
Extending Mixed Serialisation Graphs to Replicated Environments

Josep M. Bernabé-Gisbert and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

{jbgisber, fmunyoz}@iti.upv.es

Technical Report TR-ITI-ITE-07/20

Jo
se

p
M

.B
er

n
ab

é-
G

is
b

er
te

ta
l.:E

xt
e

n
d

in
g

M
ix

e
d

S
e

ri
a

lis
a

tio
n

G
ra

p
h

s
to

R
e

p
lic

a
te

d
E

nv
iro

n
m

e
n

ts
T

R
-I

T
I-

IT
E

-0
7

/2
0

Extending Mixed Serialisation Graphs to Replicated
Environments

Josep M. Bernabé-Gisbert and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/20

e-mail:{jbgisber, fmunyoz}@iti.upv.es

Abstract

A Database Management System normally deals with a heterogeneous set of transactions which do
not necessarily need the same isolation guarantees if executed concurrently. Centralised DBMSs can
manage this kind of situations since they normally use locksand every transaction implicitly requests
the necessary locks to ensure its isolation needs. Nevertheless, in replicated environments this issue is
not solved since the most used replication schemes can not beeasily adapted to such a heterogeneous
environment as in centralised ones. In fact, it is even hard to prove whether a replication protocol is
ensuring every transaction isolation guarantees unless only one isolation level at a time is supported. In
this document we extend Adya’s Mixed Serialisation Graphs with more isolation levels and apply them
to replicated environments to be able to know when a given replication protocol ensures every transaction
guarantees.

1 Introduction

Nowadays, a lot of applications access and modify information stored in a database. These operations are
normally packed in transactions which are a sequence of readand write operations. In theory, a DBMS
must ensure every transaction ACID guarantees: Atomicity (all or none transaction effects are applied),
Consistency (integrity constraints are respected), Isolation (a transaction can not see the effects of any
unfinished concurrent transaction) and Durability (all committed transactions changes must be persistent
in the database).

Nevertheless, DBMSes normally allow some relaxed versionsof isolation guarantee. The more relaxed
isolation level is used, the better performance will the system have, but some kind of interferences between
concurrent transactions can appear. Obviously, some applications will tolerate a weaker isolation level but
some others will need a strong one. In fact, some times not alltransactions of the same application will
need the same isolation level. A database can also be accessed by different applications with different
isolation needs. If our DBMS can manage the concurrent execution of transactions with different isolation
level we will improve our system performance. If not, all transactions will be executed with the strictest
isolation level needed and this will increase the average response time of the whole system.

The most used centralised DBMSes use locks to control concurrency. With this technique, every trans-
action operation tries to obtain the required lock to its isolation level. If it conflicts with any other concur-
rent lock, its execution is blocked until that lock is released.

In replicated systems, the use of distributed locks is too expensive and normally optimistic techniques
are used [12]. With them, a transaction is executed in one node until the commit request is received. Once
this happens, a validation step starts to decide whether this transaction has come into conflict with any
other one executed concurrently in other node. This validation step will depend on which technique is used
but normally is based on searching conflicts with previouslyvalidated transactions. In existing protocols,

this conflict detection supposes that all transactions are executed with the same isolation level. In fact,
replication protocols are normally oriented to only one isolation level (Snapshot Isolation or Serialisable,
in most cases). Moreover, the most used theory defines isolation level as what a history (transaction set
execution) must ensure and not a unique transaction so, how can we apply this theory in a heterogeneous
system supporting the concurrent execution of transactions with different isolation level?

As an example, imagine a Read Committed (RC) transactionTi reading an itemx and, after that, a
Serialisable oneTj writing it but beforeTi commits:H = ri(x) wj(x) ci cj . Serialisable isolation level
does not allow an item to be written if another uncommitted transaction has read it (which is called a Fuzzy
Read [3]). Nevertheless, in Read Committed this phenomenonis allowed. So, is this history correct since
Ti is RC or is incorrect sinceTj is Serialisable?

Adya has been one of the few authors trying to deal with this issue [1]. Nevertheless, his main objective
was to give new isolation level definitions independent to any technology and without falling in ambiguity,
in contrast to previous proposals [3]. In his work, Adya extends Serialisation Graphs (SG), presented by
Bernstein [6], as a way to represent dependencies between transactions. Isolation levels where defined as
properties to be accomplished in such graphs. Adya presented also some extension of his own graph. One
of them, named Mixed Serialisation Graph (MSG), able to represent dependencies between transaction
with different isolation level. Unfortunately, in MSG graphs only the three basic Adya’s isolation levels
(PL-1, PL-2 and PL-3) were supported and no adaptation to replication environments was proposed. In
fact, Snapshot Isolation (PL-SI in Adya work), an isolationlevel used in a lot of replication protocols,
was unsupported. Also, some classical problems in replication, like consistency between replicas, were
impossible to represent since only dependencies between transactions are considered and no information
about nodes is considered.

The main goal of this work is to extend and adapt Adya’s MSG to replicated environments.
In the following section, we will present the system model used in this paper. In Section 3 we will

formalise transaction and history concepts and their replicated versions. In the next one (Section 4) we will
present Adya’s work which will be extended in Section 5 to support Snapshot Isolation level and adapted
to replicated environments in Section 6. In Section 7, we discuss about how can be proved the correctness
of a replication protocol supporting more than one isolation level at a time. An example will be presented
in Section 8. Finally, in Section 9 the paper concludes.

2 System Model

Some definitions and concepts given and used in this work (like isolation level definitions) are independent
on whether we have or not an underlying replicated system. Inthese cases, we assume the existence of
some kind of database (replicated or not) composed by a set ofitems which can be read or modified. These
operations are invoked by a client using transactions. A transactionTi is a set of readri and writewi

operations executed atomically (a formal definition is given in section 3), that is, all or none of them are
executed. Every transaction ends with a special operation which can be a commitci or an abortai. The
commit operation makes persistent allTi writes and the abort one invalidates them. Withri(x) andwi(x)
we represent aTi read or write operation over an itemx. ri(xj) indicates that the value read is the final
modification ofx performed by transactionTj. wj(xj) represents thenTj last modification ofx. If the item
value read or written is the l-th modification we represent itby ri(xj.l) andwj(xj.l). Finally,oi represents
aTi operation without specifying its type.

When needed, we will represent asri(P, V set(P)) a Ti transaction read based on some predicateP .
V Set(P) represents all the items which are or can be inP ’s relations. This includes all items, existent or
not when the write is performed, that can be potentially checked to resolveP , regardless of whether they
fulfill the predicate or not. A write based on a predicate willbe represented as a predicate read followed by
every item write.

In the cases we refer explicitly to a replicated system, we suppose a fully replicated one composed by
N nodes. Since it is fully replicated, every nodeNa has a copy of every itemx, represented byxa, stored
in a local DBMS. WithT a

i we represent the operations subset ofTi executed inNa. Read, write, commit
and abort operations notation is also extended in the same way, so, for example,ra

i (xa
j) represents aTi read

operation executed in nodeNa over the last modification ofxj performed byTj in Na. Since all operations

2

performed in a nodeNa will be overNa item copies, the last example will be also represented asra
i (xj).

We suppose that every local DBMS provides locally every isolation level supported by the whole system.
Replication is provided by a middleware deployed on top of the DBMS. This middleware has access to a
group communication system with atomic broadcast [9] support (or uniform atomic broadcast if failures
are considered).

Notice that this terminology is the same used by Adya in his work [1] but extended to easily represent
transactions execution in replicated environments.

3 Definitions

In the system model we have given a brief idea of some basic concepts. In this section we will formalise
them and give some other ones useful to this work.

First of all, we have formalised Adya [1] transaction definition as a sequence of operations:

Definition 1 (Transaction) A transactionTi [1] over a set of operations is a total order< which:

• ci ∈ Ti ∨ ai ∈ Ti

• ci ∈ T iff ai 6∈ Ti

• If ci (ai) ∈ Ti, ∀oi 6= ci (ai) ∈ Ti, oi < ci (ai)

• Giveno1i, o2i ∈ Ti, o1i < o2i ∨ o2i < o1i

A committed transactionis a transaction whose final operation is a commit. In the sameway, anaborted
transactionis a transaction which ends with an abort.

Given a set of transactionsT , its execution result depends on the order the transactionsand their oper-
ations are executed. This is normally represented as a history. We have taken the definition given in [6],
adapting it to fit with the previous transaction definition.

Definition 2 (History) A historyH [6] over a set of transactionsT = T1, ..., Tn represents a possible
execution of T. Formally, a history is a partial order<H where:

• For everyTi ∈ T and everyoi ∈ Ti, oi ∈ H .

• For everyTi ∈ T and everyoi1, oi2 ∈ Ti If oi1 < oi2 in Ti, oi1 <H oi2 in H .

• If ri(xj) ∈ H thenwj(xj) ∈ H ∧ wj(xj) <H ri(xj).

• ∀oi(x), oj(x) ∈ H where at least one of them is a write: oi(x) <H oj(x) ∨ oj(x) <H oi(x).

Notice that a History is a partial order and two operations may not be ordered. For example, two read
operations of different transactions are never ordered, even if they are over the same item, since the result
of every one of them never depends on the other one. For example, imagine two concurrent transactions
both reading and writing the itemx. A possible execution history can be:

ri(x0) wi(xi)

rj(x0) wj(xj)

If it is possible, we will represent this sequentially to make the notation more understandable. For
example, the previous example will be normally representedas:

ri(x0)rj(x0)wi(xi)wj(xj).

3

In a fully replicated environment, a transaction is initially forwarded to one of the nodes, namedlocal
node. Nevertheless, all committed transaction writes are applied eventually in all nodes. Therefore, given
a transactionTi, it can be executed only in one node if it is read-only or aborted. In other case, at least all
Ti writes will be applied in all nodes. We define asNode TransactionT a

i theTi operations subset executed
in nodeNa:

Definition 3 (Node Transaction) Given a transactionTi and a nodeNa, we defineT a
i as:

• T a
i is a subset ofTi

• If T a
i 6= ∅ ∧ ci(ai) ∈ Ti: c

a
i (aa

i) ∈ T a
i .

• If ri(x) ∈ Ti ∧ Ti is local toNa: ra
i (x) ∈ T a

i .

• If oi1 < oi2 in Ti, andoa
i1, oa

i2 ∈ T a
i thenoa

i1 < oa
i2 ∈ T a

i

• If ci ∈ Ti, ∀wi(x) ∈ Ti: w
a
i (x) ∈ T a

i

Remember that not all transactions must be executed in all nodes (only committed non read-only ones).
We will refer asT a the subset ofT executed inNa.

We can also define a new kind of replicated histories in a similar way as Bernstein does in [6]. In our
work these histories will be named as Replicated Histories or R-Histories.

Definition 4 (R-History) An R-HistoryHr over a transactions setT and a nodes setN is a partial order
<r where:

• For everyT a
i of Ti ∈ T and everyoa

i ∈ T a
i , oa

i ∈ Hr.

• For everyT a
i of Ti ∈ T and everyoa

i1, o
a
i2 ∈ T a

i . If oa
i1 < oa

i2 ∈ T a
i , oa

i1 <r oa
i2 ∈ Hr.

• If ra
i (xj) ∈ Hr then it existswa

j (xj) ∈ Hr such thatwa
j (xj) <r ra

i (xj).

• ∀Na ∈ N ∧ ∀oa
i (x), oa

j (x) ∈ Hr where at least one of them is a write: oa
i (x) <r oa

j (x) ∨ oa
j (x) <r

oa
i (x).

Then, a replicated history, is in fact, the union of every oneof the local histories produced by every
node.

4 Mixed Serialisation Graph (MSG)

Since ANSI proposed its SQL isolation level definitions, some authors have proposed their own ones trying
to eliminate ANSI weaknesses as long as its strengths are kept. One of the most referenced works is the
revision made by Berenson et al. [3]. This work avoids the ambiguities of ANSI definitions at the cost of
losing implementation independence since their definitions were based on locking techniques. To solve
this, Adya et al. [1] proposed a new set of definitions trying to be precise and implementation independent
at the same time. To do that, Adya defines a new kind of dependency graph (namedDirect Serialisa-
tion Graph), an extension of theSerialisation Graphused by Bernstein in [6], to represent dependencies
between transactions in histories.

In a given historyH DSG, every vertex represents a committed transaction inH and every edge a
dependency between two transactions. There are three kindsof dependencies:

• Directly Read-Depends:Tj directly read-dependsonTi if rj(xi) orrj(P, V Set(P))∧xi ∈ V Set(P).

• Directly Write-Depends:Tj directly write-dependson Ti if wi(xi), wj(xj), wi(xi) < wj(xj) and
does not existwk(xk): wi(xi) < wk(xk) < wj(xj).

• Directly Anti-Depends:Tj directly anti-dependson Ti if ri(x0) ∧ wj(xj) ∧ ri(x0) < wj(xj) and
does not existwk(xk): ri(x0) < wk(xk) < wj(xj). The same holds ifri(P, V Set(P)) < wj(xj)
andxo ∈ V Set(P)).

4

Notice that we have used the definitions given in [2] instead of those proposed in [1].
These dependencies are represented in the DSG as follows:

• Ti directly read-dependsonTj : Tj
W R−→ Ti

• Ti directly write-dependsonTj: Tj
WW−→ Ti

• Ti directly anti-dependsonTj : Tj
RW−→ Ti

In general, we will refer asdependencywhen we do not need to differentiate between direct read-
dependency or direct write-dependency.

As an example, consider the following history:H1 = ri(x0)wi(xi)ri(y0)wj(yj)wj(xj). The associ-
ated DSG will be:

Figure 1: DSG ofH1

Adya uses DSGes to define his own basic isolation level definitions PL-1, PL-2 and PL-3. Given a
historyH :

• PL-1: DSG(H) can not have any cycle composed by direct write-dependencies.

• PL-2: (a) A committed transaction can not read a value written by an aborted one (aborted value
in the sequel), (b) for everyri(xj.l) ∈ H , Tj commits in H, does not existri(xj.m) with l < m

(intermediate value), and (c) DSG(H) can not have any cycle composed by dependency cycles.

• PL-3: PL-2 restrictions extended to any cycle, including anti-dependencies.

These definitions substitute old Read Uncommitted (RU), RC and Serialisable (S) respectively, but are
not exactly the same. As an example, PL-2 isolation level is weaker that RC [1, 4].

Notice that this abstraction does not include anything related to Snapshot Isolation (SI) and this level is
the one ensured by most replication protocols ([7, 10, 11]) due to its optimistic orientation. To support it,
Adya introduces an extension of DSG, named Start-order Serialisation Graph (SSG). This graph includes
all DSG edges and vertices plus start-dependency edges. Given a historyH andTi, Tj ∈ H , Tj start-
dependsonTi if ci <h bj .

Given a history H, H is a PL-SI history if the following conditions hold:

• H is a PL-2 history.

• For any dependency edge from any transactionTi to any otherTj, it exists also a start-dependency
from Ti to Tj.

• There is not any cycle in SSG composed only by dependency edges and with a single anti-dependency
one.

Notice that normally the isolation level supported in replication protocols is not SI but Generalised SI
(GSI) [7]. GSI avoids reads to be blocked in replication protocols, nor like strict SI ones [8], by allowing a
transaction to see an older snapshot. In these cases, the start time refers to the moment the snapshot belongs
and not to the time the first transaction operation is executed. In this paper we will use SI to refer to both
kinds of protocols.

To study the correctness of a history with different isolation level transactions, Adya introduced the
Mixed Isolation Graph concept. This graph is based on DSG (not SSG). Given a history H, a MSG(H) has
the same vertices than DSG(H) and a subset of DSG(H) edges. A DSG(H) edge from a given transaction
Ti to anotherTj is also in MSG(H) if:

5

• it is a direct write-dependency edge.

• it is a direct read-dependency edge andTj is a PL-2 or PL-3 transaction.

• it is a direct anti-dependency edge andTi is a PL-3 transaction.

A history H ensures every transaction isolation level if itsMSG(H) has not any cycle and there are not
any reads of aborted or intermediate values.

Again, this abstraction does not include Snapshot Isolation (SI) transactions and, in this case, Adya did
not make any extension to support it. In fact, it is not clear how can this extension be made. For example,
imagine a cycle with an anti-dependency starting from a PL-SI transaction. Is it valid since PL-SI allows it
or is it invalid since PL-3 does not?

In conclusion, Adya’s proposal is a good starting point but there is still important work to do. In
the following section, we are going to revisit Adya’s MSG definitions in order to be able to support SI
transactions. In the next one, we will adapt it to replicatedenvironments in order to be a useful tool to
decide whether a given replication protocol produces validhistories.

5 Extended MSG

In a first step, we will give our own SI definition using DSGs instead of SSGs. With this definition, we will
extend MSG graphs to allow SI transactions.

5.1 SI Isolation Level

Given a history H, this history is SI if:

(a) It is PL-2.

(b) A transactionTi always sees all values written by transactions committed beforeTi start.

(c) For any dependency edge from any transactionTi to any otherTj, Ti commits beforeTj starts.

It is easy to prove that SI and PL-SI are equivalent.
A SI history is also PL-SI. By absurd reduction, suppose that a SI history exists which is not PL-SI. A
history is not PL-SI if either:

• It is not PL-2: if it is not PL-2, it is not SI by definition, or

• If any edge exists from any transactionTi to any otherTj thenTi does not commit beforeTj starts.
If this happens, condition (b) of our previous SI definition is also violated; or, . . .

• There is a cycle with a unique anti-dependency edge. Imaginethat the cycle is composed by
T1; T2; ...; Tn; T1 and the anti-dependency exists fromTn to T1. As we have seen in the previous
point, for allTi, Ti+1 joined by a dependency edge we know thatci < bi+1. Since the path fromT1

to Tn is joined by dependency edges we know thatc1 < b2 < c2 < < bn < cn so,c1 < bn.
Since there is an anti-dependency edge fromTn to T1, Tn has read a value overwritten byT1 but this
is not possible sincec1 < bn and the second SI condition says thatTn must see allT1 updates.

So, a SI history is also PL-SI because we have reached to a contradiction.
A PL-SI history is also SI. Again by absurd reduction; suppose that a PL-SI history exists which is not SI.
This time, a history is not SI if either:

• It is not PL-2: if it is not PL-2, it is not PL-SI by definition.

• A transactionTi does not see at least one value written by a transaction committed beforeTi start.
If Ti does not see a value written by a committed transactionTj we will have an anti-dependency
edge fromTi to Tj in SSG. But we said thatTj has committed beforeTi starts so there is another
Start-dependency fromTj to Ti which closes a cycle with a unique anti-dependency edge and this is
forbidden in a PL-SI history, or

6

• For any dependency edge from any transactionTi to any otherTj, Ti commits beforeTj starts. This
restriction exists also in PL-SI.

So, again we have reached to a contradiction and we can say that PL-2 and SI isolation levels are
equivalent.

5.2 Extended MSG

The main advantage of our SI definition is that it is based on DSG graphs instead of on SSG and forbids
the same cycles than PL-2. This makes MSG graphs easy to extend in order to support SI transactions. An
Extended Mixed Serialisation Graph (EMSG) is defined as follows:

Given a history H, an EMSG(H) has the same vertices than DSG(H) and a subset of DSG(H) edges. A
DSG(H) edge from a given transactionTi to anotherTj is in EMSG(H) if either:

• it is a direct write-dependency edge,

• it is a direct read-dependency edge andTj is PL-2, PL-3or SI transaction, or

• it is a direct anti-dependency edge andTi is a PL-3 transaction.

A history H ensures every transaction isolation level if itsEMSG(H) has not any cycle, there are not
reads of aborted or intermediate values, every SITi transaction sees all values written by any transaction
committed beforeTi start and, for every dependency edge between a transactionTi and a SI transaction
Tj, ci < bj .

It is easy to see that, given a history H without SI transactions, MSG(H) ensures all H transactions
isolation level iff EMSG(H) ensures it.

6 EMSG in Replicated Systems

As we said in Section 2, a replicated system is composed by a set of nodes. Every node must eventually
have a copy of every item value written in the database. This implies that all write operations of committed
transactions must be transmitted to all nodes but reads can be performed in only one node. So, given a
committed transactionTi, every nodeNa will execute a subset ofTi operations, namedT a

i , with at least
all its writes.

So, given a setT of transactions,Ha will represent the history produced inNa due toT a execution
(remember thatT a is the subset ofT executed inNa). As we have seen in Section 3, we represent asHr

the union of all nodes histories. WithHr, we can construct a graph G similar to EMSG, named RMSG, in
the following way:

• Every committed transaction inT is a vertex in G.

• There is an edge fromTi to Tj in G if in at least one EMSG(Ha) exists an edge fromT a
i to T a

j .

A RMSG(Hr) is valid if there is not any cycle and, in any nodeNa: (a) no committed transaction
reads any aborted or intermediate value, (b) for every SI transactionTi, T a

i sees all values written by any
transaction committed beforeT a

i start and, (c) for every dependency edge fromTi to a SI transactionTj,
in any nodeNa with this dependency,ca

i < ba
j .

7 Proving Correctness of Replication Protocols

We say that a replicated system executionHr of a set of transactionsT is correct if the following conditions
hold:

• Completeness: all committed transaction operations are executed in at least one node.

7

• Total replication: all nodes execute all committed transaction writes.

• Consistency: when executing a set of transactionsT , all nodes eventually reach to the same final
state.

• Isolation: all transactions isolation level guarantees are ensured.

• Equivalence: the result of whole system execution ofT is equivalent to a correct centralised execu-
tion of T .

So, a given replication protocol is correct if all of its executions are also correct, that is, all conditions
are held in any possible history produced by the protocol. Inthis section, we are going to study how every
condition can be proven to obtain a list of what must be made inmost cases to ensure a given protocol
correctness.

Completeness should be easy to prove because in all schemes atransaction is totally executed at least
in one node.

To ensure the total replication condition, we have to prove that all nodes commit the same transactions.
In optimistic replication protocols we normally can ensurethis by proving that all nodes receive and validate
the same writesets.

Consistency is ensured by proving that all nodes apply the same writes, which has been proved in total
replication condition, and that all transactions apply conflicting writes (writes over the same item) in the
same order. If two nodes apply two conflicting writes in different order, it must exist a cycle in RMSG in-
volving those two write committed transactions. As an example, imagine a system composed by two nodes
(A and B) executing three transactions. Every one of them writes the same itemx. Both nodes execute all
writes but in different orders:HA = wi(xi)wj(xj)wk(xk)cicjck andHB = wj(xj)wk(xk)wi(xi)cjckci.
The EMSGs associated to these histories are:

Ti Tj Tk
WW WW

Ti Tj Tk

WW

WW

Figure 2: Node A and B EMSGs

which produce a cycle when the RMSG is constructed:

Ti Tj Tk

WW

WWWW

Figure 3: RMSG

So, if we can prove that any cycle is impossible in RMSG and total replication is guaranteed, consis-
tency will be ensured.

To ensure all transactions isolation guarantees, we can normally rely (as replication protocols normally
do) on supposing that the local DBMS ensures those isolationlevels locally. In this case, some effects
like reads of aborted or intermediate values will be directly avoided by the local DBMS. Proving that any
cycle is impossible in RMSG will do the rest except if SI levelis supported. In such case, we need to
ensure also that every SI transaction sees all updates committed before its start and never observes those
uncommitted. Recall that the SI validation process consists in finding conflicts with writes of previously
validated conflicting transactions. Since two transactionsTi andTj conflict if bi <r cj andcj <r bi, this
implicitly defines a global clock able to order at least all start and commit timestamps of all transactions.
Finding this global clock will help to prove SI transactionsisolation correctness. We will see that in the
next section example.

So, ensuring consistency and isolation conditions correctness is hard related on ensuring the absence
of cycles in any RMSG produced by the protocol. To prove this,we can use what we define asincreasing
property . For any edge, say fromTi to Tj, an increasing property is something which is always biggerin
Tj than inTi. If this happens, a cycle is impossible since it would drive us to a contradiction (a transaction

8

is bigger and lesser than some other at the same time). As an example, take now the cycle in Figure 3 and
imagine that every edge implies a commit ordering, that is, for any edge, say fromTi to Tj, ci <r cj . We
will conclude thatci <r cj <r ck <r ci, which is a contradiction.

About equivalence, there are two possible equivalence definitions: view equivalence or conflict equiva-
lence. In the first case we need to prove that the final state is the same in all nodes (which is already ensured
in our consistency condition) and all reads see the same values in all nodes in which are executed. If reads
are executed only in one node, this is automatically ensured. About conflict equivalence, we need to prove
that if some operation leads to an edge in some node EMSG, the same edge will appear in all nodes where
the operation is performed. Again, if every transaction reads are executed only in one node and consis-
tency is guaranteed, equivalence is automatically proved.A centralised one-copy equivalent history can be
constructed maintaining every operation dependencies in RMSG and adding all non-dependent operations
respecting only the ordering in its own transaction.

Summarising, to prove the correctness of a replication protocol we normally must:

• Ensure that at every committed transaction is totally executed in at least one node.

• Ensure that every local DBMS ensures locally all the isolation levels we want to support globally.

• Ensure that all nodes receive, validate and apply the same writes.

• Find an increasing property to ensure that any cycle can appear in any possible RMSG produced by
the protocol.

• If SI is supported, define a global clock and ensure that everySI transaction sees all and only com-
mitted values of transactions committed before its start.

8 Example

In this section, we will take the SIRC protocol [11] to show how our theory can be used to prove its
correctness.

8.1 SIRC Protocol

SIRC protocol was presented in [11] as an adaption of the GSI [7] SIR-SBD protocol presented in [10] in
order to support also GLRC transactions [5] (equivalent to Adya’s PL-2). This protocol supposes that all
nodes have a local DBMS supporting RC and SI. It also assumes the existence of a group communication
system able to broadcast messages in total order.

In SIRC, every transaction, for exampleTi, is initially executed in its local node (Nl). As a start time for
Ti, Nl assigns the number of committed transactions onceTi first operation is received. Once the commit
request arrives,Nl gathersTi writeset (WSi) and broadcasts it to all active nodes (including itself). Due to
the total order guarantees, all transactions will deliver all writesets in the same order. Once a node delivers
a writeset, it is validated to decide if it conflicts with any other concurrent transaction and must be aborted
or can commit. GLRC transactions are directly validated, GSI ones are validated only if its writes do not
conflict with previous validated concurrent writesets. A writesetWSi is concurrent with another previous
validatedWSj if at least one item is written by both and end time ofTj is greater than start time ofTi.
End time of a transactionTi corresponds to the number of validated writesets when theTi one is validated.
Once a writeset is validated, it is enqueued in a list which isconsumed by an asynchronous process in
validation order following a FIFO criterion. Once a writeset is consumed, it is automatically applied in the
local database, aborting any local conflicting transactions.

8.2 SIRC Correctness Proof

First of all, we need to prove that at all committed transaction operations are executed. Notice that every
committed transaction is totally executed in its local node, so, this property is ensured.

9

In a second step, we need to be sure that all nodes deliver, validate and apply the same writes. Total
order multicast ensures that all writesets are received in all active nodes in the same order. Once a node
deliversWSi it will validate it. If it corresponds to a RC transaction,WSi is automatically validated. If
it is SI, it will be validated against concurrent previouslyvalidated writesets. If this process is identical in
all nodes, all of them will validate the same writesets. Since all nodes validate writesets in delivery order,
and validation process depends, in the worst case, on previously validated transactions, is easy to see that
all nodes will validate the same writesets. Nevertheless, abetter proof can be found in [11]. Finally, all
validated writesets are applied in validation order so, allnodes deliver, validate and apply the same writes.

In a third step, we need to define an increasing property to avoid cycles in all RMSG. In this case,
we will use the committing ordering as our increasing property. To do that, we need to prove that every
dependency edge from any transactionTi to any otherTj implies thatci < cj . We will prove first that
this happens with any write-dependency and, in a second step, with read-dependencies. Since SIRC do
not support serialisable, we do not need to take care about anti-dependency edges. Remember that all
nodes apply and commit validated writesets in validation order. Therefore, ifWSi overwrites some other
transactionWSj in one node, it will be applied in such order in all nodes andci < cj in the whole system.

Nevertheless, reads are only performed in its local node. Since local DBMS ensures RC and SI locally,
if a SI transactionTj reads from anotherTi, Ti must have committed beforeTj starts in this node so,
ci < bj < cj in it. If Tj is not a read-only transaction, its writeset will be broadcast to all nodes. Since all
nodes deliver, validate and apply writesets in the same order, they will applyTi writeset beforeTj one so,
in all nodesci < cj . If Tj is RC, since local DBMS uses locks, it will be locally blockeduntil Ti commits.
After that,Tj will continue its execution and eventually commits so,ci < cj locally. Again, if Tj local
node has appliedTi updates beforeTj ones, all nodes will apply its writesets in the same order, so, ci < cj

in all nodes and we have our increasing property:
Increasing property: every dependency edge leads to a commit ordering.
Finally, we need to find our global clock and ensure that all SItransactions see all committed values in

its start and do not see any non-committed value.
Recall thatTi start time corresponds to the number of transactions committed inTi local node when

Ti first operation arrives. Furthermore,Ti end time corresponds to the number of committed transactions
whenTi is committed ([11] proves that this is equivalent to the number of validated transactions whenTi

is validated). Notice that this conforms the global clock inthis protocol! Therefore, ifTi start timestamp
is greater than another transactionTj end timestamp is becauseTi sees, when it starts in its local node,Tj

commit and its updates must be included inTi local timestamp (local DBMS ensures it). This proves the
first SI specific condition. IfTj end timestamp is greater thanTi start timestamp,Tj commit increment
can not be included inTi start timestamp which implies thatTi does not seeTj commit when it starts in its
local node andTj updates are not seen (again, local DBMS ensures it). This ensures the second condition
(a better proof can be again found in [11].

Notice that this protocol works if the underlying DBMS supports SI and RC locally.

9 Conclusions

As we have seen, some applications do not need to ensure a higher isolation level in all of their transactions.
If a DBMS can take advantage of this property, performance can be increased since higher isolation level
checks are only applied when needed and not over all transactions. Nowadays, centralised DBMS can
easily support that kind of executions due to the use of locks. Nevertheless, in replication systems this is
still an unsolved task because replication protocols are normally based on optimistic approaches and their
techniques complicate the validation process when more than one isolation level at a time is supported.

In this work, we have taken Adya’s Mixed Serialisation Graph, extended it to support Snapshot Isolation
level (ensured by a lot of replication protocols due to it intrinsic optimistic orientation) and used with one
copy conflict equivalence definition to be able to decide whether a given replication protocol ensures every
transaction isolation level guarantees.

10

References

[1] A. Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed
Transactions. PhD thesis, Massachusetts Institute of Technology, March1999.

[2] A. Adya, B. Liskov, and P. O’Neil. Generalized isolationlevel definitions. InIEEE Intnl. Conf. on
Data Engineering, pages 67–78, San Diego, CA, USA, March 2000.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,and P. O’Neil. A critique of ANSI SQL
isolation levels. InProc. of the ACM SIGMOD International Conference on Management of Data,
pages 1–10, San José, CA, USA, May 1995.

[4] J. M. Bernabé-Gisbert. Providing support for data replication protocols with multiple isolation levels.
In OTM 2007 Workshops, Vilamoura, Algarbe, Portugal, November 2007. Springer.

[5] J. M. Bernabé-Gisbert, J. E. Armendáriz-Iñigo, R. deJuan-Marı́n, and F. D. Muñoz-Escoı́. Providing
read committed isolation level in non-blocking ROWA database replication protocols. InJCSD, pages
145 – 157, Torremolinos, Málaga, Spain, June 2007.

[6] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

[7] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication providing generalized snapshot
isolation. In24th IEEE Symposium on Reliable Distributed Systems, pages 73–84, Orlando, FL,
USA, October 2005.

[8] J. R. González de Mendı́vil, J. E. Armendáriz-Iñigo,F. D. Muñoz-Escoı́, L. Irún-Briz, J. R. Gar-
itagoitia, and J. R. Juárez-Rodrı́guez. Non-blocking ROWA protocols implement GSI using SI repli-
cas. Technical Report TR-ITI-ITE-06/04, Instituto Tecnolgico de Informtica, Valencia, Spain, May
2007.

[9] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullender, editor,
Distributed Systems, chapter 5, pages 97–145. ACM Press, 2nd edition, 1993.

[10] Francesc D. Muñoz, J. Pla, Marı́a Idoia Ruiz, Luis Irún, Hendrik Decker, José Enrique Armendáriz,
and J. R. González de Mendı́vil. Managing transaction conflicts in middleware-based database repli-
cation architectures. InSRDS, 2006.

[11] R. Salinas-Monteagudo, J. M. Bernabé-Gisbert, F. D. Muñoz-Escoı́, J. E. Armendáriz-Iñigo, and
J. R. González de Mendı́vil. SIRC: A multiple isolation level protocol for middleware-based data
replication. In22nd International Symposium on Computer Information Sciences, Ankara, Turkey,
November 2007. IEEE-CS Press.

[12] Matthias Wiesmann and André Schiper. Comparison of database replication techniques based on total
order broadcast.IEEE Trans. Knowl. Data Eng., 17(4):551–566, 2005.

11

