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Abstract

In order to build single system image clusters, it is necessary to provide some sort of fault handling mecha-
nisms, allowing system services to react appropriately to system faults, offering some predetermined degree of
high availability. At the base of any fault handling protocols, there must be fault detection mechanisms, indicat-
ing when some machine or process fails. Also, at the base of any high availability scheme, there must be some
sort of replication. Group Membership Protocols provide two basic types of services: fault detection, and group
membership configuration. In addition, some group membership protocols provide also a communications toolkit
to facilitate the exchange of information among the members of a related group of processes.

Not all group membership protocols are suitable for any application environment. In fact most of the protocols
proposed are tailored for the specific needs of their target systems. This paper discusses the functionality available
in the different group membership protocols, and how it can be used to build robust systems.

1 Introduction

In order to achieve robust services in distributed applications it is necessary to replicate the processes which make
up such services. Thus, some processes tend to constitute process groups, where they have several common
attributes which define their state or behavior. Similarly, the group of nodes in a tightly coupled distributed system
(like a cluster), also can be seen as a group of processes with common characteristics.

A process group is, therefore, a set of somewhat related processes; either providing the same interface of
operations being served or sharing a common state that can be queried from any of the processes or being one of
the modules of a distributed application. The same can be applied to a group of computing nodes: it is composed
of a set of machines and these machines share some kind of relationship.

A group membership service manages the concept of a group, either built using a set of processes or a set of
machines. It has to keep the current state of the group, knowing about each possible member of the whole set and
responding to any request made by any member about the state of any other, or to requests to join or leave the
group.

However, other requirements have been made to these services. Currently a group service has to deal with
detecting automatically the failure of any member, and it has to react to this situation, i.e. reconfiguring the group
membership, as soon as possible. Other activities that are being included in the tasks to be done by the group service
are intragroup communication and the reordering and delivery of messages and notifications sent to the group
members. So, the membership service forms a base that is being completed by other related services, building a
group communication service or toolkit which usually emphasizes on message delivery order and semantics.

Besides the group communication toolkits, which have been the most common user of group membership
services, other software components require service about group membership. One of the emerging clients of this
kind of services are the kernels used in multicomputer systems which offer a single system image. These software
elements need a membership service to know which machines of the cluster are up and running, so they can do
load balancing according to the current configuration of the system. Moreover, when a failure occurs, the system
has to be reconfigured as soon as possible, and all the machines have to know which is the current group set. If the
operating system provides support for highly-available applications or servers, where these software components
are replicated, additional support has to be provided by this operating system to detect when one of the components
of an application has failed, notifying to the rest about the failure.
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Other clients of group services are fault-tolerant distributed applications which use the group services to know
the current state of the application’s processes. In this case, the group membership service is one of the blocks that
has been used to build the application and the services provided are tailored to the application needs.

Independently of the client which uses the group membership services, a service of this kind has to perform
the following tasks. First, it has to keep the current membership set of the group. To achieve this, the service has
to manage a set of monitor processes in each of the machines where one of the group members may stay. We refer
to this software element as a membership monitor. All membership monitors have to communicate periodically to
know that each other is alive. As the group members are usually placed in different machines, the communication
among membership monitors must be done exchanging messages. So, the protocol used to exchange information
depends on the kind of distributed system where the group members reside. Thus, the degree of synchrony, the
type of interconnecting network, the possibility of network partitions and other characteristics of the system are
conditioning the type of protocol to use. In any case, the resulting protocol has to provide to the service the means
to know which is the current set of group members.

Support for group membership changes constitute the second set of services provided. When a change occurs
in the group, the group must be warned about the current change being done. A change may be caused either by
a join of a new member, the departure of one of the current members or by the failure of one of the members.
The most difficult change to manage is the last one, due to the kind of communication maintained among the
members. Note that several classes of failure may happen in a distributed system (for instance, a machine crash,
an omission failure

�

, a performance failure
�

or an interconnecting link failure) which may lead the membership
service to confusion, because part of them may be indistinguishable from an actual member failure.

Finally, group members may request information about the current membership set. This information is needed
when a member must broadcast a message to the rest of the group.

As we have sketched above, the services related to the group membership problem depend mainly on the client
application which uses these services and also on the characteristics of the distributed system where the group
application runs. Some of the characteristics which define a membership service are outlined in the following
sections, and some examples of group membership protocols are also described.

The rest of the paper is organized as follows. Section 2 outlines several aspects that must be taken into account
when a new membership protocol is being designed. A brief description of each algorithm property is given
and several design alternatives are explained. Section 3 classifies some of the current protocols according to the
alternatives previously shown. Section 4 explores some of the membership protocol alternatives that have not been
used until now. Possible target systems and applications for these new alternatives are given. Finally, section 5
gives a brief summary of the protocols described in the paper.

2 Characterization of a Membership Service

Several design decisions have to be taken when a new membership protocol is being built. The alternatives chosen
determine the properties offered by the protocol to its applications and the kind of system where the protocol can
be run. We outline some of these design choices in the following subsections.

2.1 Relationship with Other System Components

Usually, the group membership service is provided by a software module at user level which uses unreliable
communication services provided by the underlying operating system. Each membership monitor reports any
change in the group view to its upper module, the client application.

This scheme is depicted in figure 1 and has been used in a large number of group communication toolkits, such
as Isis [8, 27], Totem [1, 24] and Transis [11].

The relationship between the membership monitor and the target application can be more or less complex. The
minimum service that has to be provided is the notification of membership changes to the application. But this
scheme forces the application to send its messages to other members bypassing the membership layer.

�

An omission failure happens when a message is never delivered to its destination, either due to a buffer overflow in the receiving side or
due to an expected message that never was sent.

�

A performance failure means that a message was not delivered on time, and this is only applicable to systems that set an upper bound on
message delivery.
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Figure 1: Main system components.

The choice found in group communication toolkits is to integrate the management of the group view with some
additional services such as the sending and delivery of messages among the members. The application can choose
not to worry about the current group view, it has only to send and receive intragroup messages using the services
provided by the group toolkit. So, a group communication tool extends the group membership service with a group
communication service which offers some group event ordering semantics.

If a micro-kernel or object-oriented operating system approach is used, the group membership protocol can be
included as another component of the operating system [5, 17]. This allows membership services to be provided
as common system services, available to all its applications, although it forces to maintain the group view in a per
machine basis instead of in a per process one; i.e., the elements of the group must be machines, not processes. This
approach may be used in distributed system kernels, which are able to manage the set of machines which constitute
the current system.

2.2 Synchrony

Distributed systems are usually asynchronous. Each computing node has a private clock and interprocess commu-
nication is done exchanging messages, which can be arbitrarily delayed. Therefore, different nodes have a different
notion of time and may work at different speeds. Programming distributed algorithms in this environment is harder
than in a synchronous one, where all nodes share the same clock and make progress simultaneously. Moreover,
some theoretical results [9] prove that the membership problem can not be solved in asynchronous systems where
computing nodes may crash, even if communication channels are reliable and computing nodes are forced to crash
by the rest of the group when suspected faulty.

The impossibility result of [9] asserts that in asynchronous environments where only a primary group is allowed
(i.e., partitions are not supported,) it is impossible to achieve agreement on the new group view to be installed. In
those systems, if a node crashes some nodes are unable to install new group views because more than one proposal
for the new view exists. This situation makes the membership service completely useless, since current members
can not decide which is the current group view. To overcome the problems offered by asynchronous systems, some
degree of synchrony is introduced in the membership protocols.

The first approach is to assume a synchronous system. In [10] the communication subsystem provides two ser-
vices: an unreliable datagram service and a diffusion service. The diffusion service has a known maximum delay
and its messages are always delivered on time. To guarantee this property, sufficient buffer capacity, appropriate
diffusion rates and intercommunication link redundancy are assumed. The diffusion service allows clock synchro-
nization, since periodical diffusions can be used to adjust local clocks to a known global time. With little effort, the
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diffusion service can be extended in synchronous environments to guarantee an atomic broadcast communication
service. As a result, the membership protocols running in this environment can be implemented easily because all
the nodes initiate the same steps and expect the same events at the same time.

Another synchronous protocol is shown in [19]. An external clock synchronization protocol is executed apart
from the membership one. Since no reliable communication service is assumed, this work introduces the notion of
sparse time to guarantee the minimum properties needed to develop synchronous algorithms. A sparse time base
is a global notion of time with limited precision. This precision is low enough to guarantee that the maximum
difference between local clocks is lower than the time unit being used. Its main property is that each system event
is viewed by any member of the system at the same time stamp. So, any node in the system drives its membership
monitor synchronously with the rest of the group.

Systems like Totem [1, 24], Relacs [2], Isis [8], Transis [11], Horus [31] and others [16, 22, 25, 26] have
different approaches to build the new membership set when failures or joins are detected in their asynchronous
environments.

Isis is an example of an asynchronous membership protocol that does not tolerate partitions. In its protocol,
the oldest group member is the manager of the group and decides when a new view has to be installed. This
system uses sequence numbers to distinguish successive group views and to reject stale messages. So, machines
suspected faulty are generally forced to crash, because they are isolated by the rest of the group and their messages
are ignored. Nevertheless, when the manager is erroneously suspected faulty by part of the group, problems will
arise because this situation leads to a partition and the minor subgroup is forced to crash. Frequent partitions may
lead to a crash of the whole system when the number of live nodes is too small. This situation may arise in any
asynchronous system which only supports a primary group when partitions occur (as suggested by the impossibility
result described above,) but fortunately it seldom happens.

Another kind of protocols for asynchronous environments support isolated multiple-member subgroups when
a partition arises and a sub-protocol to re-merge these subgroups when the failure disappears [2, 11, 20, 31].
These protocols avoid the situation described in the impossibility result, since the multiple proposals for the next
group view are accepted by different members and multiple subgroups are installed. When several subgroups can
communicate again among them, they are re-merged in a bigger group view. However, not all highly available
applications may afford group splitting. So, this kind of protocols are useless in some environments. A replicated
server which has its state distributed among its members (a database server, for instance) may provide inconsistent
replies to its clients requests if the group becomes partitioned.

On the other hand, [12] presents some applications which need a membership service that tolerates partitions.
CoRel is one of these applications. It is a replication service which is improved using partitionable group support.
As a result of a partition, CoRel allows any subgroup to proceed, although only the majority subgroup may perform
updates to the replicated state. The other subgroups will know about the updates when they re-merge with the main
subgroup. The advantage over a primary-partition approach is that a partitionable service survives situations where
the group has been divided into multiple subgroups where none of them reaches the minimum required to proceed;
i.e., these situations lead to a crash of the entire group if the primary-partition alternative is being followed, losing
the group’s state, while in a partitionable service different subgroups will eventually merge and their states are
somehow rebuilt.

�

Summarizing, synchrony is a property that makes easier the task of designing membership protocols, since all
the membership servers may take a decision (about a membership change) in a message round and this decision
is known by the rest of the group on the following message round. Asynchronous systems are harder to manage
since messages may be arbitrarily delayed and failure detection is not accurate.

2.3 Accuracy, Liveness and Safety

One of the main targets of a membership service is to deal with machine failures and joins (membership changes,
on the sequel.) To detect these events, the membership service has to use a failure reporting mechanism; i.e., some
software component which scans the network and reports the membership server about machine crashes. This
failure reporting modules can be easily extended to notify the membership server about the recovery of temporary
faulty members or the join of new ones.

The failure reporting mechanism used by a membership service is defined by three properties, according to [7]:
�

However, no comment is given about how minority subgroups deal with non-updating requests. Note that these requests are problematic
since they may provide an outdated and inconsistent image of the group state.
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Accuracy A membership service is accurate if it only reports real membership changes to the target application.
In other words, all membership changes must happen before being reported, but there may be changes never
reported.

Liveness A membership service is live if all membership changes are eventually reported to the application. Note,
that the service may report changes that never happened, but all the real changes must be reported.

A stronger property is bounded liveness [15], where every change must be detected and reported in a known
bounded time.

Safety A membership service is safe if at a given time, all operational processes (members of the group) agree on
the current membership set, and processes supposed faulty can not communicate with operational ones.

Safety is discussed in greater detail in section 2.10, where we describe how the members of a group can achieve
agreement and what sorts of agreement may be attained.

Synchronous systems allow failure detectors to be accurate and live, while asynchronous systems can not
guarantee both properties simultaneously.

Assuming a reliable interconnecting network [10], synchronous systems may be accurate. All processors in
the system share a common clock, and periodical messages are broadcast and expected by any member. When a
message is lost, its source is considered faulty and actually it is. Liveness is also satisfied, since all membership
changes are known in the next message round.

In [19] a synchronous system is described, where all members have a synchronized clock and the intercon-
necting network has a known upper bound delivering messages. Despite this, its protocol does not assume that
this network is reliable — links may be temporarily broken or all messages traversing a link may be corrupted —
and therefore, accuracy can not be guaranteed, since link and node failures are indistinguishable and the failure
reporting service may notify a node failure when only the link has failed.

Delayed messages, interconnecting link failures and machine crashes are indistinguishable in asynchronous
systems, since the receiver machine observes the same situation: no message sent by a given machine is delivered
in a predetermined period of time. To guarantee accuracy, failure detectors in asynchronous systems have to report
membership changes once the event has taken place and the affected machine is running again. Liveness is easier
to achieve. Once a failure reporting module suspects another machine is faulty, it reports the change immediately.
Therefore, liveness is guaranteed since every change is reported in a bounded time — using failure detectors based
on timeouts — and accuracy is lost — since part of the reported changes are not true. Usually, an asynchronous
system is accurate to report join events, since a new member is only considered when its messages are received, and
they can be delayed or lost an unbounded number of times, and live to report failures, since omission, performance
or link failure may be mistakenly considered as node crashes, and when the node actually fails the failure is easily
detected. Samples of this kind of systems are Isis [27], Horus [31], Transis [11], Totem [1, 18] and many others.

The IPC provided by the Mach micro-kernel is an example of a failure reporting mechanism that is accurate
but not live. When an external process crashes, the local processes which have to communicate with it must wait.
The failure of the external process is reported when it is recovered. This approach guarantees accuracy, because
only true failures are notified, but is not live since machines or processes which do not recover prevent other
intercommunicating processes to advance.

Generally, liveness is preferred to accuracy in asynchronous systems. The lack of accuracy can be partially
compensated if safety is guaranteed — for instance, preventing assumed-faulty nodes, even if they are actually
operational, to communicate with the current members, — but the lack of liveness may prevent progress since
faulty machines are still considered operational.

2.4 Member Classification

Membership services may differ in what they consider a valid member of the group and in the kinds of members
being managed. Cristian [10] identifies two membership problems that have to be solved by a membership service:

� Processor-group membership problem. To solve it, the membership service must find the current group of
machines which compose the group view.

� Server-group membership problem. Once the processor-group membership set is found, the service has to
know which servers running in those processors belong to the group.
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Usually, only one server runs in one processor and a processor is considered alive if it has a membership
monitor running on it and maintaining a state which agrees with other servers. Some membership services deal
with the machines which compose the group and are only interested in those machines. Their clients are replicated
or somehow related applications which run on the system and want to know the state of their remote companions’
machines. So, this kind of services consider machines or processors as the members to be controlled. Other
membership services deal directly with the replicated applications and consider these elements as their members.
Therefore, if two instances of the target application run on the same machine, they are managed as two different
members.

Group communication toolkits typically need to solve the server-group membership problem. In Relacs [4]
and Phoenix [20] the classes of members that have to be managed by a membership service are extended to three:

� Core members. The group consists of a set of core members which provide some kind of service and share
their state. This has been the traditional target of regular membership protocols.

� Clients. When a process needs to communicate frequently with the core members of a group, it joins the
group as a client. Clients do not belong to the main group (in fact, this group only consists of core members)
but they are reported about any group change; i.e, about joins and departures of core members that imply a
group view change. To allow this, the group membership service receives explicit requests to join a group
as a client and to leave it. Moreover, it does not have to worry about changes in the client set, since they are
not relevant to the normal function of the core members group.

The use of registered client processes may facilitate the ordering of client requests to the core group when
this condition is needed.

� Sinks. Sinks processes are a special class of clients which only receive the information reported by core
members, but they do not request any other group service. The life of a sink member begins when it requests
to join the group as a sink. Hereafter, the sink member receives a sequence of output messages from the core
members, until it decides to leave the group. In this case, the sink process is not interested on group changes,
it only wants to receive output data from the core group. For instance, a client of a replicated news server
can be implemented as a sink for the group that implements that server.

Observe that core members, clients and sinks are processes and we can find some instances of each class on the
same machine. Therefore, a group communication system of this kind needs a membership service dealing with
processes, since machine granularity is not enough. Besides that, several group views are needed (In particular,
one per member class.)

2.5 Event Ordering

Groups deal with different types of events which must follow a given order in all of their members. There are
multiple possible orders to apply to the chain of events that arrive to a particular group member, each one offering
different guarantees to the programmer who has to use the group as a tool to develop replicated applications.

To be able to describe these event orders, some care must be taken about which are the sources of the events to
be considered. Usually, these sources are the emission or reception of messages. But the messages used by a group
belong to several classes. To begin with, there are poll messages used by the membership monitors to implement
the membership protocol. They receive this name because one of the membership protocol functions is to check
the state of all other members of the group. The second class consists of regular messages. A regular message
is transmitted between two group members or between an external process and a group member. Anyway, it is a
message that is not generated by the membership protocol. Finally, a change message is a message generated by
the membership protocol which informs the group members about a change in the current group view. It forces the
installation of another group view.

Usually, poll messages are not considered as relevant events. Event ordering is only needed to provide some
guarantees about how the group state is updated and poll messages do not introduce any update in the application-
level state of a member. However, change messages may be important, since the group members may have to react
in some way to the addition or departure of one or more members. Regular messages are also the source of changes
in the state of any member, since they are requesting some service from the replica or are providing the answer
to a previous request. So, only regular and change messages can be considered sources of group-related events.
Moreover, given a particular message, there are some events related to it:
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� Message sending: send(m). A point-to-point message is sent by a process to some other.

� Message diffusion: multicast(m). A message is broadcast or multicast to all the members of the group.

� Message reception: receive(m). A regular message is received by the communications layer of its destina-
tion’s machine, but its contents are not still delivered.

� Message delivery: deliver(m). A previously received message is delivered to the client application. This is
done when all the group members agree on delivery order.

We are only interested in message delivery events in this section. The different orderings followed by current
membership protocols are outlined below, starting with the simpler and more economic ones.

2.5.1 FIFO Ordering of Membership Changes

FIFO order is achieved when messages about the current state of a particular member are delivered to the client
applications at all the other members in the same order. To guarantee this property, the same sequence of member-
ship change events regarding a particular node can be found in the history of events of all group members. Note
that FIFO order is not respected if some membership changes about a given member are notified in opposite order
in at least two different group members.

Usually, FIFO ordering is maintained in all membership protocols.

2.5.2 Total Ordering of Membership Changes

Total order requires that any membership change message, independently of the member who originated such a
message, was delivered in the same order at any group member. Therefore, the history of membership change
events has to be the same in any member. Note that total ordering only orders membership changes. Nothing is
said about regular messages and their relationship with membership changes.

The difference between FIFO order and total order is that the first only requires that membership changes
originated by a member must be ordered the same way by the rest of the group, while total order requires that all
membership changes must follow the same order in all of the group members. So, in FIFO order if we have three
events � � , � � , � � regarding a member E and three events

�
� ,

�
� ,

�
� originated by a member F, if any group member

sees these events in the order � � , � � , � � and
�

� ,
�

� ,
�

� , independently of how they are placed in the global order,
the resulting sequence of events follows FIFO order. On the other hand, if a member orders them in the sequence:

� � ,
�

� ,
�

� , � � , � � ,
�

� , then all other members must agree on this sequence to follow total order.
This event ordering is followed by a greater part of the membership protocols that do not allow group partitions.

If a group view is allowed to be partitioned and re-merged at a later time, its members do not follow a total order
since membership-related events were different while the subgroups had been partitioned. Nevertheless, if we only
consider the members of an isolated subgroup, the events seen in that subgroup can be totally ordered. So, the total
ordering is only violated when several subgroups join again.

2.5.3 Agreement on Last Message

Besides ordering membership change messages, regular messages (i.e., messages sent by the client application
rather than being sent by the membership monitor) exchanged among members must be ordered to avoid inconsis-
tencies in the group state (specially, if the membership set is used to maintain a replicated process.)

Agreement on last message consists in requiring that all members deliver and agree on the same last regular
message sent by a site that is currently considered faulty. So, this agreed upon regular message is the last one
that precedes the membership change message which announces the failure of that node. There may be additional
messages sent by the faulty node before failing. These messages are not considered its last message because some
nodes have never received them and, obviously, those nodes will not agree with the rest on considering one of these
additional messages as the last one. So, the last message is the last sent message that is received by all the rest of
the group and is delivered to any group member.

Similar to how the agreement on last message has been defined for faulty members, the agreement on first
message can be defined for joining members. Note that a joining member may believe prematurely that it has
joined the group and may start to send messages to the group. Messages sent by the joining process will be
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delivered when the rest of the group agree on its identity and inclusion in the group. So, some of the first messages
of the joining process may be discarded by the current group and it is important that all group members agree on
the first message that has to be accepted and delivered.

2.5.4 Virtual Synchrony

Virtual synchrony [8] guarantees that processes perceive member failures or joins at the same logical time. This
logical time is increased each time a new event is triggered in the group. Relevant events are message sending and
delivery and any group view change. So, to maintain the same logical time on each group member, every process
has to hold the same event history.

Note that to guarantee membership change events to occur at the same logical time on each member, events
corresponding to sending and delivery of regular messages have to be ordered as well.

Formally, a process belongs to a group view in a virtual synchrony model if its history is complete and legal.
An event history H is complete if:

C-1. All events which causally precede an event e, which belongs to H, also belong to H.

C-2. For each event � ���
�����	�

or
��
���������

�
����������

, there is an event
�

�
�����

���
���	�����

.

C-3. Each multicast message m delivered by a process P within view ��� is delivered by all other members of ��� .

While an event history H is legal if:

L-1. Each event e in H can be labeled with a global time time(e) that respects the causal order of events.

L-2. Each pair of events of the same process have distinct times.

L-3. Any two membership change events that install the same group view raised at two different processes occur
at the same logical time.

L-4. The deliver events corresponding to a single multicast are all delivered in the same view of the group.

L-5. Atomic delivery is totally ordered. The delivery of an atomic message occurs at the same logical time at all
delivering processes.

Note that conditions C-2 and C-3 require that if some failure or member join produces a membership change
after a message is sent or multicast, but before the same message is delivered by at least one of the members, the
delivery has to occur in the new group view obtained as a result of applying the membership change to the group
view present when the message was sent. Similarly, a received message can not be delivered until the receiving
member is sure that all other members of the current group view are able to deliver it.

Besides this, the virtual synchrony model requires a primary partition model (i.e., group partitions are not
allowed) where faulty processes are eventually removed from the group and no additional message is delivered if
it was sent by a faulty node. This forces recovered processes to change its identifier to be able to join the group
again.

2.5.5 Extended Virtual Synchrony

Extended virtual synchrony [23] is the extension of the virtual synchrony model for membership protocols that
tolerate partitions of the group view in several components and re-merging of these components at a later time.
It preserves the same main properties as the virtual synchrony model, but in a harder environment. Thus, a given
event may be ordered by any group member at the same logical time.

The configuration concept is introduced in [23] to refer to a group view together with a unique identifier. Two
kinds of configurations are distinguished. In a regular configuration messages may be sent and multicast, and
each member of the group delivers them following a given order. A transitional configuration is needed when a
membership change has been found and some messages sent or broadcast in the previous regular configuration are
still not delivered. No message can be sent in a configuration of this kind. This transitional configuration is used
to deliver the messages of the old regular configuration, trying to respect the delivery semantics guaranteed by the
type of order required when they were sent and having a group view as similar as possible to the previous regular
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one. For instance, if a new member is added to the group, its addition forces the generation of a transititional
configuration where it is not included yet. The new member will effectively join the group in the following regular
configuration.

The delivery consistencies allowed in the original system where extended virtual synchrony was introduced are
causal delivery, agreed delivery (total order) and safe delivery (delivery in a site implies delivery in all sites, and
following total order.)

The events ordered in an extended virtual synchrony model are the delivery of a configuration change message,
the sending of a regular message in a given configuration, the delivery of a regular message in a configuration and
the failure of a given process.

The following properties define the extended virtual synchrony model:

1. Basic delivery. Events are totally ordered in a single process. Delivery of a message is preceded by its
sending, and occurs in the same configuration or in the immediately following one. A message is sent only
in a configuration and has only a sender process.

2. Delivery of configuration changes. If a process fails, the others detect the failure and install a new config-
uration. At any moment, a process only belongs to one configuration. Processes agree on the first and last
message delivered in a configuration.

3. Self-delivery. A process delivers all messages it has sent, unless it fails.

4. Failure atomicity. If any two processes transit from a configuration to the next, then both processes deliver
the same messages in that configuration.

5. Causal delivery. If a message is sent before another in a (regular) configuration and a process delivers the
second one, it also has delivered the first one.

6. Agreed delivery. Agreed delivery is consistent with causal delivery, but extends it to consider also transitional
configurations. It guarantees a total order of message delivery in each subgroup and allows to deliver a
message as soon as all its predecessors in the total order have been delivered. In a transitional configuration
there is no obligation to deliver messages sent by processes not in that configuration or in its previous regular
configuration.

7. Safe delivery. If a process delivers a message in a configuration, then each process in that configuration
delivers it unless that process fails. If any process delivers a safe message in a regular configuration, then all
processes in this configuration had delivered a message to install this configuration.

Note that the causal, agreed and safe delivery orders are accumulative, i.e., agreed delivery implies also all the
conditions required in causal delivery, and safe delivery requires all the conditions given in agreed delivery.

Observe that the main extension to the virtual synchrony model is the addition of transitional configurations
which allow the delivery of pending messages before installing the new regular configuration. For instance, if a
virtual synchrony model is used and a process broadcasts a message m when the current group view is � A, B,
C � and before delivering it, a new process D joins the group, the message is delivered to D, too. In the extended
virtual synchrony model, once the node D has been detected, a transitional configuration is formed without D, and
the message m is delivered in it, preventing D from delivering that message. Another variation is that recovered
processes can use the same identifier they had in its last configuration to rejoin the membership group.

The strong and weak virtual synchrony models [14] are similar to the extended virtual synchrony. They modify
the virtual synchrony model to ensure that messages are delivered in the same configuration where they were sent.
Furthermore, these models also cope with partitions and rejoins of subgroups.

2.6 Member Identification

Since a member process or site may leave the group either voluntarily or due to a failure and rejoin the group at a
later time, some care must be taken to identify the potential and actual members of a group. The identifier assigned
to a member may help or complicate the task of distinguishing whether messages sent by this member are valid or
stale.
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A member identifier is the name or code used by the membership protocol to identify an element of the mem-
bership set. This identifier is the one used to report changes in the group view to the client application. Each
membership protocol may add other fields to this identifier. For instance, it may add a view sequence number to
distinguish current group view members’ messages from older ones. However, these additional fields are transpar-
ent to the client application and are never reported to it; thus, they do not belong to the member identifier.

The most common alternatives to identify group members are:

� Invariable identifiers. Each member of the group has an identifier that never changes. If the member fails
and later recovers or the group view changes the member identifier is not modified.

This is the approach followed by the Transis membership protocol [11], which uses the extended virtual
synchrony model. As invariable identifiers are used, that protocol needs to insert a context field in each
membership message. When the current configuration changes, its context number is increased. Detection
of stale messages is achieved adding another field, a message counter, that is reset when the context number
is increased.

A similar approach is taken in [25] where the identifier never changes but an incarnation number is added
each time a group member recovers. It presents several joining algorithms which assign incarnation numbers
to new machines, either using stable storage to hold the last member incarnation number or not.

� Identifiers per incarnation. Each time a process or site member fails and recovers a new and unique identifier
is assigned to it. This is the approach taken by the Isis membership protocol [27], which uses the virtual
synchrony model.

In this case, the identifier can be built using a per process invariable identifier which is expanded with an
incarnation number. The main difference with invariable identifiers is that the client application finds new
and unique identifiers when the members are recovered, and it can not distinguish between new members
and faulty members being rejoined.

Member identification is also related to failure stability [28]. A membership service offers failure stability if
once a group member is believed faulty its messages are rejected thereafter and, consequently, the group member is
not allowed to recover. A service with failure stability uses identifiers per incarnation to permit member recoveries
under a different identifier.

2.7 Partition Handling

A partition occurs in a communication group when at least two non-null and disjoint subsets of the group remain
isolated; i.e., members in each one of the subsets are unable to communicate with members of any other sub-
set. Conversely, a communication group is partition-free if any two operational nodes of the group can always
communicate.

Three models of membership protocols are distinguished according to their partition admittance:

� Absence of partitions model [10]. This model assumes that partitions never happen in a communication
group. To guarantee that hypothesis, enough redundant physical links among processors are assumed. Also,
the intercommunication network may route messages through intermediate sites to bypass broken links.

This model is followed in synchronous systems like the one described in [10] and [29].

� Primary partition model [28]. This approach recognizes that partitions may occur, but in that case only one
of the subgroups is allowed to proceed. Members included in other subgroups are forced to fail and to retry
their inclusion in the main group, as other new members must do. These protocols avoid the problem of
re-merging subgroups.

Group members need to know the maximum group size to be able to implement this model. Once this figure
is known, the main group or the subgroups spawned in a partition can compare their size to the maximum
one. Protocols in this model require a minimum part of the possible group of members to remain strongly
connected, usually more than a half of the possible whole size. If the size of one of the current subgroups
does not reach this minimum, the subgroup is forced to fail.

This model is used in Isis [8, 27].
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� Partitionable system model [13]. This model admits partitions and allows any resulting subgroup to proceed
and re-merge at a later time. The problem of application state consistency must be solved when members
belonging to previously isolated subgroups are merged.

Systems with a partitionable model are Totem [1, 24], Relacs [2, 3], Transis [11], Phoenix [20] and Horus
[14, 31].

The primary partition and partitionable models have several details that must be solved. For instance, how to
force the failure of members of minor subgroups in the primary partition model and how are subgroups rejoined in
the partitionable model.

Birman proves formally in [6] that several types of applications can not be run consistently in partitionable
environments and must be executed in an absence of partitions or a primary partition model. His paper introduces
the concept of non commuting actions and shows the impossibility of reaching consistency when a partitioned
system tries to re-merge and rebuild its execution history if the events to be merged are non commuting.

2.8 Logical Interconnecting Network Topology

Messages are sent by a membership monitor through the network for different purposes. First, a membership
monitor sends periodical messages to announce that it is still alive. When a member fails or a group member
explicitly leaves the group, at least one monitor eventually detects this situation and tries to broadcast a message
notifying that one member has left the group; this is a leave message. Finally, when an external process tries to join
the group it has to send one or more join messages to at least one member of the group and, once it is accepted,
some protocols require a state transference message to allow the joining process to know the state and identity of
the current members.

Some membership protocols assume some special network topology, provided by the communication layer,
and only transmit messages using the allowed channels. Others use different communication channels depending
on the type of message being sent. For instance, periodical messages are sent through a logical ring and other
message types are transferred assuming a fully connected network.

The most common interconnecting network topologies are:

� Fully connected. In a fully connected network each machine may send messages directly to any other
machine in the system, since each pair of machines has a communication link. Even if the physical intercon-
necting network is not fully connected, a logical network of this kind can be built if some routing technique
is used in the communications layer.

This logical network topology has been assumed in Relacs [3], the periodic broadcast membership protocol
of [10], Transis [11], Amoeba [17], TTP [19], Phoenix [20], Psync [22], Isis [27], Horus [31], DELTA-4
[29] and others [25]. In these protocols all types of messages are sent to any group member and assuming
those processes directly accessible.

� Ring. In a logical ring each member process has two neighbors and only communicates with these two
processes. In unidirectional rings each process receives messages from one of its neighbors and sends its
messages to the other. In bidirectional rings messages may be sent to or received from any of them.

The use of a logical ring is sometimes restricted to periodical messages only, using broadcasts in a logical
fully connected network to transfer other messages. This approach is used in the attendance list protocol of
Cristian [10], where the ring is unidirectional, and in its neighbor surveillance protocol and in [26], where
the ring is assumed now bidirectional and each member sends periodical messages to both its neighbors.

In Totem [1, 18] a unidirectional ring is assumed and the token being rotated through the ring is used to order
broadcast messages as well as for detecting failures.

2.9 Symmetry

A membership protocol is symmetric (or fully distributed) if all membership monitors execute the same algorithm.
A membership protocol is centralized if an special group member manages the behavior of the whole group,
coordinating the acceptance of any group change.
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A centralized membership protocol usually reduces the number of interchanged messages since explicit depar-
tures and joins may be forwarded to the manager member which accepts and makes them public. The same occurs
with failures. Once they are detected, the manager is reported and the change is subsequently broadcast. How-
ever, the centralized protocol introduces a bottleneck in its manager member since all messages are sent to it or
originated from it. Additionally, problems may arise if the manager is suspected faulty by other members because
temporarily two or more managers coexist in the same group. The failure of the manager is not so problematic if
the protocol establishes a criterion to elect its successor among the set of remaining live nodes.

The centralized approach has been followed by Isis [27], the strong, weak and hybrid protocols of [26] and the
communication protocol of Amoeba [17]. Other protocols follow the symmetric approach, avoiding the problem
of manager election when the current one fails but using a greater amount of messages when agreement must be
achieved. An intermediate solution is achieved in [29] where special changer tasks run in each member. When a
membership change has to be made, one of the members activates its changer task which tries to get a global lock.
If the lock is obtained, this process becomes the current manager and initiates the necessary steps to change the
current group view. Once all the members agree on the new changes, the lock is released and all members initiate
their guardian tasks (the ones which exchange periodical messages) and the protocol behaves symmetrically again.

2.10 Agreement on Membership Changes

When the membership set changes, usually all membership monitors do not detect this change at the same time.
Agreement is achieved when all the monitors in a set have detected the same changes and have updated its mem-
bership set accordingly. So, when agreement holds, all monitors consider the same membership set.

Two kinds of agreement exist:

� Strong or regular agreement. A membership protocol maintains regular agreement if all operational mem-
bers see and have seen the same sequence of group views since they were included in the set. Observe that
this kind of agreement forces membership change messages to be totally ordered.

� Eventual agreement. If eventual agreement is used, the protocol requires that when some membership
changes occur, eventually all operational members will agree on the current membership set. This do not
prevent two different members to have distinct group view sequences. For instance, an operational member
A may have detected the failure and rejoin of a process C, while for member B the process C never failed.

Usually, regular agreement is used. However, the weak membership protocol of [26] uses eventual agreement.
Eventual agreement is acceptable in some distributed applications, Rajkumar cites a tool to monitor a distributed
system as a good example of an application of this kind, since the behavior of this application does not depend
critically on the current state of all the nodes that build the system.

Another property related to agreement is how many members must agree initially to accept a membership
change. The members that constitute this initial quorum set have to diffuse later their decision and all other
members must accept it. The usual alternatives to build this initial quorum set are:

� One member. When a member suspects another is faulty or receives a new processor’s request to join,
it sends the message change to all other members, which accept the change and modify its copy of the
membership set accordingly.

This alternative is only used in asymmetrical protocols where a distinguished member can be found. In this
case, the failure detection only reports to the leader, and this member broadcasts the changes to the regular
members.

� Majority subset. The greater part of the current membership set agrees on the detected membership change.

The Isis membership protocol [27] uses this kind of agreement on changes. In Isis a distinguished member
(the manager) exists; it announces all changes to the other members. When a join or failure is detected by
the manager, it sends a submit message reporting the change. All members which receive this message
reply an ack message. When the manager has received the acknowledgments from a majority of the current
members, it knows that agreement has been reached and multicasts a commit message. When the commit
is received, the membership set is updated.

If a majority subset of the current membership set does not respond with an ack message in a given time,
the manager suspects that it has failed and leaves the group.
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� All members (Full agreement). If a member is suspected faulty, all remaining members must know about
the failure and agree on it. If a new member is detected, all current members must receive some message
about this fact before all of them agree on its joining and the new member is added to the membership set.

This behavior can be found in the Psync protocol [22]. In this protocol all membership-related messages are
sent to all current members. If a message is sent after receiving another one, the second logically precedes
the first one. Two messages have the same logical time if neither of them precedes the other.

In Psync there is an external detection protocol which sends messages about the possible failure of one or
more current members. When a message of this kind arrives, all members check if some message from the
member suspected faulty has arrived at the same logical time. If so, a negative acknowledgment is replied.
Otherwise, a positive acknowledgment is sent. If some reply is a negative acknowledgment, the member
suspected faulty is maintained in the membership set. To delete a member from the set, all current members
must agree and send a positive acknowledgment.

Similarly, to accept a new member the detection protocol introduces a message announcing the new member.
When a member detects that all members have acknowledged the announcing message, it inserts the new
member in the membership set. Note that all membership changes require agreement among all current
members, but each member can detect locally when this agreement is achieved. Since all members run the
same program and do not need a leader to manage this agreement phase, the Psync protocol is symmetrical.

Although all membership protocols need majority or full agreement, they reach it using different procedures.
The agreement protocols described above are only samples. For instance, the two phase commit protocol used by
Isis to reach majority agreement is also used by the strong membership protocol of [26]. Transis [11] uses full
agreement, but its algorithm is quite different from the 2PC of Isis or the one described in Psync.

Another property related to agreement is safety, or how to force that membership changes taken using the
agreement property are respected by the members excluded from the group. To guarantee that the decision taken
about a membership change is safe, in addition to the agreement protocol we need a mechanism to discard stale
messages sent by processors considered faulty. Usually, this mechanism is implemented adding the group identifier
(or group sequence number) to each message sent by any member of the group. The group identifier is increased
each time a membership change arises and the group contents are modified. So, faulty members can not commu-
nicate with the group if they do not rejoin it, since they do not know the current group identifier. Stale messages
are easily detected with this mechanism because they have an obsolete group identifier.

2.11 Failure Detection

Although some membership protocols consider the failure detection mechanism as an external service, it is very
important because it determines the accuracy and liveness of the resulting membership protocol and may restrict
the assumed failure model. As it has been stated in a previous section, the ideal failure detection mechanism is
accurate and live, but this two properties can not be achieved in asynchronous environments. In [30], the lack
of accuracy is given as a reason to prevent the use of a fail-stop failure model, since using an inaccurate failure
detector, the protocol can not be sure about the failure of a given member.

The greater part of the membership protocols seem to assume a fail-stop failure model. According to [30], this
failure model is based in two conditions:

1. If one processor fails (crashes), all other processors eventually detect the failure of this node or fail, too.

2. There are no false detections of failure; i.e., when a processor is reported faulty, it actually has failed.

In asynchronous systems, the second condition is difficult to achieve. So, many asynchronous protocols simu-
late a fail-stop failure model. To simulate this failure model, the common solution is to relax the second condition
stated above. So, in simulated fail-stop models there may be false detections of failure, partially corrected forcing
the suspected faulty node to fail and all the remaining nodes to agree on this failure.

Besides the failure model, the failure detection mechanism has to be implemented, too. The most common
implementations are:

� Member processors exchange periodical “I am alive” messages and the failure detection mechanism is based
in timeouts. When some periodical messages are lost from a given processor, this processor is suspected
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faulty. If the membership protocol reaches agreement on this failure, the processor is deleted from the
current membership set.

� There is an external communication service which reports to the membership service any failure suspicion.

Note that the first alternative is implemented by the membership algorithm, while the second one relies on
external services. When an external communication service provides the failure detection, the implementation of
the failure detection depends on the services and warranties provided by this communication layer. For instance,
if this service is based on acknowledged messages, it may report a failure when no acknowledgment has been
received when the service tries to send a message to some particular node, and this attempt has been repeated a
given number of times. Anyway, the membership protocol is independent in that case of the implementation of
the failure detection mechanism. The communication layer may change this implementation without forcing any
modification of the membership protocol.

2.12 Startup and Recovery Procedures

When the members of a group start, two approaches may be taken to build the membership set. The first is to know
in advance which are the preconfigured members of the group. The second approach has no knowledge about the
possible members. According to [15] these startup alternatives receive the following names:

� Collective startup. In this case, all members know at startup time the identifiers and addresses of the other
possible group members. So, in this procedure the joining member is able to send a message to all other
preconfigured members of its group. In this moment a new membership set may have been built and the
joining node may know the new membership list following the contents of the answers received.

This startup procedure will work either for the initial global startup — when the first membership group is
built — or for the case of a node join. To work in both cases, the contents of the messages exchanged have
to be carefully designed. As a minimum, the identifier of the joining node has to be in the startup or join
request message and the membership set has to be present in the answer message.

� Individual startup. If individual startup is used, each member does not know in advance the identity or
address of its companions. This startup procedure is more complex than the collective one. Initially, each
member has to build a singleton membership set where only itself is included. The following step consists
in trying to exchange some message with other isolated members or with some member of the current
group membership set. This requires to broadcast an initial message. If somebody answers this broadcast,
the membership sets of the sender and the replier have to be merged, anybody has to know the physical
addresses of all other members and logical identifiers have to assigned to the new members.

Individual startup offers the advantage of its flexibility, since it does not require to know the identity of all
group members in advance. So, if this startup procedure is used, it is easier to add new nodes to the group.
Note that collective startup requires that the new nodes were included in some configuration file or in some
server which provides the group set to the starting members.

A recovery procedure deals with restarting a faulty member and making it to rejoin the group. There are some
elements which determine the recovery procedure to be used. The first one is the startup procedure used by the
protocol. A recovery is very similar to a startup, so the join of the recovered member will use the same steps
needed to start a new member. Therefore, if the recovered node knows the identity of the other members it will use
a collective startup procedure to rejoin, otherwise an individual startup procedure is used.

Member identification may influence the recovery procedure. Some protocols, as those which use virtual
synchrony, require different identifiers per incarnation. In these protocols the recovery procedure has to deal with
assigning a new identifier to the recovered member. Also, this identification approach complicates the use of a
collective startup procedure to rejoin the new member since the set of member identifiers is not invariable and the
recovering member can not know the current member identifiers.

Some protocols also require special message delivering orders and guarantees. In some cases, a protocol
demands that all group members have delivered the same messages and in the same order. To accomplish this
requirement, recovered members must receive and deliver a copy of the messages lost when the member was out
of order, and these messages must be transferred in the recovery procedure. In other protocols, the recovered
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member must discard all messages sent in previous group configurations. In those cases, the recovery procedure
has no additional task to do.

As we have explained, the recovery procedure depends on the level of guarantees provided by the membership
protocol. If a protocol uses individual startup, different identifiers per incarnation and a strict message delivery
order, its recovery protocol will be complex. On the other hand, using a collective startup procedure, invariable
member identifiers and no message delivery order, the recovery protocol will be as simple as its startup one.

3 Example Protocols

Table 1 summarizes the characteristics offered by some membership protocols described below, where some details
of the algorithms used by each protocol are outlined. The properties given in this table and their abbreviations are
the following:

� Synchronism (Sy). The target system may be synchronous (S) or asynchronous (A).

� Accuracy (Ac) and Liveness (Li). These two columns report if the protocols accomplish any of these
properties.

Sy Ac Li Fi To Af Al Vs Ev Id Pa Ne Sm Ag Nu Fd St

Cristian 1 S * * * * U A F S S A H I
Cristian 2 S * * * * U A R M S A H I
Cristian 3 S * * * * U A R S S A H I
Delta-4 S * * * * U A F M S 1 A C
Isis A * * * * * * I 1 F M S M E C
Phoenix A * * * * * * U 1 F M S A E
Psync A * * * * * U 1 F S S A E
Strong A * * * U P R M S A H I
Totem A * * * * * * * U P R S S A T I
Transis A * * * * * * * U P F S S A E I
TTP S * * * * * U A F S S M A C
Weak A * U P R M E 1 H I

Table 1: Main characteristics of some membership protocols.

� Event ordering. There are several event orders that can be supported by a membership protocol: FIFO order
(Fi), total order of membership changes (To), agreement on first message (Af), agreement on last message
(Al), virtual synchrony (Vs) and extended virtual synchrony (Ev).

� Member identification (Id). A membership protocol may use invariable identifiers (U) or identifiers per
incarnation (I) to refer to its members.

� Partition support (Pa). A membership protocol has three alternatives to handle partitions: to assume that
partitions will never occur, i.e., absence of partitions (A); let only the primary partition to survive (1); and
let all partitions to coexist (P).

� Logical network topology (Ne). It can be a fully connected network (F) or a logical ring (R).

� Symmetry (Sm). The algorithm may be symmetrical (all members use the same algorithm and play identical
roles) (S) or with a distinguished member which manages all membership changes (M).

� Agreement. Agreement (Ag) may be strong (S) or eventual (E). Another classification can be made ac-
cording to the number of members (Nu) needed to reach agreement: only one (1), a majority (M) or all the
members (A).

� Failure detection (Fd). It can be based on heartbeats or periodical messages (H), requiring explicit ac-
knowledgments to all sent messages (A), token loss in a logical ring (T) or using external services (E), as a
dedicated failure detection module or a communication server.

15



� Startup procedure (St). There are two types: individual startup (I) and collective startup (C).

In the following paragraphs more details about each protocol can be found. Note that only a brief description
of some algorithms is given. The interested reader may find more information using the referenced bibliography.

3.1 Cristian’s Membership Protocols

Cristian [10] describes three algorithms for synchronous environments. All the algorithms use broadcasts to join
new members to the group. The applying process issues a NEW GROUP broadcast which is subsequently replied
with a PRESENT broadcast for each current member of the group. Once the time bound to get PRESENT replies is
reached, all current members agree on the new membership set. The same procedure is used when some member
failure is detected and a new membership set has to be computed. In that case, the failure detector initiates the
protocol.

Besides this join procedure, all algorithms share other properties and services, such as atomic broadcasts or the
absence of partitions assumption. The main differences come from the mechanism used to detect member failures.
Each protocol uses different mechanisms, needing fewer messages the last algorithms:

1. Periodic broadcast membership protocol. To check the stability of the group, each member broadcasts
periodically a PRESENTmessage. Since all members are synchronized, the absence of some message means
that its sender has failed.

2. Attendance list membership protocol. The current members are arranged in a logical ring and a distin-
guished member is chosen (following a decreasing member identifiers order). Periodically, this leader sends
the membership list to its successor in the order, which transmits it to its successor and so on. If the list does
not arrive in time, the member which expected it suspects the failure of its predecessor and reports it to the
group.

3. Neighbor surveillance protocol. As in the previous algorithm, all members are arranged in a logical ring.
Periodically, each member sends a message to one of its neighbors (the one with lowest identifier, for in-
stance) and expects the same message from its other neighbor. If the message does not arrive, this neighbor
is assumed faulty.

3.2 Delta-4

The membership protocol used in the Delta-4 [29] real-time system is also synchronous and bases its failure
detection mechanism on a transmission with response procedure. The greater part of the messages broadcast in
this protocol require an acknowledgment. If some member does not send this acknowledgment to the leader, it is
assumed faulty.

Another characteristic of the protocol is how a member becomes the leader. Usually, no distinguished member
is present. When some member detects a problem to communicate with another one it tries to become the current
leader, modify the membership set, diffuse it and return to its regular state. To be elected as a leader, a member has
to broadcast a message announcing its intention. Then it waits for the acknowledgments of the other members. If
all members reply affirmatively, this member is the new leader and is able to modify the membership set (either to
add a joining member or to take out a faulty one). Note that if two or more members try to be elected as leaders
at a time, a deadlock can occur. The protocol solves this situation using a message count field which is increased
each time a collision among several applying members is detected.

3.3 Isis

Isis [8] is a group-oriented communication environment for asynchronous distributed systems. Its Strong GMP
(group membership protocol) [27] uses external failure detectors which report all membership change events to a
distinguished member, the manager. This manager leads regular members through the protocol phases.

When its group view changes, the manager broadcasts the membership change in a SUBMIT message, which
has to be answered by the regular members with an ACK message. Once the manager has collected a majority
of acknowledgments, it broadcasts a COMMIT message and assumes the new group view has been accepted and
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installed. If the manager is unable to receive a majority of acknowledgments it assumes itself faulty or isolated in
a minor partition. Its response to this situation is to crash itself; i.e., it stops sending and receiving messages.

When the membership change corresponds to a member join, the manager sends a STATE-XFER message
to the new member in the commit phase. In this message, the new process receives permission to join and some
information about the current group state. Thus, the new member knows that it has been included in the group.

Although the use of a manager reduces the number of needed messages, also complicates the protocol in case
of a manager failure. Then, a new manager must be chosen among the remaining members and an additional phase
is needed to reach agreement on the membership change. This new phase is initiated before the submit one and is
needed to know the state of each member when the manager crashed.

Isis has been evolved to Horus [31], which tries to offer the same properties of its predecessor but tolerating
partitions and improving its performance. The architecture of Horus is based on stackable micro-protocols. Each
micro-protocol offers a different property or service. For instance, the type of event ordering used, secure exten-
sions, hierarchical membership services, etc. With Horus, different protocols can be built using different subsets
of all the available micro-protocols. The same idea has been used in other modern group communication toolkits,
such as Consul [16].

3.4 Phoenix

Phoenix [20, 21] is an asynchronous group communication protocol similar to Isis but oriented to large scale
networks. Its membership subprotocol maintains the Isis primary partition model but uses an unstable suspicion
model to maintain this primary partition. As a result, this protocol uses invariable identifiers to refer to its members,
since a failure detector may realize that a member previously considered faulty is now up and running. So, once a
failure is detected, the faulty node is not forced to crash for ever as is done in Isis.

This protocol distinguishes three kinds of group members: core members, client members and sink members,
as explained in section 2.4. The support and services provided to members vary according to their kind. Core
members, for instance, are the only class which has a guaranteed message delivery order.

While Isis provides the virtual synchrony model to deal with message delivery and membership changes,
Phoenix uses the view synchronous communication model which improves the former in some minor details.

3.5 Psync

Psync [22] uses an external server which reports the membership protocol about failures or joins. So, the Psync
protocol deals only with checking whether the membership change reported is true or not and with reaching agree-
ment about the change to be done.

To accept a new member the external detector sends a message announcing the start of that process. The
current members reply to this start message broadcasting an acknowledgment. Then, if each member has collected
an acknowledgment from all the current members, the new one is included in the set.

To take out a faulty member the same procedure is needed. Unlike the join case, now the members may
broadcast a NAKmessage if they have received a message from the suspected faulty member which can not causally
precede the received failure notification. Since both messages have been sent at the same logical time, the failure
notification is rejected. So, if one of the members replies with a NAK message the member is not considered
faulty and is not taken out of the membership set. As we can see, this protocol requires full agreement to accept a
membership change event.

3.6 Strong and Weak Protocols

The strong and weak membership protocols [26] assume an asynchronous distributed system and are presented
as two alternatives to solve the membership problem. The weak membership protocol is useful for applications
which do not require an immediate group change notification. It uses eventual agreement; i.e., if a membership
change occurs, different members react to the change at different speeds and some of them even do not detect it,
but eventually all members will agree on the resulting membership set. The strong membership protocol requires
that all group members have the same history of events. Therefore, all running members must have seen from their
startup the same sequence of group views and in the same order.

In both protocols the current group is structured in a logical ring, and a member is chosen as the group leader.
To deal with failure detection, each member sends periodically a message to each of its two neighbors in the ring.

17



When a failure has been detected in the weak protocol, the detector reports the change to the leader. Then,
the leader broadcasts a NEW GROUP message which is accepted by all other members. Regular members choose
their two neighbors from the components of the new group and start to send the heartbeats until new changes are
detected.

In the strong protocol this algorithm is extended with a second phase. When the leader receives the failure
notification, it broadcasts a PTC (Prepare to commit) message. The regular members reply with an ACK or NAK
message. If no NAK has been received, the new membership set is broadcast by the leader in a second COMMIT
message and accepted by all members.

Since both protocols are centralized, both of them have to deal with the failure of the leader. In that case,
another member (the one with the highest identifier) is chosen and it has to manage the next steps of the protocol.

3.7 Time-Triggered Protocol

The Time-Triggered Protocol [19], or TTP for short, consists of a series of services for a real-time distributed
system. It includes a predictable message transmission service, a clock synchronization service and a membership
service among others. Communication services rely on TDMA rounds, each one for a different (and possibly
replicated) node (or fault-tolerant unit, following the TTP naming). Since clock synchronization services are used,
the membership protocol assumes a synchronous environment.

Each fault-tolerant unit must send at least a message in each of its TDMA rounds. When a node detects some
communication problems (it does not receive any acknowledgment or receives all the frames in a corrupted state)
stops and remain inactive. Thus, when some members detect that another one is not using its TDMA round, they
mark this node as faulty and in the following TDMA round it is removed from the membership set.

3.8 Transis and Totem

Transis [11] provides a group communication environment for asynchronous systems. Compared to Isis, it offers
support for partitioned group operation, partition re-merging and a stronger event ordering model: the extended
virtual synchrony. Another important difference with Isis is that this protocol does not need a manager; i.e., the
Transis protocol is symmetrical.

The resulting membership protocol deals also with message delivery order and support for partitioned opera-
tion. So, it is quite complex and is not described here.

Totem [1, 18, 24] is a variation of the Transis protocol which provides the same services but uses a logical
token-passing ring to decrease the number of messages needed by the protocol.

4 Additional Work

The group membership protocols described in previous sections cover a broad spectrum: synchronous and asyn-
chronous environments, accurate and live failure detectors, from no event ordering (as in the Weak protocol) to very
strong event orderings (e.g., the extended virtual synchrony), from no partition handling to support for partitioned
operation and state consistency on partition re-merging, from symmetrical algorithms to algorithms managed by
only a distinguished member, from full agreement to decissions taken by only one member, etc. But there are still
some areas where nowadays the appropriate protocol can not be found.

Sometimes we have a group communication toolkit which uses only a membership protocol. This membership
protocol has to offer enough services to all its client applications. So, when there are some alternatives for a
given protocol property (e.g., event ordering model, startup procedure, partition handling), the protocol offers
the strongest one to be sure that if some client requires this kind of service, it obtains it. In that case, all client
applications that do not require this extra property have to pay for it. So, the ideal approach is to have a configurable
membership service, such as the one described in [16], where an evolution of the Consul protocol is explained.
Now, when some client applications need the membership services they initiate it configuring the kind of services
needed. Therefore, the membership server is tailored to the needs of its clients and the latter do not have to pay for
services never used. Protocols of this class can be found in the last releases of Consul and Horus. Both approaches
use a big set of stackable micro-protocols which can be combined in different ways to obtain the appropriate
protocol. However, the solution given in Consul seems to have a finer granularity than the one presented in Horus;
i.e., the Consul micro-protocols permit to choose among individual properties (Horus only have a reduced set of
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micro-protocols related to membership, the others deal with other communication features) and to build any kind
of membership protocol.

Another interesting area are large scale networks which require group membership protocols capable to deal
with very large group views. Some work has been started in this area and the first protocols are Phoenix and Horus.
Phoenix uses a dedicated protocol developed from scratch. Horus adds some micro-protocols to allow hierarchical
membership sets and to enlarge in this way the capabilities of the managed group views.

One of the latest trends in group membership protocols has been the support of partitioned operation, which
was introduced by the Transis protocols and its predecessors. The greatest problem in this area is how to achieve
a consistent state of the client application once the partitions have been re-merged. There are no obvious solutions
to this problem and usually the membership protocol does not help too much. The client application has to deal
with the task of event re-ordering if it wants to merge the updates made in each isolated partition. The easiest
approach is to forget the updates made in minor partitions and to impose the state of the primary one, but for some
applications this solution is not allowed. Some support could be offered if the membership and communication
services keep track of part of the messages received by the isolated partitions. The viability of this support deserves
further study.

A possible extension to the group membership services could be the maintenance of the set of running com-
munication links among the current members. Thus, the communication layer could check this information and
re-route the messages avoiding broken links.

As we have seen, group membership services is not a static research area. Although the basic algorithms have
been thoroughly described in the last years, new extensions may be identified and studied.

5 Conclusions

This paper describes the group membership service and the systems which need this kind of service. Implemen-
tations of a group membership service vary from synchronous to asynchronous distributed systems. In the first
case, the membership protocol may satisfy the accuracy and liveness properties while in asynchronous systems
one of them can not be accomplished, and liveness is usually the property maintained. Other properties have been
analyzed and various alternatives presented for each property. Thus, a membership protocol may be characterized
by its event ordering model, its degree of centralization, its support for partitioned operation, the kind of logi-
cal network used for message exchange, its failure detection mechanism, how agreement is achieved, its startup
procedure, etc.

Current trends in group membership services are the extension of traditional membership services to support
partitioned operation, partition re-merging and stronger event ordering models. This alternative is followed by
Totem and Transis. They try to offer a membership service who is able to run in environments where other
membership services can not, and incurring in similar communication costs.

Another trend is the use of a collection of stackable micro-protocols, which can be combined to form a group
communication protocol. The service provider may choose the most appropriate subset of micro-protocols for the
quality of service required in the system. So, if some applications do not require a strong event order model, they
do not have to pay for it. The resulting protocol does not include any service that the application or system does
not need. As a result, performance is better and the service provided can be easily adapted to the target system.
The last releases of Horus and Consul use this approach.

Finally, group membership services have to be shown as an important component of current systems. Although
they were initially needed only by some replicated applications or by group communicating environments, nowa-
days distributed systems have increasing importance and all distributed applications need some type of membership
service to maintain a consistent shared state.
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[3] Ö. Babaoğlu, R. Davoli, and A. Montresor. Failure detectors, group membership and view-synchronous
communication in partitionable asynchronous systems. Technical report, UBLCS-95-18, Dept. of Computer
Science, University of Bologna, Bologna, Italy, November 1995.

[4] Ö. Babaoğlu and A. Schiper. On group communication in large-scale distributed systems. Technical report,
UBLCS-94-19, Dept. of Computer Science, University of Bologna, Bologna, Italy, July 1994.
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