
Weak Voting Database Replication Protocols

Providing Different Isolation Levels
J.R. Juárez, J.E. Armendáriz, J.R. González de Mendı́vil, J.R. Garitagoitia, F.D. Muñoz

Instituto Tecnológico de Informática
Univ. Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia (Spain)

{jr.juarez,enrique.armendariz,mendivil,joserra}@unavarra.es, fmunyoz@iti.upv.es

Technical Report TR-ITI-ITE-07/16

J.
R

.J
u

ár
ez

-R
o

d
rı́

g
u

ez
et

al
.:

W
e

a
k

V
o

tin
g

D
a

ta
b

a
se

R
e

p
lic

a
tio

n
P

ro
to

co
ls

P
ro

vi
d

in
g

D
iff

e
re

n
tI

so
la

tio
n

L
ev

e
ls

T
R

-I
T

I-
IT

E
-0

7
/1

6

Weak Voting Database Replication Protocols Providing
Different Isolation Levels

J.R. Juárez, J.E. Armendáriz, J.R. González de Mendı́vil, J.R. Garitagoitia, F.D. Muñoz

Instituto Tecnológico de Informática
Univ. Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia (Spain)

Technical Report TR-ITI-ITE-07/16

e-mail:{jr.juarez,enrique.armendariz,mendivil,joserra}@unavarra.es,
fmunyoz@iti.upv.es

July 17, 2007

Abstract

Recently, several works have taken advantage of a database isolation notion suitable for replicated
approaches, called Generalized Snapshot Isolation, that provides greater performance since read-only
transactions are never blocked nor cause update transactions to block or abort. However, this concept
has not been formally described for replicated environments where a logical copy of the system must be
considered in order to study its behavior. In this work, we study formally the conditions that guaran-
tee the one-copy equivalent Generalized Snapshot Isolation level in a database replicated systems using
Snapshot Isolation replicas. Some recent protocols based on Snapshot Isolation replicas use a certifying
technique, but this technique requires sending the readsetin order to achieve a serializable level, what
is prohibitive. Thus, we propose a basic replication protocol, and some possible enhancements for this
protocol, based on a weak voting technique over replicas providing snapshot isolation level. This proto-
col and its enhanced versions are able to provide different isolation levels to transactions submitted by a
database user only using one protocol. Each transaction submitted to the database can be executed en-
suring a given isolation level, what provides a great flexibility to applications that may demand different
isolation levels for their transactions.

1 Introduction

Database replication over a network such as the Internet is an effective way to cope with site failures.
It increases the system availability and performance by storing copies of the same data at multiple sites
and distributing clients among all available replicas. However, all these advantages do not come for free
since data consistency is somehow sacrificed. It greatly depends on the replication policy followed in
the system. Several correctness criteria [1, 2, 3, 4, 5] havebeen defined for replicated databases. The
strongest, and firstly introduced, is the One-Copy-Serializable (1CS). It stands for the natural extension of a
centralized serializable Database Management System (DBMS) scheduling of transactions to the replicated
case. The 1C level definition states that the interleaved execution of transactions in a replicated case must
be equivalent to their execution in a centralized serializable database.

Database replication techniques have been classified according to several parameters [6]. Regarding
to who performs the updates, theprimary copy[7] requires all updates to be performed on one copy and
then changes are propagated to the rest of sites; whilstupdate everywhere[8] allows to perform updates
at any copy but makes coordination more complex [9]. Considering the instant when a transaction update

1

propagation takes place, we can distinguish betweeneager [10] and lazy [11, 12] protocols. In eager
replication schemes, updates are propagated inside the context of the transaction. On the other hand,
lazy replication schemes propagate changes to the rest of available replicas after the commitment of the
transaction. Data consistency is straightly forward by eager replication techniques although it requires
extra messages. On the contrary, data copies may diverge on lazy schemes and, as there is no automatic
way to reverse committed replica updates, a program or a person must reconcile conflicting transactions.

In a replicated database system, all replicas may contain a full copy of the database, i.e. full replication,
or instead each data item may be stored in a different subset of the set of replicas, i.e. partial replication.
As shown in [6], the most effective way to achieve database replication in a fully replicated architecture is
the Read One Write All Available (ROWAA) algorithm, that combines eager techniques with the update-
everywhere approach. Transactions are firstly executed at their delegate replicas and the interaction with
the rest of replicas is started when they request the commit.At commit time, updates are grouped (denoted
as the writeset of a transaction) and sent to the rest of available replicas.

The implementation of database replication systems has twomain approaches. Originally, the DBMS-
core was modified so as to include some communication supportand means to deal with transactions
coming from remote sites [13, 14, 15, 1, 10, 16, 17, 8, 18]. However, this solution is highly dependent on
the DBMS core used and it is not portable among different DBMSvendors. The alternative approach is
to deploy a middleware architecture that creates an intermediate layer that features data consistency, being
transparent to the final users, isolating the DBMS details from the replication management [19, 20, 21, 22,
23, 3, 24, 25, 26, 27, 28]. This simplifies and provides a greatflexibility to the development of replication
protocols. Furthermore, middleware solutions can be maintained independently of the DBMS and may be
used in heterogeneous systems.

Middleware replication is useful to integrate new replication functionalities (availability, fault-tolerance,
etc.) for applications dealing with non-replicated database systems when it is not possible to modify their
core. However, middleware solutions often lack scalability and exhibit a number of consistency and per-
formance issues. The main reason is that in most cases the middleware has to handle the database as a
black box, re-implementing many features provided by the DBMS, and hence, these approaches cannot
take advantage of many optimizations implemented in the database kernel. Besides, the database schema
has to be extended with standard database features, such as functions, triggers, stored procedures, etc. [23],
in order to manage additional metadata that eases replication. This alternative introduces an overhead that
penalizes performance but permits to get rid of DBMSs’ dependencies. In this work we took the advantage
from our previous works [29] and other middleware architectures providing database replication [3].

Database replication based on group communication systemshas been proposed as an efficient and
resilient solution for data replication. Protocols based on group communication typically rely on a broad-
cast primitive calledatomic[30] or total order [31] broadcast. This primitive ensures that messages are
delivered reliably and in the same order on all replicas. This approach ensures consistency and increases
availability by relying on the communication properties assured by the atomic broadcast primitive. The
update propagation using the total order facility avoids the drawbacks of the 2PC protocols [1]. On one
hand, it makes distributed deadlock resolution easier. On the other hand, combined with eager update-
everywhere protocols based on constant interation [32], i.e. a constant number of messages are exchanged
between sites for a given transaction, it provides a better performance.

A comparison of database replication techniques based on total order broadcast is introduced in [33].
This work compares different techniques that offer the sameconsistency criterion (one-copy serializability)
under the assumption that all DBMSs were based on a two phase locking (2PL) [1] implementation. From
those presented there, the weak-voting [17] and certification-based [34] techniques, which are specifically
built for database replication, present the best performance.

In certification protocols, writesets are total order broadcast to all the replicas and at their delivery they
are compared with the ones contained in a log that stores the writesets of already committed transactions
in order. If a delivered writeset conflicts with any writesetincluded in the log, then the transaction being
certified is aborted and otherwise it will commit. Thus, it isonly needed to broadcast (using the total-
order facility) one message and keep a log, as part of the replication protocol. Nevertheless, to provide
serializable executions certification-based algorithms must propagate transaction readsets, what is actu-
ally prohibitive. To a lesser extent, the necessity of a garbage collector in these protocols implies some
additional overhead, since they must keep track of their certification log to avoid its boundless growing.

2

These drawbacks are avoided with the weak-voting protocols, that do not use certification and hence
there is no need of using a garbage collector. For the same reason, it is not necessary to propagate the
readsets to provide serial execution, as needed when using certification. Certification based protocols
only need a message so that each replica may decide on its own the commitment of a transaction. On
the other hand, weak-voting replication protocols requirean additional message from the delegate replica
to decide about the outcome of a transaction. This implies a slight difference in performance regarding
with the certification-based techniques. However, weak voting protocols present a lower abort rate than
certification-based ones. In certification algorithms, transactions may stay too long in the log until removed
from it when a transaction is known to have committed in all replicas. Therefore, even if transactions are
executed sequentially, so that there should be no conflict, conflicts can appear since there may be conflicting
writesets pending their removal from the log.

1.1 Motivation

However, it is important to mention that achieving serializability in replicated systems presents a major
drawback since it requires DBMSs executing transactions under a strict serializable isolation mode, as 2PL
ones do, what involves blocking read operations. Thus, readoperations may become blocked by write
operations. In the majority of web applications the number of write operations are overwhelmed by the set
of read operations performed by a transaction. This makes more attractive the use of DBMSs providing
Snapshot Isolation (SI) [35] where read operations never blocked rather than traditional serializable ones.
In SI DBMSs, a transaction obtains at the beginning of its execution the latest snapshot of the database,
reflecting the writes of all transactions that have committed before the transaction started. At commit time,
the database checks that the updates preformed by the transaction do not intersect with the updates done by
other transactions since the transaction started (i.e. since it obtained its snapshot); this is often denoted as
first-committer-winsrule. If there is a non-zero intersection, the transaction will be rolled back; otherwise,
it will commit.

More recently, it has been studied how to achieve database replication when DBMS replicas provide
SI [36, 2, 3, 29, 18, 5, 37, 38]. From these solutions one can note that it is not straightforward to get
the “latest” snapshot version in a distributed setting. In [2] it is extended the notion of conventional SI to
Generalized SI (GSI) where transactions are not enforced to“see” the latest snapshot version but an older
one. GSI maintains all the interesting properties of conventional SI at the price of a possible increase of
the abortion rate if updates were performed in a veryold snapshot. GSI is the natural extension of SI to a
replicated setting where the read operations of a transaction never block in order to obtain One-Copy-GSI
(1CGSI) schedulers. Non-blocking ROWAA protocols supporting 1CGSI will give as the snapshot of a
transaction the one gotten at its delegate replica.

At commit time, it can be followed a certification process [2]pretty similar to thefirst-committer-
wins rule, where a given (or all, for a distributed certification process) replica stores a log of certified
transactions just to perform thefirst-committer-winsrule, i.e. the intersection between the writeset of the
already delivered transaction and previously, but concurrent to the previous one, certified transactions must
be non-empty. All these aspects have been thoroughly discussed in [4, 2] as well as together with the
impossibility of deriving a One-Copy-SI (1CSI) without blocking the start of transactions, i.e. just to get
the latest snapshot version at the start of the transaction.

Most protocols are only able to provide a single isolation level. However, we propose a database repli-
cation protocol for a middleware architecture that offers much more flexibility to applications, providing
different isolation levels to transactions: GSI, CSI and serializable (SER). Generally, the different levels
featured depend on: the transaction isolation level provided by the underlying DBMS; the ordering of com-
mit operations at all nodes; and, the starting point of transactions [4]. We consider CSI replicas since most
database vendors provides this isolation level by default.Our protocol does not need the use of certification,
hence there is no need of using a garbage collector. For the same reason, it is not necessary to propagate
the readsets to provide serial execution, as needed when using certification. This protocol is a weak voting
replication protocol which is, up to our knowledge, the firstprotocol proposed in this way.

3

1.2 Contributions and Outline

The contributions of this paper are as follows:

• Formal study of the conditions that guarantee the one-copy equivalent Generalized Snapshot Isola-
tion (1C-GSI) level in database replicated systems.

• Presentation of a formal system model for developing middleware-based replication protocols, using
state transition systems in order to describe the operationof replication protocols;

• A brief analysis of the current state of the art in database replication protocols based on snapshot
isolation replicas; and

• Introducing a weak voting replication protocol providing different isolation levels over CSI replicas,
including some possible optimizations to increase its performance.

The remainder of this paper is organized as follows: Section2 introduces some preliminaries and the
concept of Generalized Snapshot Isolation. Section 3 introduces the conditions for the One Copy Gen-
eralized Snapshot Isolation for ROWAA protocols. Section 4presents a discussion about recent database
replication protocol proposals over Snapshot Isolation replicas. Section 5 presents the database system
model and necessary definitions. In Section 6, we propose a weak-voting replication protocol providing
different isolation levels and some enhancements from its basic operation. Finally, Section 7 presents the
conclusions and future research directions.

2 Generalized Snapshot Isolation

ANSI SQL-92 [39, 40] defines several isolation levels in terms of different phenomena: dirty reads, non-
repeatable reads and phantoms. These ANSI isolation levelsare criticized in [35], since their definitions fail
to characterize several popular isolation levels. Besides, an important multiversion isolation type, called
Snapshot Isolation(SI), is also presented in [35]. In this isolation level, each transaction reads data from
a snapshotof the committed data as of the time the transaction started.In SI, transactions hold the results
of their own writes in local memory store [41], i.e transaction’s writes will be reflected in its snapshot.
So, if they access data they has written a second time, they will see its own output. When reading from
a snapshot, a transaction sees all the updates done by transactions that committed before it started its
first operation, whilst writes performed by other transactions that began after its start time, i.e. writes by
concurrent transactions, are invisible to the transaction.

The results of a transaction writes are installed when the transaction commits. However, a transac-
tion Ti will successfully commit if and only if there is not a concurrent transactionTk that has already
committed and some of the items written byTk were also written byTi. This technique, known asfirst-
committer-wins, prevents lost updates [35, 2], since when a transaction commits, its changes become visible
to all transactions that began after its commit time. Some database implementations do not follow strictly
the first-committer-wins rule, and instead they use a similar one that is known as thefirst-updater-wins
rule. The ultimate effect is the same in both of them, i.e. to abort one of the concurrent transactions up-
dating the same data item. The main difference resides in when the validation is performed. Whilst the
first-committer-wins rule is validated when the transaction wants to commit, the first-updater-wins rule is
enforced by checks performed at the time of updating data items, allowing transactions to be rolled back
earlier (not delaying its abortion until its commit time).

SI provides a weaker form of consistency than serializability, but it never requires read-only transactions
to be blocked or aborted and they do not cause update transactions to be blocked or aborted, what is an
important fact when working with intensive read applications. Moreover, it has been recently proved
in [41] that under certain conditions on the workload transactions executing on a database with SI produce
serializable histories.

Elnikety et al. define in [2] a new concept calledGeneralized Snapshot Isolation(GSI) level, that
extends the SI level definition in a manner suitable for working in replicated environments. In the con-
ventional notion of snapshot isolation, referred to in thatpaper asConventional Snapshot Isolation(CSI),

4

each transaction must observe thelatest snapshot of the database. Unfortunately, working with the lat-
est snapshot in a distributed setting is not trivial. It has been proved that CSI level cannot be obtained in
replicated systems unless blocking protocols are used in order to work with the notion oflatest snapshot,
what limits its application to distributed database systems. A prove of this impossibility result, initially
mentioned in [2], is provided in [4].

However, in contrast to the CSI, the GSI level allows the use of older snapshots of the database,
facilitating its replicated implementation. A transaction may receive a snapshot that happened in the system
before the time of its first operation (instead of its currentsnapshot as in CSI). To commit a transaction
it is necessary, as in CSI, that no other update operation of recently committed transactions conflicts with
its update operations. Thus, a transaction can observe an older snapshot of the database but the write
operations of the transaction are still valid update operations for the database at commit time. Many of the
desirable properties of CSI remain also in GSI, in particular, read-only transactions never became blocked
and neither they cause update transaction to block or abort.

In this Section, we are going to formalize the GSI definition.The GSI level is defined independently of
any replication considerations, just as CSI, considering acentralized database system. In order to consider
the GSI notion in a replicated environment, it is necessary to work with one-copy equivalent executions.
Thus, in Section 3 conditions that can be imposed on a ROWAA protocol in order to obtain One-Copy
GSI (1C-GSI) are studied. This will facilitate later the study of the correctness of the replication protocols
proposed in this work.

2.1 Preliminaries

From our point of view, histories generated by a given concurrency control providing snapshot-based iso-
lation levels, such as GSI or CSI, may be interpreted as multiversion histories with time restrictions. In
fact, isolation level definitions include the time sense implicity and hence it seems that working with trans-
actions’ operations and their times is more suitable than using partial orders and graphs. In the following,
we define the concept of multiversion history for transactions using the theory provided in [1].

A database (DB) is a collection of data items, which may be concurrently accessed by transactions.
A history represents anoverall partial orderingof the different operations executed concurrently within
thecontextof their corresponding transactions. A multiversion history extends the concept of a history by
considering that the database items are versioned.

In order to formalize this definition, each transaction submitted to the system is denoted byTi. A
transaction is a sequence of read and write operations on database items ended by a commit or abort
operation1. EachTi’s write operation on itemX is denoted asWi(X) and a read operation on itemX
asRi(X). Finally, Ci andAi denote theTi’s commit and abort operation respectively. We assume that
a transaction does not read an itemX after it has written it, and each item is read and written at most
once. Avoiding redundant operations simplifies the presentation. The results for this kind of transactions
are seamlessly extensible to more general models and thus the replication protocols presented in this work
do not consider this restriction. In any case, redundant operations can be removed using local variables in
the planification of the transaction [42].

Each version of a data itemX contained in the database is denoted byXi, where the subscript stands for
the transaction identifier that installed that version in the DB. Thereadsetandwriteset(denoted byRSi

andWSi respectively) express the sets of items read (written) by a transactionTi. Thus,Ti is aread-only
transaction ifWSi = ∅ and otherwise it is anupdatetransaction.

We assume in our approach that aborted transactions are going to have no effect over generated his-
tories. This is a reasonable assumption since usually a DBMSproduces no anomalies when a transaction
aborts. Therefore, in the properties studied in this Section we are only going to deal with committed trans-
actions for simplicity’s sake. Nevertheless, we will discuss this later in Section 2.4 in a more detailed
way.

Let T = {T1, ..., Tn} be a set ofcommittedtransactions, where the operations ofTi are totally ordered
by the order≺Ti

. Since aborted transactions are not considered, the last operation of a transaction execution
should be the commit operation. In order to process operations from a transactionTi ∈ T , a multiversion

1Without losing rigor, sometimes a transaction denotes alsothe set of operations that contains.

5

scheduler must translateTi’s operations on data items into operations on specific versions of those data
items. That is, there is a functionh that maps eachWi(X) into Wi(Xi), eachRi(X) into Ri(Xj) for some
Tj ∈ T and eachCi just intoCi.

Definition 1. A Complete Committed Multiversion (CCMV) history over a setof transactionsT is a partial
order (H,≺) such that:

1. there exists a mappingh such thatH = h(
⋃

Ti∈T Ti)

2. ≺⊇
⋃

Ti∈T ≺Ti
.

3. if Ri(Xj) ∈ H , i 6= j, thenWj(Xj) ∈ H andCj ≺ Ri(Xj).

In the previous Definition 1, condition (1) suggests that each operation submitted by a transaction is
mapped into an appropriate multiversion operation. Condition (2) states that the CCMV history preserves
all orderings stipulated by transactions. Condition (3) establishes that when a transaction reads a concrete
version of a data item, it was written by a transaction that committed before the item was read.

Definition 1 is more specific than the one stated in [1], since the former only includes committed
transactions and explicitly indicates that a new version may not be read until the transaction that installed
the new version has committed. In the rest of this Section, weuse the following conventions:(i) T =
{T1, ..., Tn} is the set of committed transactions for every defined history; and(ii) any history is a CCMV
history overT .

In general, two histories(H,≺) and(H ′,≺′) areview equivalent[1] denotedH ≡ H ′, if they contain
the same operations, have the samereads-fromrelations, and produce the same final writes. The notion of
view equivalence of CCMV histories reduces to the simple condition H = H ′, if the following reads-from
relation is used,Ti readsX fromTj , in history(H,≺), if and only if Ri(Xj) ∈ H .

As pointed before, the snapshot-based isolation levels, such as CSI or GSI, include explicitly the time
notion in their definitions and therefore in order to work with them it is suitable to use schedules, that
contain simply the occurrence of the operations through time.

Definition 2. Let (H,≺) be a history andt : H → R+ a mapping such that it assigns to each operation
op ∈ H its real time occurrencet(op) ∈ R+. The scheduleHt of the history(H,≺) verifies:

1. if op, op′ ∈ H andop ≺ op′ thent(op) < t(op′).

2. if t(op) = t(op′) andop, op′ ∈ H thenop = op′.

The mappingt() totally orders all operations of(H,≺). Condition (1) states that the total order< is
compatible with the partial order≺. Condition (2) establishes, for sake of simplicity, the assumption that
different operations will have different times.

We are interested in operating with schedules, since it facilitates the work, but only with the ones that
derive from CCMV histories over a concrete set of transactions T . One can note that an arbitrary time
labeled sequence of versioned operations, e.g.(Ri(Xj), t1), (Wi(Xk), t2) and so on, is not necessarily
a schedule of a history. Thus, we need to put some restrictions to make sure that we work really with
schedules corresponding to possible histories.

Property 1. LetSt be a time labeled sequence of versioned operations over a setof transactionsT , St is
a schedule of a history overT if and only if it verifies the following conditions:

1. there exists a mappingh such thatS = h(
⋃

i∈Ti
Ti).

2. if op, op′ ∈ Ti andop ≺Ti
op′ thent(op) < t(op′) in St.

3. if Ri(Xj) ∈ S andi 6= j thenWj(Xj) ∈ S andt(Cj) < t(Ri(Xj)).

4. if t(op) = t(op′) andop, op′ ∈ S thenop = op′.

6

The proof of this fact can be inferred trivially. In the following, we use an aditional convention:(iii)
A scheduleHt is a schedule of a history(H,≺).

Note that every scheduleHt may be represented by writing the operations in the total order (<) induced
by t(). We define the“commit time” (ci) and“begin time” (bi) for each transactionTi ∈ T in a schedule
Ht asci = t(Ci) andbi = t(first operation ofTi), holdingbi < ci by definition oft() and≺Ti

. We
are going to use these values when working with schedules in order to represent the time sequence sense,
apart from the operation that involves each value, since it facilitates the comprehension of some aspects
explained in this work.

In the following, we formalize the concept of snapshot of thedatabase. Intuitively it comprises the
latest version of each data item. Let us consider the following transactionsT1, T2 andT3:

T1 = {R1(X)W1(X)C1}
T2 = {R2(Z)R2(X)W2(Y)C2}

T3 = {R3(Y)W3(X)C3}

A sample of a posible schedule of these transactions might bethe following one:

b1 R1(X0)W1(X1) c1 b2 R2(Z0) b3 R3(Y0)W3(X3) c3 R2(X1)W2(Y2)c2.

As this example shows, each transaction is able to include inits snapshot (and read from it) the latest
committed version of each existing item at the time such transaction was started. ThusT2 has read version
1 of item X sinceT1 has generated such version and it has already committed whenT2 started. But it
only reads version0 of itemZ since no update of such item is seen byT2. This is true despite transactions
T2 andT3 are concurrent andT3 updatesX beforeT2 reads such item, because the snapshot taken for
T2 is previous to the commit ofT3. This provides the basis for defining what a snapshot is. For that
purpose, we need to define first the set of installed versions of a data itemX in a scheduleHt, as the set
V er(X, H) = {Xj : Wj(Xj) ∈ H} ∪ {X0}, beingX0 its initial version.

Definition 3. The snapshot of the databaseDB at timeτ ∈ R+ for a scheduleHt is defined as:

Snapshot(DB, Ht, τ) =
⋃

X∈DB latestV er(X, Ht, τ)

where the latest version of each itemX ∈ DB at timeτ is the set:

latestV er(X, Ht, τ) = {Xp ∈ V er(X, H) : (∄ Xk ∈ V er(X, H) : cp < ck ≤ τ)}

From the previous definition, it is easy to show that a snapshot is modified each time an update trans-
action commits. Ifτ = cm andXm ∈ V er(X, H), thenlatestV er(X, Ht, cm) = {Xm}.

In order to formalize some schedule-related concepts, we utilize a slight variation of the predicate
impacts, presented in [2]. Consider two transactionsTi, Tj ∈ T :

• Tj impactsTi on write at timeτ ∈ R+ in a scheduleHt, denotedTj w impactsTi at τ , if the
following predicate holds:WSj ∩WSi 6= ∅ ∧ τ < cj < ci.

• Tj impactsTi on read at timeτ ∈ R+ in a scheduleHt, denotedTj r impactsTi at τ , if the following
predicate holds:WSj ∩RSi 6= ∅ ∧ τ < cj < ci.

From now on, when talking simply aboutimpacts, we will be referring to impacts on write, and we will
denoted it similarly asTj impacts Ti.

2.2 Generalized Snapshot Isolation Definition

A hypothetical concurrency control algorithm could have stored some past snapshots. A transaction may
receive a snapshot that happened in the system before the time of its first operation. The algorithm may
commit the transaction if no other transaction impacts withit from that past snapshot. Thus, a transaction
can observe an older snapshot of the DB but the write operations of the transaction are still valid update
operations for the DB at commit time. These previous ideas define the concept of GSI.

7

Definition 4. A scheduleHt is a GSI-schedule if and only if for eachTi ∈ T there exists a valuesi ∈ R+

such thatsi ≤ bi and:

1. if Ri(Xj) ∈ H thenXj ∈ Snapshot(DB, Ht, si); and

2. for eachTj ∈ T : ¬(Tj impactsTi atsi).

Condition (1) states that every item read by a transaction belongs to the same (possible past) snapshot.
Condition (2) also establishes that the time intervals[si, ci] and [sj , cj] do not overlap for any pair of
write/write conflicting transactionsTi andTj.

Considering the transactionsT1, T2, T3 andT4 described below,

T1 = {R1(X)W1(X)C1}, T2 = {R2(Y)W2(Y)C2},
T3 = {R3(Z)W3(Z)W3(X)C3}, T4 = {R4(Z)R4(X)C4}

the following schedule is an example of a GSI-schedule:

b1 R1(X0) b2 R2(Y0)W1(X1) c1 b3 R3(Z0)W3(Z3)W3(X3) c3 W2(Y2) c2 b4 R4(Z0)R4(X1) c4.

In this schedule, transactionT2 can be executed concurrently toT1 andT3 since it does not impact with
them, butT1 andT3 cannot be executed concurrently sinceWS1 ∩WS2 6= 0. Note that transactionT4

readsX1 (version ofX established after the commit ofT1), despite that transactionT3, which established
a new versionX3, commits previously to the read operation ofX in T4. This is perfectly correct for a
GSI-schedule, taking the time point of the snapshot used byT4 (i.e. s4) previous to the commit ofT3, as it
is shown in the following schedule:

b1 R1(X0) b2 R2(Y0)W1(X1) c1 b3 R3(Z0)W3(Z3) s4 W3(X3) c3 W2(Y2) c2 b4 R4(Z0)R4(X1) c4.

Note also thatT4 readsZ0, although the snapshots4 is taken after a write operationW3(Z3) of transac-
tion T3. This is possible because, as pointed in Definition 1, versions of data items are always established
after the transaction commitment, in our casec3.

The intuition under this schedule in a distributed system isthat the message containing the modifications
of T3 (the write operations onX andZ) would have not yet arrived to the site at the time transaction T4

began. This may be the reason forT4 to see this past version of itemsX andZ. Precisely, the fact thatGSI
captures these delays into schedules makes its usage on distributed environments attractive.

Remark 1. As observed in the example, we can conclude that if there exists a transactionTi ∈ T such
that conditions (1) and (2) from the Definition 4 are only verified for a valuesi < bi then there is an item
X ∈ RSi for which latestV er(X, Ht, si) 6= latestV er(X, Ht, bi). That is, the transactionTi has not
seen the latest version ofX at the begin timebi, since there was a transactionTk with Wk(Xk) ∈ H such
thatsi < ck < bi.

2.3 Conventional Snapshot Isolation and Serializability

In CSI reading from a snapshot means that a transaction sees all the updates performed by transactions that
committed before the transaction started its first operation. If condition (1) and (2) of the Definition 4 holds
for si = bi for a transactionTi then it means that transactionTi sees the latest version of the items accessed
by the transaction and then we can affirm that the isolation level of such transaction is CSI.

When considering a schedule of a historyHt, if for all Ti ∈ T the level of each transaction is CSI then
the scheduleHt is aCSI-schedule.

Let consider the previously proposed schedule:

b1 R1(X0) b2 R2(Y0)W1(X1) c1 b3 R3(Z0)W3(Z3) s4 W3(X3) c3 W2(Y2) c2 b4 R4(Z0)R4(X1) c4.

This schedule is not a possible CSI-schedule since, although transactionsT1, T2 andT3 fulfill the CSI
level definition, condition (1) does not hold for transaction T4. TransactionT4 is reading old versions
(X1, Z0) of the itemsX andZ, that does not match the latest version corresponding to thesnapshot at its
beginning, i.e. whens4 = b4.

8

We can think about a possible example of a CSI-schedule just ensuring that each transaction sees at its
beginning the last version of the items it uses by changing the time when the snapshot for transactionT4

(i.e. s4) is taken:

b1 R1(X0) b2 R2(Y0)W1(X1) c1 b3 R3(Z0)W3(Z3)W3(X3) c3 s4 W2(Y2) c2 b4 R4(Z3)R4(X3) c4.

This ensures that transactionT4 really reads the latest versions ofX andZ available at its beginning,
which are the ones established after the commitment of transactionT3. Note that we can relax the condition
si = bi andsi may be previous tobi if there exists no write operation that modifies some of the items read
by Ti between this two events.

Serializable level provides the highest transaction isolation. This level describes a serial transaction
execution, as if transactions had been executed one after another serially. In SER, as in CSI, a transaction
sees only data committed before its beginning. However, a serial execution requires that transactions cannot
modify items read by another concurrent transaction. Thus,if a transactionTi verifies condition (1) and
(2) of the Definition 4 and besides the following condition:

3. for eachTj ∈ T : ¬(Tj r impacts Ti at si)

then we can assure that the isolation level of such transaction is serializable (SER). This fact has been
already formally proved in [2]. Note that the serializable level achieved through the previous condition is
far more restrictive than the one provided by the general definition of a strict serializable history [35].

When considering a schedule of a historyHt, if for all Ti ∈ T the level of each transaction is SER then
Ht is aSER-schedule.

Figure 1: Relationship between database isolation levels considered in this paper

It is easy to note that the different isolation levels presented in this work are related. The relationship
between these database isolation levels is clearly shown inthe Figure 1. As can be inferred trivially, the
CSI level is just a particular case of the GSI level definition, i.e. for si = bi, when transactions see the
latest version of the database. Therefore, any CSI-schedule is actually a GSI-schedule.

At first sight, we could think that it is possible to reach a serializable level coming from either CSI
or GSI. This means that it would be possible to have two different definitions of the serializable level,
provided that transactions do not modify items read by another concurrent transaction: a CSI-SER level
where transactions see the latest database snapshot or a GSI-SER level where they may see older snapshots.
However, the latter is not possible. If we have a GSI-schedule, then there exists at least aTk ∈ T such
thatWSk ∩ RSi 6= ∅ andsi < ck < bi by the Remark 1. Therefore,Tk r impacts Ti at si and hence a
non-CSI schedule cannot be a SER-schedule what implies thatSER-schedules are strictly contained in the
set of CSI-schedules.

It is important to note that the presented isolation definitions are given for each transaction regarding
other transactions. This implies a great flexibility since there can exist different sub-schedules in a global
schedule, each one of which may contain operations that fulfill a given isolation level in their respective
sub-schedules. Achieving this flexibility in replicated systems means allowing different transactions to be
executed concurrently with different isolation levels.

2.4 Abortion Causes in Centralized Database Implementations

In order to study the behavior of a replicated database system, we have to understand well how centralized
databases work. We have only considered up to now committed transactions in order to define the different

9

isolation levels. However, it is necessary to know the possible abortion causes of a centralized DBMS.
They have a great influence over replication protocol designs, since replication protocols must consider all
these causes in order to avoid anomalies when aborts arise.

Most commercial databases typically provide CSI level by default, e.g. Oracle [43] and PostgreSQL [44],
but only a few databases, such as Microsoft SQL Server [45], provide actually thereal theoretical definition
of a serializable level [35] (not the ANSI one that is more relaxed). The main abortion reason is related
to the fact of ensuring the transaction’s isolation level. As explained above in this Section, there exist
two main approaches for determining how to resolve isolation conflicts: thefirst-committer-winsand the
first-updater-winsrules. In both cases, the ultimate effect is the same, i.e. toabort one of the concurrent
transactions updating the same data item. Nevertheless, the first-updater-wins is more advantageous than
the first-committer-wins since conflict checks are performed each time a transaction performs an update
operation (or also a read operation in serializable). As Figure 2 shows, the first-updater-wins allows to
detect conflicts sooner and also avoids performing possibleunnecessary operations that will have to be
rolled back when transactions try to commit. Note how, in thefirst-committer-wins approach, if one of
the conflicting transactions commits, the other transaction keeps performing operations even knowing that
it will abort when it tries to commit. On the contrary, if the first-updater transaction had finally aborted,
the other transaction would have been blocked for a time unnecessarily. Commonly, commercial databases
work by default with the first-updater-wins approach.

Figure 2: First-updater-wins and first-commiter-wins approaches

The CSI level does not avoid deadlocks. Most databases are based on locking implementation to pro-
vide CSI so deadlocks may arise between two transactions when both hold and are waiting for respective
locks. To detect and resolve deadlocks, a concurrency control lock service should provide a deadlock de-
tector that aborts one of the deadlocked transactions. Alternative schemes are possible for either avoiding
deadlocks (the call to acquire a lock checks whether by waiting for the lock the transaction would be-
come deadlocked), or associating timeouts with transactions or locks and aborting the transaction when the
timeout expires. Replication protocols must consider how deadlocks may be resolved in order to work in
consequence, e.g. a deadlock between two transactions may be resolved by aborting one or even both of
them. Most commercial databases, including Oracle, PostgreSQL and SQL Server, provide mechanisms
for deadlock detection that usually resolve them by rollingback one of the transactions involved in the
deadlock, thus releasing one set of data locked by that statement.

Another critical feature of any database is data integrity.Transactions should leave items in a consistent
state following given rules, e.g. the sum of two items must not be greater than a value. Therefore, there
may be integrity rules that must be checked beyond isolationissues. This may lead to conflicts between
transactions, with which databases deal similarly to isolation conflicts. Thus, integrity constraints may be
checked at write time (first-updater-wins) or checking may be delayed until commit time (first-committer-
wins).

Finally, note that a transaction may also abort due to database system failures (e.g., a processor failure),
or just because a programmer chose to execute an abort call.

A replication protocol must consider all these kinds of abortion causes. It needs to know what happens

10

when an abortion occurs in order to proceed consequently to avoid anomalies and guarantee the correct
operation of the system. In general, abortions caused by system failures are not considered since it is quite
difficult to handle them due to its Byzantine nature. These kinds of situations would lead to disconnect
the replica from the system and a recovery protocol should cover its reconnection when it gets recovered.
We consider also that users do not abort explicitly transactions, although there is no problem with this.
In our developed protocols, we do not distinguish between different causes of abortion since all the abort
situations can be treated in a similar way.

In this work, we are going to consider that a DBMS works as mostcommercial databases do. That
is, the first-updater-wins technique rules the resolution of isolation conflicts and deadlock situations are
resolved by aborting one of the transactions involved in it.

Considering that most commercial databases support the CSIlevel, it seems interesting to study the be-
havior of a replicated database composed of DBMS replicas providing CSI. Thus, in the following Section
we see how to study the isolation level of a replicated database working with CSI replicas referred to a
corresponding equivalent centralized database.

3 One Copy Generalized Snapshot Isolation

Increasing system availability and also performance are the main reasons for using data replication [1].
In order to maintain the data freshness and consistency, a replicated database system requires a database
replication protocol running at all sites. The traditionalcorrectness criterion for replicated protocols is
the 1CS [35]. A replicated database history is 1CS if it is equivalent to a serial execution in a centralized
database. Many replication protocols verify such correctness criterion when the database management
system at each site implements the strict two phase locking (2PL). However, it is not clear which isolation
level is achieved when each database replica provides the CSI level, as most of commercial ones do.

In this Section, we study the conditions that a replication protocol has to verify to obtain one-copy
GSI schedules. We set such conditions for ROWA (Read One-Write All) protocols since we consider
no failures. This is not especially realistic , but this allows to simplify the presentation and nevertheless
obtained conclusions can be directly extrapolated to a ROWAA approach.

One can note that the GSI concept is particularly interesting in replicated databases using ROWA proto-
cols and databases with CSI. A ROWA replication protocol executes each transaction initially in a delegate
replica, propagating later its updates to the rest of available replicas. This means that transaction write-
sets cannot be immediately applied in all replicas at a time and therefore the snapshot being used by a
transaction might be ’previous’ to the one that would have been assigned to it.

The conditions a replication protocol has to verify in orderto obtain one-copy GSI schedules using
CSI replicas (proved in [4]) are: (i) Each submitted transaction to the system either commits or aborts
at all sites (atomicity); (ii) All update transactions are committed in the same total order at every site
(total order of committed transactions). Total order ensures that all replicas see the same sequence of
transactions, being thus able to provide the same snapshotsto transactions, independently of their starting
replica. Without such order, those transactions without write/write conflicts might be applied in different
orders in different replicas. So, transactions would be able to read different versions in different replicas.
Atomicity guarantees that all replicas take the same actions regarding each transaction, so their states
should be consistent, once each transaction has been terminated.

In the following, we first formalize the concept of the one-copy schedule for ROWA replication proto-
cols and then we expound the main result of the one-copy GSI isolation level in replicated environments.

3.1 ROWA Replication Protocols

We consider a failure free distributed system that consistsof m sites, beingIm = {1..m} the set of site
identifiers. Sites communicate among them by message passing. We make no assumptions about the time
it takes for sites to execute and for messages to be transmitted. Each sitek runs an independent instance
of the database management system and maintains a copy of thedatabaseDB, that is, we consider a fully-
replicated system. We will assume that each database copy, denotedDBk with k ∈ Im, is managed by a
DBMS that provides the CSI level. We use the transaction model of Section 2. LetT = {Ti : i ∈ In} be

11

the set of transactions submitted to the system, whereIn = {1..n} is the set of transaction identifiers. We
can also considerT k = {T k

i : i ∈ In}, i.e. the set of transactions submitted at each sitek ∈ Im for the set
T . In general, the ROWA approach establishes that some of these transactions are local atk while others
are remote ones.

Formally, the ROWA strategy for replication defines for eachtransactionTi ∈ T the set of transactions
{T k

i : k ∈ Im} in which there is only one, denotedT site(i)
i , verifying RS

site(i)
i = RSi andWS

site(i)
i =

WSi ordered by≺site(i)
Ti

. The rest of the transactions,T k
i with k 6= site(i), must have the same write

operations asT site(i)
i and in the same order, i.e.RSk

i = ∅ andWSk
i = WSi with operationsT k

i ⊆ T
site(i)
i

and order≺k
Ti
⊆≺

site(i)
Ti

. T
site(i)
i determines the local transaction ofTi, i.e., the transaction executed at its

delegate replica or master site, whilstT k
i , k 6= site(i), is a remote transaction ofTi, i.e., the updates of the

transaction executed at a remote site. An update transaction reads at one site and writes at every site, while
a read-only transaction only exists at its local site. In therest of the paper, we consider the general case of
update transactions with non-empty sets.

Note that we consider the general definition of the ROWA approach and hence our discussion is inde-
pendent from any specific implementation of such strategy, i.e. it does not matter the techniques used to
achieve such behavior.

In a ROWA replication protocol, as stated before, updates applied in a replica by a given transaction
are also applied in the rest of replicas. Since only committed transactions are relevant for our discussion,
the histories being generated at each site should be histories overT k, as defined above. This implies that
each transaction submitted to the system either commits at all replicas or in none of them, making possible
to maintain the concept of full replication. This leads to the following assumption.

Assumption 1(Atomicity). (Hk,≺k) is a CCMV history overT k for all sitesk ∈ Im.

In the considered distributed system there is not a common clock or a similar synchronization mecha-
nism. However, we can use a real time mappingt :

⋃
k∈Im

(Hk) ← R+ that totally orders all operations
of the system. This mapping is compatible with each partial order≺k defined forHk for each sitek ∈ Im.
In the following, we consider that eachDBk provides CSI-schedules under the previous time mapping.

Assumption 2(CSI Replicas). Hk
t is a CSI-schedule of the history(Hk,≺k) for all sitesk ∈ Im.

In order to study the level of isolation implemented by a ROWAprotocol is necessary to define the
one copy schedule (1C-schedule) obtained from the schedules at each site. A 1C-schedule of areplicated
database describes its behavior as if it was a centralized system working over a logical copy of the full
database. Thus, its isolation level is referred to that of the corresponding centralized database.

Let St be the complete schedule2 of the distributed system over a set of transactionsT k
i : k ∈ Im and

i ∈ In. That is,S =
⋃

k Hk andSt|
k = Hk

t beingSt|
k the subschedule ofSt including only operations

of site k. The ROWA approach guarantees thatt(op
site(i)
i) < t(opk

i) with k 6= site(i) whenopi is an
update operation. This condition allows to avoid considering inconsistencies, e.g.ck

i < t(Wi(Xi)
site(i)).

However, note thatck
i < c

site(i)
i , i.e. a remote transactionT k

i may commit beforeT site(i)
i .

In the next definitions, properties and theorems we use the following notation: for each transactionTi,
i ∈ In, Cmin(i)

i denotes the commit operation of the transactionTi at sitemin(i) ∈ Im such thatcmin(i)
i =

mink∈Im
{ck

i } under the considered mappingt(). In the following, we proceed to define formally how a
1C-schedule is built from a given complete schedule of the distributed system.

Definition 5. Let T = {Ti : i ∈ In} be the set of committed transactions in a fully replicated database
system with a ROWA strategy that verifies Assumption 1 and Assumption 2. LetSt be the complete schedule
of the system.

The 1C-schedule,Ht′ = (H, t′ : H → R+), is built fromSt as follows:

For eachi ∈ In andk ∈ Im

1. Remove fromS operations such that:
Wi(Xi)

k, with k 6= site(i), or

2St is a time labeled sequence (through a mappingt : S → R
+) of a setS of versioned operations

12

Ck
i , with k 6= min(i)

2. H is obtained with the rest of operations inS after step 1, applying the renaming:
Wi(Xi) = Wi(Xi)

site(i)

Ri(Xj) = Ri(Xj)
site(i), and

Ci = C
min(i)
i

3. Finally, t′() is obtained fromt() as follows:
t′(Wi(Xi)) = t(Wi(Xi)

site(i))
t′(Ri(Xj)) = t(Ri(Xj)

site(i)), and

t′(Ci) = t(C
min(i)
i)

Condition (1) establishes that a 1C-schedule is built from the local operations of each transaction and
that the commit time of a transaction is defined by the first commit time of the transaction at any site of the
system. Condition (2) defines the logical operations that are considered to work over the logical copy of the
replicated database. This condition ensures that a transaction is considered logically as committed as soon
as it has been committed in any replica. As condition (3) states,t′() receives its values fromt(), preserving
the original time order. Thus, by condition (3) we can writeHt instead ofHt′ . In the 1C-scheduleHt,
for each transactionTi, is trivially verified bi < ci because the ROWA strategy guarantees that for all
k 6= site(i), bsite(i)

i < bk
i .

Conditions of the Definition 5 make possible that all the conditions explained in the Property 1 are
verified byHt. Therefore, it can be proved that any 1C-scheduleHt derives from a schedule of a history
(H,≺) for the set of transactionsT .

Although Assumptions 1 and 2 are included in Definition 5, they do not guarantee that the obtained
1C-schedule is a CSI-schedule. This is best illustrated in the following example, where it is also shown
how the 1C-schedule may be built from each site CSI-schedules. In this example two sites and the next set
of transactions are considered:

T1 = {R1(Y), W1(X), C1}, T2 = {R2(Z), W2(X), C2},
T3 = {R3(X), W3(Z), C3}, T4 = {R4(X), R4(Z), W4(Y), C4}

Figure 3 illustrates the mapping described in Definition 5 for building a 1C-schedule from the CSI-
schedules seen in the different nodesIm. T2 andT3 are locally executed at site1 (RS2 6= ∅ andRS3 6= ∅)
whilst T1 andT4 are executed at site2 respectively. The writesets are afterwards applied at the remote
sites. Schedules obtained at both sites are CSI-schedules,i.e. transactions read the latest version of the
committed data at each site. The 1C-schedule is obtained from Definition 5. For example, the commit
of T1 occurs for the 1C-schedule in the minimum of the interval betweenC1

1 andC2
1 and so on for the

remaining transactions.

A
T
1

1
T
1

2
T
1

3
T
1

4

W
1

1
(X1)C

1

1
R
1

2
(Z0)W

1

2
(X2)C

1

2
R
1

3
(X2)W

1

3
(Z3)C

1

3
W
1

4
(Y4)C

1

4

B
T
2

1
T
2

3
T
2

4
T
2

2

R
2

1
(Y0)W

2

1
(X1)C

2

1
W
2

3
(Z3)C

2

3
R
2

4
(X1)R

2

4
(Z3)W

2

4
(Y4)C

2

4
W
2

2
(X2)C

2

2

1CS
T1 T2 T3 T4

R1(Y0)W1(X1)C1 R2(Z0)W2(X2)C2 R3(X2)W3(Z3)C3 R4(X1)R4(Z3)W4(Y4)C4 Time

Figure 3: Replicated one-copy execution not providing CSI nor GSI.

In the 1C-schedule of Figure 3,T4 readsX1 andZ3 but theX2 version exists between both (sinceX2

was installed at site1). T1 andT2, satisfying thatWS1

⋂
WS2 6= ∅, are executed at both sites in the same

order. AsT1 andT2 are not executed in the same order with regard toT3, the obtained 1C-schedule is
neither CSI nor GSI3.

3Under the Assumptions (1) and (2), the obtained 1C-scheduleseems to verify the conditions of theread committedisolation level
definition, although this has not formally proved. Nevertheless, it is clear that the 1C-schedule provides an isolationlevel weaker than
the original provided by each database replica.

13

Thus, we need that transactions whose writesets intersect (WSi ∩WSj 6= ∅) be executed in the same
order, so as to observe at least the condition (2) of the Definition 4. However, this is not enough to guarantee
that the 1C-schedule be equivalent to a GSI-schedule and another kind of restrictions must be considered.

3.2 Main Result

As we will explain later in Section 4, most developed replication protocols under CSI replicas are based on
multicasting transaction writesets in total order, and on guaranteeing the same commit order in all replicas.
Actually, the main issue in these protocols is to maintain this total order of commits. As a result, since
all replicas generate CSI-schedules and their local snapshots have received the same sequence of updates,
transactions starting at any site are able to read a particular snapshot, that perhaps is not the latest one, but
that is consistent with those of other replicas.

Assumption 3(Total order of committed transactions). For each pairTi, Tj ∈ T , a unique order relation
ck
i < ck

j holds for allCSI-schedulesHk
t with k ∈ Im.

The CSI-schedulesHk
t have the same total order of committed transactions. Without loss of gener-

alization, we consider the following total order in the restof this section:ck
1 < ck

2 < ... < ck
n for every

k ∈ Im.
In the next property we are going to verify that, thanks to thetotal order, versions of items read by

a transaction belong to the same snapshot in a given time interval. This interval is determined for each
transactionTi by two commit times, denotedci0 andci1 . The former corresponds to the commit time of a
transactionTi0 such thatTi reads an item fromTi0 for the last time and from then it performs no other read
operation. The latter corresponds to the commit time of a transactionTi1 , so that it is the first transaction
that verifiesWSi1 ∩RSi 6= ∅ and modifies the snapshot of the transactionTi. In case thatTi1 does not exist,
the correctness interval forTi will extend fromci0 to bi.

Property 2. Let Ht be a 1C-schedule verifying Assumption 3. For eachTi ∈ T if Ri(Xj) ∈ H then
Xj ∈ Snapshot(DB, Ht, τ) andτ ∈ R+ satisfiesci0 ≤ τ < ci1 ≤ bi.

Proof. Let T
site(i)
i0

be a transaction such thatWSi0 ∩ RSi 6= ∅ andc
site(i)
i0

defines the last time inHsite(i)
t

from which transactionT site(i)
i no longerreads fromT

site(i)
i0

a version of a data item. By Assumption 2:
∀Y ∈ WSi0 ∩ RSi : {Y

site(i)
i0

} = latestV er(Y site(i), H
site(i)
t , b

site(i)
i). By Assumption 1 and Definition 5:

Ti0 ∈ T andci0 < bi.
Let X ∈ RSi be an item read byTi such thatX /∈ WSi0 ∩RSi and{Xsite(i)

j } = latestV er(Xsite(i), H
site(i)
t ,

b
site(i)
i). We prove that∄Tr ∈ T : Xr ∈ V er(X,H) ∧ cj < cr < ci0 . Note that if this property is false, then

the versionXr will be more up-to-date thanXj in Ht whenTi reads fromTi0 . The1C-scheduleHt will
not be aGSI-schedule. By contradiction, if there existsTr andcj < cr < ci0 then by Assumption 3 and 1:
c
site(i)
j < c

site(i)
r < c

site(i)
i0

. Thus,Xsite(i)
j is not the latest version inHsite(i)

t at bsite(i)
i .

It is important to note thatcsite(i)
i0

defines the moment whereT site(i)
i reads the latest version forH

site(i)
t .

Hence,ci0 will define forHt the time instant ofTi’s snapshot. If there exists a transactionTi1 with WSi1 ∩

RSi 6= ∅, thenTi will not see the versions installed byTi1 . Thus,bsite(i)
i < c

site(i)
i1

. However, it may happen
in Ht thatci1 < bi. In fact, this is the main reason to beHt a GSI-schedule.
In conclusion, for allX ∈ RSi, Xj ∈ Snapshot(DB, Ht, ci0) holds. This is valid for everyτ, ci0 ≤ τ , until
the first transactionTi1 ∈ T such thatWSi1 ∩ RSi 6= ∅ or until bi(bi = b

site(i)
i) if there not exists such a

transaction. Therefore,ci0 ≤ τ < ci1 ≤ bi holds.

The aim of the next theorem is to prove that the 1C-schedules generated by any ROWA protocol that
verifies Assumption 3 are actually GSI-schedules; i.e., they comply with all conditions stated in Definition
4. Whilst proving that a transaction always reads from the same snapshot in a particular time interval is
easy (Condition 1), it is not trivial to prove that there has not been any transaction that has impacted in that
interval (Condition 2). However, due to the total commit order an induction proof is possible, showing that
the obtained 1C-schedule verifies all conditions in order tobe a GSI-schedule.

Theorem 1. Under Assumption 3, the1C-scheduleHt is a GSI-schedule.

14

Proof. Ht is aGSI-schedule if it verifies Definition 4. Under Assumption 3 and 2, theCSI-schedulesHk
t

have the same total order of committed transactions:ck
1 < ck

2 < ... < ck
n for everyk ∈ Im. Ht also verifies

such an orderc1 < c2 < ... < cn because by Definition 5mink∈Im
{ck

i } < mink∈Im
{ck

j } with 1 ≤ i < j ≤ n.
The rest of the proof is made by induction over such a total order. First, we define the subsets of transactions
for eachi ∈ In : T (i) = {T1, T2, ..., Ti} ⊆ T and for eachk ∈ Im : T k(i) = {T k

1 , T k
2 , ..., T k

i } ⊆ T k. Using
these subsets we defineHk

t (i) andHt(i). They are exactly equal toHk
t andHt respectively, except that

they only include the operations inT k(i) or T (i). Thus, it is clear thatHk
t (n) = Hk

t andHt(n) = Ht.
Induction Base. Ht(1) is a GSI-schedule. There is only one committed transaction inT (1). Therefore,
Definition 4 is trivially verified forHt(1).
Induction Hypothesis. Ht(j) is aGSI-schedule1 ≤ j ≤ i − 1.
Induction Step. We will prove thatHt(i) is aGSI-schedule,i ∈ In. Note thatT (i) = T (i − 1) ∪ {Ti}. As
Ht(i−1) is aGSI-schedule, by Hypothesis, for any pairTj , T

′

j ∈ T (i−1) : ¬(Tj impactsT ′

j ats′j). As cj < ci

for 1 ≤ j ≤ i − 1, by the considered total order,¬(Ti impactsTj at sj) in Ht(i). If Rj(Xr) ∈ H(i − 1) and
Xr ∈ Snapshot(DB, Ht(i−1), sj) for 1 ≤ j ≤ i−1 thenRj(Xr) ∈ H(i). Xr 6= Xi becausecsite(j)

j < c
site(j)
i

andH
site(i)
t is aCSI-schedule and henceXr ∈ Snapshot(DB, Ht(i), sj).

Therefore, in order to prove thatHt(i) is aGSI-schedule, we only need to prove forTi ∈ T that there exists
a valuesi ≤ bi such that:

(a) if Ri(Xr) ∈ H(i), Xr ∈ Snapshot(DB, Ht(i), si) and
(b) for eachTj ∈ T (i) : ¬(Tj impactsTi at si).

The begin timebsite(i)
i and the commit timeci0 of the transactionTi0 ∈ T (i) from whichTi reads for the

last time, allow us to define the sets:
T1(i) = {Tj ∈ T : b

site(i)
i < c

site(i)
j < c

site(i)
i }

T2(i) = {Tj ∈ T : c
site(i)
i0

< c
site(i)
j < b

site(i)
i }

By Assumption 2,∀Tj ∈ T1(i) : WSj∩WSi = ∅, i.e. Hsite(i)
t is aCSI-schedule, and by definition ofTi0 ∈ T

and again Assumption 2,∀Tj ∈ T2(i) : WSj ∩ RSi = ∅. Let Ti2 ∈ T2(i) be the last transaction such that
in the total order it verifiesWSi2 ∩ WSi 6= ∅. Note that in the1C-schedule, obtained from Definition 5, a
commit timec

site(i)
j for a transaction inT1(i) may change its relation with respect tobi, but maintaining the

order relation with respect the other commit times. LetTi1 ∈ T1(i) be the first transaction such thatci1 < bi

in Ht andWSi1 ∩ RSi 6= ∅ Thus,ci0 < ci2 < ci1 < bi holds inHt.
For any valuesi ∈ (ci2 , ci1), (a) holds for Property 2 and (b) holds by the wayTi2 ∈ T has been defined.
For eachTj such thatci2 < cj < bi, if Tj ∈ T2(i) thenWSj ∩WSi = ∅. If not, Ti2 is not the last transaction
verifying such a condition; and ifTj ∈ T1(i) thenWSj ∩ WSi = ∅. Thus, these transactions do not impact
with Ti. The rest of transactions do not either impact withTi because their commit times are sooner than
si.
To conclude, if there does not existTi1 thensi = bi and therefore (a) and (b) holds. In case that it does not
existTi2 thensi ∈ (ci0 , ci1) and again (a) and (b) holds.

This proof has not been given before in any ROWA-based CSI replication protocol ensuring total order
for the commit operations of all transactions in the system replicas. This theorem formally justifies such
protocols correctness and establishes that their resulting isolation level is GSI. Additionally, it is worth
noting that Assumption 3 is a sufficient condition, but not necessary, for obtaining GSI. Despite this,
replication protocols that comply with such an assumption are easily implementable. In order to conclude
this Section, we establish the correctness criterion for replicated protocols based on total order guarantees
and we study different implementations presented recentlyin the literature in the following Section.

3.3 Correctness Criteria for Database Replication Protocols

Database replication protocols are a particular case of distributed algorithms. In traditional distributed
algorithms, correctness criteria of distributed algorithms are formulated basing on a specific interface that
models the requirements for which the algorithm was developed. In order to prove algorithm’s correctness,
safety and liveness properties are defined on this interface.

However, this is useless when working with database replication protocols. In this case, transactions
compose the system interface. Thus, properties for their correctness proves need to be defined over the

15

behavior of transactions. This properties must ensure thatthe replicated database system works as if it
were a unique data management system providing the requiredisolation level.

For the kind of protocols proposed in this paper and the assumptions made about their operation in the
previous sections to study formally their behavior, the following correctness criteria may be useful in order
to facilitate their correctness proofs.

In order to ensure the system consistency, all transactionsmust commit in the same order at all available
replica sites. Beside this safety property, a data replication protocol must guarantee other liveness properties
such as the atomicity of a transaction:

• If a transaction commits at a site, it will finally commit at all sites.

• If a transaction aborts at a site, it will finally abort at all the sites where such transaction had started
or it will be discarded at all the sites where the transactionhad not yet started.

Another interesting liveness property to consider is that if infinitely often transactions are submitted to
the system, infinitely often transactions will commit. Thisensures fairness when submitting transactions
so that a transaction will never be aborted infinitely, if it wants to commit its changes.

Finally, it is also necessary to ensure that there can exist no distributed deadlock situations.

4 Replication Protocols over CSI replicas

Several database replication protocols have been proposedin the latter years. Most of them consider that
database replicas provide strict serializable isolation level. This, however, is not the usual case since most
database vendors provide lower degrees of isolation levelssuch as CSI. Thus, current research is focused
on developing replication protocols over CSI replicas.

Although they provide a good performance, protocols based on database core modifications are not
very flexible. In order to adapt some protocols that worked with serializable database replicas [16] to work
with CSI ones [46], it is necessary to reimplement all the core modifications performed previously. As
a result, most of database replication protocols are based on middleware architectures that simplify the
development and maintenance of replication protocols since the database internals remain inaccessible.

Elnikety et al. [47, 2] formalized some useful isolation issues for replicated environments. They pointed
out in those works that CSI is impossible to achieve in a replicated setting without blocking transactions
(including read-only ones) on their start until writesets of all prior transactions are received and applied.
As a result of this, they introduced the GSI concept for the first time, relaxing the required freshness for
the snapshot being taken when a transaction starts in its local replica. They also established two sufficient
conditions (one statically checked an one dynamic) that guarantee serializable execution for transactions
running under GSI.

In [47, 2], two implementation strategies based on certification for GSI replication protocols are intro-
duced: the first uses centralized certification and the second uses distributed certification. They compare
analytically the performance of the GSI level to CSI when using a centralized certification approach. The
model shows that the response time in GSI is generally lower than in CSI, but the abort rate in GSI may be
higher than in CSI since it compromises the data freshness. In their following works [48, 49], they study
some aspects about the integrity of transactions when applying remote writesets and propose also some
enhancements, such as compacting writesets or a memory aware load balancer that distributes queries so
that updates can be executed in-memory, to improve performance and scalability of database replication
protocols.

Considering the former premises, Lin et al. proposed in [3] amiddleware replication protocol based
on a distributed certification scheme that provided the CSI level as a centralized database system providing
that the underlying database replicas provided CSI. In thiswork, they consider a gray approach [50] where
the middleware does not handle the database as a black box. Itis a must not to reimplement features
provided by the underlying DBMS since it performs them much more efficiently. Replication protocols
could take advantage of these features and hence, the replication code can be separated from the regular
database operations. For example, the transaction writeset retrieval can be optimized easily using database
features.

16

Besides, they propose in their work some optimizations for the replication middleware. Their mid-
dleware includes a mechanism that is able to apply concurrently several writesets that do not intersect
providing a better system performance. However, it is necessary to block the transaction start in order
to not lose the CSI level. There exists also another issue to be considered in their protocol specification.
Consider that a certified writeset starts a local transaction in one replica. It may become blocked by an-
other existing local transaction in that replica. The writeset application will stay blocked until the local
transaction tries to commit. Then the local transaction will realize that it has to abort and it finally aborts.
However, transactions associated with certified writesetsmay become blocked by local transactions (that
should finally abort) during a long time. Furthermore, it is possible that these transactions be aborted and
in consequence the writeset application must be reexecutedto keep the system consistency.

In order to avoid this, Muñoz et al. propose in [29] to include, following the gray approach, a block
detector in each database replica. The block detector is able to detect the blocking situation before the
commit time. When it is detected, the replication protocol is notified to operate as necessary. This allows
to abort the local transaction earlier and therefore the middleware provides a higher performance since
writesets can be applied sooner. Its cost is quite low and it also allows the protocols themselves to become
simpler. They have implemented and tested this mechanism with snapshot-based replication protocols and
the obtained results prove that the performance of this approach is better than a programmed check at the
middleware layer.

The impossibility result presented in [2] is formally proved by González de Mendı́vil et al. in [4],
together with the formal conditions required to obtain GSI in a replicated system. In such work, it is
formally proved that replication protocols exclusively based on propagating transaction writesets cannot
achieve the strict one-copy equivalent CSI level unless they block the beginning of transactions until they
get the latest system snapshot. Thus, they propose a mechanism for replication protocols based on the total
order broadcast of astart message at the beginning of a transaction in order to guarantee the CSI level in a
replicated setting.

Due to this limitation, instead of using a strict one-copy CSI level, we have proposed in a recent
work [51] to select theoutdatednessof the snapshot being taken when a transaction starts. This makes
possible to select which kind of snapshot isolation compliance is needed by each transaction, ranging from
a default 1C-GSI to a 1C-CSI. Our proposed approach is far more optimistic since transactions do not get
blocked even for the CSI case. It is only necessary to restartthem when conflicts arise and normally they
are detected soon and only a few operation may be rolled back.

Most protocol proposals provide excellent performance in LAN environments by using useful multicast
primitives. However, little research has been done regarding whether these solutions can also be applied
to WANs. In [52], a detailed WAN based performance analysis of data replication protocols is presented
together with some optimizations proposed to circumvent the limitations of the replication protocols in
WANs. There exist also other works that show how to maintain the snapshot isolation in lazy replicated
systems. For example, Daudjee and Salem describe in [53] some algorithms that take advantage of the
local CSI concurrency controls to maintain global snapshotisolation in lazy replicated systems.

Replication protocols presented in the literature are mostly based on the certification approach. How-
ever, no relevant works about using the weak-voting alternative to obtain snapshot isolation in replicated
systems exist. We have studied this possibility in some recent works [38, 54]. Thus, we have proposed
some weak-voting protocols based on a middleware architecture that are able to provide several isolation
levels. These preliminar works set the starting point for this work. In these works, as in this paper, we
present the replication algorithms based on a formal model since this simplifies not only the proof of the
correction criteria of the protocols, but also their futureimplementation.

5 System Formal Model

For our proposal, we have taken the advantage from our previous works [29] and other middleware archi-
tectures providing database replication [3]. Thus, several replication protocols are proposed in this work
taking advantage of the capabilities provided by a middleware architecture called MADIS [29]. For the
sake of the explanation of the replication protocols, an abstraction of the MADIS middleware architecture
is presented in this Section. In the following, we highlightdifferent aspects dealing with the design of the

17

system and its operation.

Figure 4: Main components of the system

The replicated system is composed ofN sites communicating by message exchange. We assume a
full replication system, i.e. each site includes an instance of a DBMS which contains a copy of the entire
database. Users and applications submit transactions to the system. The middleware forwards them to the
respective nearest (local) site for their execution. The replication protocol in each replica coordinates the
execution of the transactions among different sites to ensure the required isolation level for the transactions.
The actions shown with arrows in Figure 4 describe how components interact with each other. Actions may
easily be ported to the particular communication primitives and DBMS JDBC-like operations.

5.1 Communication System

Communication among sites is mainly based on the services provided by a Group Communication System
(GCS) [31]. Basically, a GCS consists of a membership and a communication service [55]. Themember-
ship servicemonitors the set of participating sites and provides them with consistent notifications in case
of failures, either real or suspected. Note that, although we consider the possibility of system failures, we
are not going to detail in this work the recovery algorithm, for sake of space lack.

Thecommunication servicesupports different messaging services that provide several message delivery
guarantees. A reliable broadcast primitive (R broadcast) ensures that messages are always delivered to
correct processes despite failures. It also provides a total order broadcast delivery (TO broadcast) that
guarantees all sites deliver messages in the very same order. Each sitek has two input buffers for storing
messages depending on their delivery guarantees: one for the reliable broadcast messages (R channelk)
and another for the total order broadcast messages (TO channelk). Therefore, broadcasting a message
will imply filling the corresponding buffer in all destinations, according to its delivery guarantees.

5.2 Database

We assume a DBMS ensuring ACID transactions and complying with the SI level. The DBMS, as it is
depicted in Figure 4 gives to the middleware some common actions. DB.begin(t) begins a transaction
t4. DB.submit(t, op), whereop represents a set of SQL statements, submits an operation (denotedop) in
the context of the given transactiont. After a SQL statement submission, theDB.notify(t, op) informs
about the successful completion of an operation (run); or, its rollback (abort) due to DBMS internals (e.g.
deadlock resolution, enforcing CSI level as thefirst-updater-winsrule determines, etc).

As a remark, we also assume that after the successful completion of a submitted operation by a trans-
action, it can be committed at any time. In other words, a transaction may be unilaterally aborted by the

4In the following, transactions are denoted by the lowercaseletter t.

18

DBMS only while it is performing a submitted operation. Finally, a transaction ends either by committing,
DB.commit(t), or rolling back,DB.abort(t). We have added two additional functions that DBMSs do
not provide by default, but may be built by standard databasemechanisms [23, 29]. The database action
DB.WS(t) retrieves the transaction writeset, the set of pairs〈object identifier, value〉 for the objects
written by the transactiont. In a similar way, the functionDB.getConflicts(WS(t)) provides the set of
conflicting transactions between a writeset and current active ones.

5.3 Transactions

Different transactions may be created in the replicated system. Each transactiont has also a unique identi-
fier that contains the information about the site which was firstly created in (t.site), called itstransaction
master site. This field is used to know whether it is a local or a remote transaction. Transactions created are
locally executed at its master site and then interact via thereplication protocol with the other replicas when
the application wishes to commit the transaction, following a ROWAA strategy. Thus, remote transactions
containing the writeset of the original transaction (t.WS) are executed in the rest of available sites of the
system.

A transaction also contains information about its isolation level (t.mode). Each transaction can select
an isolation level (GSI, SI or SER), depending on its requirements, at the beginning of its execution. In
general, the protocols presented in this work are able to provide GSI level by default, given that transactions
are atomically committed at all sites and their commit is totally ordered [4]. In order to obtain higher
isolation levels, such as serializable or CSI, it is only necessary to set some constraints on the normal
operation of the protocols.

5.4 Protocols

The protocols presented in this work, are modeled as state transition systems. Each state transition system
includes a set of state variables and actions, each one of them subscripted with the node identifier where
they are considered. State variables include their domainsand an initial value for each variable. The
value of the state variables defines the system state. Each action in the state transition system has an
enabling condition (precondition,pre in Figures), a logic predicate over the state variables. An action can
be executed only if its precondition is enabled, i.e. if its predicate is evaluated totrue on the current state.
The effects of an action (eff in Figures) is a sequential program that atomically modifiesthe state variables;
hence, new actions may become enabled while others become disabled respectively. Weak fairness is
assumed for the execution of each action, i.e. if an action iscontinuously enabled then it will be eventually
executed. Although the state transition system seems a static structure, it defines the algorithm’s execution
flow. This will be easy to understand after the explanations given for each protocol operation. Without
generalization loss, we assume a failure free environment throughout the protocols description.

6 Weak Voting Protocols

This technique, described firstly in [17], uses a weak votingphase for committing transactions, i.e. the
transaction master site takes the decision to commit or abort. Weak voting [33] replication protocols usu-
ally follow the eager-update-everywhere strategy: transactions are locally executed and then changes are
propagated, following a ROWAA approach. All changes performed by a transaction in the database are
grouped in a writeset and delivered to the rest of the sites using a total order broadcast delivery. After
its application, a reliable delivery of a commit or abort message from its master site will decide whether
the transaction must commit or however abort. This message does not need to be total ordered but must
be reliable to preserve the system consistency. The voting is said to be weak as only the master site can
decide on the outcome of the transaction. Other servers cannot influence this decision and must abide by
the master site decision. Figure 5 illustrates this technique basic operation.

19

Figure 5: Weak voting replication scheme. When the system receives a transaction from a client, it will
be submitted to an available site which executes transaction locally. When commit time is reached, the
transaction writeset is broadcast to all servers using a total order mechanism. Upon delivering the message
that contains the writeset of transaction at its master site, it can determine if conflicting transactions have
been committed and consequently abort or commit the transaction. Thus, the master site sends a new
broadcast containing the outcome of the transaction (commit or abort).

6.1 Basic Sequential Weak Voting Protocol

In this Section we present a basic weak voting protocol that commits transaction sequentially in the database
replicas. This protocol avoids in advance possible conflicts that may happen between writesets of transac-
tions coming from remote sites and local transaction operations. Thus, when a writeset is being applied,
local transactions are not permitted to submit any possiblewrite operation to the database. Besides, before
applying writesets from remote transactions, it is necessary to abort all existent conflicting transactions
in the local database. In this way, we are ensuring that the writeset application is going to be performed
correctly, since we have remove any possible conflictive transaction from the database and besides we are
allowing no other local transaction to submit any conflictive operation. However, writesets from remote
transactions may conflict between them. In order to avoid this, we do neither permit a writeset to be submit-
ted to the local database if another transaction that submitted another writeset has not still finished, either
committing or aborting. In the following Section, we describe in detail the protocol operation.

6.1.1 Protocol Description

The protocol presented in this Section is modeled as a state transition system, as explained in Section 5.4.
Figure 8 shows the protocol signature, which is the set of possible actions it may ever execute. It contains
also the definition of the states variables of the transitionsystem and their corresponding initial values
and describes the set of possible actions, detailing their preconditions and effects. Most actions are only
applicable to either the master site of the transaction (t.site = k) or the rest of remote sites of the replicated
system (t.site 6= k). In the Figure 8,N stands for the number of sites,T represents the set of possible
transactions,M the set of messages that can be exchanged andOP the set of operations that can be
submitted to the database. We explain such algorithm on the sequel.

A transactiont may be created at any sitek of the replicated database system, which will be considered
as its master site and where the transaction is considered asa local transaction. It can start its execution
at any time, sincestatusk(t) = idle is the initial value for a transaction state. It invokesthe createk(t)
action, where transaction is created in the local database replica and its status is set toactive to allow
operations to be submitted.

The transaction creation action may be followed by a sequence of pairs ofbegin operationk(t, op) and
end operationk(t, op) actions. Each pair corresponds to a successful completion of a set of SQL state-
ments. The invocation of abegin operation submits the SQL statement to the database (DBk.submit(t, op))
and sets its status tosubmitted. It is important to consider that a local transaction may conflict with a
writeset application of a remote transaction once executedthe execute WSk(t) action. Writeset modi-
fications must be applied atomically in the database, without allowing other local or remote transactions

20

to conflict with the modified values, to achieve the corresponding isolation level and also to prevent dis-
tributed and local deadlock situations. This may happen when a write operation is submitted to the database
(type(op) = WRITE), as read operations will not conflict since we are considering databases complying
with the SI level. Thus, a write operation will be submitted only if there is no writeset being applied in the
database (ws runk = false).

After the submission of an operation to the database, the transaction may be aborted by the DBMS
replica (local abortk(t, op)). This is only possible for local transactions. The causes of abortion are mainly
related to the enforcement of either the isolation level or integrity constrains, and also to local deadlock
resolutions. Theend operationk(t) action will be eventually invoked after the operation is successfully
completed in the database. It sets the transaction status toactive, enabling the local transaction to submit
a new operation.

Once the transaction is done, it requests its commitment by means of thebegin commitk(t) action,
asstatus = active after the last operation applied successfully in thelocal database. In this action, the
transaction writeset needs to be collected from the database (DBk.WS(t)). If the transaction is a read
only transaction (WS = ∅) the transaction will commit immediately. Otherwise, the replication protocol
broadcast awritesetmessage to all the replicas using the total order delivery and the transaction status will
be changed topre commit.

Writeset message (〈writeset, t〉) reception at the master site of the transaction (t.site = k), where
transaction should havestatusk(t) = pre commit, leads to the execution of theto commitk(t) action in
that site. In order to enable this action, it is also necessary that there is no other writeset being applied in the
database (¬ws runk) and there is no other local transaction waiting for committing (¬local tocommitk)
as well. This action will broadcast acommitmessage with a reliable service (R broadcast) and sets the
transaction status totocommit in order to emphasize that this transaction is about to commit. Beside this,
the variablelocal tocommitk is set totrue in order to point that there is a transaction waiting for its commit
message to finally commit into the local database. The main aim of this commitmessage is related to
recovery issues, but are not explained in this paper for sakeof brevity. The reception of this message at the
transaction master site will finally commit the transactionin the local database replica (end commitk(t))
and will set the variablelocal tocommitk to false, allowing other transactions to commit.

In the other sites (t.site 6= k), the reception of a writeset message (〈ws, t〉) will create aremote

transaction to apply it in that site if theexecute WSk(t) action becomes enabled. In order to guarantee the
global atomicity of a transaction, it is a must that a remote transaction, not yet submitted to execution, never
aborts a remote transaction already submitted to the database or a local transaction waiting to its commit
message. For that reason, theexecute WSk(t) action requires that no other writeset is being applied in
the database (¬ws runk) and also that no local transaction is waiting (¬local tocommitk) for commit.

The execute WSk(t) action aborts all the local transactions conflicting with the received writeset
(DBk.getConflicts(t.ws)). This is necessary to prevent remote transactions from becoming blocked by
a conflicting local transaction. Afterward, it applies the writeset in the database (DBk.submit(t, t.ws))
and sets the variablews runk to true until writeset application ends (either with the commitment or the
abortion of the remote transaction). It is important to notethat aborting all local conflicting transactions
before the execution of a remote transaction has several consequences. If one of the conflicting local
transactions is in thepre commit state, it is necessary to broadcast anabort message to abort its remote
transactions. This message will enable theabort WSk(t) at the sites where the writeset has been already
submitted (execute WSk(t)) and the remote transaction will be aborted in the local database. However,
note that reliable broadcast latency is lower than total order one and that applying a writeset takes some
time. Hence, a reliable message with the abort decision may be delivered before the reception of the
writeset message, which is broadcast in total order as the protocol states, or before its application in the
local database. In both cases, where writeset application has not been performed (statusk(t) = idle),
this abort message will enable theearly decisionk(t) action and the remote transaction will immediately
abort, setting its status toaborted in order to discard the writeset message pending from reception. Thus,
the discardk(t) action discards writeset messages (〈writeset, t〉) of remote transactions that have been
aborted by an early decision of the master site, in order to guarantee the progress allowing other writeset
messages in theTO channelk to be processed. This action also allows to discard a writeset message
related to a local transaction that has been aborted due to a conflict with a writeset of a remote transaction.

Once the writeset is successfully applied, if acommit message has been received from the master site

21

Signature:
{∀ k ∈ N, t ∈ T, m ∈M, op ⊆ OP : createk(t), end operation

k
(t, op), begin operation

k
(t, op),

begin commit
k
(t), to commitk(t), end commitk(t), discardk(t, m), early decision

k
(t),

execute WSk(t), end operation WS
k
(t, ws), local abortk(t), commit WSk(t), abort WSk(t)}

States:
∀ k ∈ N, t ∈ T : statusk(t) ∈ {idle, active, submitted, pre commit, await, tocommit,

committed, aborted}, initially statusk(t) = idle
∀ k ∈ N : TO channelk ⊆ {m : m = 〈ws, t〉 ∀t ∈ T}, initially TO channelk = ∅
∀ k ∈ N : R channelk ⊆ {m : m = 〈commit, t〉 or m = 〈abort, t〉 ∀t ∈ T}, initially R channelk = ∅
∀ k ∈ N : local tocommitk : boolean, initially local tocommitk = false
∀ k ∈ N : ws runk : boolean, initially ws runk = false

Transitions:
createk(t) // t.site = k //
pre≡statusk(t) = idle
eff≡ statusk(t)← active

DBk.begin(t)

begin operation
k
(t, op) // t.site = k //

pre≡statusk(t) = active∧ ¬(ws runk ∧
type(op) = WRITE).

eff≡ statusk(t)← submitted
DBk.submit(t, op)

end operation
k
(t, op) // t.site = k //

pre≡statusk(t) = submitted∧
DBk.notify(t, op) = run.

eff≡ statusk(t)← active

begin commit
k
(t) // t.site = k //

pre≡statusk(t) = active
eff≡ t.WS ← DBk.WS(t)

if t.WS = ∅ then
statusk(t)← committed
DBk.commit(t)

else
statusk(t)← pre commit
TO broadcast(〈writeset, t〉)

to commitk(t) // t.site = k //
pre≡m=〈writeset, t〉 first in TO channelk

∧¬ws runk ∧ ¬local tocommitk

∧ statusk(t) = pre commit.
eff≡ remove(m) from TO channelk

statusk(t)← tocommit
local tocommitk ← true
R broadcast(〈commit, t〉)

end commitk(t) // t.site = k //
pre≡statusk(t) = tocommit∧

m=〈commit, t〉 in R channelk
eff≡ remove(m) from R channelk

statusk(t)← committed
DBk.commit(t)
local tocommitk ← false

local abortk(t, op) // t.site = k //
pre≡statusk(t) = submitted∧

DBk.notify(t, op) = abort.
eff≡ statusk(t)← aborted

discardk(t, m)
pre≡statusk(t) = aborted∧ m=〈., t〉 ∈ anychannelk
eff≡ remove(m) from correspondingchannelk

execute WSk(t) // t.site 6= k //
pre≡m=〈writeset, t〉 first in TO channelk

∧¬ws runk ∧ ¬local tocommitk

∧ statusk(t) ∈ {idle, tocommit}.
eff≡ remove(m) from TO channelk

for each t′ in DBk.getConflicts(t.WS)
DBk.abort(t′)
if statusk(t′) = pre commit then

R broadcast(〈abort, t′〉)
statusk(t′)← aborted

DBk.begin(t)
DBk.submit(t, t.WS)
if statusk(t) = idle then

statusk(t)← submitted
ws runk ← true

end operation WS
k
(t, ws) // t.site 6= k //

pre≡DBk.notify(t, ws) = run
∧ statusk(t) = submitted.

eff≡ statusk(t)← await

early decision
k
(t) // t.site 6= k //

pre≡m=〈., t〉 in R channelk
∧ statusk(t) = idle.

eff≡ remove(m) from R channelk
if m = 〈abort, t〉 then

statusk(t)← aborted
else ifm = 〈commit, t〉 then

statusk(t)← tocommit

abort WSk(t) // t.site 6= k //
pre≡m=〈abort, t〉 in R channelk

∧ statust(k) ∈ {await, submitted}.
eff≡ remove(m) from R channelk

statusk(t)← aborted
DBk.abort(t)
ws runk ← false

commit WSk(t) // t.site 6= k //
pre≡ (m=〈commit, t〉 in R channelk

∧ statusk(t) = await)∨
(DBk.notify(t, t.WS) = run
∧ statusk(t) = tocommit).

eff≡ if statusk(t) = await then
remove(m) from R channelk

DBk.commit(t)
statusk(t)← committed
ws runk ← false

Figure 6: The state transition system of the basic sequential weak voting protocol

22

begin operation
k
(t, op) // t.site = k //

pre≡statusk(t) = active∧ ¬(ws runk ∧
(type(op) = WRITE∨ t.mode = SER)).

eff≡ statusk(t)← submitted
DBk.submit(t, op)

createk(t) // t.site = k //
pre≡statusk(t) = idle
eff≡ if t.mode = CSI then

statusk(t)← tostart

TO broadcast(〈start, t〉)
else

statusk(t)← active
DBk.begin(t)

receive startk(t)
pre≡m=〈start, t〉 first in TO channelk

∧¬local tocommitk ∧ ¬ws runk

∧ statusk(t) = tostart.
eff≡ remove(m) from TO channelk

if t.site = k then
DBk.begin(t)
statusk(t)← submitted

DBk.submit(t, first op)

Figure 7: Weak voting protocol modifications for CSI and SER level support

in early decision action, transaction status will have been modified (tocommit) and it will be waiting for
commit. Thus, remote transaction will finally commit (commit WSk(t)) locally in that replica. Otherwise,
theend operation WSk(t, t.ws) for that site becomes enabled and it changes its status toawait, waiting
for the master site decision. The reception of acommit or abort message will enable the corresponding
actions (commit WS or abort WS) and remote transaction will finally either commit or abort in that
replica. In both actions, the writeset application processfinishes and other writesets must be allowed to be
applied into the database (ws runk ← false).

6.1.2 Multiple Isolation Levels

The proposed protocol is able to satisfy by default the GSI level, given that all transactions are atomically
committed at all sites and their commit is totally ordered. In order to provide higher isolation level, such
as CSI or serializable, some simple modifications for restricting the protocol operation can be included.

In order to obtain a serializable level, transaction readsets must not intersect with the writesets of
other transactions committed previously, as it was pointedin Section 2.3. When a transaction requires a
serializable environment (t.mode = SER), read operations must be considered as write operations in order
to guarantee the isolation level. Therefore, we need to avoid submitting read operations to the database if a
writeset is just being applied by modifying the precondition of thebegin operationk(t, op) action.

It is important to remark that the proposed protocol only sends the actual writeset, without including
the readset in the SER mode, to the rest of the sites. The priceto pay for avoiding the readset propagation
in the SER mode is to wait for the decision message, i.e. it needs a weak voting mechanism based on
two message rounds: a total order message round with the writesets and another reliable message round
with the final decision to commit or abort. This weak voting mechanism also avoids the use of agarbage
collectorsince it is not necessary to keep a log with the writesets of transactions that committed previously.

On the other hand, a CSI transaction isolation level may be achieved by usingstartpoints in the transac-
tions. Thesestart points guarantee that, when a transaction begins its execution, it has seen all the changes
applied in the system before that point. Thus, the protocol must be modified in order to obtain CSI level
when required, including a new action calledreceive startk(t) and also minor changes in thecreatek(t)
action, as seen in Figure 7.

If a CSI level is established for the transaction, astart message must be broadcast to all the replicas at
its beginning, using a total order primitive. Afterward, the transaction must remain blocked (statusk(t) =
tostart), preventing new operations from being submitted to the local database, until the reception of the
start message, inreceive startk(t), in order to guarantee that transaction is going to see the latest database
snapshot and therefore ensuring the CSI level. Otherwise, in GSI or serializable mode, the transaction can
start straight away its reading and writing phase.

6.1.3 Discussion

As seen before, the protocol presented in this Section is a weak voting replication protocol which fol-
lows the eager-update-everywhere strategy. Thus, transactions are locally executed and then changes are
propagated before committing, following a ROWAA approach.All changes performed in the database are

23

grouped in a writeset and delivered to the rest of the sites using a total order broadcast delivery. Local
conflicting transactions are aborted to ensure a correct writeset application, and no other local transaction
or remote writeset application is allowed to interact with the database. After its successful application, a
reliable delivery of a commit or abort message from its master site will decide whether the transaction must
commit or however abort.

Whilst most existing protocols are only able to provide a single isolation level (usually GSI with
database replicas supporting CSI level), this replicationprotocol offers a greater flexibility to applications
since it can operate with different isolation levels to transactions (GSI, CSI and SER) in a very simple way.
This protocol does not need the use of certification and hencethere is no need of using a garbage collector.
Moreover, it is not necessary to propagate the readsets to provide serial execution, as needed when using
other mechanism such as certification.

However, this initial approximation is fairly inefficient.Transactions are committed sequentially and it
does not allow local transaction to operate while a writesetis being applied in the database. Besides, since
local conflicting transactions must be aborted in order to apply successfully a writeset, it is necessary to call
costly database methods so as to obtain the conflicting candidates. Thus, this protocol provides very poor
concurrency and therefore system performance becomes fairly degraded. Moreover, this protocol does not
guarantee the referential integrity nor the system consistency, since it only takes care of resolving isolation
conflicts between transactions, what actually limits its practical application.

6.2 Enhanced Weak Voting Protocol with Block Detection

In essence, the protocol presented in the previous Section is quite pessimistic, as pointed out just above.
On one hand, writesets received from a remote site are applied one after another in each database replica.
On the other hand, this protocol avoids that the remote writesets become blocked by local transactions,
disabling for that purpose potential conflicting local transactions’ access to the database. The main ob-
jective of the proposed protocol is simply to show that it is possible to achieve the three isolation levels
considered (GSI, SI and SER) with the very same protocol. However, due to its pessimistic nature, the
expected performance is quite poor. Nevertheless, severaloptimizations can be taken into account in order
to improve significantly its performance.

The first proposed protocol includes a deadlock prevention schema in order to avoid that transactions
become blocked in the local database replicas. An initial improvement of this protocol is to consider the
replacement of this deadlock prevention mechanism with a detection mechanism as the one stated in [29]
that has been successfully applied in several works with satisfying results [56].

This mechanism is based on a block detection mechanism that uses the concurrency control support of
the underlying DBMS. Thereby, the middleware is enabled to provide a row-level control (as opposed to the
usual coarse-grained table control), while all transactions (even those associated to remote writesets) are
subject to the underlying concurrency control support. Theblock detection mechanism looks periodically
for blocked transactions in the DBMS metadata (e.g., in thepg locks view of the PostgreSQL system
catalogue). It returns a set of pairs consisting of the identifiers of the blocked and blocking transactions
and the replication protocol will decide which one must abort. In the following, we describe the necessary
modifications for including this mechanism in the basic replication protocol.

6.2.1 Protocol Description

The required modifications of the protocol in order to work with a block detector are minimal regarding the
original approach that tries to avoid blocking situations.Lines related with the block prevention must be
replaced with the appropriated actions for dealing with blocks notified by the block detection mechanism.
Thus, in theexecute WSk(t) action, the operations for aborting all possible conflicting transactions before
submitting a remote writeset disappear. We do not need this time to make a database call in order to get the
existing transactions that conflicts with the writeset to besubmitted (getConflictsk(t.ws)).

Instead of this, we need a new action calledblock detectionk(t, t′). This action permits addressing
issues related with blocking situations caused in the database. The block detector mechanism will notify
the protocol automatically whenever a conflict is detected in the local database (DBk.blockDetector())
and then the protocol will decide which transactions must abort and which not.

24

Signature:
{∀ k ∈ N, t ∈ T, m ∈ M, op ⊆ OP : createk(t), end operation

k
(t, op), begin operation

k
(t, op),

begin commit
k
(t), to commitk(t), end commitk(t), discardk(t, m), early decision

k
(t),

execute WSk(t), end operation WS
k
(t, ws), local abortk(t), commit WSk(t), abort WSk(t)

reexecute WSk(t), block detectionk(t, t′)}
States:
∀ k ∈ N, t ∈ T : statusk(t) ∈ {idle, active, submitted, pre commit, await, tocommit, committed, aborted},

initially statusk(t) = idle
∀ k ∈ N : TO channelk ⊆ {m : m = 〈ws, t〉 ∀t ∈ T}, initially TO channelk = ∅
∀ k ∈ N : R channelk ⊆ {m : m = 〈commit, t〉 or m = 〈abort, t〉 ∀t ∈ T}, initially R channelk = ∅
∀ k ∈ N : local tocommitk : boolean, initially local tocommitk = false
∀ k ∈ N : ws runk : boolean, initially ws runk = false

Transitions:
createk(t) // t.site = k //
pre≡statusk(t) = idle
eff≡ statusk(t)← active

DBk.begin(t)

begin operation
k
(t, op) // t.site = k //

pre≡statusk(t) = active∧ ¬(ws runk ∧ type(op)=WRITE)
eff≡ statusk(t)← submitted

DBk.submit(t, op)

end operation
k
(t, op) // t.site = k //

pre≡statusk(t) = submitted∧ DBk.notify(t, op) = run
eff≡ statusk(t)← active

begin commit
k
(t) // t.site = k //

pre≡statusk(t) = active
eff≡ t.WS ← DBk.WS(t)

if t.WS = ∅ then
statusk(t)← committed
DBk.commit(t)

else
statusk(t)← pre commit
TO broadcast(〈writeset, t〉)

to commitk(t) // t.site = k //
pre≡m=〈writeset, t〉 first in TO channelk ∧ ¬ws runk

∧¬local tocommitk ∧ statusk(t) = pre commit
eff≡ remove(m) from TO channelk

statusk(t)← tocommit
local tocommitk ← true
R broadcast(〈commit, t〉)

end commitk(t) // t.site = k //
pre≡statusk(t) = tocommit

∧m=〈commit, t〉 in R channelk
eff≡ remove(m) from R channelk

statusk(t)← committed
DBk.commit(t)
local tocommitk ← false

local abortk(t, op) // t.site = k //
pre≡statusk(t) = submitted∧ DBk.notify(t, op) = abort
eff≡ statusk(t)← aborted

discardk(t, m)
pre≡statusk(t) = aborted∧m=〈., t〉 ∈ anychannelk
eff≡ remove(m) from correspondingchannelk

execute WSk(t) // t.site 6= k //
pre≡m=〈writeset, t〉 first in TO channelk ∧ ¬ws runk

∧¬local tocommitk ∧ statusk(t) ∈ {idle, tocommit}.
eff≡ remove(m) from TO channelk

DBk.begin(t)
DBk.submit(t, t.WS)
if statusk(t) = idle then

statusk(t)← submitted
ws runk ← true

reexecute WSk(t) // t.site 6= k //
pre≡DBk.notify(t, t.WS) = abort
eff≡DBk.submit(t, t.WS)

end operation WS
k
(t) // t.site 6= k //

pre≡DBk.notify(t, t.WS) = run ∧ statusk(t) = submitted
eff≡ statusk(t)← await

early decision
k
(t) // t.site 6= k //

pre≡m=〈., t〉 in R channelk ∧ statusk(t) = idle
eff≡ remove(m) from R channelk

if m = 〈abort, t〉 then statusk(t)← aborted
else ifm = 〈commit, t〉 then statusk(t)← tocommit

abort WSk(t) // t.site 6= k //
pre≡m=〈abort, t〉 in R channelk

∧ statust(k) ∈ {await, submitted}
eff≡ remove(m) from R channelk

statusk(t)← aborted
DBk.abort(t)
ws runk ← false

commit WSk(t) // t.site 6= k //
pre≡ (m=〈commit, t〉 in R channelk ∧ statusk(t) = await)∨

(DBk.notify(t, t.WS) = run ∧ statusk(t) = tocommit)
eff≡ if statusk(t) = await then

remove(m) from R channelk
DBk.commit(t)
statusk(t)← committed
ws runk ← false

block detectionk(t, t′)
pre≡ t→ t′ ∈ DBk.blockDetector() ∧ t.site 6= k

∧ t′.site = k ∧ statusk(t) ∈ {submitted, tocommit}
eff≡DBk.abort(t′)

if statusk(t′) = pre commit then R broadcast(〈abort, t′〉)
statusk(t′)← aborted

Figure 8: The state transition system of the enhanced sequential weak voting protocol

25

However, we do not need to deal with any block that may arise inthe local databases of a replicated
system. Only block situations involving remote transactions with local transactions must be considered.
The protocol must guarantee that remote transactions are finally applied. Thus, when a local transaction
blocks a remote one (t.site 6= k ∧ t′.site = k), the local transaction must be aborted in order to guarantee
that the remote one makes progress. If the transaction has reached thepre commit state, and therefore
writeset has been already sent to all sites, it is necessary to broadcast anabort message (< abort, t′ >) in
order to abort the transaction execution at all sites. Blocks between local transactions are not considered
in this action. We let them be resolved as each local DBMS considers appropriate. Note that only local
transactions that have not reached thepre commit state may become blocked themselves and therefore
their resolution does not matter to the replication algorithm. Blocks between remote transaction may never
happen since remote writesets are sequentially submitted to the database and therefore there is no need to
worry about them.

We do not make any considerations about the internals of the database replicas. Therefore, a remote
transaction submitted to a local database may abort by a local deadlock with operations from other local
transactions exiting in the database depending on how it is planned. We a writeset is applied we do not
allow other operations to be submitted to the database. However, existing operations from local transactions
may have not been yet planned by the database and therefore unexpected situations may arise. Thus, if a
transaction associated to a remote writeset is aborted, then it will be necessary to reattempt to apply the
writeset in the database until succeed (reexecute WSk(t)). This is necessary to enforce that when a remote
writeset is submitted to the local database, it will finally be applied in order to guarantee the transaction
atomicity globally.

6.2.2 Discussion

The main improvement of this protocol is the block detectionmechanism. This detection mechanism
allows remote writesets to be directly submitted to the database replicas without worrying about checking
anything in the database. Conflicts with existing transactions will not be prevented and instead they are
detected on the fly. This reduces the protocol overhead, since unnecessary calls to database primitives are
avoided when there is no conflicting local transaction. The block detector notifies the replication protocol
when two transactions become blocked and therefore it interacts with the database only when it is strictly
necessary, i.e. when a blocking situation occurs.

The use of this detection mechanism is not a problem for achieving multiple isolation levels. In fact,
the same modifications proposed in Section 6.1.2 are also suitable for this case since its operation has no
influence on the necessary modifications.

However, transactions are still submitted sequentially tothe local replicas. This becomes a mayor
drawback when the system load increases as it limits its multiprogramming level. Thus, in order to increase
its performance when working with heavy loads of transactions, we should increase its concurrency level
by allowing different transactions to be submitted to the database.

6.3 Enhanced Concurrent Weak Voting Protocol

The inclusion of the block detector mechanism in the previous protocol enhances its performance since
reduces overhead related to communication with DBMS internals. However, as pointed out before, trans-
actions are executed sequentially in the local database replicas and this becomes a burden on protocol
performance when working with heavy loads. Thus, allowing several transactions to be executed concur-
rently in a local replica would increase the throughput of the replicated system.

Local transactions can run concurrently among them with no problem since local conflicting situations
are resolved locally and do not affect to the rest of the replicas. Nevertheless, we have to be careful with
the remote writesets submission. In order to keep data consistency among the replicas, conflicting writesets
must be applied in the same order in all the sites. This applies to both remote writesets and local writesets
of transactions that have request the commit. Thus, conflicting writesets must be applied in a row, one at
a time. However, non-conflicting writesets can be concurrently submitted to the database. To that end, it
is only necessary to keep a log with the writesets submitted to the database and not yet committed. This
allows to check in advance whether there is any conflicting transaction and if that is not the case transaction

26

may be progress concurrently in the local replica. If a transaction associated to a remote writeset is aborted,
then it will be necessary simply to reattempt to apply the writeset in the database until succeed. In any case,
it is very important to ensure that transactions finally commit in the very same order that the total order
broadcast establishes since otherwise inconsistencies may arise in the replicated system.

6.3.1 Protocol Description

The deadlock detection mechanism introduced in the previous protocol, not only avoids performance over-
load but also allows local transactions to be concurrently executed with writesets applications. This implies
a higher degree of concurrency and therefore a better performance. If a transaction associated to a remote
writeset is aborted, then simply it will be necessary to reattempt to apply the writeset in the database until
succeed (reexecute WSk(t)).

In order to apply a remote writeset concurrently to other transactions, we must ensure that there is
no conflicting transaction in the database. Thus, it is necessary to keep track of writesets received in
total order through a list of writesets (WS submitted), either from local transactions intending to commit
or remote writesets submitted to the database. In both cases, there must be no conflicting transaction
(t.WS ∩WS submitted = ∅) so as to process the writeset in the corresponding action,to commit for
writesets from local transactions andexecute WS.

The list of writesets must be conveniently handle whenever either a writeset message is processed,
including the received writeset (WS submitted←WS submitted∪ t.WS) or whenever a transaction fi-
nally commits or aborts, removing the corresponding writeset from it (WS submitted←WS submitted−
t.WS). This allows to keep an updated list of the writesets from transactions that should finally commit,
unless their master site decides to abort. So, other writesets may run concurrently in the local database,
after checking whether they conflict with existing transactions that should commit or not. Notice that it
is not necessary to worry about local transactions that are performing operations (not yet trying to com-
mit) since they will be aborted when a conflict with a remote transaction is detected by the block detector
(block detectionk(t, t′)).

Finally, it is of vital importance that transactions commitits changes in all replicas in the same order so
as to guarantee the consistency of the system. This is guaranteed thanks to the total order broadcast of the
writeset messages, that sets the order in which transactions should commit in all the replicas to keep data
consistency. In this protocol, we allow several transactions to be submitted and be running concurrently
in a local replica. When concurrent transactions applies changes according to their respective remote
writesets, they may finish their application in a different order from the sequence established by the total
order delivery. Therefore, we use a sequence of transactionidentifiers (sq commit) that keeps the order in
which writeset messages are received. Later, transactionsare only allowed to commit, after applying their
changes, when they are the first in that sequence (〈t〉 first in sq commit). This ensures that concurrent
transactions finally commit in the very same order in which the total order delivery established for all the
sites.

6.3.2 Discussion

The concurrent version of the protocol provides a greater performance specially when higher loads of trans-
actions are submitted to the replicated system. Thus, allowing non-conflicting transactions to be executed
concurrently increases the concurrency level and therefore system throughput becomes increased.

In this case, in order to achieve multiple isolation levels minor changes in the modifications for CSI
and SER level support proposed in Section 6.1.2 are required. We may use the same modifications, but
instead of the local variables used to control the access to the local database replicas (local tocommitk and
ws runk) when astart message is received (receive startk(t)), we only need to wait on the commit of
the transactions submitted to database. Considering the local variables used in this last protocol, this would
imply wait until the list of writesets submitted to the database becomes empty (WS submittedk = ∅).
Thus, we ensure that the transaction waiting for the start message will see the latest changes performed in
the database when it begins its operations.

27

Signature:
{∀ k ∈ N, t ∈ T, m ∈ M, op ⊆ OP : createk(t), end operation

k
(t, op), begin operation

k
(t, op),

begin commit
k
(t), to commitk(t), end commitk(t), discardk(t), ahead decisionk(t),

execute WSk(t), end operation WS
k
(t, ws), local abortk(t), commit WSk(t), abort WSk(t)

reexecute WSk(t), block detectionk(t, t′)}
States:
∀ k ∈ N, t ∈ T : statusk(t) ∈ {idle, active, submitted, pre commit, await, tocommit, committed, aborted},

initially statusk(t) = idle
∀ k ∈ N : TO channelk ⊆ {m : m = 〈ws, t〉 ∀t ∈ T}, initially TO channelk = ∅
∀ k ∈ N : R channelk ⊆ {m : m = 〈commit, t〉 or m = 〈abort, t〉 ∀t ∈ T}, initially R channelk = ∅
∀ k ∈ N : sq commitk ⊆ {t ∀t ∈ T}, initially sq commitk = ∅
∀ k ∈ N : WS submittedk ⊆ {t.WS ∀t ∈ T}, initially WS submittedk = ∅

Transitions:
createk(t) // t.site = k //
pre≡statusk(t) = idle
eff≡ statusk(t)← active

DBk.begin(t)

begin operation
k
(t, op) // t.site = k //

pre≡statusk(t) = active
eff≡ statusk(t)← submitted

DBk.submit(t, op)

end operation
k
(t, op) // t.site = k //

pre≡statusk(t) = submitted∧ DBk.notify(t, op) = run
eff≡ statusk(t)← active

begin commit
k
(t) // t.site = k //

pre≡statusk(t) = active
eff≡ t.WS ← DBk.WS(t)

if t.WS = ∅ then
statusk(t)← committed
DBk.commit(t)

else
statusk(t)← pre commit
TO broadcast(〈writeset, t〉)

to commitk(t) // t.site = k //
pre≡m=〈writeset, t〉 first in TO channelk

∧ statusk(t) = pre commit
∧ t.WS ∩WS submittedk = ∅

eff≡ remove(m) from TO channelk
statusk(t)← tocommit
WS submittedk ← WS submittedk ∪ t.WS

sq commitk ← sq commitk.〈t〉
R broadcast(〈commit, t〉)

end commitk(t) // t.site = k //
pre≡m=〈commit, t〉 in R channelk ∧

statusk(t) = tocommit ∧ 〈t〉 first in sq commitk

eff≡ remove(m) from R channelk
remove(〈t〉) from sq commitk

WS submittedk ← WS submittedk − t.WS

statusk(t)← committed
DBk.commit(t)

local abortk(t, op) // t.site = k //
pre≡statusk(t) = submitted∧ DBk.notify(t, op) = abort
eff≡ statusk(t)← aborted

discardk(t)
pre≡statusk(t) = aborted∧m=〈., t〉 ∈ anychannelk
eff≡ remove(m) from correspondingchannelk

execute WSk(t) // t.site 6= k //
pre≡m=〈writeset, t〉 first in TO channelk

∧ statusk(t) ∈ {idle, tocommit}
∧ t.WS ∩WS submittedk = ∅

eff≡ remove(m) from TO channelk
DBk.begin(t)
DBk.submit(t, t.WS)
WS submittedk ← WS submittedk ∪ t.WS

sq commitk ← sq commitk.〈t〉
if statusk(t) = idle then statusk(t)← submitted

reexecute WSk(t) // t.site 6= k //
pre≡DBk.notify(t, t.WS) = abort
eff≡DBk.submit(t, t.WS)

end operation WS
k
(t) // t.site 6= k //

pre≡DBk.notify(t, t.WS) = run ∧ statusk(t) = submitted
eff≡ statusk(t)← await

early decision
k
(t) // t.site 6= k //

pre≡m=〈., t〉 in R channelk ∧ statusk(t) = idle
eff≡ remove(m) from R channelk

if m = 〈abort, t〉 then statusk(t)← aborted
else ifm = 〈commit, t〉 then statusk(t)← tocommit

abort WSk(t) // t.site 6= k //
pre≡m=〈abort, t〉 in R channelk

∧ statust(k) ∈ {await, submitted}
eff≡ remove(m) from R channelk

remove(〈t〉) from sq commitk

WS submittedk ← WS submittedk − t.WS

statusk(t)← aborted
DBk.abort(t)

commit WSk(t) // t.site 6= k //
pre≡ (m=〈commit, t〉 in R channelk ∧ statusk(t) = await)∨

(DBk.notify(t, t.WS) = run ∧ statusk(t) = tocommit)
∧ 〈t〉 first in sq commitk

eff≡ if statusk(t) = awaitthen
remove(m) from R channelk

remove(〈t〉) from sq commitk

WS submittedk ← WS submittedk − t.WS

statusk(t)← committed
DBk.commit(t)

block detectionk(t, t′)
pre≡ t→ t′ ∈ DBk.blockDetector() ∧ t.site 6= k

∧ t′.site = k ∧ statusk(t) ∈ {submitted, tocommit}
eff≡DBk.abort(t′)

if statusk(t′) = pre commit then R broadcast(〈abort, t′〉)
statusk(t′)← aborted

Figure 9: The state transition system of the enhanced concurrent weak voting protocol

28

7 Conclusions

7.1 Summary

In this paper, we study ROWA protocols for database replication, where each replica uses a DBMS pro-
viding CSI isolation level. Other works have proved that ROWA replication protocols can not achieve the
1C-CSI isolation level unless they do block the beginning oftransactions until they get the latest system
snapshot. This potential blocking of transactions is a great drawback for its main advantage of non-blocking
executions of read operations.

This is the main reason for introducing GSI in database replication scenarios. This paper establishes
that the sufficient condition for obtaining a 1C-GSI consistency level is ensuring that transactions commit
in the same total order in all replicas. All the properties that have been formalized in our paper seem to
be assumed in some previous works, but none of them carefullyidentified nor formalized such properties.
So, we have provided a solid theoretical basis for designingand developing replication protocols with GSI,
and also some assumptions that may ease the implementation of replication protocols.

As a result, we have also proposed a database replication protocol based on a middleware architecture
that is able to support different degrees of isolation (CSI,GSI and SER) on top of DBMSs supporting CSI.
This provides a great flexibility in the application development process. Its main advantage is that it does
not need a certification process but a weak voting one. This fact represents a novelty over CSI replicas,
since it usually reduces the abortion rate and avoids the drawbacks certification presents, such as keeping
track of its log. Since the original proposed protocol is rather pessimistic, we have also pointed out other
enhanced protocols which include some optimizations for increasing the performance.

7.2 Future Lines

This paper has revisited some well-known ideas related to isolation levels of replicated databases and we
have made the proof of one of these replicated isolation: the1C-GSI level. All this work has brought out
new questions that may serve as the guideline for future research.

We have worked with a concept of serializability achieved bya dynamic rule that as said before it seems
to be more restrictive than the strict serializable level. Thus, it would be interesting to study formally which
is the relationship of the strict serializable level with the ones presented in this paper.

Besides, using many of the explained concepts, we have proposed a set of protocols that are able to
provide theorically different isolation levels. It is necessary however to make their correctness proofs to
ensure that they work as were defined.

Another future line of work should be implement these protocols over an existing middleware archi-
tecture and test their performance not only among them, but also with other replication mechanism not
based on a weak voting approach. For this purpose, it will be necessary to develop new replication proto-
cols based on other replication techniques such as certification and study how this kind of protocols may
provide different isolation levels in order to be able to compare with the ones proposed in this work.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman,Concurrency Control and Recovery in Database
Systems. Addison Wesley, 1987.

[2] S. Elnikety, F. Pedone, and W. Zwaenopoel, “Database replication using generalized snapshot isola-
tion.,” in SRDS, IEEE-CS, 2005.

[3] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris, “Middleware based data replication
providing snapshot isolation.,” inSIGMOD Conference, 2005.

[4] J. R. G. de Mendı́vil, J. E. Armendáriz, F. D. Muñoz, L. Irún, J. R. Garitagoitia, and J. R. Juárez,
“Non-blocking ROWA Protocols Implement GSI Using SI Replicas,” Tech. Rep. ITI-ITE-07/10, ITI,
2007.

29

[5] C. Plattner, G. Alonso, and M. Tamer-Özsu, “Extending DBMSs with satellite databases,”VLDB J.,
2006.Accepted for publication.

[6] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha, “The dangers of replication and a solution.,” in
SIGMOD Conference(H. V. Jagadish and I. S. Mumick, eds.), pp. 173–182, ACM Press, 1996.

[7] M. Stonebraker, “Concurrency control and consistency of multiple copies of data in distributed in-
gres.,”IEEE Trans. Software Eng., vol. 5, no. 3, pp. 188–194, 1979.

[8] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann, “Using optimistic atomic broadcast
in transaction processing systems.,”IEEE Trans. Knowl. Data Eng., vol. 15, no. 4, pp. 1018–1032,
2003.

[9] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, “Understanding replication in
databases and distributed systems.,” inICDCS, pp. 464–474, 2000.

[10] M. J. Carey and M. Livny, “Conflict detection tradeoffs for replicated data.,”ACM Trans. Database
Syst., vol. 16, no. 4, pp. 703–746, 1991.

[11] K. Petersen, M. Spreitzer, D. B. Terry, M. Theimer, and A. J. Demers, “Flexible update propagation
for weakly consistent replication.,” inSOSP, pp. 288–301, 1997.

[12] J. Sidell, P. M. Aoki, A. Sah, C. Staelin, M. Stonebraker, and A. Yu, “Data replication in mariposa.,”
in ICDE (S. Y. W. Su, ed.), pp. 485–494, IEEE-CS, 1996.

[13] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi, “Exploiting atomic broadcast in replicated
databases,”LNCS, vol. 1300, pp. 496–503, 1997.

[14] Y. Amir and C. Tutu, “From total order to database replication.,” in ICDCS, pp. 494–503, 2002.

[15] J. Holliday, R. C. Steinke, D. Agrawal, and A. E. Abbadi,“Epidemic algorithms for replicated
databases.,”IEEE Trans. Knowl. Data Eng., vol. 15, no. 5, pp. 1218–1238, 2003.

[16] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-R, a new way to implement
database replication.,” inVLDB (A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, eds.), pp. 134–143, Morgan Kaufmann, 2000.

[17] B. Kemme and G. Alonso, “A new approach to developing andimplementing eager database replica-
tion protocols.,”ACM Trans. Database Syst., vol. 25, no. 3, pp. 333–379, 2000.

[18] S. Wu and B. Kemme, “Postgres-R(SI): Combining replicacontrol with concurrency control based
on snapshot isolation.,” inICDE, pp. 422–433, IEEE-CS, 2005.

[19] C. Amza, A. L. Cox, and W. Zwaenepoel, “Distributed versioning: Consistent replication for scaling
back-end databases of dynamic content web sites.,” inMiddleware(M. Endler and D. C. Schmidt,
eds.), vol. 2672 ofLecture Notes in Computer Science, pp. 282–304, Springer, 2003.

[20] J. Armendáriz, J. González de Mendı́vil, and F. Muñoz-Escoı́, “A lock-based algorithm for concur-
rency control and recovery in a middleware replication software architecture.,” inHICSS, p. 291a,
IEEE-CS, 2005.

[21] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “C-JDBC:Flexible database clustering middleware.,”
in USENIX Annual Technical Conference, FREENIX Track, pp. 9–18, USENIX, 2004.

[22] J. Esparza-Peidro, F. Muñoz-Escoı́, L. Irún-Briz, and J. Bernabéu-Aubán, “Rjdbc: a simple database
replication engine,” inProc. of the 6th Int’l Conf. Enterprise Information Systems(ICEIS’04), 2004.

[23] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso, “Improving the scalability of fault-
tolerant database clusters.,” inICDCS, pp. 477–484, 2002.

30

[24] F. Muñoz-Escoı́, L. Irún-Briz, P. Galdámez, J. Bernabéu-Aubán, J. Bataller, and M. Bañuls, “Glob-
Data: Consistency protocols for replicated databases.,” in YUFORIC’2001, pp. 97–104, IEEE-CS,
2001.

[25] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso, “Scalable replication in database
clusters.,” inDISC(M. Herlihy, ed.), vol. 1914 ofLecture Notes in Computer Science, pp. 315–329,
Springer, 2000.

[26] C. Plattner and G. Alonso, “Ganymed: Scalable replication for transactional web applications.,” in
Middleware(H.-A. Jacobsen, ed.), vol. 3231 ofLecture Notes in Computer Science, pp. 155–174,
Springer, 2004.

[27] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P.Vicente, “The globdata fault-tolerant repli-
cated distributed object database.,” inEurAsia-ICT, vol. 2510 ofLNCS, pp. 426–433, Springer, 2002.

[28] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt, “Fas - a freshness-sensitive coordination middleware
for a cluster of olap components.,” inVLDB, pp. 754–765, 2002.

[29] F. D. Muñoz, J. Pla, M. I. Ruiz, L. Irún, H. Decker, J. E.Armendáriz, and J. R. G. de Mendı́vil,
“Managing transaction conflicts in middleware-based database replication architectures,” inSRDS,
pp. 401–410, IEEE-CS, 2006.

[30] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant broadcasts and related problems,”
Tech. Rep. TR94-1425, Dep. of Computer Science, Cornell University, Ithaca, New York (USA),
1994.

[31] G. Chockler, I. Keidar, and R. Vitenberg, “Group communication specifications: a comprehensive
study.,”ACM Comput. Surv., vol. 33, no. 4, pp. 427–469, 2001.

[32] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. Alonso, “Database replication techniques:
A three parameter classification,” inSRDS, pp. 206–217, 2000.

[33] M. Wiesmann and A. Schiper, “Comparison of database replication techniques based on total order
broadcast.,”IEEE TKDE., vol. 17, no. 4, pp. 551–566, 2005.

[34] F. Pedone,The database state machine and group communication issues (Thèse N. 2090). PhD thesis,
École Polytecnique Fédérale de Lausanne, Lausanne, Switzerland, 1999.

[35] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil, “A critique of ansi sql
isolation levels.,” inSIGMOD Conference, pp. 1–10, 1995.

[36] K. Daudjee and K. Salem, “Lazy database replication with snapshot isolation.,” inVLDB (U. Dayal,
K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and Y.-K. Kim,
eds.), pp. 715–726, ACM, 2006.

[37] J. E. Armendáriz-́Iñigo, J. R. Juárez-Rodrı́guez, J. R. González de Mendı́vil, H. Decker, and F. D.
Muñoz-Escoı́, “k-Bound GSI: A flexible database replication protocol,” inSAC ’07: Proceedings of
the 2007 ACM symposium on Applied computing, vol. 1, (New York, NY, USA), pp. 556–560, ACM
Press, 2007.

[38] J. Juárez, J. Armendáriz, J. G. de Mendı́vil, F. Muñoz-Escoı́, and J. Garitagoitia, “A weak voting
database replication protocol providing different isolation levels,” inNOTERE’07: Proceeding of the
7th International Conference on New Technologies of Distributed Systems, 2007.

[39] J. Melton and A. R. Simon,Understanding the New SQL: A Complete Guide. M. Kaufmann, 1993.

[40] ANSI. Database Language, ANSI Document X3.135-1992, November, 1992.

[41] A. Fekete, E. J. O’Neil, and P. E. O’Neil, “A read-only transaction anomaly under snapshot isolation.,”
SIGMOD Record, vol. 33, no. 3, pp. 12–14, 2004.

31

[42] C. Papadimitriou,The Theory of Database Concurrency Control. Computer Science Press, 1986.

[43] K. Loney and G. Koch,Oracle8i: The Complete Reference (Book/CD-ROM Package). McGraw-Hill
Professional, 2000.

[44] PostgreSQL, “The world’s most advance open source database web site.” Accessible in URL:http:
//www.postgresql.org, 2005.

[45] K. Delaney,Inside Microsoft SQL Server 2000. Redmond, WA, USA: Microsoft Press, 2000.

[46] S. Wu and B. Kemme, “Postgres-r(si): Combining replicacontrol with concurrency control based on
snapshot isolation,”icde, vol. 0, pp. 422–433, 2005.

[47] S. Elnikety, F. Pedone, and W. Zwaenopoel, “Generalized snapshot isolation and a prefix-consistent
implementation,” EPFL-Tech-Rep IC/2004/21, School of Computer and Communication Sciences
(EPFL), Lausanne (Switzerland), Mar. 2004.

[48] S. Elnikety, S. Dropsho, and F. Pedone, “Tashkent: uniting durability with transaction ordering for
high-performance scalable database replication,” inEuroSys ’06: Proceedings of the 2006 EuroSys
conference, (New York, NY, USA), pp. 117–130, ACM Press, 2006.

[49] S. Elnikety, S. Dropsho, and W. Zwaenepoel, “Tashkent+: Memory-Aware Load Balancing and Up-
date Filtering in Replicated Databases,” inEuroSys, 2007.

[50] J. Salas, R. Jimenez-Peris, M. Patino-Martinez, and B.Kemme, “Lightweight reflection for
middleware-based database replication,”srds, vol. 00, pp. 377–390, 2006.

[51] J. E. Armendáriz-́Iñigo, J. R. Juárez-Rodrı́guez, J. R. González de Mendı́vil, H. Decker, and F. D.
Muñoz-Escoı́, “k -bound gsi: A flexible database replication protocol,” in22nd Symposium on Applied
Computing (SAC 2007), Dependable and Adaptive DistributedSystems (DADS), ACM Press, 2007.

[52] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris, “Consistent data replication: Is it
feasible in wans?,” inEuro-Par, pp. 633–643, 2005.

[53] K. Daudjee and K. Salem, “Lazy database replication with snapshot isolation,” inVLDB’2006: Pro-
ceedings of the 32nd international conference on Very largedata bases, pp. 715–726, VLDB Endow-
ment, 2006.

[54] J. Juárez, J. G. de Mendı́vil, J. Garitagoitia, J. Armendáriz, and F. Muñoz-Escoı́, “A middleware
database replication protocol providing different isolation levels,” in PDP’07: Proceedings of the
Work in Progess Session, pp. 7–8, SEA-Publications, 2007.

[55] A. Bartoli, “Implementing a replicated service with group communication.,”Journal of Systems Ar-
chitecture, vol. 50, no. 8, pp. 493–519, 2004.

[56] J. E. Armendáriz,Design and Implementation of Database Replication Protocols in the MADIS Ar-
chitecture. PhD thesis, Universidad Pública de Navarra, 2006.

32

