 0.83 4.62 4.59
msg/s med. 1.28 1.6 1.17 1.18 4.84 4.83

3rd q. 1.79 2.75 1.51 1.52 5.14 5.20
8 nodes

mean 1.89 11.35 2.05 2.08 90.33 90.96
10 1st q. 1.34 1.53 1.37 1.39 85.21 85.40

msg/s med. 1.53 1.73 1.86 1.87 97.62 94.21
3rd q. 1.70 1.92 2.39 2.4 101.79 101.74
mean 3.84 221.37 7.85 7.60 23.62 23.20

40 1st q. 1.40 1.65 1.53 1.50 20.76 20.74
msg/s med. 1.62 1.93 2.19 2.17 21.18 21.17

3rd q. 2.04 2.86 2.91 2.86 21.89 21.68
mean 190.82 670.48 75.53 151.49 17.09 17.22

60 1st q. 1.42 1.72 1.68 1.69 12.96 12.98
msg/s med. 1.86 2.51 2.54 2.53 13.28 13.27

3rd q. 3.65 9.94 3.69 3.60 17.07 17.05
mean 6718.52 13608.62 460.35 750.16 86.96 136.80

80 1st q. 6373.32 13.32 2.24 2.21 9.02 9.18
msg/s med. 6660.33 604.56 3.8 3.70 9.88 13.80

3rd q. 6882.63 24776.30 340.26 34.26 65.51 237.24
mean 20102.49 25264.85 5477.03 5148.22 100.05 125.82

100 1st q.14290.93 104.60 5119.25 5.14 5.78 5.70
msg/s med.18435.50 17349.36 5517.79 65.87 9.27 9.64

3rd q. 23159.88 47670.92 5891.15 6908.98 58.16 145.75

Table 1: Delivery times (ms) with 4 and 8 nodes

These measures are only comparable between a given protocoland its corresponding prioritized ver-
sion. For other protocol families, the parts of the protocols considered are different.

For each test, we measure the prioritization time in each node3. Then we compute the mean prioritization time
as the mean for all the nodes. These numbers are presented in great detail in Appendix A and summarized
in Section 3.5.

To evaluate the memory use, we analyzed how much of the total amount of memory available by the
Java Virtual Machine is being used during each test by each node. In Appendix A we graphically represent
this evolution in several settings (in systems of differentsizes, with different protocols and sending rates,
as explained in 3.3). Moreover, for each test, we count the number of times the Java garbage collector
has been run in each node and with all of them, we compute the mean number of garbage collection runs.
These numbers are summarized in Section 3.5.

3.5 Results

For each test we computed a global mean and median delivery time, as explained above, and the corre-
sponding first and third quartile, as well. The results are summarized in Table 1 and discussed in Section
3.6.

In Tables 2 and 3 we show the mean prioritization time and the mean number of garbage collection
runs, computed as explained in Section 3.4.

3.6 Discussion

In Table 1 we show the mean and median global delivery times (in ms), as well as the first and third quartiles
in systems with 4 and 8 nodes, respectively, at different sending rates.

3We also discard the first 3200 messages, as explained in Section 3.2.
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In a system with 4 nodes, theUB andUBprio protocols perform well at sending rates up to 80 msg/s.
At 100 msg/sUB still shows low median delivery times but their dispersion is high, because the protocol
is getting saturated.

The TR andTRprio yield better performance numbers, even at 100 msg/s. At 10 msg/s the mean is
slightly higher than the expected although in these cases, the protocols are not saturated. When the sending
rate is low, it may happen that the node which receives a tokendoes not have any message to broadcast.
In this case, it simply forwards the token to the next node in the ring. If a message is then broadcast by
the application in the first node, then it will have to wait until the token arrives again to that node, thus
increasing the delivery time of that particular message andalso the mean delivery time. As this happens
only to some messages, the delivery time of the rest of the messages is low (due to the low sending rate
and the low contention accessing to the network). At higher sending rates this problem no longer arises.
At 100 msg/s the dispersion inTRprio is slightly higher as a side effect of the prioritization mechanism, as
in UBprio.

Regarding theCH andCHprio, we can see that at low sending rates, the delivery time is high but it
decreases noticeably as the sending rate is increased. The design of theCH protocol forces an unordered
message received by a node to wait until messages are received from the other nodes. Then, the order
is locally (and deterministically) decided without any other message exchange. As the sending rate is
increased, messages are forced to wait less time thus reducing the global mean and median delivery time.
On the other hand, we can see that the dispersion is kept low inall the cases and more or less similar
regardless of the sending rate. The reason of the delay experienced by the messages is mainly because
ensuring the causal property imposes a delay on each messagesignificantly greater than the delay imposed
by the prioritization mechanism. As the delay imposed by thecausal ordering is similar for all the messages
sent at a given sending rate, the dispersion of the delivery times is kept low.

In Table 1 we can see that, in a system with 4 nodes, at sending rates up to 60 msg/s, the mean
delivery time of any original (non prioritized) protocol ispractically equal to the mean delivery time for the
corresponding prioritized protocol, which means that the prioritization mechanisms are not imposing any
overhead. Something similar happens to the median deliverytimes. Above 60 msg/s the numbers diverge
because the load starts to be too high and then the response depends on each particular protocol.

In a system with 8 nodes, we can see thatUBprio, TRprio andCHprio offer good median delivery times
at sending rates up to 40 msg/s. Moreover, this numbers are comparable to the ones for their corresponding
original (non prioritized versions). At sending rates above 60 msg/s, all the protocols get saturated, in
varying degrees, and the delivery times start to get unpractical.

Moreover, we can compare the results from a 4 node system and an 8 node system. In general, we can
say that the system scales well when the sending rate is not very high (around 40 msgs/s, as stated above).
TheUB andUBprio protocols are the ones that offer the worst scalability due its centralized nature. The
token-ring and communication history protocol families seem to stand better the increase in the number of
nodes.

We can also analyze the dispersion in the values and the effect the prioritization techniques have on
it. For instance, consider the results of the 4 node system, at 100 msg/s. Regarding theUB protocol, the
difference among the mean delivery time (134.25 ms) and the median (1.28 ms) and third quartile (1.79
ms) shows that there is a significant dispersion in the seriesof values, caused by the high sending rate. The
high dispersion found inUBprio is caused by the high sending rate and by the prioritization mechanism
itself. Some messages are delivered very quickly and some other (those with lower priorities) are forced to
wait for a while, thus increasing the dispersion in the series of delivery times.

Something similar happens withTR andTRprio at 100 msg/s. The dispersion between the mean and
the median withTRprio is bigger than the corresponding withTR. Moreover, in this case, the values of the
median, first quartile and third quartile are almost the samein both protocols, but the difference between
the mean values is bigger than the one observed with the sequencer-based protocols, which means that
the prioritization mechanism used inTRprio yields, as a side effect, a bigger dispersion in the series of
delivery times than the one got with the prioritization mechanism used inUBprio. This conclusion can also
be drawn observing the results with the 8 node system, at 60 and even at 80 msg/s.

Nevertheless, this effect is less significant in theCH andCHprio. In a system with 4 nodes, they do
not show a high dispersion. In a system with 8 nodes, the dispersion is moderated at sending rates up to 60
msg/s. At higher sending rates, the dispersion increases although the increment is lower than that showed
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# nodes msg/s UB UBprio TR TRprio CH CHprio
10 4115.69 13898.33 4477.71 5297.12 76773257.38 76738635.95
40 4034.83 9834.17 4255.10 3504.76 16619838.86 16654534.45

4 60 3263.09 9257.53 3515.73 3170.59 10946781.95 10845508.47
80 3520.73 9834.97 3717.57 2175.87 7666576.22 8495415.76
100 3376.18 11431.22 3315.10 2030.31 5510957.86 6682313.85
10 3741.39 14105.03 4527.08 5180.52 89185553.61 88805093.92
40 3547.92 12120.56 5129.58 4833.16 21456109.11 21234605.63

8 60 3685.69 16840.87 4877.57 3589.27 15693311.47 15131756.34
80 3644.65 15255.28 4794.20 5024.31 66149667.42 70668213.08
100 4063.65 15217.12 5750.73 9411.88 112708468.6893970320.05

Table 2: Mean prioritization times (ns)

by the other protocols.
As a conclusion we can say that the dispersion mainly dependson the length of the queues used by

the ordering mechanisms of the protocols. The number of nodes in the system and the sending rate have a
direct influence on such lengths.

Regarding theprioritization timespresented in Table 2, we can analyze the differences among the
values of the conventional (non-prioritized) protocols and the prioritized ones. The bigger differences can
be found when comparing theUB and theUBprio protocols at any sending rate and with 4 or 8 nodes in the
system. At a first glance it seems that the prioritization mechanisms inUBprio is introducing a significant
load to the original protocol. Nevertheless, we can see thatin all cases, the overhead is around a few
microseconds, which compared to the full delivery time (in the order of milliseconds) is negligible.

In the case of theTR andTRprio protocols, the differences are smaller, and again, compared to the full
delivery times, are negligible. Moreover, we cannot say that one of the protocols yield better prioritization
time numbers than the other in all cases.

Finally, theCH andCHprio protocols deserve a close analysis. On one hand, the absolute values of the
prioritization times are several orders of magnitude bigger than those for the other protocols. The reason
is that the part of theCH andCHprio protocols considered for taking the measures is basically the code
executed to fully handle each incoming message4. However, in this case the differences among the values
for CHprio and those forCH are negligible by themselves.

Regarding the memory use and the numbers represented in Table 3, we can observe that in general, there
are no big differences between the figures for theTR andCH protocols and the ones for their corresponding
prioritized versions. Some notable differences exist however, among the numbers of garbage collection
runs for theUB and those forUBprio. The reason of these differences is basically the memory overhead
suffered by the sequencer node which typically uses more memory than the rest of the nodes of the system5.

In Appendix A, we depict the evolution of the amount of free memory available for the Java Virtual
Machine during each test under different settings. The figures presented in Table 3 can be contrasted against
those graphical representations.

4For delivering a message to the application, one node must havereceived at least one message from all nodes in the system, in
order to learn about theirlogical clocksand properly order the incoming message respect other messages. This forced pause actually
imposes a significant delay, comparable in order of magnitude tothe delivery delay itself.

5As stated in Section 3.2, these mean numbers are got from the numbers for all the nodes in the system, including its sequencer in
case of theUB andUBprio protocols.

# nodes msg/s UB UBprio TR TRprio CH CHprio
10 43.50 54.25 975.75 985.00 51.00 51.00
40 27.00 30.75 62.00 62.50 41.25 42.00

4 60 18.50 22.25 39.25 39.50 20.50 19.75
80 17.25 26.25 31.50 30.75 17.00 15.75
100 17.50 22.75 23.75 23.50 17.00 15.75
10 35.50 41.62 228.00 230.25 52.75 53.00
40 18.62 25.12 25.00 24.75 18.62 18.87

8 60 19.87 24.87 21.00 21.75 17.37 18.00
80 22.12 25.50 19.87 20.12 18.00 18.37
100 23.00 27.00 19.00 19.87 18.00 18.12

Table 3: Mean numbers of garbage collection runs
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3.7 Final summary

To summarize the experimental study, we can compare the performance of the conventional protocols and
relate it with the performance and overhead of the corresponding prioritized protocols. In this section,
we are using global sending rates instead of per-node sending rates; i.e., we are considering how many
messages per second have been actually sent by all system nodes.

TheUB protocol yields very good performance numbers when the global sending rate is not very high
(up to 320 msg/s). When the volume of concurrent messages is too high (due to a high sending rate or
because there are too many nodes concurrently broadcastingmessages), then the protocol starts to get
saturated, and the performance decreases. The main reason of this saturation problem is that the sequencer
(which also acts as a regular node that broadcasts and delivers messages) suffers a very high overhead and
it is not able to manage and sequence a very high number of concurrent messages.

TheTR protocol also shows very good performance results, with sending rates up to 480 msg/s, i.e. it
is able to scale better than theUB andUBprio protocols.

The CH protocol does not perform as the other protocols but is the one that best handles high loads
(even 800 msg/s). The reason of the lower performance is thatthis protocol also offers causal delivery
guarantees and some messages are forced to wait until causally precedent messages are delivered, thus
increasing the mean (and median) delivery time.

Moreover, we have studied theprioritization timeand can conclude that no overhead is imposed by the
prioritization mechanisms. Regarding the memory use, we can conclude that the prioritization mechanisms
used in theTR andCH protocols are not imposing any memory overhead (when compared with theTRprio

andCHprio protocols, respectively). On the other hand, the results show that theUBprio protocol needs an
additional amount of memory, compared with the original non-prioritizedUB protocol.

To sum up, we can say that, in general, performance results are similar to those got with the original
non-prioritized protocols. In other words, we can confirm that the prioritization techniques presented and
tested are not imposing a significant overhead on the original protocols.

4 Conclusions

In this work we continue our study of priority management in total order broadcast protocols we started
with a proposal of several techniques to add priority management to total order protocols [11] and a study
of how those techniques can be applied in a realistic application and their effectiveness [10].

We have presented an experimental study in which we show thatthe prioritization techniques do not
impose an important overhead (in terms of message delivery latency, processing time and memory use) on
the original total order protocols, thus proving that, besides being easy to understand and implement (as
shown in [11]) and being useful for replicated database management (as shown in [10]), the techniques are
affordable in terms of performance. The main conclusion is that prioritized total order broadcast protocols
are a valuable building block that can be used to improve the design and implementation of distributed
applications and their performance, as well.

As a second contribution this experimental study can be seenalso as a performance comparison among
conventional non-prioritized total order protocols. The results of this comparison show that sequencer-
based and privilege-based protocols offer a comparable performance when the number of nodes is small (4
or 8) and the sending rate is not too high (around 60 msg/s). Asthe number of nodes or the sending rate is
increased the sequencer-based protocols start to get saturated and the communication history improve their
performance. At higher sending rates communication history protocols are the ones that can stand the load,
although the performance is not the best.

A Graphic results

In this appendix we show some graphic results obtained from the tests we have performed. In Section A.1
we present some results related to the prioritization timeswhile Section A.2 analyses the memory use.
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A.1 Prioritization time analysis

To evaluate the cost of the prioritization mechanisms applied in theUBprio, TRprio andCHprio protocols
we have recorded the prioritization time of each message, asexplained in Section 3.4. These values can
be used to get an idea of how expensive are the prioritizationmechanisms. The values are grouped in sets
of 1000 values. The mean value of each set is computed and thendepicted in a single curve. Each curve
plotted represents the evolution of the prioritization times of a given test. To ease the comparison, related
curves are plotted in the same figure.

In Section A.3 we show the graphic representation of the prioritization times, in systems with 4 and 8
nodes, with different conventional and prioritized total order protocols, at different sending rates.

We can see in Figures 1 and 2 that the prioritization times forthe tests with theUBprio protocols are
higher (worse) than the corresponding tests withUB. For instance, in Figure 1 the prioritization times of
the tests withUBprio are more than twice the corresponding times withUB. Nevertheless, as explained in
Section 3.6, by comparing these times against the corresponding delivery times we can see that the extra
cost observed in the tests withUBprio is negligible.

Regarding the token-based protocols, we can see in Figures 3and 4 that theTRprio protocol needs more
time than theTR protocol to manage the first messages but it needs less time tomanage thefinal messages.
These results suggest that in a system with a constant sending rate, the prioritizedTRprio protocol behaves
even better than the originalTR protocol. Nevertheless, again the differences among the prioritization times
for theTR and theTRprio protocols are negligible when compared against the corresponding delivery times
(as shown in Table 1).

Finally, Figures 5 and 6 show that there are no significant differences among the results for the conven-
tionalCH protocol and the prioritizedCHprio protocol, in systems with 4 and 8 nodes, respectively.

A.2 Memory use analysis

To evaluate the cost of the prioritization mechanisms in terms of memory use, during each test we have
recorded the values of three indicators: the total, free andmaximum amount of memory available to the
Java Virtual Machine. During a given test, each time a message is received by the test application, the
values of these indicators are recorded. The figures in Sections A.4 and A.5 show the evolution of these
indicators for different nodes in different settings, with4 and 8 nodes, respectively.

In the case of theUB andUBprio protocols, we show two figures for each test, one for the sequencer
node (usually the first node) and another for a non-sequencernode (typically the second node). As shown
in the figures, a sequencer node has different memory requirements than the rest of the nodes. For the rest
of the protocols, we only show the figure corresponding to a node (typically the first one).

A.2.1 System with 4 nodes

In Figures 7 to 46, we show the evolution of the memory use indicators in a system with 4 nodes, with a
sending rate ranging from 10 msg/s to 100 msg/s, with different protocols, in different nodes.

For instance, in Figures 7 and 8 we show the results for theUB protocol in the first node (the sequencer)
and the second. At a first glance, there are some significant differences between both figures. The most
important is related with thefree memorycurve. In Figure 7, the curve shows a cyclic behavior. We have
contrasted these results against those obtained from the Java garbage collector, which allows us to draw
some conclusions. During a short period of time, the amount of free memory deeply decreases. After a
minor garbage collectionsome memory is recovered and the amount of free memory increases. In such a
minor garbage collection, (typically small) short-lived objects are collected. This cycle is repeated many
times, until the Java Virtual Machine is close to run out of memory. Then, amajor garbage collectionis
ran. This collection is able to recover a high amount of memory, corresponding to long-lived objects that
are no longer used. After such a collection, this cyclical behavior is repeated.

In Figure 8 we show the corresponding curve for the second node in the system. The behavior is, in
essence, similar to the one of the first node. An important difference is that the garbage collections are not
so frequent than in Figure 7. The main reason is that the first node is the sequencer and needs to allocate
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and use much more memory than the rest of the nodes. For the same reason, the amount of free memory
available to the Java Virtual Machine in the second node decreases more slowly than in Figure 7.

This behavior is also found in Figures 15 and 16 (40 msg/s), 23and 24 (60 msg/s), 31 and 32 (80
msg/s) and 39 and 40 (100 msg/s). These figures have small differences regarding Figures 7 and 8, due
to the higher sending rates. The most notable difference is the length of thesteps(as the sending rate is
increased, the amount of memory released by the garbage collector in each collection is slightly bigger).
Moreover, thetotal memorycurve shows that increasing the sending rate causes some (light) increase in
the total amount of memory managed by the Java Virtual Machine.

These results can be compared against the corresponding fortheUBprio protocols, in Figures 9 and 10
(10 msg/s), 17 and 18 (40 msg/s), 25 and 26 (60 msg/s), 33 and 34(80 msg/s) and 41 and 42 (100 msg/s).
Although particular differences can be found, we can say that, in general, the behavior observed in a system
with a conventional (non prioritized) protocol under a given setting is similar to that of the corresponding
system with its prioritized protocol version. There are, nevertheless some differences regarding the number
of garbage collections performed in a system running theUB protocol and the corresponding system with
UBprio, as pointed out in Section 3.6. We can see that in the tests with UBprio the number of garbage
collections is higher than in the corresponding tests withUB, which means thatUBprio, under a given
setting, needs more memory thanUB under the same setting.

In Figures 11, 19, 27, 35 and 43 we show the behavior of theTR protocol in a 4 node system at a
sending rate of 10, 40, 60, 80 and 100 msg/s, respectively. At10 msg/s (Figure 11), we can see that the
system is performing really well. First of all, thetotal memorycurve shows a slightly decreasing tendency
that finally seems to stabilize. Moreover, the highdensityof the free memorycurve shows that there are
a lot of short-lived objects that are being successfully collected by means of minor garbage collections,
which actually means that no heavy major garbage collections are usually needed.

As the sending rate is increased, the behavior gets more similar to the behavior of the sequencer-based
protocols. Basically, the garbage collections become lessfrequent but the amount of memory recovered in
each collection is increased. We can also see that the total amount of memory needed byTR also increases
(respect to that depicted in Figure 11).

In Figures 12, 20, 28, 36 and 44 we show the behavior of the corresponding prioritizedTRprio protocol
at 10, 40, 60, 80 and 100 msg/s, respectively. As can be seen, the behavior is very similar to the behavior
of the conventional (non-prioritized)TR protocol, which clearly shows that the prioritization mechanism
applied inTRprio is not imposing any overhead on the memory use.

In Figures 13, 21, 29, 37 and 45 we show the behavior of theCH protocol in a 4 node system at a
sending rate of 10, 40, 60, 80 and 100 msg/s, respectively. Although there are some minor differences,
the behavior is basically similar. As the sending rate is increased the frequency of the garbage collections
decreases and the amount of memory recovered increases. Nevertheless, the tendency of thefree memory
andtotal memorycurves show that the system evolves in a very controlled manner. Figures 14, 22, 30, 38
and 46 show the results for the corresponding settings with theCHprio protocol. As we can see, the results
are very similar to the ones from the originalCH protocol in the corresponding settings, which again means
that no memory overhead is imposed by the prioritization mechanism used by theCHprio protocol.

A.2.2 System with 8 nodes

In Figures 47 to 86, we show the evolution of the memory use indicators in a system with 8 nodes, with a
sending rate ranging from 10 msg/s to 100 msg/s, with different protocols, in different nodes.

In general, we can see that the results are similar to those presented in Section A.2.1, for systems with
4 nodes. We can note, nevertheless some differences betweena given test in a setting with 4 nodes and the
corresponding test with 8 nodes. For instance, the sequencer node of theUB protocol at 10 msg/s shows a
significantly different behavior in systems with 4 and 8 nodes, as shown in Figures 7 and 47. In the system
with 8 nodes the global load stood by the sequencer is twice the load in the system with 4 nodes. For this
reason, the sequencer of the 8 node system tends to run out of memory sooner than the sequencer in the
4 node system. In both cases, the garbage collector seems to work properly, recovering a big amount of
unused memory. The behavior of the sequencer in theUBprio protocol, also at 10 msg/s, show a similar
difference in systems with 4 and 8 nodes. On the other hand, the behavior of the non-sequencer nodes in
theUB andUBprio protocols is also similar in systems with 4 and 8 nodes.
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Regarding the token-based protocols, we can see that theTR and TRprio protocols show a similar
behavior in both systems, with 4 and 8 nodes. The main differences lie in the frequency with which the
garbage collector is activated to perform minor collections.

Something very similar happens to the communication history protocols. In some cases, besides these
differences in the garbage collection activation frequency, it is possible to find small differences in the
quantity of memory recovered. In any case, we consider that these differences are negligible.
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A.3 Prioritization time plots
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Figure 1: Prioritization times (UB andUBprio), 4 nodes
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Figure 2: Prioritization times (UB andUBprio), 8 nodes
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Figure 3: Prioritization times (TR andTRprio), 4 nodes
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Figure 4: Prioritization times (TR andTRprio), 8 nodes
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Figure 5: Prioritization times (CH andCHprio), 4 nodes
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Figure 6: Prioritization times (CH andCHprio), 8 nodes
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A.4 Memory use graphic results in a system with 4 nodes
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Figure 7:UB, 10 msgs/s, node1 (sequencer)
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Figure 8:UB, 10 msg/s, node2
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Figure 9:UBprio, 10 msg/s, node1 (sequencer)
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Figure 10:UBprio, 10 msg/s, node2
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Figure 11:TR, 10 msg/s, node1
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Figure 12:TRprio, 10 msg/s, node1
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Figure 13:CH, 10 msg/s, node1
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Figure 14:CHprio, 10 msg/s, node1
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Figure 15:UB, 40 msg/s, node1 (sequencer)
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Figure 16:UB, 40 msg/s, node2
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Figure 17:UBprio, 40 msg/s, node1 (sequencer)
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Figure 18:UBprio, 40 msg/s, node2

20



 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 0  5000  10000  15000  20000  25000  30000  35000

B
yt

es

Message

Total
Free
Max

Figure 19:TR, 40 msg/s, node1
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Figure 20:TRprio, 40 msg/s, node1
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Figure 21:CH, 40 msg/s, node1
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Figure 22:CHprio, 40 msg/s, node1
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Figure 23:UB, 60 msg/s, node1 (sequencer)
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Figure 24:UB, 60 msg/s, node2
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Figure 25:UBprio, 60 msg/s, node1 (sequencer)
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Figure 26:UBprio, 60 msg/s, node2
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Figure 27:TR, 60 msg/s, node1
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Figure 28:TRprio, 60 msg/s, node1
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Figure 29:CH, 60 msg/s, node1
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Figure 30:CHprio, 60 msg/s, node1
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Figure 31:UB, 80 msg/s, node1 (sequencer)
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Figure 32:UB, 80 msg/s, node2

27



 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 0  5000  10000  15000  20000  25000  30000  35000

B
yt

es

Message

Total
Free
Max

Figure 33:UBprio, 80 msg/s, node1 (sequencer)
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Figure 34:UBprio, 80 msg/s, node2
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Figure 35:TR, 80 msg/s, node1
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Figure 36:TRprio, 80 msg/s, node1
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Figure 37:CH, 80 msg/s, node1
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Figure 38:CHprio, 80 msg/s, node1
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Figure 39:UB, 100 msg/s, node1 (sequencer)
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Figure 40:UB, 100 msg/s, node2
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Figure 41:UBprio, 100 msg/s, node1 (sequencer)
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Figure 42:UBprio, 100 msg/s, node2
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Figure 43:TR, 100 msg/s, node1
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Figure 44:TRprio, 100 msg/s, node1
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Figure 45:CH, 100 msg/s, node1

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 0  5000  10000  15000  20000  25000  30000  35000

B
yt

es

Message

Total
Free
Max

Figure 46:CHprio, 100 msg/s, node1
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A.5 Memory use graphic results in a system with 8 nodes
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Figure 47:UB, 10 msg/s, node1 (sequencer)
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Figure 48:UB, 10 msg/s, node2
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Figure 49:UBprio, 10 msg/s, node1 (sequencer)
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Figure 50:UBprio, 10 msg/s, node2
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Figure 51:TR, 10 msg/s, node1
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Figure 52:TRprio, 10 msg/s, node1
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Figure 53:CH, 10 msg/s, node1
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Figure 54:CHprio, 10 msg/s, node1
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Figure 55:UB, 40 msg/s, node1 (sequencer)
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Figure 56:UB, 40 msg/s, node2
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Figure 57:UBprio, 40 msg/s, node1 (sequencer)
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Figure 58:UBprio, 40 msg/s, node2
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Figure 59:TR, 40 msg/s, node1
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Figure 60:TRprio, 40 msg/s, node1
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Figure 61:CH, 40 msg/s, node1
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Figure 62:CHprio, 40 msg/s, node1
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Figure 63:UB, 60 msg/s, node1 (sequencer)
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Figure 64:UB, 60 msg/s, node2
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Figure 65:UBprio, 60 msg/s, node1 (sequencer)
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Figure 66:UBprio, 60 msg/s, node2
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Figure 67:TR, 60 msg/s, node1
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Figure 68:TRprio, 60 msg/s, node1
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Figure 69:CH, 60 msg/s, node1
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Figure 70:CHprio, 60 msg/s, node1
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Figure 71:UB, 80 msg/s, node1 (sequencer)
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Figure 72:UB, 80 msg/s, node2
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Figure 73:UBprio, 80 msg/s, node1 (sequencer)
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Figure 74:UBprio, 80 msg/s, node2
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Figure 75:TR, 80 msg/s, node1
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Figure 76:TRprio, 80 msg/s, node1

49



 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 0  5000  10000  15000  20000  25000  30000  35000

B
yt

es

Message

Total
Free
Max

Figure 77:CH, 80 msg/s, node1
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Figure 78:CHprio, 80 msg/s, node1
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Figure 79:UB, 100 msg/s, node1 (sequencer)
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Figure 80:UB, 100 msg/s, node2
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Figure 81:UBprio, 100 msg/s, node1 (sequencer)
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Figure 82:UBprio, 100 msg/s, node2
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Figure 83:TR, 100 msg/s, node1
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Figure 84:TRprio, 100 msg/s, node1
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Figure 85:CH, 100 msg/s, node1
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Figure 86:CHprio, 100 msg/s, node1
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[5] Xavier Défago, Andŕe Schiper, and Ṕeter Urb́an. Comparative performance analysis of order-
ing strategies in atomic broadcast algorithms.IEICE Trans. on Information and Systems, E86-
D(12):2698–2709, 2003.
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[10] Emili Miedes, Francesc D. Mũnoz, and Hendrik Decker. Reducing transaction abort rates with pri-
oritized atomic multicast protocols. InEuropean Conference on Parallel and Distributed Computing
(Euro-Par 2008), pages 394–403, Las Palmas de Gran Canaria, Spain, 2008.

[11] Emili Miedes and Francesc D. Muñoz-Escóı. Managing priorities in atomic multicast protocols. In
ARES: Intl. Conf. on Availability, Reliability and Security, pages 514–519, Barcelona, Spain, 2008.

[12] Louise E. Moser, P. Michael Melliar-Smith, Deborah A. Agarwal, R.K. Budhia, and C.A. Lingley-P
apadopoulos. Totem: a fault-tolerant multicast group communication system.Comm. of the ACM,
39(4):54–63, 1996.

[13] Akihito Nakamura and Makoto Takizawa. Priority-basedtotal and semi-total ordering broadcast
protocols. In12th Intl. Conf. on Dist. Comp. Sys. (ICDCS 92), pages 178–185, 1992.

[14] Akihito Nakamura and Makoto Takizawa. Starvation-prevented priority based total ordering broad-
cast protocol on high-speed single channel netw ork. In2nd Intl. Symp. on High Performance Dist.
Comp., pages 281–288, 1993.

[15] Luı́s Rodrigues, Paulo Verı́ssimo, and Antonio Casimiro. Priority-based totally ordered multicast. In
3rd IFAC/IFIP workshop on Algorithms and Architectures forReal-Time Control, 1995.

[16] Alan Tully and Santosh K. Shrivastava. Preventing state divergence in replicated distributed programs.
In 9th Symposium on Reliable Distributed Systems, pages 104–113, 1990.

[17] Yun Wang, Francisco Brasileiro, Emmanuelle Anceaume,Fab́ıola Greve, and Michel Hurfin. Avoid-
ing priority inversion on the processing of requests by active replicated servers. InDependable Sys-
tems and Networks, pages 97–106. IEEE Computer Society, 2001.

55
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