SIPRe: A Partial Database Replication Protocol
with S| Replicas
J. E. Armendariz, A. Mauch, J. R. Gonzalez de MendiviDFMufioz

Depto. de Ing. Matematica e Informéatica - Univ. PUblieaNbvarra
Campus de Arrosadia, 31006 Pamplona, Spain

Instituto Tecnolbgico de Informatica - Univ. Politécaide Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

{enrique.armendariz,augusto.mauch,menpi@iunavarra.es, fmunyoz@iti.upv.es

Technical Report TR-ITI-ITE-07/21

TR-ITI-ITE-07/21

SIPRe: A Partial Database Replication Protocol with SI Regs

J. E. Armendariz-lfiigo et al.:

SIPRe: A Partial Database Replication Protocol with Sl
Replicas

J. E. Armendariz, A. Mauch, J. R. Gonzalez de MendiviDFMufoz

Depto. de Ing. Matematica e Informatica - Univ. PublieaMbavarra
Campus de Arrosadia, 31006 Pamplona, Spain

Instituto Tecnolbgico de Informatica - Univ. Politécaide Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/21

e-mail: {enrique.armendariz,augusto.mauch,mengi@tnavarra.es,
fmunyoz@iti.upv.es

October 23, 2007

Abstract

Database replication has been researched as a solutioarmawe the problems of performance and
availability of distributed systems. Full database regtiian, based on group communication systems, is
an attempt to enhance performance that works well for a edinamber of sites. If application locality
is taken into consideration, partial replication, i.e. afitsites store the full database, also enhances
scalability. On the other hand, it is needed to keep all copinsistent. If each DBMS provides S,
the execution of transactions has to be coordinated so dst&noGeneralized-SI (GSI). In this paper,
a partial replication protocol providing GSI is introducttht gives a consistent view of the database,
providing an adaptive replication technique and suppgrtire failure and recovery of replicas.

1 Introduction

Distributed databases have become an attractive approaphdviding service to large number of users.
Data is stored at multiple sites geographically distriduténder these systems, database replication is one
attractive approach. On one hand, it increases data ailylab the presence of failures. On the other
hand, it can improve the system performance, speciallytimexal costs by exploiting local access. The
management of replicated data, i.e. the decision of whem,dm where to perform updates [21, 12, 20],
to maintain data consistency may have a non-negligibleheaat in the system too.

Full database replication (all sites, or replicas, storey®f the database) using the eager and update
everywhere approach has been shown as an attractive wayftopeeplication [12]. Among all replica-
tion techniques under this assumption, those based on GZoapnunication SystemsCS) [5] are the
most promising [21]. They take advantage of order and atibynizoperties provided by th6CS These
GCSbased solutions perform as follows: each transactiondallp executed at a single replica (its dele-
gate replica); once the commit of this transaction is retptesipdates are collected (denoted as writeset)
and multicast, using the total order primitive [5]. Upon thelivery of this message the outcome of the
transaction can be determined in different manners, sde T2ils paper focuses in the certification-based
technique in which each site autonomously determines idelvered transaction should be aborted or
committed. A transaction can be committed if it does emtflictwith any concurrent, though previously
committed, transaction in the system. To carry out this,taakh replica holds a log of previously certified
transactions to compare with new ones.

Earlier solutions [15] tried to provide the strongest cotness criterion which is 1-Copy-Serializability
(1C9 [4] that limits concurrency and, thus, scalability. Moveo, most commercial databases provide
Snapshot Isolations() [3], where read operations never block since they read fitwarlatest committed
version of the database at the moment it started, and sewerkt have dealt with providing a 1-copy
equivalence forSl replicas which will be calledseneralizeds! (GSI) [9][11] throughout this work. It
differs from centralizeds! in that transactions may read from an older committed varsicthe database
as opposed t8l; however, all the interesting propertiessifremain the same.

Nevertheless, all theseCSbased solutions lack of scalability as it has been showri4i $ince all
updates have to be applied at all replicas to keep them aensig his fact implies that each replica has a
portion of its scheduling devoted to apply updates from othplicas and this fraction can become quite
large, i.e. the addition of new replicas adds more overhestgad of alleviating this effect. At this point,
it is where partial replication makes sense. It consistspiittgg the database in portions (partitions)
according to application semantics, and then by repligatiach fragment at a subset of available repli-
cas [18, 13, 17, 6]. This paper proposes an algorithm foligdadplication, calledSIPRe that provides
GSI. It supports the execution of distributed transactionsretsme operations of a transaction can be
submitted to different replicas since partitioning is netfectly done. An outline of its correctness is
also given. Afterwards, following the steps presented B],[&n adaptive replication schema is proposed.
Adaptive replication means that the replication pattemafdata item may change as changes occur in the
read-write access pattern at different sites. A study ofdlé tolerance and recovery issues is also given.

The rest of this paper is organized as follows: Section 2qumssan abstraction of the system model
used.SIPRe is described, along with its correctness, in Section 3. Tdrétipning schema can be dynam-
ically modified at any moment and it is shown in Section 4. Tiask and recovery issues are outlined in
Section 5. A review of previous related works is done in Seté. Finally, conclusions end the paper.

2 System Modd Overview

The system assumed in this paper is an abstraction of a middedatabase replication architecture. The
system is composed hy sites (or nodes) and a databa®®) composed by a set of finite data items.
Each site runs &IPRe instance that coordinates its execution by message exelthagks to the usage
of a a Group Communication Systel®qS [5]. This GCSfeatures a total-order [5] and a reliable mul-
ticast/unicast as communication primitives of the Commation Service €S) as well as a membership
service MS) with virtual synchrony [5] and preventing the contamioatphenomenon [8]. Besides, each
site R, contains a Database Management SysteBMS) maintaining a copy of a subset of the items in
the database (none stores a full copy of the datab&se)s(R,) C DB, and providingSI [3] to transactions
locally executed. Clients access to the system by way ofradatd interface, e.gJDBCo issue transac-
tions. A transaction” represents a sequence of read and write operations folloywedcommit or abort
operation.

3 Protocol Description

Figure 1 shows th&lPRe replication protocol as an event based system that we exjpldhe following.
First of all, it is very important to fix the transaction massée (or delegate replicad,.master). This is not
an intuitive task, though not overwhelming, since it higgpends on the kind of application considered.
Taking into consideration thePC-w benchmark [19], the transaction execution flow is fixed (what¢so
may serve to partition the database, though the partitgppincess itself is not discussed in this paper), i.e.
the probabilities that a transaction may switch from ondetab another are defined. In the following, it
is assumed that the transaction (before its begin opejdtasmbeen transparently forwarded to its master
site. Hence, there existd@okupservice to forward the transaction to the most appropriéte s

During its read and write operations, it can potentiallyescdata that belongs to another replica. It is
needed thar’ “seesthe same snapshot throughout all replicas it may potdntieed for its execution. In
order to achieve this, start message is multicast using the total order service,stept the beginning of
the transaction.

Initialization: V. Upon receiving (commit, T°) V (abort, T')

1. lastvalidated_tid := O - - last validated txn 1. if executedAtSite(T, Ry) then
2. lastcommitted_tid := O - - last committed txn * wait until T.received = t r ue
3. WS.list:=0 * DBMS.commit(7T') v DBMS.abort(T")
4. TODelivered := 0 2. else discard(commit, T') Vv (abort, T')
6. ws_run :=f al se VI. Upon receiving Total-Order_Message € {(commit, writeset, T'), (start, T')}
I. Upon receiving op; of transaction T from client 1. if (start, T") then
1. if first(op; , T') then * if isSuitable(T") then
* T.master := Ry, © TODelivered.append(start, T°)
* multicastTO(start, T) * else discard(start, T")
* wait until T.received =t rue 2. else - - (commit, writeset, T')
2. if datalsLocal(op; , R) then * obtain(wsmutex)
* if (type(op;) =wri t e) then *if 3T; € WSLlist: T'.start < Tj.commit A writeset N'T;.W S # () then
© wait until ws_run = f al se © release(wsmutex)
* DBMS.execute(op; , T) ¢ if local(T) then
* return result(op;) to the client > DBMS.abort(T)
3. else forward(op;, getChanges(T), T') to lookup(op;) > if distributed(T") then multicast(abort, T°)
Il. Upon receiving forward(opj, changes, T') © else discard(commit, writeset, T°)
1. if first(op;, T) then * else - - Certif. success
* wait until T.received = t r ue o T.commit := ++lastvalidated_tid
2. obtain(writing) © WS_list.append(T’, writeset)
3. ws_run:=true ¢ if isSuitable(T") then
4.V Tj:local(T;) A changes N getChanges(T;) # 0 > TODelivered.append(commit, writeset, T')
A T} has not arrived to IV: © release(wsmutex)
* if distributed(7’;) then multicast(abort, T’;) VII. While TODelivered # § do - - {(commit, writeset, T3), (start, 7;)}
* DBMS.abort(T};) 1. data := TODelivered.head()
5. DBMS.execute(changes N getChanges(T), T) 2. if data = (start, 7;) then
6. DBMS.execute(op; , T') * DBMS.begin(T;)
7.ws_run :=fal se * T .start ;= lastcommitted_tid
8. release(writing) * T;.received :=true
9. send (result(op;), newChanges(T), T') to T.master 3. else - - (commit, writeset, T;)
Ill. Upon receiving (result(op;), newChanges, T') * if =local(T3;) then
1. DBMS.execute(newChanges N getChanges(T), T)) © obtain(writing)
2. return result(op;) to the client o ws_run:=true
IV. Upon receiving op; € {commit, abort} of T" from client oV Ty: local(T;) A getChanges(T;) N writeset
1. if (op; = abort) then A T; has not arrived to IV:
* if distributed(T") then multicast(abort, T") > DBMS.abort(T};)
+ DBMS.abort(T") > if distributed(T’;) then multicast(abort, T)
2. else - - op; = commit ¢ if —isSuitable(T’;) then DBMS.begin(T7;)
* WS := getWriteset(T) © DBMS.execute(writeset N getChanges(T;), T;)
* if (WS = 0) then ows.run :=f al se
< if distributed(7") then multicast(commit, T°) © release(writing)
© DBMS.commit(T") * DBMS.commit(T’;)
* else * lastcommitted_tid++
© multicastTO(commit, W S, T') 4. TODelivered.removeFirst()

Figure 1: Sl Partial Replication (SI-PRe) protocol at replica R

Upon the delivery of this message (stepl), the proper set of replicas, which is delimited by the
isSuitable() function uniquely determines for eaghand itsT.master a single site for each partition it
may potentially need (this can be inferred by thekupservice at each replica), enqueue the message at
them in theTODelivered variable to start the transaction. This last variable iglly total-ordered at
each replica that permits to commit transactions in the garye order and to obtain the same snapshot
at all replicas potentially needed .¢tart), stepVil.2. From this moment on, the transaction can start the
execution of read and write operations. At some point dulim@xecution, it might happen that a given
statement could not be executediainaster and the operation should be forwarded to another replica
containing the information. Moreover, it can be the case sfaaementpp;, that depends on its own
previously updates and these changes must be also progagete with the respective statement to be
executed (step3) in a forward message to theokup(op;) replica.

Once theforward message is delivered to the proper replica is important thahges brought by
the transaction are properly applied, i.€.must not be aborted by local transactions (stgpAll local
conflicting transactions are aborted, the operation is weecand changes are sent backiteaster.
Furthermore, no write operation is allowed until the changed the operation is done, thanks to the
ws_run variable. From the explanation outlined, it should be ctéat a transaction can only be aborted
at its delegate replica and, hence, the number of messaggampsaction is greatly reduced thanks to this.
The reception of the previous remote operation (8§tgptT.master implies that the result must be returned
to the client and, if necessary, changes modifying the sthtiee transaction should be also applied (e.g.
an update operation executed at another replica).

Once all operations of the transaction have been done, et cequests the commit of transaction
T (steplV); for the sake of clarity, client explicit aborts are not satered. All updates performed are
grouped to form a writesegétWriteset(T) function). If the writeset is empty then the transactionl wil
be straightly committed, in the case of affecting otheriogd acommit message is multicast using the
basic service that will commit the transaction at theseicapl(step/). Otherwise, the writeset is multicast
using the total order facility. When a replica receives deget (stefvl.2), it applies the certification test,
no matter which partition it stores, and checks the assediatiteset field of 7' against the writesets of
its overlapping transactiors; (7.start < T;.commitA WritesetnT;.W.S # §) contained in thevs_list.
If the certification is passed, will be appended tavs_list queue and it9.commit field gets updated to
the auto-incremented value tafstvalidated_tid. Finally, if the replica holds a partition affected by the
validated writeset, it will be stored in theODelivered queue to be applied and committed in the replica.

The last part of the algorithm (stepl.3) governs the application of validated writesets in the esyst
in the proper set of replicas, i.e. those already holdingy f the validated writeset. These writesets are
sequentially applied, i.e. another validated writesehoafe started until the previous validated writeset
has been applied and committed. Again, this fact does neepteonflict appearance with current execut-
ing local transactions. These conflict checks can be done automatized way. Furthermore, new write
operations are not allowed in the replica so that the writedlebe eventually applied and committed.

3.1 Outlineof Its Correctness

We need to show that each set of replicated partitions behiavthe same way, and, since there is no
overlapping between partitions, the compound view of piarts corresponds to the global state of the
replicated database. In the following, the safety and basrcriteria thaSIPRe must satisfy are going to
be introduced. The safety criterion establishes that fgraair of sites storing the same patrtition tlog of
committed transactions in their respective databasemsgsteeither the prefix of the other or vice versa. As
database systems proviflg this criterion implies that each database replica at esigyholding the same
partition has installed the same snapshots in the very sathee d herefore, each database partition reaches
the same state, at commit time, for every executed tramsactihe liveness criterion must ensure that if a
site commits a transaction, it will be eventually commits@very correct replica. Under this criterion, all
correct and available databases do not lose any commitaaten any database of the system.

The safety criterion is also very important to determinefthal isolation level achieved by tr&PRe.
It has been stated at the beginning of this work Bi&Re providesGsSI [9]. Actually, GSIis an extension
of Sl best suited for replicated environments. &8l level allows the use oblder database snapshots,
facilitating its replicated implementation. A transactimay receive a snapshot that happened in the system
before its first operation (instead of its current snapskan&l). To commit a transaction it is necessary, as
in SI, that no other update operation of recently committed &atisns conflicts with its update operations.
Thus, a transaction can observe an older snapshot but tes @perations are still valid update operations
for the database at commit time. Many of the desirable ptaseof SI remain also inGS|, in particular,
read-only transactions never became blocked and neitbgrcuse update transaction to block or abort.

In the following, it is shown how the previous concep@si level is applied t6GIPRe. Suppose that a
transactionr” starts its execution at its delegate repli€anfaster = Ry), it will not be allowed to execute
any operation until its associatethrt message is received. Furthermore, all replicas that casngiatly
be accessed by ({R,.:isSuitable(T)}) will obtain the same snapshot. However, this fact does reatgmt
from getting aroldersnapshot. Suppose that no update operations have occtithechaaster site df’, i.e.
its lastcommitted_tid = 0. Prior to this, a transactioh’ belonging to the same partition, whose master is
R. # Rk, has been certified and committed at all available replioak thatisSuitable(T”) butR,, due to,
e.g., a communication delay in the propagation of messagtsliCSto R,.. Assume that the associated
writeset of T contains data itenxX and, hence, a new version of this iteii,() has been installed in the
system. If transactio” reads data itenx it will read the versionX, instead of the already committed
and installed version in the system. Moreover, if a trarieact” concurrently starts &, though after
T’ has been committed, it will read versiofy, since transactions firstly perform their operations airthe
master replicas ang8IPRe validates transactions at all replicas in the same totatrordhis validation
order governs the sequential commit of transactions far tespective associated partition and, hence, it
satisfies the safety criterion for the executed transastvanich is a sufficient condition for obtainir@s|

level for committed transactions [11].

4 Adaptiveness | ssues

From all the topics covered right now about partial repimatit is clear that it is very important to know
the application access patterns and to properly partitierdiatabase. As it has been pointed out, the less
number of message exchanges per transaction the bettdicatiep protocol works [12]. In general, the
possible transitions for an application, i.e. the set ofdalaccessed by a transaction, is well-known in
advance, e.gTPC-W[19]. However, this does not fully avoid the need of forwaugibperations to other
replicas. Taking this to the extreme, the most straightéodasolution is to fully replicate the system but
this does not scale well [14, 17].

It is also worth noting the problem of remote access to otbplicas due to the application access to
several partitions located at different replicas [13].SIfPRe it has been circumvented by way of thiart
message at the beginning of the transaction and, hence, @egssed replica obtains the same snapshot.
However, it may occur that the partition is far away from getfand operations at other replicas may
happen. Hence, once objects are retrieved at the masteragpley can be temporarily maintained at the
replica in memory. This temporary database is a cache oflocead-data items that can be perfectly valid
for transactions executed at the replica while there arepuates of these items which are outdated by the
given snapshot version in the replica. This is easy to che&kARe since all replicas validate and certify
all transactions so the cached items can be purged oncedatelitransaction has updated any of them.
Of course, items can be removed from the temporary datalsisg aLRU or LFU policy. The previous
temporary database is taken here as a first step for adapfieation. Exploiting access locality is a
first attempt for partitioning that can be far away from petfeystem or organizational configuration may
change and, hence, former seldom accessed data items andagation may be more accessed. It makes
sense to transfer the partition to this location. The nunabenessages exchanged per transaction at this
replica is greatly reduced. The metric used here can be thmbauof unicast messages sent that belong to
a certain non-local partition and the data transfer tealmwf this partition can be the one depicted in [2].

5 Fault Tolerance I ssues

So far, SIPRe has been presented without considering failures. Henmedtfie assumed a partially syn-
chronous system and a partial amnesia crash [7] failure hraxdee want to deal with replica recovery.
The MS provides strong view synchrony (current set of active antheated replicas) angiPRe needs
a primary component membership [5]. Changes in the conipaogiff replicas fire a view change event
and theGCSsgroups delivered messages in the views they were sent.lyitied CS provides uniform total
order multicast [5] preventing the contamination phenoamgi8].

Each time a replica fails its associated replicated postimnst be kept available to maintain the same
number of replicated partitions of the database. Upon fieingew change event due to thisfietitious
recovery of a replica that does not host those partitionsigedthis can be done by the two-stage recovery
protocol presented in [2]. Besides, all replicas store tgmlaffecting the crashed replica to be transferred
once the crashed replica joins again the system. This carobe &t the certification phase, each time
a certified writeset updates a portion belonging to the @dsitode, it is appended to a queue of missed
updates. Another optimization is to store the transactieniifier of the last committed transaction before
the crash failure.

Later, the crashed replica will rejoin the system firing aiganew view change event. At this moment
the replica storing its partitions of the database will gf@n the missed data to the recovering replica,
starting from its —i.e, that of the recovering node— last oatted transaction identifier using the transfer
technique commented above.

6 Related Works

Partial data replication has been extensively studiedenctintext of distributed database system. It can
be classified according to the transaction access pattetnall operations of a transaction are entirely
executed at their delegate replica [6, 16, 18] or not [13,11A), The first group considers that at least one
node holds all data the transaction accesses, while thegritwgp permits to handle distributed transactions
where different operations of the same transaction arewegda@t different sites.

Considering the first group of protocols, a replication aion is proposed in [6], where databases
are replicated in a cluster. Each incoming transactionlisrstied, via a load balancer, to the best cluster
node, which will be the transaction delegate site. Thentréresaction is associated with a chronological
timestamp and is multicast to all other nodes where thererépbica. Transactions must be performed
in every node according to their timestamp order. When astation arrives at a non-delegate node it is
scheduled but not submitted for execution until the receptif the corresponding writeset. At delegate
node, after the commitment of a transaction, its writesehisticast to the other nodes where there is a
replica. Upon the reception of this writeset, the contertheftransaction is replaced with its writeset and
it can be executed according to the chronological oré#?Re does not need to assign a global chrono-
logical timestamp to transactions, since transaction@i@torder relies on the total-order delivery. Other
works [16, 18] extend the Database State Machine approaphrt@l replication. In [16], the authors
propose two algorithms. In the first algorithm transactiarescertified sequentially, which can be a prob-
lem if many transactions are submitted. The second algoritblves this problem by allowing a sequence
of transactions to be proposed in consensus instances addalmging the certification test accordingly.
In [18] transactions are also executed only in its delegapdica. After its execution, the readset and the
writeset of the transaction are multicast in total orderaboeplicas can run a certification process to de-
cide on the transaction outcome. The algorithms proposHdbin 8] ensure CSby propagating the whole
readsets and writesets of transactioBt?Re providesGSl|, so there is no need to propagate readsets of
transactions.

All the algorithms described so far suppose the existenegpafifect fragmentation of the database, so
transactions can be executed completely in its delegate Shis database perfect fragmentation is very
difficult to achieve [13].SIPRe does not make that assumption and permits the distributszkepsing of
transactions among a set of replicas, and, just in caseida®adaptive replication.

The second group of replication protocols does not suppitserea database perfect fragmentation.
The idea of adaptive replication used $tPRe is taken from the algorithm proposed in [13]. In that
paper, authors propose an epidemic protocol for partiaibjicated databases iéN environment. Each
data item is stored permanently in one o more sites, and sttesr may have a temporary cached copy.
If a transaction needs an item that is not stored in the siteravit is being executed, the site sends a
message to one of the sites that stores a permanent copy tétheequesting a copy, along with the
associated lock table information. Readsets and writemetpropagated among all the sites to ensure
1CS SIPRe does not need to use epidemic communication. The algorittaposed in [10] uses group
communication primitives to immediately broadcast readrapions to all replicas of an item. All write
operations of a transaction are broadcast along with theséiction commit request. Then, an atomic
commit protocol ensures transaction atomicity. As opgo&itSIPRe that does not require to broadcast
the read operationsSIPRe is also based in the algorithm presented in [17]. The maifeihce is how
transactions obtain the same snapshot at all possibleeaspiihey may access. In [17] is supposed the
existence of thgetDummyTransaction{yinction, which allows to get the proper snapshot of a tratiga.
The algorithm presented in the current paper proposes aeailistic way to ensure that every operation of
a transaction is executed under the same snapshot. Beide?Re algorithm uses adaptive replication
in order to minimize the number of messages exchanged pesaction.

7 Conclusions

It has been presented a partial adaptive replication dlgur{SIPRe) that tries to overcome the overhead
imposed by full replication: no replica stores a full copytbé database, only portions of it; and, if the
access pattern in a given replica changdBRe permits to dynamically allocate new partitions on that

replica. It allows more concurrency to transactions sirigerovidesGSI [9]. SIPRe needs distributed
transactions when the items to be accessed are located fipl@uéplicas, but it ensures consistent snap-
shots in such case by way of ggart message.

References

[1] Proceedings of the The First International Conference cailability, Reliability and Security, ARES
2006, The International Dependability Conference - BridgiT heory and Practice, April 20-22 2006,
Vienna University of Technology, Austri&EE-CS, 2006.

[2] José Enrique Armendariz-lfligo, Francesc Daniel fde-Escoi, José Ramoén Juarez-Rodriguez,
José Ramon Gonzéalez de Mendivil, and Bettina Kemme.lugtiag certification protocols in the
partial database state machine AREJ1], pages 855-863.

[3] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melt&tizabeth J. O'Neil, and Patrick E. O'Neil.
A critique of ANSI SQL isolation levels. I8IGMOD Confpages 1-10, 1995.

[4] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Gaaad. Concurrency Control and Recovery
in Database Systemaddison Wesley, 1987.

[5] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Gpacommunication specifications: a com-
prehensive studyACM Comput. Sury33(4):427-469, 2001.

[6] Cedric Coulon, Esther Pacitti, and Patrick ValdurieanSistency management for partial replication
in a high performance database cluster.|@PADS pages 809-815, Washington, DC, USA, 2005.
IEEE-CS.

[7] Flaviu Cristian. Understanding fault-tolerant disted systemsCommun. ACM34(2):56—78,1991.

[8] Xavier Défago, André Schiper, and Péter Urban. Tataer broadcast and multicast algorithms:
Taxonomy and surve\ACM Comput. Sury36(4):372—-421, 2004.

[9] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedddatabase replication using generalized
snapshot isolation. IBRDS pages 73—-84. IEEE-CS, 2005.

[10] Udo Fritzke Jr and Philippe Ingels. Transactions ortiply replicated data based on reliable and
atomic multicasts. IRCDCS pages 284-291, 2001.

[11] J. R. Gonzalez de Mendivil, J. E. Armendariz, F. D.ia, L. Irin, J. R. Garitagoitia, and J. R.
Juarez. Non-blocking ROWA protocols implement GSI usihgelicas. Technical Report ITI-ITE-
07/10, 2007.

[12] Jim Gray, Pat Helland, Patrick E. O'Neil, and Dennis §tem The dangers of replication and a
solution. INSIGMOD Conf, pages 173-182, 1996.

[13] JoAnne Holliday, Divyakant Agrawal, and Amr El AbbadRartial database replication using epi-
demic communication. [ICDCS pages 485-493, 2002.

[14] Ricardo Jiménez, Marta Patifio, Gustavo Alonso, aatliBa Kemme. Are quorums an alternative for
data replication’ACM Trans. Database Sysg8(3):257-294, 2003.

[15] Bettina Kemme and Gustavo Alonso. A new approach toldgueg and implementing eager database
replication protocolsACM Trans. Database Sys25(3):333-379, 2000.

[16] Nicolas Schiper, Rodrigo Schmidt, and Fernando Ped@mimistic algorithms for partial database
replication. INOPODIS pages 81-93, 2006.

[17] Damian Serrano, Marta Patifio, Ricardo Jiménez,Beitina Kemme. Boosting database replication
scalability through partial replication and 1-copy-SI.IHEE PRDGC pages 129-142, 2007.

[18] A. Sousa, Afranio Correia Jr., Francisco Moura, JBsgeira, and Rui Carlos Oliveira. Evaluating
certification protocols in the partial database state mmechin AREJ 1], pages 855-863.

[19] TPC-W. Transaction processing performance councitcessible in URLht t p: // www. t pc.
or g, 2007.

[20] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. édoatabase replication techniques: A
three parameter classification. $iRDS pages 206—217, 2000.

[21] Matthias Wiesmann and André Schiper. Comparison tdloizse replication techniques based on total
order broadcastEEE TKDE 17(4):551-566, April 2005.

