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Abstract

The virtually synchronousexecution model provides an appropriate support for developing dis-
tributed applications when a crash failure model is assumed. Synchronization points are only set when
a view change arises, guaranteeing an efficient execution ofsuch reliable applications. Its programming
model is similar to that of a centralized application, but not identical. However, a crash model is not
appropriate for all applications. Those needing a long recovery time either due to their large state (like
replicated databases) or because they use a slow network (like collaborative applications for netbooks or
smartphones) might need a recoverable model. In such cases,virtual synchrony needs to be extended for
supporting simple recovery protocols.Persistent logical synchronyis one of such variations that com-
pels to persist multicast messages. It provides useful synchronization points able to simplify recovery
protocols and mechanisms for avoiding update losses when a majority component is re-built.

1 Introduction

Virtual synchrony[2] is a way for ensuring a logical synchronization in distributed applications based
on process groups. To this end, broadcast messages are always delivered in the same view to all target
processes.

This is enough in thecrashfailure model [13], since once a process fails it will not do anything else;
i.e., it will not recover. If such process recovers, it rejoins the process group with a new identity and its
recovery usually consists in a full state transfer. So, the messages lost in such failure interval are not of any
interest for its new incarnation.

But things are a bit different when recovery is considered, such as in thepartial amnesiamodel pro-
posed in [7]. Such a failure model is commonly needed in applications that manage a large state, like
replicated file servers, application servers or replicateddatabases. In those applications, a more elabo-
rated recovery protocol is needed, and one of its requirements is to minimize the state to be transferred.
In such scenarios, it seems appropriate to add another synchronization point each time a process crashes.
Intuitively, such point is provided by thesame-view delivery[6] semantics that implements thevirtual syn-
chronyexecution model. However, both concepts were designed for non-recoverable failure models and
are not able to provide such needed synchronization points in a recoverable system, due to theamnesia
problem[8]. Such problem arises when some of the delivered messagesin a faulty process are not ap-
plied nor persisted before its crashing, and as a result theyare “forgotten”. To solve this, messages should
be persisted at delivery time [35, 4] or periodically [22] ensuring the consistency between the application
receiving the messages and the group communication system.
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So, we propose a new model namedpersistent logical synchrony(PLS) that overcomes theamnesia
problemand provides such synchronization points. As a result of this, both the recovering and recoverer
nodes know which had been the last updates received and applied in the recovering process and which
have been the missed updates in the failure interval. Thus, no communication is needed to find out such
information and the recovery can be immediately started.

Many of these applications follow theprimary component membership[6] model regarding partition
failures, since this easily ensuressequential[19] consistency in such primary component, avoiding progress
in minor components. If disconnections were frequent in thedistributed system, PLS could be used for
partially recovering minor subgroups that were merged before their joining to the primary component.
This shortens their recovery time in such scenarios.

At a glance, PLS introduces a non-negligible cost in the message delivery steps. But such cost mainly
depends on the way such message saving is done —recall that uniform reliable broadcast protocols might
need multiple rounds of messages in order to guarantee all their delivery properties and that saving can be
completed in the meantime—, and on the network bandwidth/latency and the secondary storage device’s
transfer time. For instance, collaborative applications being executed in smartphones and/or laptops have
access to slow wireless networks (e.g., up to 14.4 Mbps in case of HSDPA for smartphones; 54 Mbps
for 802.11g, and 248 Mbps with 802.11n wireless networks) and have also access to fast flash memories
in order to save such messages being delivered (e.g., modern(micro)SD-HC class-6 memory cards for
smartphones can write data at a minimum rate of 48 Mbps, whilst CompactFlash memory cards have
write-throughput up to 360 Mbps). So, in such cases the overhead being introduced will not be high.

Finally, if messages are persisted in their delivery step, no update is lost in case of multiple failures.
Thus, systems with frequent failures can easily ensure their progress if a majority of nodes is alive, even
when such nodes have not been able to apply all received updates, and there was no living majority in the
previous system view. Such multi-process failure with update loss has been discussed in several previous
research works (e.g., all solutions based on rollback recovery are compelled to do a backward recovery
that loses the updates made in such recovering replica afterits last checkpoint [11]; in Psync [26] other
scenarios of multi-process failure are described but not all of them were completely managed) and none of
them was able to provide any general solution to such problem.

The contributions of this paper can be summarized as follows. Firstly, we provide a complete specifi-
cation of PLS. This allows to prove how PLS overcomes the problems that arise when virtual synchrony
is combined with a recoverable failure model. Secondly, some of such problems have been overcome in
previous works that we compare in Section 5, but none of such works eliminates all such problems at once.
Finally, we discuss the performance overhead being introduced, and analyze in which environments could
be acceptable.

The rest of this paper is structured as follows. Section 2 summarizes the assumed system model.
Virtual synchrony is presented in Section 3. Section 4 describes the problems virtual synchrony faces when
recovery is considered. Partial solutions to such problemsalready exist; they are analyzed in Section 5.
Later, Section 6 specifies our extensions for defining PLS, and proves how it solves all problems presented
in Section 4. Section 7 discusses its performance overhead.Finally, Section 8 concludes the paper.

2 System Model

We assume an asynchronous distributed system, complemented with some unreliable failure detection
mechanism [5] needed for implementing its membership service. For instance, if aprecise membership[6]
needs to be provided, a⋄P failure detector is needed. Each system process has a uniqueidentifier. The state
of a processp (state(p)) consists of a stable part (st(p)) and a volatile part (vol(p)). A process may fail
and may subsequently recover with its stable storage intact. Processes may be replicated. In order to fully
recover a replicated processp, we also need to update itsst(p), ensuring its consistency with the stable
state of its other replicas (a common approach for recovering replicated database systems, for instance).

Our aim is to provide support for dependable applications. To this end, aGroup Communication System
(GCS) [6] is also assumed, providingvirtual synchronyto the applications built on top of it. Modern GCSs
are view-oriented; i.e., besides message multicasting they also manage a group membership service and
ensure that messages are delivered in all system processes in the sameview (set of processes provided as
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output by the membership service).
As discussed in the introduction, acrash recovery with partial amnesia[7] failure model is assumed.

Additionally, we assume that processes do not behave outside their specifications when they remain active
[30].

Finally, aprimary component membership[6] model is assumed; i.e., only the component with a major-
ity of nodes (if any) is allowed to progress in case of a network partition. This has also been the approach
commonly followed in the database replication field, where the results of this paper could be easily applied.

3 Virtual Synchrony

[6] provide a complete and general specification of modern GCSs. Such specification includes all properties
required for implementing the virtual synchrony model, butalso other features found in GCSs. We do not
quote a complete specification of all virtual synchrony conditions (they can be found in [2] or in [23, Sect.
4]), but only of those that need to be extended.

To begin with, [6] characterize the GCS as an I/O automaton [21] module based on the following items:

• Sets:

– P : Set of processes.

– M: Set of messages.

– VID: Set of view identifiers, totally ordered by the< operator.

– V : Set of views. Each view is an element ofVID × 2P . Thus, a viewV is the composition of
V.id ∈ VID andV.members ∈ 2P .

• Input actions:

– send(p,m), p ∈ P , m ∈ M: Processp broadcasts messagem.

– crash(p), p ∈ P : Processp fails by crashing.

– recover(p), p ∈ P : Processp recovers.

• Output actions:

– recv(p,m), p ∈ P , m ∈ M: GCS delivers messagem to processp.

– view chng(p,V )1, p ∈ P , V ∈ V : A view change event, installing viewV , is notified to process
p.

– safeprefix(p,m), p ∈ P , m ∈ M: GCS notifiesp that messagem is already safe.

Moreover, theeventsin such automaton are the occurrences of those actions specified above. The set of
such events isEvents. A schedulein this kind of automaton is a finite or infinite sequence of events. All our
axioms and properties implicitly take a schedule as a parameter, that we omit for clarity of presentation.
We also omit universal quantifiers: unbound variables should be understood to be universally quantified
for the scope of the entire formula.

Our GCS I/O automaton module should preserve the following assumptions and properties (taken from
[6]):

A1 (Execution integrity): tj = recover(p) ⇒ ∃ti = crash(p) ∧ i < j∧ 6 ∃tk(pid(tk) = p ∧ i < k < j).

A2 (Message uniqueness): ti = send(p, m) ∧ tj = send(q, m) ⇒ i = j.

P1 (Self inclusion): ti = view chng(p, V ) ⇒ p ∈ V.members.

1In [6] this action has a third parameter that holds a transitional set of processes needed to supportextended virtual synchrony[23]
in partitionable environments. Such parameter is not needed in systems with aprimary-component membershipas the one assumed
here.
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P2 (Local monotonicity): ti = view chng(p, V ) ∧ tj = view chng(p, V ′) ∧ i > j ⇒ V.id > V ′.id.

P3 (Initial view event): ti = send(p, m)∨ti = recv(p, m) ∨ti = safe prefix(p, m)⇒ viewof(ti) 6=⊥.

P4 (Delivery integrity): ti = recv(p, m) ⇒ ∃q∃j(j < i ∧ tj = send(q, m)).

P5 (No duplication): ti = recv(p, m) ∧ tj = recv(p, m) ⇒ i = j.

Note that Property P3 has used a functionviewof with this signature:viewof : Events→ V ∪ {⊥}.
This function returns the view in the context of which an event occurred at a specific process.⊥ means an
undefined view, and this value is used in a given process before it executes its firstview chng(p,V) event,
or once it has crashed and it has not yet executed any newview chng(p,V) event in its recovery.

Virtual synchronyis formally specified as follows:

• Predicate definitions:

– Processp receives messagem in view V :

receives in(p, m, V )
def
= ∃i(ti =recv(p, m) ∧ viewof(ti) = V )

– Processp installs viewV in view V ′:

installs in(p, V, V ′)
def
= ∃i(ti =view chng(p, V ) ∧ viewof(ti) = V ′)

• Virtual synchrony property. If processesp andq install the same new viewV in the same previous
view V ′, then any message delivered atp in V ′ is also delivered atq in V ′.

installs in(p, V, V ′) ∧ installs in(q, V, V ′) ∧ receives in(p, m, V ′) ⇒ receives in(q, m, V ′)

We also assume that our system is able to implementsame-view delivery[6] semantics:

• Same View Delivery. If processesp andq both deliver messagem, they deliverm in the same view.
Formally:

receives in(p, m, V ) ∧ receives in(q, m, V ′) ⇒ V = V ′

4 Dealing with Recovery

A recoverable model introduces some problems when virtual synchrony is enforced. Processes that may
fail and recover either manage some persistent state or are able to checkpoint their volatile state periodically
[11]. So, in such environment it is important that recovering processes save persistently all they have been
able to execute prior to their crash event. Virtual synchrony does not enforce such saving. Indeed, its
detailed specification [2] allows that the lastrecv(p, m) events executed by a failed processp in its last
view were not actually executed but simply fictitiously added to the resulting history in order to complete
it, complying thus with thesending-view delivery[6] semantics; i.e.,p might have lost some messages
received by correct processes in such view. Moreover, even if p would have received all messagesm seen
by correct processes, there is no guarantee thatp were able to complete their processing, and its effects are
not included inst(p). Thus,p’s application-level recovery protocol can not consider the transition fromVi

to Vi+1 as the starting point of such recovery; i.e., such transition does not accurately give which have been
the latest incoming messages successfully applied inp.

In order to specify this problem, we use a second kind of I/O automaton moduleProc that models a
process. Note that this automaton can be composed with the GCS one [21]. Thus, the I/O automaton for a
processp includes as its input actions all output actions of the GCS referring to it (i.e., such output actions
are: recv(p, m), view chng(p, V ), safeprefix(p, m)) and thecrash(p) andrecover(p) actions generated
by the environment; as its single output action it has one that corresponds to the GCSsend input action.
Moreover, it has the following internal action:

• processmsg(p, m), p ∈ P , m ∈ M. The process terminates the processing of messagem and
updates bothst(p) andvol(p), although for the sake of simplicity we denote this fact aseffects(m) ∈
st(p).
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In a system resulting from the composition of both modules,Proc · GCS, the problem outlined above
can be specified as follows:

P-1 In a schedule ofProc · GCS, if a process crashes before completing the execution associated to its
logically delivered messages in a given view, the effects ofsuch messages are lost. Formally:

ti=crash(p) ∧ tj=recv(p, m) ∧ ∀k, j<k<i, tk 6=processmsg(p, m) ⇒effects(m) 6∈ st(p)

Problem P-1 generates several consequences:

C-1 The latest running view of a recovering process does not provide a valid application-level recovery-
start synchronization point. This recovery-start point determines which was the last processed mes-
sage in such previously crashed node.

This is directly derived from the fact thatst(p) does not hold all the effects suggested by thesame-view
deliverysemantics [6], in case of relying on it to drive the application-level recovery.

When aprimary component membership[6] is used and a majority of group members crashes, it might
be impossible to recover the last state. For instance, let usassume a system composed by three processes
(p1, p2, andp3), supporting a replicated database, and where no transaction is aborted by the replication
protocol being used. In such scenario, the execution of a transaction T consists of the following kinds of
events:

1. send(pi,T): Transaction T has been locally executed in processpi and its updates are broadcast by
processpi to all replicas.

2. recv(pi,T): Processpi receives transaction T’s updates.

3. processmsg(pi,T): Transaction T is committed in processpi and, thus, its updates are persisted in
the local database replica.

p 1

p 2

p 3

crash(p  )2

send(p  ,T  )a3

recv(p  ,T  )a1

process_msg(p  ,T  )a1

crash(p  )1

crash(p  )

2recover(p  )

3
recover(p  )3

Vn-1 Vn Vn + 1

send(p  ,T  )b1

recv(p  ,T  )a3

recv(p  ,T  )b1

recv(p  ,T  )b3

process_msg (p  ,T  )
b1

process_msg(p  ,T  )a3

Figure 1: Execution with lost transactions.

In such system, the following scheduleS1 (depicted in Figure 1) shows how three sequential failures
may completely stop the system in an inconsistent state, andthe recovery of two processes is not able to
maintain the latest state committed before such multi-failure scenario.
S1 = crash(p2), send(p3, Ta), recv(p1, Ta), recv(p3, Ta), process msg(p1, Ta), send(p1, Tb), recv(p3, Tb),
recv(p1, Tb), process msg(p3, Ta), process msg(p1, Tb), crash(p3), crash(p1), recover(p2), recover(p3)

Note that in such schedule, transactionsTa andTb were logically accepted, broadcast, and committed
whilst the system still had two active processes (in viewVn). The messages that broadcastTb updates
were known by bothp1 andp3 but only p1 was able to commit and persist such updates in such view
Vn; i.e., it was able to execute its internal actionprocessmsg(p1, Tb), updating thus itsst(p1). Later,
both p3 andp1 crashed, but none of such failures generated any view allowing progress. Recall that in
a primary component membershipmodel, we need a majority of alive and correct processes in order to
accept new requests. Otherwise, the system remains stopped. Eventually,p2 andp3 recover, generating the
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next majority viewVn+1. As a result, at the end of the schedule two processes are again alive, but none of
them has any record fromTb, so the latest state is unrecoverable.

This can be summarized as an additional consequence [9] of problem P-1:

C-2 Danger of inconsistent progress in a primary-component membership system. Once a primary-
component system has blocked due to the lack of a process majority, the processes joined in order to
generate a new majority are not always able to recover the last system state.

Again, this is a direct consequence of problem P-1. If the updates associated to each received message
were always persisted, the progress consistency would havebeen guaranteed; i.e., no update could be lost.

5 Some Solutions

There have been multiple papers that have dealt with some of the problems and consequences presented
in the previous section. To begin with, [22] specify atomic broadcast when a crash-recovery model is
assumed. Such specification adds acommitoperation that persists the application state, and synchronizes
the application and GCS state, providing thus a valid recovery-start point. But such commit operation must
be used by the application and this does not always guaranteethat C-1 is overcome, since the last commit
done by a given process may have not included all the messagesdelivered to it by the GCS prior to its
crash. Due to this, C-2 is not always avoided using such an approach. Note, however, that the aim of such
paper was not to define an execution model, so no complaint canbe made. Moreover, their strategy adapts
the amount of checkpoints being made by a process to the semantics of the application being executed, and
this can easily minimize the checkpointing effort in a system where C-1 and C-2 were not relevant.

Logging was also used in [28] in order to specify atomic broadcast in the crash-recovery model, provid-
ing an adequate basis for solving the problems outlined above. However, as in the previous case, the aim of
such paper was not to relate the specification with any execution model providing some kind of synchrony.

The need of persistency in a crash-recovery model is not an exclusive characteristic of broadcast mech-
anisms. [1] prove that it is also needed for solving consensus in some system configurations where the
crash-recovery model is assumed.

A typical application that relies on a view-based GCS and assumes crash-recovery and primary-com-
ponent-membership models is database replication. Multiple replicated database recovery protocols ex-
ist [14, 17, 16, 29] and regularly they do not rely [8] on virtual synchrony in order to avoid any of the
problems stated above. Instead, practically all of them useatomic broadcast as the update propagation
mechanism among replicas [36] and can persistently maintain which was the last update message applied
in each replica. So, this makes unnecessary to deal with C-1,since the recovery synchronization point is
application-specific. However, no solution for C-2 is given, and this might lead to lost transactions in some
executions.

The Paxos protocol [20] can be used to implement an atomic broadcast based on consensus. It gives as
synchronization point the last decision —delivered message— written —i.e., applied— in alearner. This
approach could provide a recovery synchronization point, but it does not overcome C-1 since Paxos does
not demand a view-oriented system. Moreover, as it forces theacceptorsthat participate in the quorum for
a consensus instance to persist their vote —message to order— as previous step to the conclusion of such
consensus instance —which will imply the delivery of the message— it can avoid C-2 in a straightforward
way. So, if a learner crashes losing some delivered messages, when it reconnects it asks the system to run
again the consensus instances subsequent to the last message it had applied, relearning then the messages
that the system has delivered afterward. But this forces theacceptors to hold the decisions adopted for
long, till all learners acknowledge the correct processingof the message.

Different systems have been developed using the basic ideasproposed in [20]. Sprint [3] is an example
of this kind. It supports both full and partial replication using in-memory databases for increasing the
performance of the replicated system, and it uses a Paxos-based mechanism for update propagation.

[35] analyzed which have been the regular safety criteria for database replication [12] (1-safe, 2-safe
andvery safe), and compared them with the safety guarantees provided by current database replication
protocols based on atomic broadcast (namedgroup-safetyin their paper). Their paper shows that group-
safety is not able to comply with a 2-safe criterion, since update reception does not imply that such updates
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have been applied to the database replicas, and C-2 can arisein such systems. As a result, they propose an
end-to-end atomic broadcastthat is able to guarantee the2-safecriterion (and that, indeed, overcomes C-2).
Such end-to-end atomic broadcast consists in adding anack(m)operation to the interface provided by the
GCS that should be called by the application once it has processed and persisted all state updates caused by
messagem. This implies that the sequence of steps in an atomically-broadcast message processing should
be:

1. A-send(m). The message is atomically broadcast by a sender process.

2. A-receive(m). The message is received by each one of the group-member application processes. In a
traditional GCS, this sequence of steps terminates here.

3. ack(m). Such target application processes use this operation in order to notify the GCS about the
termination of the message processing. As a result, all state updates have been persisted in the target
database replica and the message is consideredsuccessfully delivered[35]. The GCS is compelled
to log the message in the receiver side until this step is terminated. Thus, it can receive again such
message at recovery time if the receiving process has crashed before acknowledging its successful
processing.

We have taken a similar approach in order to define our extensions. However, we do not require total-
order broadcast as the unique message propagation mechanism, and our solution also needs to overcome
C-1.

Note that all such previous solutions were based, like ours,on message logging. The need of message
logging was first researched in the context of rollback-recovery protocols [31, 18, 11] for distributed ap-
plications. In such scope, processes (that do not need to be part of a replicated server) need to checkpoint
their state in stable storage and, when failures arise, the recovering process should rollback its state to its
latest checkpointed state, perhaps compelling other processes to do the same. In order to reduce the need of
rolling back the state of surviving processes, state needs to be checkpointed when a non-deterministic event
happens, allowing thus the re-execution of deterministic code in the recovering steps. This leads to take
checkpoints when processes send messages to other remote processes, saving such sending event in the log.
Our approach shares several characteristics with these techniques: it introduces overhead in failure-free in-
tervals and it also needs stable storage and garbage collection for such persistent logs, although the latter is
based on a very simple criterion (logged messages are eliminated when a local application acknowledgment
is received by the group communication system). However, our aim is not the same, as discussed above,
and this also leads to important differences. To begin with,we are assuming replicated processes that use
group communication services introducing a virtually synchronous execution model and no update already
applied to such replicated state will be lost using PLS, evenwhen multiple failures arise. On the other hand,
rollback-recovery techniques commonly assumed single processes that did not rely on any kind of logical
synchrony, and in such systems orphan computations and lostupdates might happen [31]. Moreover, their
garbage collection algorithms were not simple.

Finally, the first paper that presented the need of message logging as a basis for application recover-
ability in a group communication system —concretely, Psync— was [26]. This proves that our proposed
approach inherits most of its characteristics from previous works, although in different scopes. Psync pro-
vided a mechanism integrated in the GCS that was able to ensure causal message delivery, and recovery
support, whilst policies could be set by the applications using the GCS, adapting such mechanisms to their
concrete needs. For instance, total order broadcast could be easily implemented as a re-ordering policy at
application level. However, its recovery support [26] demanded a lot of space in case of long executions
and did not guarantee a complete recovery (i.e., messages could be lost) in case of multiple process failures.
None of these two drawbacks can be found in PLS.

6 Persistent Logical Synchrony

In order to overcome the problem P-1 presented in Section 4, we propose an execution model that mod-
ifies and extends virtual synchrony with theend-to-end broadcastprinciple from [35]. We refer to such
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execution model aspersistent logical synchronysince it adds persistence guarantees in the reception step
and still provides a logical/virtual synchrony in the eventexecution order in all processes that constitute a
given group.

We summarize our virtual synchrony extensions in Section 6.1 and prove how they overcome P-1 in
Section 6.2.

6.1 Extensions

Our extensions are based on persisting all messages when they are received by the GCS, prior to their
delivery to their destination processes. Once processed, they should be removed from stable storage. In
case of failure, persisted messages will survive such failure (according to the assumptions given in Section
2) and will be redelivered to the target process prior to its joining to a new system view.

Thus, our extensions need the following additional items inthe specification of a GCS:
Sets:

• Lp: Set of persisted messages for processp. Each persisted message〈m, V 〉 is an element ofM×V .
This set is totally ordered by<, the order of insertion of its elements.

A logical copy of this set is created in Fig. 2 to express that each message contained inLp should
be delivered to its intended recovering process before it accepts a regular new view. However, no
physical copy is actually needed.

Input actions:

• recover(p): A boolean arrayrecovering is needed for managing different recovery steps. We use
recoveringi in order to refer torecovering[i]. By default, its initial value isfalse, but the effects of
this recover(p) action, setrecoveringp to true. Finally, in order to reset such variable, an additional
internalend recover(p) action is also needed (see below).

• ack(p,m): Processp has completely processed messagem and has already updated itsst(p) using
to this end the internal actionprocessmsg(p, m) in its automaton, and notifies GCS about this
completion.

In the execution of this action,〈m, V 〉 is removed fromLp, beingV the view in which such message
m was persisted inLp.

Internal actions:

• end recover(p). This action unsets therecoveringp flag once all persisted messages have been
completely processed and their effects applied tost(p). To this end, its precondition checks that
Lp has become empty as a result of the execution ofack(p,m) events for each message previously
contained inLp.

Output actions:

• recv(p,m): This action needs to be extended. Now, there are two different variants. The first one
(lines 7-10 in Fig. 2) maintains its effects, as described inthe specification given in Section 3, but it
should also persist the message being delivered to the target process (line 9). The second one (lines
11-16 in Fig. 2) manages the delivery of persisted and non-acknowledged messages in the recovery
phase. To this end, it should be checked that the recovering process has installed a valid view.
Thus, another variant of theview chng(p,V) output action is also needed (lines 17-20 in Fig. 2), in
order to set the logical view in which the recovery is being executed. For completion, the regular
view chng(p,V) action is also shown in lines 21-23 of Fig. 2. Note that now it is only enabled when
recoveringp is false.
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Finally, we assume that when a message is delivered to a process, it is already safe; i.e., it has already
been received by all other target processes. This means thatin our specification, therecv(p,m) action
includes the effects of asafeprefix(p,m) event, and that no separatesafeprefix(p,m) action will exist.

The I/O automaton module resulting from all these extensions will be namedeGCS (extended GCS).
As a result of these extensions,Proc needs also to be extended (generating a new moduleeProc) with
a newack(p,m) output action, in order to be compatible witheGCS for composing both I/O automaton
modules.

1 : recover(p):
2 : eff ≡ recoveringp ← true

3 : Lcopyp ← Lp

4 : end recover(p):
5 : pre≡ recoveringp = true ∧ Lcopyp = ∅ ∧ Lp = ∅
6 : eff ≡ recoveringp ← false

7 : recv(p, m):
8 : pre≡ recoveringp = false
9 : eff ≡ Lp ← Lp ∪ {〈m,current view〉}

10 : Deliver messagem to p

11 : recv(p, m):
12 : pre≡ recoveringp = true ∧ 〈m, ∗〉 ∈ Lcopyp∧
13 : current view 6=⊥
14 : eff ≡ 〈m, V 〉 ← min(Lcopyp)
15 : Deliver messagem to p

16 : Lcopyp ← Lcopyp − {〈m, V 〉}
17 : view chng(p, V ):
18 : pre≡ recoveringp = true∧ current view=⊥ ∧Lp 6= ∅
19 : eff ≡ 〈m, V ′〉 ← min(Lcopyp)
20 : Notify viewV ′ to p

21 : view chng(p, V ):
22 : pre≡ recoveringp = false

23 : eff ≡ Notify regular new viewV to p

24 : ack(p, m):
25 : eff ≡ Lp ← Lp − {〈m, ∗〉}

Figure 2:eGCS actions needed in the recovery tasks.

The eGCS actions associated to this recovery are specified in Figure 2. These extensions directly
ensure that the following lemma is respected by all valideGCS · eProc schedules:

Lemma 1. Once therecover(p) action is executed, all persisted messages –if any– are delivered to and pro-
cessed byp before actionend recover(p) is executed. Later,p receives the first new regularview chng(p,V)
action after its recovery.

This implies that a valid scheduleSrecov(p) dealing with a GCS-relatedp’s recovery (leading to the
installation of a new viewV ) consists of the following sequence of actions:
Srecov(p) ≡ ta = recover(p), {tb = view chng(p, V ′), {tc = recv(p, m)}∗, }∗, td = end recover(p), te =
view chng(p, V )

Proof. Note that the recovery of a processp should start with actionta, and that such action setsrecover-
ingp to thetruevalue and copiesLp ontoLcopyp (lines 2 and 3 of Fig. 2).

If processp did not hold any message inLp (i.e., it was able to completely process all messages
delivered in its last working view), theeGCS internal actionend recover(p) is the single one enabled (see
line 5 in Fig. 2 and note that the execution of line 3 also implies thatLcopyp = ∅), and this implies that no
event of classtb nor tc will be executed. Execution ofend recover(p) leads immediately to the execution
of te, terminating thus such recovery.

Otherwise, as a result of the first recovery action, and due tothe definition of theviewof function that
models how views are managed in aneGCS, the view ofp at that moment is undefined (i.e.,⊥). In
an undefined view, a process may only acceptview chng(p,V) or crash(p) events, but nosend(p,m) nor
recv(p,m) ones (Recall P3). So, we are forced to install a fictitious viewV ′ (indeed, the last working view
of p) using the actionview chng(p,V) shown in lines 17-20 of Fig. 2. Note that this is the single action
enabled in theeGCS automaton at that time.
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As a result of this, the eventrecv(p,m) shown in lines 11-16 of Fig. 2 gets enabled, and this explains
the existence of multipletc actions in scheduleSrecov(p). Such actions correspond to the delivery of all
messages contained inLp. Each timep receives one of such messages,eGCS removes the message from
Lcopyp, andProc of p will internally execute itsprocessmsg(p,m) action, updating thus itsst(p), and
leading later to the execution ofack(p,m) that removes such messagem fromLp. So, eventually, bothLp

andLcopyp become empty.
At that time,end recover(p) is enabled (see line 5 of Fig. 2), and this explains the location of eventtd

in Srecov(p).
As a result of such event,recoveringp is set tofalseand a regularview chng(p,V) is executed, installing

the first regular new view once the recovery is terminated.

6.2 Solving Problem P-1

In order to formally prove that PLS avoids problem P-1 we onlyneed to show that once a message is
received by a processp, its effects will be eventually applied inst(p) following the message delivery order.
Formally:

Theorem 1. In aneGCS ·eProc system:tj =crash(p)∧ ti =recv(p, m)∧ tk =end recover(p)∧ i < j <

k ⇒ effects(m) ∈ st(p).

Proof. Let us prove this by contradiction. To this end, let us assumethat when:

(a) ti = recv(p, m)

(b) tj = crash(p)

(c) tk = end recover(p)

(d) i < j < k

all hold, theneffects(m) 6∈ st(p); i.e., problem P-1 arises.
This consequence may only happen whenprocessmsg(p, m) action is not executed. Two cases explain

such situation:

1. No recv(p, m) action was executed. This is already a contradiction with clause (a) listed above.

2. Actionrecv(p, m) was executed by the GCS, butprocessmsg(p, m) was not completed in itsProc’s
recv(p, m) counterpart. If so happened,GCS’s actionrecv(p, m) ensures that〈m, V ′〉 ∈ Lp. More-
over, due to Lemma 1 if anend recover(p) action was executed, all〈m′, V ′〉 ∈ Lp would have
forced that processp had executed its internalprocessmsg(p, m′) for each messagem′. This im-
plies that noend recover(p) action was possible in this case, and also leads to a contradiction with
clause (c).

As a result, this theorem is proved and Problem P-1 is avoidedby PLS.

7 Overhead Comparison

Our proposed execution model removes all problems identified in Section 4. Unfortunately, this does not
come for free, since there are two issues that introduce performance penalties:

• Messages should be persisted by the GCS between the reception and delivery steps in the receiver
domain. See, line 9 in Fig. 2. This introduces a non-negligible delay.
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• Our model also requires safe or fully-stable multicasts; recall that we have merged into oureGCS’s
recv(p,m) output action, the regularsafe prefix(p,m) action assumed in [6] that notifies message
delivery safety. So, both actions should be atomically ensured: message safety and message deliv-
ery. Safety introduces the need of an additional round of message exchange among the receiving
processes in order to deal with message delivery, and this also penalizes performance.

Note, however, that such additional round only uses small control messages; i.e., they do not carry
the request or update-propagation contents of the originalmessage, so their size is small and such
message round can be completed faster than the contents-propagation one in the regular case. Since
our model requires that message stability is guaranteed at the same time a message is persisted, such
extra round of messages and the write operation on stable storage may be executed in parallel. In
such case, if a processp crashes before the message is safe, such message should be discarded since
it will be delivered in the next view andp will not be one of its members. So, if it was already
persisted, it has to be ignored. To this end, we might use the following procedure, based on having a
little amount of battery-backed RAM that holds an array of〈msgid, is safe〉 pairs:

1. As soon as a message is received from the network, its identifier is inserted in the array and its
is safeflag is set to false.

2. It is immediately written in stable storage.

3. When its safety is confirmed, itsis safeflag is set to true, and it is delivered to its target process.

4. Finally, when the message is deleted from stable storage as a result of theack(p,m) event, its
entry in this array is also removed.

As a result, in case of failure and recovery, all those messages whoseis safeflag is false are simply
ignored. Note that this procedure does not introduce any overhead, since it only implies to write a
boolean in main memory.

So, in a practical deployment, the overhead introduced by the message saving at delivery time is par-
tially balanced by the additional communication delay needed for ensuring safe, uniform or fully-stable
delivery. However, PLS does not introduce any practical advantage in environments where its persistency
time is longer than the time needed to ensure such uniform delivery. So, this section surveys in which
distributed settings the applications can afford the PLS overhead.

In order to develop efficient uniform broadcasts, modern GCSs have used protocols with optimistic
delivery [25, 24]. This allows an early management of the incoming messages, even before their delivery
order has been set. Thus, [27] propose an adaptive and uniform total order broadcast based on optimistic
delivery and on a sequencer-based [10] protocol. In such protocol, uniform delivery is guaranteed when the
second broadcast round —used by the sequencer for spreadingthe message sequence numbers— has been
acknowledged by (a majority of) the receiving nodes. We assume a protocol of this kind in this section.

This overhead analysis starts in Section 7.1 with the expressions and parameters used for computing
the time needed to persist the message contents and to ensureits uniform delivery. Note that in order to
deal with message sizes in this study, we have considered a database replication protocol as a relevant
application example in our PLS system. Section 7.2 presentsmultiple kinds of computer networks and
storage devices, showing the values they provide for the main parameters identified in Section 7.1. Finally,
Section 7.3 compares the time needed for persisting messages in the storage device with the time needed
for ensuring such uniform or fully-stable delivery. In somecases message persistency does not introduce
any overhead, since it can be completed before such uniformity-ensuring message round is terminated and
the message delivery can proceed. This confirms that PLS could make sense in such environments.

7.1 Persistency and Stability Costs

In order to compute the time needed to persist a message in a storage device, the expression to be used
should consider the typical access time of such device (headpositioning and rotational delay, in case of
hard disks or simply the device latency for flash-memory devices), its bandwidth, and the message size. In
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practice, although being a bit optimistic, such message could be persisted in a single operation since we
could assume that in the general case it could be persisted ina contiguous sequence of blocks.

On the other hand, for ensuring fully-stable delivery, a complete message round is needed; i.e., assum-
ing the sequencer-based protocol outlined above, the sequencer should send a small message containing
the message sequence number and the receivers would return their acknowledgment. Anyway, we should
analyze such cost from the receiver’s side, so a single sequencing message is needed, once the previous
update-propagating message has been received, starting then its saving step. But such previous update-
propagating message has been acknowledged before the sequence number could be sent. So, a complete
round-trip delay should be considered for ensuring this fully-stable delivery.

So, both times can be computed using the following expression:

time = latency +
message size

bandwidth

but we should consider that the message sizes in each case correspond to different kinds of messages. When
persistency is being analyzed, such message has been sent bythe replication protocol in order to propagate
state updates (associated to the execution of an operation or a transaction). So, messages of this kind are
usually big. On the other hand, for ensuring fully-stable delivery, the sender has been the GCS and both
messages needed in such case are small control messages.

7.2 Latency and Bandwidth

Different storage devices and networks are available today. So, we present their common values for the two
main parameters discussed in the previous section; i.e., latency and bandwidth. In case of storage devices,
such second parameter considers the write bandwidth. Such values are summarized in Table 1 for storage
devices and in Table 2 for computer networks.2

ID Device Latency Bandwidth
(sec) (Mb/s)

SD-1 SD-HC Class-6 2*10−3 48
SD-2 CompactFlash 2*10−3 360
SD-3 Flash SSD 1*10−4 960
SD-4 SATA-300 HDD 10*10−3 2400
SD-5 DDR-based SSD 15*10−6 51200

Table 1: Values for storage devices.

In both tables, we have used a first column in order to assign a short identifier for each one of those
devices. Such identifiers will be used later in Table 4 and Figure 3. Five different kinds of storage devices
have been considered. The initial three ones are different variants of flash memory devices. Thus, SD-HC
Class-6 refers to such kind of memory cards, where its bandwidth corresponds to the minimal sustained
write transfer rate in such cards. The third row correspondsto one of the currently available flash-based
Solid State Disks (the Imation PRO 7500 Series [15]), whilstthe fifth one refers to SSDs based on battery-
backed DDR2 memory (concretely, such values correspond to adisk based on PC2-6400 DDR2 memory,
but there are faster memories nowadays). Note that there aresome other commercially available SSD disks
that combine these two last technologies and that are able toprovide a flash write bandwidth quite close to
the latter. For instance, the Texas Memory Systems’ RamSan-500 SSD provides a write bandwidth of 16
Gbps [32].

Table 2 shows bandwidths for different kinds of computer/phone networks. No latencies have been
presented there. In any network there is a delivery latency related to interrupt processing in the receiving

2Note that in all Section 7 we are using SI prefixes in order to refer to message sizes and bandwidths (i.e., K = kilo = 103, M =
mega = 106), since they are commonly used today by computer-network and computer-storage manufacturers. If needed, in order to
refer to binary multiples, we would use IEC prefixes (i.e., Ki= kibi (kilobinary) = 210 , Mi = mebi (megabinary) = 220), that were
standardized in 1999.
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ID Interface/Network Bandwidth
(Mb/s)

N-1 HSDPA 14.4
N-2 HSPA+ 42
N-3 802.11g 54
N-4 802.16 (WiMAX) 70
N-5 Fast Ethernet 100
N-6 802.11n 248
N-7 Gigabit Ethernet 1000
N-8 Myrinet 2000 2000
N-9 10G Ethernet 10000
N-10 SCI 20000

Table 2: Values for phone interfaces and computer networks.

node. Besides such delivery latency there will be another one related to data transmission, but this is
mainly distance-dependent. In order to consider the worst-case scenario for a persistence-oriented system,
we would assume for such second latency that information canbe transferred at the speed of light and that
as a result, it is negligible for short distances, and that the first one —interrupt processing— needs around
15 µs ([37] reports a minimal interrupt processing time of 20µs in a IA-32/PCI based computer running
4.4 BSD, but current PCs can complete such tasks faster) although such time is highly variable and depends
on the supported load and scheduling behavior of the underlying operating system. Additionally, there will
be other latencies related to routing or being introduced byhubs or switches if they were used, although we
do not include such cases in this analysis; i.e., we are interested in the worst-case scenario for PLS, proving
that our proposal is interesting even in that case.

7.3 Persistency Overhead

Looking at the data shown in Tables 1 and 2, and the latency than can be assumed for interrupt processing
in network-based communication, it is clear that storage times will be longer than network transfers except
when a DDR-based SSD storage device is considered.

Let us start with a short discussion of this last case. Note that the control messages needed for ensuring
message delivery stability are small. Let us assume that their size is 1000 bits (that size is enough for
holding the needed message headers, tails and their intended contents; i.e., two long integers: one for
the identifier of the message being sequenced and another forits assigned sequence number). Assuming
that the interrupt processing demands 15µs, the total time needed for a round-trip message exchange
consists of 30µs devoted to interrupt management and the time needed for message reception assuming
the bandwidths shown in Table 2. Note that such latter time corresponds to a 2000-bit transferal, since we
need to consider the delivery of two control messages (one broadcast from the sequencer to each group
member and a second one acknowledging the reception of such sequencing message). Moreover, such cost
would be multiplied by the number of additional processes inthe group (besides the sequencer), although
we will assume a 2-process group in order to consider the worst-case scenario for the persisting approach.

So, using the following variables and constants:

• nbw: Network bandwidth (in Mbits/second).

• nl: Network latency (in seconds). As already discussed above, we assume alatency of 15*10−6

seconds per message in the rest of this document, except in Figure 3.

• psbw: Persistent storage bandwidth (in Mbits/second). In this case, the single device (DDR-based
SSD) of this kind that we are considering provides a value of 51.2*103 for this parameter.

• psl: Persistent storage latency (in seconds). Again, a single device has been considered, with a value
of 15*10−6 for this parameter.
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• rtt: Round-trip time for the control messages (assumed size: 1000 bit/msg) that ensure uniform/stable
delivery.

we could compute the maximum size of the broadcast/persisted update messages (msum, expressed in
KB) that does not introduce any performance penalty (i.e., that can be persisted while the additional control
messages are transferred) using the following expressions(being 0.002 the size of the two control messages,
expressed also in Mbits):

rtt =
0.002

nbw
+ 2 ∗ nl

msum = (rtt − psl) ∗ psbw ∗ 125

So, for each one of the computer/phone networks depicted in Table 2 the resulting values for those two
expressions have been summarized in Table 3.

Network rtt Msg. size
HSDPA 168.88*10−6 984.89
HSPA+ 77.62*10−6 400.76
802.11g 67.04*10−6 333.04
802.16(WiMAX) 58.57*10−6 278.86
Fast Ethernet 50*10−6 224
802.11n 38.06*10−6 147.61
Gb Ethernet 32*10−6 108.8
Myrinet 2000 31*10−6 102.4
10G Ethernet 30.2*10−6 97.28
SCI 30.1*10−6 96.64

Table 3: Maximum persistable message sizes (in KB).

As it can be seen, all computed values provide an acceptable update message size using this kind of
storage device. In the worst case, with the most performant network, 96.64 KB update messages could be
persisted without introducing any noticeable overhead. This size is far larger than the one usually needed
in database replication protocols (less than 4 KB), as reported in [34]. In the best case, such size could
reach almost 1 MB. This is enough for most applications. So, PLS is affordable when a storage device of
this kind is used for the message persisting tasks at delivery time.

Note, however, that these computed message sizes depend a lot on the interrupt processing time that
we have considered as an appropriate value for thenl (network latency) parameter. So, Figure 3 shows the
resulting maximum persistable message sizes when suchnl parameter is varied from 5 to 20µs. As we
can see, when the interrupt processing time exceeds 7.8µs, the SD-5 storage device does not introduce any
overhead, even when it is combined with the fastest networksavailable nowadays.

Let us discuss now which will be the additional time (exceeding the control messages transfer time;
recall that such messages ensure message delivery stability) needed in the persisting procedure, in order
to save the delivered update messages in the system nodes. Such update message sizes do not need to
be excessively large. For instance, [34, page 130] reports that the average writeset sizes in PostgreSQL
for transactions being used in the standard TPC-C benchmark[33] are 2704 bytes in the largest case.
When a transaction requests commitment, regular database replication protocols need to broadcast the
transaction ID and writeset. So, we will assume update messages of 4 KB (i.e, 0.032 Mbits) and the
following expressions will provide such extra time (pot, persistency overhead time) introduced by the
persistency actions:

pot = psl +
0.032

psbw
− rtt
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Figure 3: Maximum persistable message sizes.

Storage Devices
Network SD-1 SD-2 SD-3 SD-4

HSDPA 2497.8 1920 -35.6 9844.4
HSPA+ 2589.0 2011.3 55.7 9935.7
802.11g 2599.6 2021.9 66.3 9946.3
802.16 2608.1 2030.3 74.8 9954.8
Fast Ethernet 2616.7 2038.9 83.3 9963.3
802.11n 2628.6 2050.8 95.3 9975.3
Gb Ethernet 2634.7 2056.9 101.3 9981.3
Myrinet 2000 2635.7 2057.9 102.3 9982.3
10G Ethernet 2636.5 2058.7 103.1 9983.1
SCI 2636.6 2058.8 103.2 9983.3

Table 4: Persistency overhead in slow storage devices (inµs).

We summarize all resulting values (for each one of the remaining storage devices) in Table 4. In the
best device (SD-3; i.e., a fast flash-based SSD drive), it lasts 103.2µs using the best available network.
This means that we need an update arrival rate of 9615.4 msg/sin order to saturate such device using
such fast network. However, using the worst network, no persistency overhead is introduced (it is able to
persist each update message 35.6µs before the control messages terminate the uniform delivery). On the
other hand, some of these devices generate a non-negligibleoverhead (i.e., they can saturate the persisting
service) when update propagation rates exceed moderately high values (e.g., 400 msg/s using SD-1 or
SD-2 devices, and 100 msg/s for SD-4 ones; i.e., flash memory cards and SATA-300 HDD, respectively).
As a result of this, we consider that the SD-3 device providesalso an excellent compromise between the
overhead being introduced and the availability enhancements that PLS ensures, and that even the SD-1 and
SD-2 devices could be accepted for moderately loaded applications. This proves that PLS can be supported
today in common reliable applications that assume a recoverable failure model.

8 Conclusions

TheVirtual Synchronyexecution model, despite being appropriate for systems based on the crash failure
model, does not fit well when a recoverable failure model is assumed, since one problem arises: the effects
of the messages delivered to a process that crashes might be lost, since nothing guarantees that they were
completely processed before such crash event.

For this reason in this paper we have proposedPersistent Logical Synchronyas theVirtual Synchrony
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substitute on those systems for overcoming such problem. Our approach, which forces all processes to
persist messages in the delivery step, introduces some overhead that has been analyzed in the performance
section. Note that some modern storage devices are able to support PLS without introducing any perfor-
mance penalty. Moreover, it guarantees that no message already applied could be forgotten by recovering
processes, simplifying such recovery protocols. Thus, besides solving the problem commented above, this
also allows partial recoveries when no majority group can befound in a partitioned system, reducing the
overall recovery time when a majority component is merged again.
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[36] Matthias Wiesmann and André Schiper. Comparison of database replication techniques based on total
order broadcast.IEEE Trans. Knowl. Data Eng., 17(4):551–566, April 2005.

[37] Marko Zec, Miljenco Mikuc, and Mario Zagar. Estimatingthe impact of interrupt coalescing delays
on steady state TCP throughput. In10th SoftCOM Conf., Split, Croatia, 2002.

18


