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Abstract

NanOS is an object-oriented microkernel. It provides supjoo objects, agents and tasks and a basic service:
object invocation. Upper levels of software must be builaaet of objects residing in one or more agents.

An agent is a protection domain. Each agent has its own asldpece and provides access to some remote
objects using object descriptors. The tasks are the unaggearfution. Tasks may change the agent where they are
being executed if they invoke objects which do not residésimivn protection domain.

This microkernel also offers some support for task schedguind memory management. The scheduler
has been placed initially in the microkernel, although itufe releases it may be placed outside. Memory
management uses memory representatives which are retatedetrnal pagers and cache objects. The pager is
able to provide the memory when it is needed by a local cacheadhe object is the holder of parts of the
memory object in a given node.

1 Introduction

Current trends in operating system design are likely to adampinimal kernel approach, either based on micro-
kernels [1, 2, 6, 11, 9, 12], cache-kernels [3] or exokerigls All of them offer support to develop part of a
traditional operating system at user level, making possibldownload later part of this software at the kernel
level. Exokernels are the most extreme solution, since doayot provide any high level abstraction and they only
multiplex some computer resources (CPU, memory, devidek, ©n the other hand, microkernels provide a set
of abstractions (objects, execution threads, protectamains, synchronization tools and others) which facditat
the construction of upper level software modules.

Our microkernel offers as its main abstraction tigect Thus, user level software is constructed as a collection
of objects. To assist in the management of objects, it alsvigesagentsas protection domains where objects
have to be placed before their methods are executed. Therdyabstraction is theaskor execution thread which
may visit several agents as a result of consecutive objectations.

All these abstractions offered by the microkernel are eglatia theobject invocatiorservice, which is the most
critical service provided. Since several parts of a tradiil kernel are now placed at user level and decomposed
in a set of objects, communication among them will be comnmahthe performance of the operating system will
depend on the performance of the interdomain communica#orice; i.e., object invocation in our case.

Our object invocation service does not require contexteveis and uses stack pre-allocation. So, when a task
invokes an object’s method it is immediately transferredht® target agent’s entry point, where it takes another
stack and finds the method to be executed.

This microkernel offers good services for local interdomedmmunication. Interconnecting several machines
with a private network and extending the object invocatierviees with an ORB [8] we have a good basis to
develop a powerful distributed operating system. The taggstem to build using NanOS will manage a cluster
of machines offering a single-system image. Moreover, tRBill be extended to support replicated objects,
offering a good basis to develop highly available applmadi

The rest of the paper is organized as follows. Section 2 descthe system design goals. Then, three sections
explain the general architecture concepts of the systertidBe3 describes the memory abstractions, grouping
them around the virtual space object. Section 4 explainshfert concept and some items related to it, mainly the
capabilities or object descriptors. The sections abouegyarchitecture end introducing the dynamic abstractions
As such can be considered the task, thread and agent objects.



Section 6 describes the kernel organization. In that sedhie kernel is viewed as a set of components, and
the relation between abstractions and kernel software coes is explained, too. Finally, tisemmary section
includes some conclusions about the current release ahdesufuture extensions.

2 System Overview

This section describes the services provided by our kehwsV, the system uses them and which were the kernel
design objectives.

2.1 Kerne Services and Abstractions

Our kernel provides to the rest of the system a set of abgires;twhich can be used and combined to offer different
operating systems views. These basic elements can be divitietwo main classes: the static abstractions and
the dynamic ones.

2.1.1 Static Abstractions

Static abstractions refer to what is executed in the systimce NanOS is an object oriented operating system,
the object is its main static abstraction. But many othetrabs8ons of this kind are needed to support the object
concept. They are outlined in the following lines:

e Object. An object maintains a set of data (object state) and offeet afsoperations to manipulate these
data (object interface.) In our system, each applicatiosystem component consists of a set of objects of
this kind, whose interfaces can be invoked, leading to tleeetion of their methods and the update of their
states.

e Virtual Space. Since the objects must be located somewhere, we provideaViatldress spaces to place
them. Each virtual space provides a protection boundarygmbjects residing in it. Also, virtual memory
techniques can be applied to provide its memory.

e Memory. Each memory object represents a chunk of the system memaiggthem, different ranges of
addresses in the virtual spaces can obtain physical menmaryreemory sharing among virtual spaces is
possible, too.

e External Pagers. To apply virtual memory techniques to the address spacesee mapping and paging
operations to load or unload different parts of the physicamory into the spaces; external pager objects
provide these operations in our system.

Using these four abstractions, we provide the means to defastatic view of an application. So, we know
how many objects build up our application and how they arg&itliged in our system memory. But something
lacks, we can not execute any piece of code belonging to hiéecapon without the dynamic abstractions.

Figure 1 depicts an example of some static abstractions nO$aand how they may be combined to provide
the static view of a multiprocess system.

2.1.2 Dynamic Abstractions

Dynamic abstractions are related to the elements whicly cartr the execution of programs. In our system, the
following dynamic abstractions can be distinguished:

e Task. Atask is the system abstraction which represents a progtagudon. So, to unambiguously describe
a task, the kernel needs to know the contents of the CPU eegiahd a link to the code it was executing.

e Agent. An agent is the abstraction that allows the relationshipvben the pure dynamic abstraction (the
task) and the main static one (the object.) The agent is &lfsig protection domain. It encompasses a
virtual space and a set of references to the objects actefsin this virtual space.
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Figure 1: Virtual spaces and objects in a system node.

In our case, the execution of a task is not constrained togueragent. So, a task can sequentially invoke and
execute methods belonging to objects placed in differeahtsy Also, several tasks can be executing code in an
agent at a time.

To complete the picture, the services provided by the keareeketched.

2.1.3 Kernd Services

Apart from providing and managing all abstractions showoval the kernel is concerned in providing a very
important service to any task. This is th@evocation service. Using it, a task can invoke an object placed in
another agent or even in the kernel.

The invocation service is the most important part of a mierokl, since the performance of any service not
present in a microkernel depends on it to be carried out wtbiency and sufficient performance.

Besides providing invocation facilities, our kernel alsoyides some memory management, tasks scheduling,
tasks synchronization and device drivers support.

2.2 Design Objectives

In addition to the common objectives of a kernel design — ngug@od performance, efficiency and clean interfaces
— other design goals have been considered:

e Extensibility.

This kernel adopts the micro-kernel philosophy. Thus, dhly essential services can be found initially
in supervisor code. But this minimal approach has often ¢egerformance decreases. A solution to this
problem is to provide mechanisms that allow the inclusiom@fv objects into the nucleus code at run or
boot time.



Increasing the kernel functionality in this way allows ugést thoroughly the servers to be added. These
tests may be done at user level before doing the kernel egtenSince the server to be tested is a user
object, nothing prevents us from testing simultaneouslhes® implementations of that server. Only the
instance that best matches the system needs will be finaliyded into the kernel.

Orthogonality: Kernel asan Agent.

The kernel must manage itself as any other agent in the systethis is possible, the kernel Memory

Manager object will be able to provide mapping and swappmgyises to regions of the proper kernel
address space and the kernel tasks will access objectdplac¢her agents using the generic invocation
service.

The kernel presents some peculiarities to be consideradn$tance, its address space has a different range
of addresses and must be always active. But managing it deearegent will ease some common tasks,
as making calls to user code (up-calls) and adding new caaeeglts to its address space — usivip( )

calls to itsVi r t ual Space object.

I nvocation transparency.

The way an application programmer sees an object invocatilbbe always the same, independently of the
object location. There are three possible object locatiori®e considered: the same address space, another
address space in the same node and some address space @ andéh

In the first case, for performance considerations, the iatfon should be done using the static linking
mechanisms provided by the implementation programmingdage. When the invocation involves two
objects in the same node but located in different addresespthe invocation service provided by the local
kernel will suffice. The latter case needs the cooperatidh@two kernels and some additional objects as
net drivers and net servers. Currently, we are designingRB @hich will offer this kind of service.

Invocation transparency can be achieved using stub objeatkthree cases. The internal machinery of stub
objects in the two non-trivial cases has to know about theailgescriptors that every kernel manages.

Object descriptors introduce a level of indirection whenddnject invocation is done. Using them, user
applications do not require modification when the targeeobis migrated. The migration is registered in
the kernel and does not affect the user code. Only the dégctgration relationship is updated.

Portability.

The kernel has to be designed in a way that isolates the maclgipendent details in a minimum set of
objects. These machine-dependent objects will have a maéhdependent interface that can be used by
the rest of the objects that build up the kernel.

Porting the system to another architecture will be as easgvasting the machine-dependent objects con-
sidering the target machine features. The current versiauokernel has only a few objects of this kind.
They refer to the following hardware elements:

CPU. The object associated to this hardware item will manage thsking of the CPU interrupt levels and
the interrupt enabling / disabling.

CPU Context. A class is used to model the set of general purpose registeféers methods to get a copy
of the actual registers into the object state and to restmeet registers from the current object state.
Objects of this kind are used in task switching.

MMU. An object will offer methods to change the MMU context (vatspace) and to update the virtual to
physical translation tables.

Besides the objects presented above, some assembler gedaired to initialize the machine at boot time
and to call the high level code. Despite this, the currenhé&kversion has less than a 25% of machine-
dependent source code.

Our initial design has been already ported to different ivaré architectures. Nowadays we have a Sun
SPARC and a PC releases of our microkernel. The first releasémplemented on Sun SPARCstations and
was ported recently to the other one. The original designsumasessful at this level, since no modification
of the machine-independent code was needed.



3 Memory Management

The memory management provided by the kernel is based oa kimds of public objects. They are the memory
object, the pager and the virtual space. These objects airdé¢fationship are similar to the ones described in [7].

3.1 Memory Objects

The memory objects model the system physical memory. Theybaaither named or anonymous.

Named memory objects are the system support to memory that is backed in seconttaey $-iles and other
persistent objects are structured as memory objects oKitis

Anonymous memory objects are the system view of some main memory areas that can bestequgy the
agents to back transient blocks of memory. Task stacks gpltafjon heaps are two examples of memory objects
that do not need a name.

As stated above, a memory object is the representative e mif the system memory. These objects will
be used to build the virtual address spaces. An address spegiees its memory from the mappings of memory
objects at certain virtual address ranges.

Building the virtual address spaces in this way will easerttenory sharing among several address spaces,
even if they reside in different nodes. Memory sharing islaxgd in more detail in section 3.5.

3.2 Pagers

The second class of public object related to memory manageshe pager object. Memory objects do not offer
paging operations. They are reserved to external pagectshidich will be linked to their paged memory objects.
External pagers have the following advantages over sejfaganemory objects:

e The actual memory that backs the memory object is not foreeelide in the same node where the memory
object is being mapped. The location of this memory dependl®@location of the pager object. The same
pager object can be associated to diffeiaatancef a memory object mapped in different nodes.

e Pagers are a good place to locate memory coherence politiese policies may differ from pager to pager.

e Itis possible to replace the behavior of the paging opematiwithout any modification of the memory object.
A link to other pager object at bind time will suffice.

3.3 Virtual Spaces

Most of the present workstations have a memory manageméntMimU) that allows the isolation of user ap-
plications in different address spaces and gives supporirtioal memory techniques. Our kernel provides the
Vi r t ual Space object, which comprises both concepts.

A typical address space is structured in the following wagtn system:

e User space.

The user space area is placed in the lower addresses of e space. It uses the addresses from O to 3
Gb in the current PC version.

The organization of this range of addresses is almost frdee System compels to map a code memory
object at a well known low address. This memory object widkstthe code that serves the requests routed
to objects placed in the rest of the user space. Other mentgegts backing the objects’ state (data) or the

tasks’ stacks can be placed anywhere.

e Kernel space.

The kernel is mapped at the highest addresses of each adpgeess Therefore, the memory allocated to the
kernel is shared by all the virtual address spaces and timekisralways mapped and active.



A Vi rt ual Space object is provided by the Memory Manager to represent onbesd address spaces. The
memory of an address space may be provided usinlytipé ) method, which maps the memory to a given range
of the address space.

Mappings are registered in thé rt ual Space object using two auxiliary objects: theegi on and the
Cache. A Regi on keeps the association between an address range of a vipaed @nd the section of the
memory object that backs these addresses.VIn¢ ual Space uses the regions to control its ranges of used and
free addresses.

TheCache object is the image of a given memory object in a system nod&efji ons register mappings in
terms of virtual addresse€aches associate memory objects with a series of physical meneggge Thus, the
Cache-Regi on relationship determines the virtual to physical mappira tias to be implemented by the MMU.

MEMORY OBJECT REGION OBJECT

A Memory Object can be
related to multiple Regions
in the same or different Address Spaces.

Abstraction that represents the Stores the relationship between a

memory existing in the system. range of a Memory Object and an
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Figure 2: Relationship among different objects after a nragppperation.

3.4 Mapping Memory

To map memory to an address range of a virtual space, thelkderaory Manager needs the following set of
objects:

e A Memory Object that is the representative of the memory to be mapped. Weresthat this object has
been previously obtained by the mapper task.

¢ A Region Object that maintains the range of virtual addresses where the myeofgect has to be mapped.
It will also store a reference to téache object that has the physical pages which builds up the lamayf c
of the memory.

The Memory Manager must check that the range of addresse® wWiememory object has to be mapped
does not overlap with any other used Region. OtherwiselVipg ) operation will be rejected.

e A Cache Object. As it was previously stated, a Cache maintains a set of palygages that have the local
image of the memory being mapped.



A local Cache object backing théenor yObj ect must exist in the node where tMap() operation has
to be done. Otherwise, theache has to be created in the first phase of the map request andds nee
be bound with &ager object that knows about the physical location of the memepresented by the
Menor yQhj ect .

e An MMU Object which offers a set of methods that allow the installationha& physical pages maintained
by theCache object into the target virtual space.

e SomeFrame Objectsthat build the cache memory.

Figure 2 shows the relationships established between sbithe objects quoted above. The ane objects
are used by th€ache, which maintains a list with all the physical pages curngiriimain memory that belong
to the cache.

On the other hand, tH@vJ object is required when a page fault raises. In the pagegandiessing, the physical
page is requested to tiRager object and it is installed in main memory using the methodsigied by thisvivJ
object. TheFr ane object representing the memory recently installed is alstuded in the list maintained by the
Cache obiject.

3.5 Sharing Memory

Figure 3 shows how some memory is shared between two adgrassssafter the same memory object has been
mapped to both of them. While the mapping is being donBegi on object is created and associated to the
Vi rt ual Space object. This reflects that the address range is not free aaldat determines whiclkache
object will provide the physical memory represented by tlemary object recently mapped.

If the same memory object is mapped to another virtual addeace (or to another range of the same address
space), a neviregi on object will be created but th€ache object is reused. Th&ap() method of every
Vi r t ual Space objectis smart enough to locate the appropr@ehe object in its node and attach Regi on
object to it. If no cache exists for the mapped memory objewa one is created.

An external object, théemObj Myr maintains the relationship betwe&knor yCbj ect s andCaches in
every node. Thus, th¥i r t ual Space object can ask it for the existence of a cache backing the meaigect
in its node.

The Cache object is able to maintain the whole memory represented bgraor yObj ect independently
of the memory object ranges that have been mapped. In fdgtttowse pages that have been referenced by any
task accessing the mapped addresses are kept in the caeéheth€h pages will never be installed. The addresses
where the memory object has been mapped and which portidreashemory object was used in the mapping are
maintained in th&kegi on object and they change among successtpe() operations.

4 Objects

An object consists of a set of data — known as the object’'s statind a set of operations, referred to as methods,
which constitute the object interface and which are the @rdy to access the object’s state.

Our kernel is structured as a set of objects of this kind tmavide a set of interfaces and a basic invocation
service to the rest of the system. Using the invocation send user task may request operations provided by the
kernel objects or by objects that reside in other domains.

Kernel objects provide methods that allow user tasks tstegnew user objects in the system, delete previous
registrations, get object references, etc. User leveliegjibns must use these facilities to organize themselses a
a collection of objects that will interact among them usihg tPC mechanisms provided by the kernel (namely,
the invocation service and the memory sharing).

The rest of this section explains the operations provideddmge kernel objects related to the life-cycle of an
object.

4.1 Object Registration

Once an object has been created, it must be registered imds's1ikernel. Before an object registration, no
invocation can be directed to it since the kernel does nowma@wything about it.



VIRTUAL SPACE A VIRTUAL SPACE B

Memory
Region B1
Region
Object -
Region
Object
Memory .
Region Al Region>o-Cache

attach afteha Map() Regigto-Cache
attgeh after a Map()

List of Frame

Cache objects.
Object

T

\
Physical
Page

PHYSICAL MEMORY

Figure 3: Memory shared between two address spaces in thersaahe.

To register a new object, tHébj ect Myr’s Regi st er () method can be used. The location of the object is
given in the input arguments of the method, and a valid deturto it is returned in the output one.

The kernel maintains a table of object locations, assogjaach object to an internal object identifier. Besides
this table, additional descriptor tables are also maiethinEach table of this kind relates a set of descriptors,
belonging to a task or an agent, with internal object idesrtfi

Object locations and object descriptors are the only infirom stored in the kernel about an object. The object
location is the internal data used by the kernel to identifyagent where the object resides. The descriptor is the
user level identifier for an object; the invoker task uses tell the kernel which object is invoking.

As a consequence of this design, the kernel neither corttrelsiser-level object interfaces nor their object
states. Both of them can be structured and managed freehehyser code.

4.2 Object Invocation

The object invocation service is requested using a softivape Some assembler code is required to direct the
caller task to theCal | Myr object. This object checks the received arguments, edpeitia object descriptor. If
the descriptor is invalid, the invocation is aborted.

Since descriptors are resources that belong to agents sk&l &ither thedgent Myr or theTasksMyr are
needed to locate the target object. Moreover,taesksMyr is always used to spawn an additional thread which
will execute the code of the invoked object. In Section 5eldteps followed in an object invocation are explained
in detail.



4.3 Descriptor Handling

Descriptors are grouped in tables. Each descriptor taltngs to a different agent and it is represented by an
AccessTabl e kernel object. ArAccessTabl e object relates the object descriptors to global kerneltifiers.
Object descriptors have only sense if they are dereferemsiad theAccessTabl e where they reside.
AccessTabl e entries can only be filled by the kernel. This prevents objestcriptors to be forged at user
level.
The kernel provides the following operations related taegbglescriptors:

e Automatic generation of the first descriptor when the obigcteated. This descriptor is usually assigned to
the agent where the object has been created.

e Creation of a new object descriptor as a result dfea Access() call to theAgent Myr. Using this
method, an agent gives one of its descriptors to a second.agen

e Creation of new object descriptors as a result of an objeaidation. The kernel provides a facility to
translate object descriptors in invocations. When an ahgbeing passed as an argument in an inter-
domain call, the caller can indicate to the kernel that thecdptor must be converted to the appropriate
descriptor value in the target agent.

e Destruction of a given descriptor, only if the requesterhaf bperation owns the descriptor to be removed.

4.4 Reference Counting

A reference count is maintained for each object that has begistered in the kernel. Although2el et e()
method is present in thebj ect Myr interface to explicitly delete the registration of a usejeah, the reference
count is provided to automatically unregister an object ithaot being referenced by any task or agent.

The reference count is increased when an object descripteated by the kernel. The count is decreased
when a descriptor of the object is removed. If it reaches aevaf zero, the object registration is deleted and the
object is no longer accessible.

Descriptors are removed automatically when they belongéslkor agent that is being deleted.

5 Threads, Tasksand Agents

Threads, Tasks and Agents are the three abstractionsdétetiee dynamic view of the system:

Task. It models a thread of execution. During the execution of gliegtion some calls to objects located in other
address spaces may be needed. The task abstraction suppsgsnter-domain jumps and returns. This
implies that a task switch is not required when the same thoéaxecution traverses different domains.

Thread. Athread is the view of a task into an address space. Threaigaimeinformation about where has been
mapped the task’s stack. Also, once a task has left the sldpase as the result of an object invocation,
the kernel stores into @hr ead object information that will allow the restart of the taskeafthe invocation
return.

The life of a thread commences when a task calls an objeceglacits address space. The thread is
maintained until the invocation that started it finishes i Task returns to its previous address space.

A thread can be in two stategctive or Passive. Only one thread per task is in the active state: the last
one. The others are in the passive state, and will be retetivahen the younger task threads have been
terminated.

Agent. The agent is the system entity that maintains some objedtisatates them from the rest of the system —
it is a protection domain. It includes an address space whigieets reside. An agent also maintains some
object descriptors, allowing the tasks that run in it to ikw@bjects placed in other agents.

Besides providing the tools to initiate an object invocatfacting as a client), the agent also supports the
entry point concept (now considering the agent as a serveour system, there is one entry point per agent.
Some code must be provided to route the entry calls to thejetabjects.



In the the rest of the section the invocation process andnbieqtion provided by the object descriptors are
analyzed in more detail.

5.1 Tasksand Object I nvocations

A brief explanation of an object invocation will clarify thelationships among tasks, threads and agents. The
following points define a common scene previous to an objcidation:

e Atask is executing code of an object in its address space.
e This code contains a call to another object that is not platéus address space.

e The object to be invoked is referenced by an object descriptois object descriptor usually is a resource
owned by the agent.

To do the invocation, these steps must be followed:

1. The invoking task makes a call to a client stub, passingntheation arguments.

2. The client stub raises a trap that is attended and pratégstie kernel.

3. The kernel gets the object descriptor and redirects thaking task to the agent where this object resides.
4,

To do that, the kernel creates another thread and asssdi&b the invoking task. Thus, the task can execute
code placed in another agent.

As we can see, an agent provides a set of accessible objectagk. If the task decides to invoke one of these
objects, a new thread will be created. After its creatiom, tdsk is placed in the target agent and executes the
code of the invoked object. Now, it has access to a possifflereint set of objects depending on the set of object
descriptors owned by the new agent.

As stated previously, our threads are a very light abswactin fact, a thread data structure only maintains the
stack pointer and a return address. So, linking a thread tovaking task does not need a task switching and can
be done in a few microseconds.

5.2 Protection and Object Descriptors

Object descriptors provide a means to access objects piaahfierent address spaces. They are created by the
kernel and maintained in descriptor tables. The descripgbre can be interpreted by the kernel, who finds the
correct table entry and gets the identifier of the objectresfeed by the descriptor. Once the object identifier has
been obtained it is easy to find the location of the object anthnhsport the invoking task to the entry point of the
target object.

If an object descriptor is forged at user level and used tokexa random object, the kernel will detect it because
it will point to an empty table entry. The invocation is atesttand the task cannot gain access to unauthorized
objects.

If the forged object descriptor references a full table ¥nw violation is made: the task already had access to
this object. Moreover, a method number is also required tarobject invocation and they may be very sparse.
Therefore it is very difficult that a randomly generated @bescriptor and method number pair could result in a
valid invocation.

6 Kerne Organization

The kernel not only provides the object abstraction to theeuevels. Itis also organized as a collection of objects
highly related, each one providing a well defined set of ®@wto other kernel objects or to user level ones.
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6.1 Kernel Objects

The most important kernel objects are:

AgentMgr. This object manages the agents of its node. It receives st&gjtie create new agent objects and
requests to delete any of the current ones. It also provititleananagement of the agent descriptor tables,
allowing the registering, deletion and copying of objecta#tors.

CallMgr. The Cal | Myr object serves the kernel entry point. Since the kernel omyides the invocation
service, this object has to combine the services provideatigr kernel objects to route the invoker tasks to
their target objects.

Usually, the functions carried out by this object are:

e To locate the target object and its entry point. An objectdptor is needed to do that.
e To create new threads to execute the invoked code.

Dispatcher. TheDi spat cher object manages the task switches. It maintains the CPU xwofteach task and
also provides methods to create, delete and get task ideat#i low level — th@asksMyr object is built
on top of it.

IntrMgr. Thel ntr Mgr (interruptand trap manager) object allows other kernetotsjto request to be notified of
a given trap type arrival. The objects that require this lahdervice are referred to asterrupt handlers.
Thed ock is a good example of an interrupt handler.

Thel nt r Mgr not only manages the service of external interrupts. It ¢sm aotify the arrival of software
traps and other exceptions.

MemoryMgr. The memory manager object groups the functionality pravioe other kernel objects related to
memory abstractions. They are the following ones:

e Virtual Spaces Manager.

As a virtual spaces manager, thierror yMyr serves requests to allocate, map, unmap and free differ-
ent address ranges of a virtual space. It will also manageréaion and deletion of virtual spaces.

e FramesManager.

When the memory manager acts as a manager of physical pages, to maintain a set ¢ir ane
objects that comprise the physical memory of the machineevités running. This set of objects is
built at initialization time, once the amount of physicalmmary has been found out.

Later, the manager maintains information about which pagedree and updates the reference count
of the used ones.

e CachesManager.
In the role of caches manager, thenor yMyr associates sonfér ane objects to its owned caches

and relates th€ache object to thevenory Obj ect andPager that know about the location of its
memory in secondary storage.

As we can see, some additional objects are required to pealEwhole memory management. Part of them
are used directly to implement the three objects seen alrasendoe thought as independent objects, also at
kernel level. Examples are thiegi on, Fr anme, MMUandPageTabl e objects.

But another part may be found at user lewdtnCbj Myr , Pager s, etc. These ones can be easily replaced.
So, some policies as cache coherence might be modifiedaber objects that provide them are updated.

ObjectMgr. The object manager allows the registration of new objectsérsystem node, deletion of previously
registered ones, locating an object given a valid desargoid so on. This manager keeps the location of all
the objects registered, assigns kernel identifiers to thedmaanages a reference count for every registered
object.

Reference count handling allows the deletion of an objegisteation when all of its references (usually,
object descriptors) have disappeared.

11



Scheduler. The Schedul er object maintains a set of queues where all the ready tasksaitieg for its next
CPU time. It provides methods to include new tasks in theyepeues or to suspend a ready task.

The scheduling policy depends on the implementation ofdbject. The current instance deals with 32
different priority classes, each one managed using a R&ofdn strategy.

Since the interface of this object has a few methods, thacephent of the scheduling strategy is not difficult.

SynchroMgr. The Synchr oMgr object controls the synchronization objects. There areettkinds of them,
namely semaphoreS¢maphor e class), locksl{ock class) and event variableBent Var class). They
are registered and handled as usual objects. Thereforerigtess of them can be transferred between
different agents and they can synchronize tasks runninggiset agents or in the kernel.

A Semaphor e object provides th®() (test) andv() (increment) methods. They follow the behavior of
the original semaphore primitive [4].

TheLock object is a variant of the previous primitive which allowsstedl requests to the same resource,
even when this is already owned by the requesting task.

In an Event Var object, many tasks can be blocked waiting for the signalihgroevent. When its
Si gnal () method is requested, all the blocked tasks are restarted.

Every synchronization object provides a method to test theking state of the object and a timeout argu-
ment in the blocking methods.

TasksMgr. TheTasksMyr is the object that manages tasks. Its main functions are:

e Creation of new tasks. A method is provided to create addilitasks. The task manager needs only
the agent and address where the new task has to be startets atatk size. Also, some arguments
can be passed to the task in threeat e() method call.

e Deletion of existing tasks. It can be explicitly requesteddone implicitly. For the first case, we
provide theDel et e() method. The second case arises when the task has terminatexkeicution of
the function or routine where it was started.

¢ Management of the threads belonging to each task. Threadseated when a task jumps to a different
agent and they are deleted when a task returns. This is déomatically by the task manager, which
is the only kernel object that knows about their existence.aAesult, threads become transparent to
the rest of kernel objects.

6.2 Implementation

Our kernel has been implemented using C++. Thus, all thecth@own in the previous sections are implemented
as different C++ classes.

Special care has been taken to separate the class intendac&$ implementation. So, every kernel object is
represented by an abstract class who contains only it§actrThe whole set of abstract classes is an architecture-
independent model of the kernel and it is the result of itsglestage.

Using the inheritance capability of the C++ language, asmenended in [10], abstract classes can be refined
to other implemented classes which adapt the archite@talependent interface provided by the abstract class
to code that can be run in the target machine. Moreover, ofitfle@part of the implemented classes deal with
hardware details; the rest is highly portable.

Thus, each kernel object class belongs to one of the follp\gioups:

e Classes which are implemented using architecture-indigogrrode. Both abstract and implemented classes
are directly portable to other architectures. Examplefiafkind are theTasksMyr and theObj ect Myr
classes.

e Classes which can be partially implemented using architeeihdependent code. The methods of the ab-
stract class are implemented using machine-independento@de. The specific details concerning the
target machine are added in a subclass of this non-abstesst dOnly this subclass will change when the
kernel is ported to a different architecture.
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For instance, th&@nmegMyr class is a subclass of tigageTabl e class. The latter maintains the page
replacement algorithm and other machine-independenirestelated to virtual to physical address conver-
sion, whilst the former has all the machine-dependent Betai

e Classes whose code is architecture-dependent. Only thmetbslass is directly portable; i.e., the class
interface is architecture-independent. They have to bmptemented when the system is ported. Examples:
MW, CPUCont ext andCPU.

6.3 CodeSize

Table 1 sums up the figures about the kernel size. All the sotmde is fully commented. Removing comments,
approximately a 50 % of the lines would be eliminated.

Concept Source | Exec
(Lines) | (Bytes)
WHOLE KERNEL 19.636| 46.493
LANGUAGE
C++ 16.787 | 39.413
Assembler 2.849 | 7.080
ARCHITECTURE DEPENDENCY
Independent 14.785| 35.577
Dependent 4.851 | 10.916

Table 1: Executable and source code sizes.

This table shows first the entire size of the kernel sourceodlines) and that of the kernel text image (in
bytes).

The second group of figures divides the kernel code accotditige implementation language. As we can see,
only a 15% of the source code has been written in assemblare @is code has been compiled, its 7.080 bytes
mean the 15% of the total object code, too.

Considering hardware dependency, the 25% of the source mogé be translated to port the kernel to a
different architecture. In the current PC release, thise®uoode generates the 23% of the text image.

7 Summary

The NanOS microkernel offers support for object-orientedikes and applications. Its main services include ob-
jectinvocation, memory management and device driver stpNanOS also provides a reduced set of abstractions
which comprises: objects, agents and tasks.

The kernel itself has been organized as a set of cooperdijeets. Some of them offer public interfaces to the
upper levels. Synchronization objects, memory provideds\artual spaces are three examples of kernel objects
of this kind.

Portability and efficiency were key design objectives ofthystem. Currently, we have two releases of our
kernel running in two different architectures. So, the fpsbperty has been accomplished. Object invocation
is the most critical service provided and the microkernargfs 22us to do an inter-agent invocation and the
corresponding return to the calling agent in a PC machink av80 MHz Intel Pentium processor

We plan to build a distributed object-oriented operatingtegn offering, among others, a UNIX interface to
applications. The NanOS kernel is the base for this futustesy. It has to be extended with network support in
the next stage of its development. At the same time, we aigrdag an ORB which will provide a good platform
to develop distributed applications and servers. We plagxtend this ORB with additional services such as the

IThis measurement corresponds to an object call made atavsrwith four arguments whose size do not exceed 32 bytegh implies
four changes of privilege level and two address space clsange
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support and management of replicated objects, which waVgle the basis for highly available applications and
servers.
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