
SIPRe: A Partial Database Replication Protocol

with SI Replicas
J. E. Armendáriz, A. Mauch, J. R. González de Mendı́vil, F.D. Muñoz

Depto. de Ing. Matemática e Informática - Univ. Pública de Navarra
Campus de Arrosadı́a, 31006 Pamplona, Spain

Instituto Tecnológico de Informática - Univ. Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

{enrique.armendariz,augusto.mauch,mendivil}@unavarra.es, fmunyoz@iti.upv.es

Technical Report TR-ITI-ITE-07/21

J.
E

.A
rm

en
d

ár
iz

-I
ñ

ig
o

et
al

.:
S

IP
R

e
:

A
P

a
rt

ia
lD

a
ta

b
a

se
R

e
p

lic
a

tio
n

P
ro

to
co

lw
ith

S
IR

e
p

l
ic

a
s

T
R

-I
T

I-
IT

E
-0

7
/2

1





SIPRe: A Partial Database Replication Protocol with SI
Replicas

J. E. Armendáriz, A. Mauch, J. R. González de Mendı́vil, F.D. Muñoz

Depto. de Ing. Matemática e Informática - Univ. Pública de Navarra
Campus de Arrosadı́a, 31006 Pamplona, Spain

Instituto Tecnológico de Informática - Univ. Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/21

e-mail:{enrique.armendariz,augusto.mauch,mendivil}@unavarra.es,
fmunyoz@iti.upv.es

October 23, 2007

Abstract

Database replication has been researched as a solution to overcome the problems of performance and
availability of distributed systems. Full database replication, based on group communication systems, is
an attempt to enhance performance that works well for a reduced number of sites. If application locality
is taken into consideration, partial replication, i.e. notall sites store the full database, also enhances
scalability. On the other hand, it is needed to keep all copies consistent. If each DBMS provides SI,
the execution of transactions has to be coordinated so as to obtain Generalized-SI (GSI). In this paper,
a partial replication protocol providing GSI is introducedthat gives a consistent view of the database,
providing an adaptive replication technique and supporting the failure and recovery of replicas.

1 Introduction

Distributed databases have become an attractive approach for providing service to large number of users.
Data is stored at multiple sites geographically distributed. Under these systems, database replication is one
attractive approach. On one hand, it increases data availability in the presence of failures. On the other
hand, it can improve the system performance, specially in retrieval costs by exploiting local access. The
management of replicated data, i.e. the decision of when, how and where to perform updates [21, 12, 20],
to maintain data consistency may have a non-negligible overhead in the system too.

Full database replication (all sites, or replicas, store a copy of the database) using the eager and update
everywhere approach has been shown as an attractive way to perform replication [12]. Among all replica-
tion techniques under this assumption, those based on GroupCommunication Systems (GCS) [5] are the
most promising [21].They take advantage of order and atomicity properties provided by theGCS. These
GCS-based solutions perform as follows: each transaction is locally executed at a single replica (its dele-
gate replica); once the commit of this transaction is requested, updates are collected (denoted as writeset)
and multicast, using the total order primitive [5]. Upon thedelivery of this message the outcome of the
transaction can be determined in different manners, see [21]. This paper focuses in the certification-based
technique in which each site autonomously determines if thedelivered transaction should be aborted or
committed. A transaction can be committed if it does notconflictwith any concurrent, though previously
committed, transaction in the system. To carry out this task, each replica holds a log of previously certified
transactions to compare with new ones.

1



Earlier solutions [15] tried to provide the strongest correctness criterion which is 1-Copy-Serializability
(1CS) [4] that limits concurrency and, thus, scalability. Moreover, most commercial databases provide
Snapshot Isolation (SI) [3], where read operations never block since they read fromthe latest committed
version of the database at the moment it started, and severalworks have dealt with providing a 1-copy
equivalence forSI replicas which will be calledGeneralized-SI (GSI) [9][11] throughout this work. It
differs from centralizedSI in that transactions may read from an older committed version of the database
as opposed toSI; however, all the interesting properties ofSI remain the same.

Nevertheless, all theseGCS-based solutions lack of scalability as it has been shown in [14] since all
updates have to be applied at all replicas to keep them consistent. This fact implies that each replica has a
portion of its scheduling devoted to apply updates from other replicas and this fraction can become quite
large, i.e. the addition of new replicas adds more overhead instead of alleviating this effect. At this point,
it is where partial replication makes sense. It consists in splitting the database in portions (partitions)
according to application semantics, and then by replicating each fragment at a subset of available repli-
cas [18, 13, 17, 6]. This paper proposes an algorithm for partial replication, calledSIPRe that provides
GSI. It supports the execution of distributed transactions where some operations of a transaction can be
submitted to different replicas since partitioning is not perfectly done. An outline of its correctness is
also given. Afterwards, following the steps presented in [13], an adaptive replication schema is proposed.
Adaptive replication means that the replication pattern for a data item may change as changes occur in the
read-write access pattern at different sites. A study of thefault tolerance and recovery issues is also given.

The rest of this paper is organized as follows: Section 2 presents an abstraction of the system model
used.SIPRe is described, along with its correctness, in Section 3. The partitioning schema can be dynam-
ically modified at any moment and it is shown in Section 4. The crash and recovery issues are outlined in
Section 5. A review of previous related works is done in Section 6. Finally, conclusions end the paper.

2 System Model Overview

The system assumed in this paper is an abstraction of a middleware database replication architecture. The
system is composed byn sites (or nodes) and a database (DB) composed by a set of finite data items.
Each site runs aSIPRe instance that coordinates its execution by message exchange thanks to the usage
of a a Group Communication System (GCS) [5]. This GCS features a total-order [5] and a reliable mul-
ticast/unicast as communication primitives of the Communication Service (CS) as well as a membership
service (MS) with virtual synchrony [5] and preventing the contamination phenomenon [8]. Besides, each
site Rk contains a Database Management System (DBMS) maintaining a copy of a subset of the items in
the database (none stores a full copy of the database),Items(Rk) ⊆DB, and providingSI [3] to transactions
locally executed. Clients access to the system by way of a standard interface, e.g.JDBCto issue transac-
tions. A transactionT represents a sequence of read and write operations followedby a commit or abort
operation.

3 Protocol Description

Figure 1 shows theSIPRe replication protocol as an event based system that we explain in the following.
First of all, it is very important to fix the transaction master site (or delegate replica,T.master). This is not
an intuitive task, though not overwhelming, since it highlydepends on the kind of application considered.
Taking into consideration theTPC-Wbenchmark [19], the transaction execution flow is fixed (which also
may serve to partition the database, though the partitioning process itself is not discussed in this paper), i.e.
the probabilities that a transaction may switch from one table to another are defined. In the following, it
is assumed that the transaction (before its begin operation) has been transparently forwarded to its master
site. Hence, there exists alookupservice to forward the transaction to the most appropriate site.

During its read and write operations, it can potentially access data that belongs to another replica. It is
needed thatT “sees” the same snapshot throughout all replicas it may potentially need for its execution. In
order to achieve this, astart message is multicast using the total order service, stepI.1, at the beginning of
the transaction.

2



Initialization:
1. lastvalidated tid := 0 - - last validated txn
2. lastcommitted tid := 0 - - last committed txn
3. WS list := ∅
4. TODelivered := ∅
6. ws run := false

I. Upon receiving opj of transaction T from client

1. if first(opj , T ) then
⋆ T.master := Rk

⋆ multicastTO(start, T )
⋆ wait until T.received = true

2. if dataIsLocal(opj , Rk) then
⋆ if (type(opj ) = write) then
⋄ wait until ws run = false

⋆ DBMS.execute(opj , T )
⋆ return result(opj ) to the client

3. else forward(opj, getChanges(T ), T ) to lookup(opj )
II. Upon receiving forward(opj, changes, T )

1. if first(opj , T ) then
⋆ wait until T.received = true

2. obtain(writing)
3. ws run := true
4. ∀Tj : local(Tj )∧ changes ∩ getChanges(Tj ) 6= ∅

∧ Tj has not arrived to IV:
⋆ if distributed(Tj ) then multicast(abort, Tj )
⋆ DBMS.abort(Tj )

5. DBMS.execute(changes ∩ getChanges(T ), T )
6. DBMS.execute(opj , T )
7. ws run := false
8. release(writing)
9. send (result(opj ), newChanges(T ), T ) to T.master

III. Upon receiving (result(opj ), newChanges, T )
1. DBMS.execute(newChanges ∩ getChanges(T ), T )
2. return result(opj ) to the client

IV. Upon receiving opj ∈ {commit, abort} of T from client

1. if (opj = abort) then
⋆ if distributed(T ) then multicast(abort, T )
⋆ DBMS.abort(T )

2. else - - opj = commit
⋆ WS := getWriteset(T )
⋆ if (WS = ∅) then
⋄ if distributed(T ) then multicast(commit, T )
⋄ DBMS.commit(T )

⋆ else
⋄ multicastTO(commit, WS, T )

V. Upon receiving (commit, T ) ∨ (abort, T )
1. if executedAtSite(T , Rk) then

⋆ wait until T.received = true
⋆ DBMS.commit(T ) ∨DBMS.abort(T )

2. else discard(commit, T ) ∨ (abort, T )
VI. Upon receiving Total-Order Message ∈ {(commit, writeset, T ), (start, T )}

1. if (start, T ) then
⋆ if isSuitable(T ) then
⋄ TODelivered.append(start, T )

⋆ else discard(start, T )
2. else - - (commit, writeset, T )

⋆ obtain(wsmutex)
⋆ if ∃Tj ∈ WS list: T.start < Tj .commit ∧ writeset ∩ Tj .WS 6= ∅ then
⋄ release(wsmutex)
⋄ if local(T ) then
⊲ DBMS.abort(T )
⊲ if distributed(T ) then multicast(abort, T )
⋄ else discard(commit, writeset, T )

⋆ else - - Certif. success
⋄ T.commit := ++lastvalidated tid
⋄ WS list.append(T , writeset)
⋄ if isSuitable(T ) then
⊲ TODelivered.append(commit, writeset, T )
⋄ release(wsmutex)

VII. While TODelivered 6= ∅ do - - {(commit, writeset, Ti), (start, Ti)}
1. data := TODelivered.head()
2. if data = (start, Ti) then

⋆ DBMS.begin(Ti )
⋆ Ti.start := lastcommitted tid
⋆ Ti.received := true

3. else - - (commit, writeset, Ti)
⋆ if ¬local(Ti ) then
⋄ obtain(writing)
⋄ ws run := true
⋄ ∀Tj : local(Tj )∧ getChanges(Tj ) ∩writeset
∧ Tj has not arrived to IV:
⊲ DBMS.abort(Tj )
⊲ if distributed(Tj ) then multicast(abort, Tj )
⋄ if ¬ isSuitable(Ti) then DBMS.begin(Ti )
⋄ DBMS.execute(writeset ∩ getChanges(Ti ), Ti)
⋄ ws run := false
⋄ release(writing)

⋆ DBMS.commit(Ti )
⋆ lastcommitted tid++

4. TODelivered.removeFirst()

Figure 1: SI Partial Replication (SI-PRe) protocol at replica Rk

Upon the delivery of this message (stepVI.I), the proper set of replicas, which is delimited by the
isSuitable() function uniquely determines for eachT and itsT.master a single site for each partition it
may potentially need (this can be inferred by thelookupservice at each replica), enqueue the message at
them in theTODelivered variable to start the transaction. This last variable is globally total-ordered at
each replica that permits to commit transactions in the verysame order and to obtain the same snapshot
at all replicas potentially needed (T.start), stepVII.2. From this moment on, the transaction can start the
execution of read and write operations. At some point duringits execution, it might happen that a given
statement could not be executed atT.master and the operation should be forwarded to another replica
containing the information. Moreover, it can be the case of astatement,opj , that depends on its own
previously updates and these changes must be also propagated along with the respective statement to be
executed (stepI.3) in a forward message to thelookup(opj) replica.

Once theforward message is delivered to the proper replica is important thatchanges brought by
the transaction are properly applied, i.e.T must not be aborted by local transactions (stepII). All local
conflicting transactions are aborted, the operation is executed and changes are sent back toT.master.
Furthermore, no write operation is allowed until the changes and the operation is done, thanks to the
ws run variable. From the explanation outlined, it should be clearthat a transaction can only be aborted
at its delegate replica and, hence, the number of messages per transaction is greatly reduced thanks to this.
The reception of the previous remote operation (stepIII) atT.master implies that the result must be returned
to the client and, if necessary, changes modifying the stateof the transaction should be also applied (e.g.
an update operation executed at another replica).

3



Once all operations of the transaction have been done, the client requests the commit of transaction
T (step IV); for the sake of clarity, client explicit aborts are not considered. All updates performed are
grouped to form a writeset (getWriteset(T ) function). If the writeset is empty then the transaction will
be straightly committed, in the case of affecting other replicas acommit message is multicast using the
basic service that will commit the transaction at these replicas (stepV). Otherwise, the writeset is multicast
using the total order facility. When a replica receives a writeset (stepVI.2), it applies the certification test,
no matter which partition it stores, and checks the associatedwriteset field of T against the writesets of
its overlapping transactionsTj (T.start < Tj .commit∧ writeset∩Tj .WS 6= ∅) contained in theWS list.
If the certification is passed,T will be appended toWS list queue and itsT.commit field gets updated to
the auto-incremented value oflastvalidated tid. Finally, if the replica holds a partition affected by the
validated writeset, it will be stored in theTODelivered queue to be applied and committed in the replica.

The last part of the algorithm (stepVII.3) governs the application of validated writesets in the system
in the proper set of replicas, i.e. those already holding a copy of the validated writeset. These writesets are
sequentially applied, i.e. another validated writeset cannot be started until the previous validated writeset
has been applied and committed. Again, this fact does not prevent conflict appearance with current execut-
ing local transactions. These conflict checks can be done in an automatized way. Furthermore, new write
operations are not allowed in the replica so that the writeset will be eventually applied and committed.

3.1 Outline of Its Correctness

We need to show that each set of replicated partitions behaves in the same way, and, since there is no
overlapping between partitions, the compound view of partitions corresponds to the global state of the
replicated database. In the following, the safety and liveness criteria thatSIPRe must satisfy are going to
be introduced. The safety criterion establishes that for any pair of sites storing the same partition thelog of
committed transactions in their respective database systems is either the prefix of the other or vice versa. As
database systems provideSI, this criterion implies that each database replica at everysite holding the same
partition has installed the same snapshots in the very same order. Therefore, each database partition reaches
the same state, at commit time, for every executed transaction. The liveness criterion must ensure that if a
site commits a transaction, it will be eventually committedat every correct replica. Under this criterion, all
correct and available databases do not lose any committed update in any database of the system.

The safety criterion is also very important to determine thefinal isolation level achieved by theSIPRe.
It has been stated at the beginning of this work thatSIPRe providesGSI [9]. Actually, GSI is an extension
of SI best suited for replicated environments. TheGSI level allows the use ofolder database snapshots,
facilitating its replicated implementation. A transaction may receive a snapshot that happened in the system
before its first operation (instead of its current snapshot as inSI). To commit a transaction it is necessary, as
in SI, that no other update operation of recently committed transactions conflicts with its update operations.
Thus, a transaction can observe an older snapshot but its write operations are still valid update operations
for the database at commit time. Many of the desirable properties ofSI remain also inGSI, in particular,
read-only transactions never became blocked and neither they cause update transaction to block or abort.

In the following, it is shown how the previous concept ofGSI level is applied toSIPRe. Suppose that a
transactionT starts its execution at its delegate replica (T.master = Rk), it will not be allowed to execute
any operation until its associatedstart message is received. Furthermore, all replicas that can potentially
be accessed byT ({Rk′ : isSuitable(T )}) will obtain the same snapshot. However, this fact does not prevent
from getting anoldersnapshot. Suppose that no update operations have occurred at the master site ofT , i.e.
its lastcommitted tid = 0. Prior to this, a transactionT ′ belonging to the same partition, whose master is
Rk′ 6= Rk, has been certified and committed at all available replicas such thatisSuitable(T ′) butRk, due to,
e.g., a communication delay in the propagation of messages by theGCSto Rk. Assume that the associated
writeset of T contains data itemX and, hence, a new version of this item (XT ′ ) has been installed in the
system. If transactionT reads data itemX it will read the versionX0 instead of the already committed
and installed version in the system. Moreover, if a transaction T ′′ concurrently starts atRk, though after
T ′ has been committed, it will read versionXT ′ , since transactions firstly perform their operations at their
master replicas andSIPRe validates transactions at all replicas in the same total order. This validation
order governs the sequential commit of transactions for their respective associated partition and, hence, it
satisfies the safety criterion for the executed transactions which is a sufficient condition for obtainingGSI

4



level for committed transactions [11].

4 Adaptiveness Issues

From all the topics covered right now about partial replication, it is clear that it is very important to know
the application access patterns and to properly partition the database. As it has been pointed out, the less
number of message exchanges per transaction the better a replication protocol works [12]. In general, the
possible transitions for an application, i.e. the set of tables accessed by a transaction, is well-known in
advance, e.g.TPC-W [19]. However, this does not fully avoid the need of forwarding operations to other
replicas. Taking this to the extreme, the most straightforward solution is to fully replicate the system but
this does not scale well [14, 17].

It is also worth noting the problem of remote access to other replicas due to the application access to
several partitions located at different replicas [13]. InSIPRe it has been circumvented by way of thestart
message at the beginning of the transaction and, hence, every accessed replica obtains the same snapshot.
However, it may occur that the partition is far away from perfect and operations at other replicas may
happen. Hence, once objects are retrieved at the master replica, they can be temporarily maintained at the
replica in memory. This temporary database is a cache of non-local data items that can be perfectly valid
for transactions executed at the replica while there are no updates of these items which are outdated by the
given snapshot version in the replica. This is easy to check in SIPRe since all replicas validate and certify
all transactions so the cached items can be purged once a validated transaction has updated any of them.
Of course, items can be removed from the temporary database using aLRU or LFU policy. The previous
temporary database is taken here as a first step for adaptive replication. Exploiting access locality is a
first attempt for partitioning that can be far away from perfect; system or organizational configuration may
change and, hence, former seldom accessed data items at a given location may be more accessed. It makes
sense to transfer the partition to this location. The numberof messages exchanged per transaction at this
replica is greatly reduced. The metric used here can be the number of unicast messages sent that belong to
a certain non-local partition and the data transfer technique of this partition can be the one depicted in [2].

5 Fault Tolerance Issues

So far,SIPRe has been presented without considering failures. Hereafter, it is assumed a partially syn-
chronous system and a partial amnesia crash [7] failure model as we want to deal with replica recovery.
The MS provides strong view synchrony (current set of active and connected replicas) andSIPRe needs
a primary component membership [5]. Changes in the composition of replicas fire a view change event
and theGCSgroups delivered messages in the views they were sent. Finally, theCSprovides uniform total
order multicast [5] preventing the contamination phenomenon [8].

Each time a replica fails its associated replicated portions must be kept available to maintain the same
number of replicated partitions of the database. Upon firinga view change event due to this, afictitious
recovery of a replica that does not host those partitions is done; this can be done by the two-stage recovery
protocol presented in [2]. Besides, all replicas store updates affecting the crashed replica to be transferred
once the crashed replica joins again the system. This can be done at the certification phase, each time
a certified writeset updates a portion belonging to the crashed node, it is appended to a queue of missed
updates. Another optimization is to store the transaction identifier of the last committed transaction before
the crash failure.

Later, the crashed replica will rejoin the system firing again a new view change event. At this moment
the replica storing its partitions of the database will transfer the missed data to the recovering replica,
starting from its –i.e, that of the recovering node– last committed transaction identifier using the transfer
technique commented above.

5



6 Related Works

Partial data replication has been extensively studied in the context of distributed database system. It can
be classified according to the transaction access pattern, i.e. all operations of a transaction are entirely
executed at their delegate replica [6, 16, 18] or not [13, 10,17]. The first group considers that at least one
node holds all data the transaction accesses, while the other group permits to handle distributed transactions
where different operations of the same transaction are executed at different sites.

Considering the first group of protocols, a replication algorithm is proposed in [6], where databases
are replicated in a cluster. Each incoming transaction is submitted, via a load balancer, to the best cluster
node, which will be the transaction delegate site. Then, thetransaction is associated with a chronological
timestamp and is multicast to all other nodes where there is areplica. Transactions must be performed
in every node according to their timestamp order. When a transaction arrives at a non-delegate node it is
scheduled but not submitted for execution until the reception of the corresponding writeset. At delegate
node, after the commitment of a transaction, its writeset ismulticast to the other nodes where there is a
replica. Upon the reception of this writeset, the content ofthe transaction is replaced with its writeset and
it can be executed according to the chronological order.SIPRe does not need to assign a global chrono-
logical timestamp to transactions, since transaction execution order relies on the total-order delivery. Other
works [16, 18] extend the Database State Machine approach topartial replication. In [16], the authors
propose two algorithms. In the first algorithm transactionsare certified sequentially, which can be a prob-
lem if many transactions are submitted. The second algorithm solves this problem by allowing a sequence
of transactions to be proposed in consensus instances and bychanging the certification test accordingly.
In [18] transactions are also executed only in its delegate replica. After its execution, the readset and the
writeset of the transaction are multicast in total order, soall replicas can run a certification process to de-
cide on the transaction outcome. The algorithms proposed in[16, 18] ensure1CSby propagating the whole
readsets and writesets of transactions.SIPRe providesGSI, so there is no need to propagate readsets of
transactions.

All the algorithms described so far suppose the existence ofa perfect fragmentation of the database, so
transactions can be executed completely in its delegate site. This database perfect fragmentation is very
difficult to achieve [13].SIPRe does not make that assumption and permits the distributed processing of
transactions among a set of replicas, and, just in case, provides adaptive replication.

The second group of replication protocols does not suppose either a database perfect fragmentation.
The idea of adaptive replication used inSIPRe is taken from the algorithm proposed in [13]. In that
paper, authors propose an epidemic protocol for partially replicated databases in aWAN environment. Each
data item is stored permanently in one o more sites, and othersites may have a temporary cached copy.
If a transaction needs an item that is not stored in the site where it is being executed, the site sends a
message to one of the sites that stores a permanent copy of theitem requesting a copy, along with the
associated lock table information. Readsets and writesetsare propagated among all the sites to ensure
1CS. SIPRe does not need to use epidemic communication. The algorithm proposed in [10] uses group
communication primitives to immediately broadcast read operations to all replicas of an item. All write
operations of a transaction are broadcast along with the transaction commit request. Then, an atomic
commit protocol ensures transaction atomicity. As opposite to SIPRe that does not require to broadcast
the read operations.SIPRe is also based in the algorithm presented in [17]. The main difference is how
transactions obtain the same snapshot at all possible replicas they may access. In [17] is supposed the
existence of thegetDummyTransaction()function, which allows to get the proper snapshot of a transaction.
The algorithm presented in the current paper proposes a morerealistic way to ensure that every operation of
a transaction is executed under the same snapshot. Besides,theSIPRe algorithm uses adaptive replication
in order to minimize the number of messages exchanged per transaction.

7 Conclusions

It has been presented a partial adaptive replication algorithm (SIPRe) that tries to overcome the overhead
imposed by full replication: no replica stores a full copy ofthe database, only portions of it; and, if the
access pattern in a given replica changes,SIPRe permits to dynamically allocate new partitions on that

6



replica. It allows more concurrency to transactions since it providesGSI [9]. SIPRe needs distributed
transactions when the items to be accessed are located in multiple replicas, but it ensures consistent snap-
shots in such case by way of itsstart message.

References

[1] Proceedings of the The First International Conference on Availability, Reliability and Security, ARES
2006, The International Dependability Conference - Bridging Theory and Practice, April 20-22 2006,
Vienna University of Technology, Austria. IEEE-CS, 2006.

[2] José Enrique Armendáriz-Iñigo, Francesc Daniel Mu˜noz-Escoı́, José Ramón Juárez-Rodrı́guez,
José Ramón González de Mendı́vil, and Bettina Kemme. Evaluating certification protocols in the
partial database state machine. InARES[1], pages 855–863.

[3] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton,Elizabeth J. O’Neil, and Patrick E. O’Neil.
A critique of ANSI SQL isolation levels. InSIGMOD Conf, pages 1–10, 1995.

[4] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery
in Database Systems. Addison Wesley, 1987.

[5] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a com-
prehensive study.ACM Comput. Surv., 33(4):427–469, 2001.

[6] Cedric Coulon, Esther Pacitti, and Patrick Valduriez. Consistency management for partial replication
in a high performance database cluster. InICPADS, pages 809–815, Washington, DC, USA, 2005.
IEEE-CS.

[7] Flaviu Cristian. Understanding fault-tolerant distributed systems.Commun. ACM, 34(2):56–78, 1991.

[8] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast algorithms:
Taxonomy and survey.ACM Comput. Surv., 36(4):372–421, 2004.

[9] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone.Database replication using generalized
snapshot isolation. InSRDS, pages 73–84. IEEE-CS, 2005.

[10] Udo Fritzke Jr and Philippe Ingels. Transactions on partially replicated data based on reliable and
atomic multicasts. InICDCS, pages 284–291, 2001.

[11] J. R. González de Mendı́vil, J. E. Armendáriz, F. D. Muñoz, L. Irún, J. R. Garitagoitia, and J. R.
Juárez. Non-blocking ROWA protocols implement GSI using SI replicas. Technical Report ITI-ITE-
07/10, 2007.

[12] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers of replication and a
solution. InSIGMOD Conf., pages 173–182, 1996.

[13] JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi.Partial database replication using epi-
demic communication. InICDCS, pages 485–493, 2002.

[14] Ricardo Jiménez, Marta Patiño, Gustavo Alonso, and Bettina Kemme. Are quorums an alternative for
data replication?ACM Trans. Database Syst., 28(3):257–294, 2003.

[15] Bettina Kemme and Gustavo Alonso. A new approach to developing and implementing eager database
replication protocols.ACM Trans. Database Syst., 25(3):333–379, 2000.

[16] Nicolas Schiper, Rodrigo Schmidt, and Fernando Pedone. Optimistic algorithms for partial database
replication. InOPODIS, pages 81–93, 2006.

[17] Damián Serrano, Marta Patiño, Ricardo Jiménez, andBettina Kemme. Boosting database replication
scalability through partial replication and 1-copy-SI. InIEEE PRDC, pages 129–142, 2007.

7



[18] A. Sousa, Afrânio Correia Jr., Francisco Moura, JoséPereira, and Rui Carlos Oliveira. Evaluating
certification protocols in the partial database state machine. InARES[1], pages 855–863.

[19] TPC-W. Transaction processing performance council. Accessible in URL:http://www.tpc.
org, 2007.

[20] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. Alonso. Database replication techniques: A
three parameter classification. InSRDS, pages 206–217, 2000.

[21] Matthias Wiesmann and André Schiper. Comparison of database replication techniques based on total
order broadcast.IEEE TKDE, 17(4):551–566, April 2005.

8


