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Abstract

Recently, several works have taken advantage of a databais¢ion notion suitable for replicated
approaches, called Generalized Snapshot Isolation, tbaides greater performance since read-only
transactions are never blocked nor cause update transa¢tidblock or abort. However, this concept
has not been formally described for replicated environmeritere a logical copy of the system must be
considered in order to study its behavior. In this work, wedgtformally the conditions that guaran-
tee the one-copy equivalent Generalized Snapshot Isol@! in a database replicated systems using
Snapshot Isolation replicas. Some recent protocols bas&hapshot Isolation replicas use a certifying
technique, but this technique requires sending the reaclsgter to achieve a serializable level, what
is prohibitive. Thus, we propose a basic replication protoand some possible enhancements for this
protocol, based on a weak voting technique over replicagigirg snapshot isolation level. This proto-
col and its enhanced versions are able to provide diffesmiaiion levels to transactions submitted by a
database user only using one protocol. Each transactianiied to the database can be executed en-
suring a given isolation level, what provides a great flditipto applications that may demand different
isolation levels for their transactions.

1 Introduction

Database replication over a network such as the Internat isffactive way to cope with site failures.

It increases the system availability and performance bgirgiccopies of the same data at multiple sites
and distributing clients among all available replicas. tdwer, all these advantages do not come for free
since data consistency is somehow sacrificed. It greatlemi#gpon the replication policy followed in
the system. Several correctness criteria [1, 2, 3, 4, 5] een defined for replicated databases. The
strongest, and firstly introduced, is the One-Copy-Semadilie (1CS). It stands for the natural extension of a
centralized serializable Database Management System @Bkheduling of transactions to the replicated
case. The 1C level definition states that the interleavedwian of transactions in a replicated case must
be equivalent to their execution in a centralized serialeaatabase.

Database replication techniques have been classifieddiogdo several parameters [6]. Regarding
to who performs the updates, theimary copy[7] requires all updates to be performed on one copy and
then changes are propagated to the rest of sites; wipidate everywher8] allows to perform updates
at any copy but makes coordination more complex [9]. Comsidehe instant when a transaction update



propagation takes place, we can distinguish betwesger[10] andlazy [11, 12] protocols. In eager
replication schemes, updates are propagated inside thtextaf the transaction. On the other hand,
lazy replication schemes propagate changes to the resiadéble replicas after the commitment of the
transaction. Data consistency is straightly forward byesagplication techniques although it requires
extra messages. On the contrary, data copies may diverggzgrsthemes and, as there is no automatic
way to reverse committed replica updates, a program or apemaist reconcile conflicting transactions.

In a replicated database system, all replicas may contaith @py of the database, i.e. full replication,
or instead each data item may be stored in a different sulb$leé et of replicas, i.e. partial replication.
As shown in [6], the most effective way to achieve databagkaaion in a fully replicated architecture is
the Read One Write All Available (ROWAA) algorithm, that cbimes eager techniques with the update-
everywhere approach. Transactions are firstly executdueat delegate replicas and the interaction with
the rest of replicas is started when they request the comthdommit time, updates are grouped (denoted
as the writeset of a transaction) and sent to the rest ofablaileplicas.

The implementation of database replication systems hastain approaches. Originally, the DBMS-
core was modified so as to include some communication sugpaitmeans to deal with transactions
coming from remote sites [13, 14, 15, 1, 10, 16, 17, 8, 18]. Elmv, this solution is highly dependent on
the DBMS core used and it is not portable among different DBMB8dors. The alternative approach is
to deploy a middleware architecture that creates an intéiste layer that features data consistency, being
transparent to the final users, isolating the DBMS detailmfthe replication management [19, 20, 21, 22,
23, 3, 24, 25, 26, 27, 28]. This simplifies and provides a diteaibility to the development of replication
protocols. Furthermore, middleware solutions can be raaietl independently of the DBMS and may be
used in heterogeneous systems.

Middleware replication is useful to integrate new replicatunctionalities (availability, fault-tolerance,
etc.) for applications dealing with non-replicated datebgystems when it is not possible to modify their
core. However, middleware solutions often lack scalabditd exhibit a number of consistency and per-
formance issues. The main reason is that in most cases ttilenvimte has to handle the database as a
black box, re-implementing many features provided by theM3 and hence, these approaches cannot
take advantage of many optimizations implemented in thal@deste kernel. Besides, the database schema
has to be extended with standard database features, suaicéiss, triggers, stored procedures, etc. [23],
in order to manage additional metadata that eases replicakhis alternative introduces an overhead that
penalizes performance but permits to get rid of DBMSs’ deleacies. In this work we took the advantage
from our previous works [29] and other middleware architiees providing database replication [3].

Database replication based on group communication systasmdeen proposed as an efficient and
resilient solution for data replication. Protocols basedyooup communication typically rely on a broad-
cast primitive callecatomic[30] or total order [31] broadcast. This primitive ensures that messages are
delivered reliably and in the same order on all replicas.spproach ensures consistency and increases
availability by relying on the communication propertiesagd by the atomic broadcast primitive. The
update propagation using the total order facility avoids dinawbacks of the 2PC protocols [1]. On one
hand, it makes distributed deadlock resolution easier. H@nother hand, combined with eager update-
everywhere protocols based on constant interation [32]a.constant number of messages are exchanged
between sites for a given transaction, it provides a betgfopmance.

A comparison of database replication techniques basedtahaaler broadcast is introduced in [33].
This work compares different techniques that offer the seomsistency criterion (one-copy serializability)
under the assumption that all DBMSs were based on a two pbeked) (2PL) [1] implementation. From
those presented there, the weak-voting [17] and certifinabased [34] techniques, which are specifically
built for database replication, present the best perfooaan

In certification protocols, writesets are total order broest to all the replicas and at their delivery they
are compared with the ones contained in a log that stores tibesets of already committed transactions
in order. If a delivered writeset conflicts with any writegetluded in the log, then the transaction being
certified is aborted and otherwise it will commit. Thus, itasly needed to broadcast (using the total-
order facility) one message and keep a log, as part of thécegjgn protocol. Nevertheless, to provide
serializable executions certification-based algorithmsthpropagate transaction readsets, what is actu-
ally prohibitive. To a lesser extent, the necessity of a ggebcollector in these protocols implies some
additional overhead, since they must keep track of thetifemtion log to avoid its boundless growing.



These drawbacks are avoided with the weak-voting prototisdg do not use certification and hence
there is no need of using a garbage collector. For the sanseme# is not necessary to propagate the
readsets to provide serial execution, as needed when usitifjcation. Certification based protocols
only need a message so that each replica may decide on itsh@xsotmmitment of a transaction. On
the other hand, weak-voting replication protocols reqaineadditional message from the delegate replica
to decide about the outcome of a transaction. This implidgghtgifference in performance regarding
with the certification-based techniques. However, weakngoprotocols present a lower abort rate than
certification-based ones. In certification algorithmsysactions may stay too long in the log until removed
from it when a transaction is known to have committed in ghlieas. Therefore, even if transactions are
executed sequentially, so that there should be no conftinflicts can appear since there may be conflicting
writesets pending their removal from the log.

1.1 Motivation

However, it is important to mention that achieving serialitity in replicated systems presents a major
drawback since it requires DBMSs executing transactionleua strict serializable isolation mode, as 2PL
ones do, what involves blocking read operations. Thus, ogadations may become blocked by write
operations. In the majority of web applications the numbevrite operations are overwhelmed by the set
of read operations performed by a transaction. This make® mibractive the use of DBMSs providing
Snapshot Isolation (SI) [35] where read operations nevarkald rather than traditional serializable ones.
In SI DBMSs, a transaction obtains at the beginning of itscaiien the latest snapshot of the database,
reflecting the writes of all transactions that have comrdiliefore the transaction started. At commit time,
the database checks that the updates preformed by thedtiammsdo not intersect with the updates done by
other transactions since the transaction started (i.eestrobtained its snapshot); this is often denoted as
first-committer-wingule. If there is a non-zero intersection, the transactidhbe rolled back; otherwise,

it will commit.

More recently, it has been studied how to achieve databatieaton when DBMS replicas provide
Sl [36, 2, 3, 29, 18, 5, 37, 38]. From these solutions one cda tiat it is not straightforward to get
the “latest” snapshot version in a distributed setting. 2hif is extended the notion of conventional Sl to
Generalized SI (GSI) where transactions are not enforcéski®’ the latest snapshot version but an older
one. GSI maintains all the interesting properties of cotieaal Sl at the price of a possible increase of
the abortion rate if updates were performed in a v@d/snapshot. GSl is the natural extension of Sl to a
replicated setting where the read operations of a trarmaogver block in order to obtain One-Copy-GSI
(1CGSI) schedulers. Non-blocking ROWAA protocols supipgrtlCGSI will give as the snapshot of a
transaction the one gotten at its delegate replica.

At commit time, it can be followed a certification process [#Etty similar to thefirst-committer-
wins rule, where a given (or all, for a distributed certificatioropess) replica stores a log of certified
transactions just to perform tHest-committer-wingule, i.e. the intersection between the writeset of the
already delivered transaction and previously, but corentrio the previous one, certified transactions must
be non-empty. All these aspects have been thoroughly disduis [4, 2] as well as together with the
impossibility of deriving a One-Copy-SI (1CSl) without lsking the start of transactions, i.e. just to get
the latest snapshot version at the start of the transaction.

Most protocols are only able to provide a single isolatioreleHowever, we propose a database repli-
cation protocol for a middleware architecture that offensam more flexibility to applications, providing
different isolation levels to transactions: GSI, CS| andadizable (SER). Generally, the different levels
featured depend on: the transaction isolation level pedigy the underlying DBMS; the ordering of com-
mit operations at all nodes; and, the starting point of atiens [4]. We consider CSI replicas since most
database vendors provides this isolation level by def@ult.protocol does not need the use of certification,
hence there is no need of using a garbage collector. For the ssason, it is not necessary to propagate
the readsets to provide serial execution, as needed wheg caitification. This protocol is a weak voting
replication protocol which is, up to our knowledge, the fipabtocol proposed in this way.



1.2 Contributions and Outline
The contributions of this paper are as follows:

e Formal study of the conditions that guarantee the one-cqpwalent Generalized Snapshot Isola-
tion (1C-GSI) level in database replicated systems.

e Presentation of a formal system model for developing middle-based replication protocols, using
state transition systems in order to describe the operaficgplication protocols;

o A brief analysis of the current state of the art in databapdication protocols based on snapshot
isolation replicas; and

¢ Introducing a weak voting replication protocol providinifferent isolation levels over CSl replicas,
including some possible optimizations to increase itsqrarhince.

The remainder of this paper is organized as follows: Se@iantroduces some preliminaries and the
concept of Generalized Snapshot Isolation. Section 3dnuires the conditions for the One Copy Gen-
eralized Snapshot Isolation for ROWAA protocols. Sectigordsents a discussion about recent database
replication protocol proposals over Snapshot Isolatiglicas. Section 5 presents the database system
model and necessary definitions. In Section 6, we proposeai-wating replication protocol providing
different isolation levels and some enhancements fromatscooperation. Finally, Section 7 presents the
conclusions and future research directions.

2 Generalized Snapshot Isolation

ANSI SQL-92 [39, 40] defines several isolation levels in terof different phenomena: dirty reads, non-
repeatable reads and phantoms. These ANSI isolation lexetsiticized in [35], since their definitions fail
to characterize several popular isolation levels. Besidasmportant multiversion isolation type, called
Snapshot IsolatioiSl), is also presented in [35]. In this isolation level, lré@nsaction reads data from
asnapshoof the committed data as of the time the transaction stafte8l, transactions hold the results
of their own writes in local memory store [41], i.e transaats writes will be reflected in its snapshot.
So, if they access data they has written a second time, tHege® its own output. When reading from
a snapshot, a transaction sees all the updates done bydtiansathat committed before it started its
first operation, whilst writes performed by other transaict that began after its start time, i.e. writes by
concurrent transactions, are invisible to the transaction

The results of a transaction writes are installed when thest@ction commits. However, a transac-
tion T; will successfully commit if and only if there is not a concemt transactiol¥}, that has already
committed and some of the items written By were also written byl’;. This technique, known d#st-
committer-winsprevents lost updates [35, 2], since when a transactiomiteyits changes become visible
to all transactions that began after its commit time. Someldese implementations do not follow strictly
the first-committer-wins rule, and instead they use a sintlge that is known as thiirst-updater-wins
rule. The ultimate effect is the same in both of them, i.e. ioraone of the concurrent transactions up-
dating the same data item. The main difference resides imwhmee validation is performed. Whilst the
first-committer-wins rule is validated when the transattizants to commit, the first-updater-wins rule is
enforced by checks performed at the time of updating datasi@llowing transactions to be rolled back
earlier (not delaying its abortion until its commit time).

Sl provides a weaker form of consistency than serializgbbiut it never requires read-only transactions
to be blocked or aborted and they do not cause update tramssatd be blocked or aborted, what is an
important fact when working with intensive read applicaso Moreover, it has been recently proved
in [41] that under certain conditions on the workload trantiems executing on a database with S| produce
serializable histories.

Elnikety et al. define in [2] a new concept call&eneralized Snapshot Isolati¢®Sl) level, that
extends the Sl level definition in a manner suitable for wagkin replicated environments. In the con-
ventional notion of snapshot isolation, referred to in thaper asConventional Snapshot Isolati¢@Sl),



each transaction must observe fla¢est snapshot of the database. Unfortunately, working with #te |
est snapshot in a distributed setting is not trivial. It hasrproved that CSI level cannot be obtained in
replicated systems unless blocking protocols are usedderao work with the notion ofatest snapshot,
what limits its application to distributed database syster prove of this impossibility result, initially
mentioned in [2], is provided in [4].

However, in contrast to the CSI, the GSI level allows the uselder snapshots of the database,
facilitating its replicated implementation. A transactimay receive a snapshot that happened in the system
before the time of its first operation (instead of its curremépshot as in CSI). To commit a transaction
it is necessary, as in CSl, that no other update operatioaagfitly committed transactions conflicts with
its update operations. Thus, a transaction can observedan shapshot of the database but the write
operations of the transaction are still valid update openatfor the database at commit time. Many of the
desirable properties of CSI remain also in GSlI, in particukad-only transactions never became blocked
and neither they cause update transaction to block or abort.

In this Section, we are going to formalize the GSI definitibhe GSI level is defined independently of
any replication considerations, just as CSlI, consideringrdralized database system. In order to consider
the GSI notion in a replicated environment, it is necessamnydrk with one-copy equivalent executions.
Thus, in Section 3 conditions that can be imposed on a ROWAAopDl in order to obtain One-Copy
GSI (1C-GSl) are studied. This will facilitate later thedyuof the correctness of the replication protocols
proposed in this work.

2.1 Preliminaries

From our point of view, histories generated by a given corenay control providing snapshot-based iso-
lation levels, such as GSI or CSI, may be interpreted as weufion histories with time restrictions. In
fact, isolation level definitions include the time senselinity and hence it seems that working with trans-
actions’ operations and their times is more suitable thamgysartial orders and graphs. In the following,
we define the concept of multiversion history for transattiosing the theory provided in [1].

A database D B) is a collection of data items, which may be concurrentlyessed by transactions.
A history represents aaverall partial orderingof the different operations executed concurrently within
the contextof their corresponding transactions. A multiversion higtextends the concept of a history by
considering that the database items are versioned.

In order to formalize this definition, each transaction sitted to the system is denoted Hy. A
transaction is a sequence of read and write operations @base items ended by a commit or abort
operatioft. Each7}’s write operation on itemX is denoted a$¥;(X) and a read operation on itefi
asR;(X). Finally, C; and 4, denote thel;’'s commit and abort operation respectively. We assume that
a transaction does not read an iteétmafter it has written it, and each item is read and written asimo
once. Avoiding redundant operations simplifies the pred@nt. The results for this kind of transactions
are seamlessly extensible to more general models and tausphication protocols presented in this work
do not consider this restriction. In any case, redundantagfmas can be removed using local variables in
the planification of the transaction [42].

Each version of a data itedi contained in the database is denotedfywhere the subscript stands for
the transaction identifier that installed that version ia ihnB. Thereadsetandwriteset(denoted byR.S;
andW S; respectively) express the sets of items read (written) wgrestctiori’;. Thus,T; is aread-only
transaction ifi’.S; = () and otherwise it is anpdatetransaction.

We assume in our approach that aborted transactions arg gwimave no effect over generated his-
tories. This is a reasonable assumption since usually a DBM&uces no anomalies when a transaction
aborts. Therefore, in the properties studied in this Saatie are only going to deal with committed trans-
actions for simplicity’s sake. Nevertheless, we will disstthis later in Section 2.4 in a more detailed
way.

LetT = {T1,...,T,,} be a set oEommittedransactions, where the operationslofare totally ordered
by the order<r,. Since aborted transactions are not considered, the lasatign of a transaction execution
should be the commit operation. In order to process operafi@m a transactiofi; € 7', a multiversion

Iwithout losing rigor, sometimes a transaction denotes thisset of operations that contains.



scheduler must translafgé’s operations on data items into operations on specific @essof those data
items. Thatis, there is a functidrnthat maps eaci; (X)) into W;(X;), eachR;(X) into R;(X) for some
T; € T and eaclC; just into C;.

Definition 1. A Complete Committed Multiversion (CCMV) history over ao$étansactiond’ is a partial
order (H, <) such that:

1. there exists a mappirfgsuch thatd = h(Ur, ¢ Ti)

2. <2 Uper =<7
3. IfR7(XJ) € H,: 75 7 thenWj(Xj) S Hande < R7(Xj)

In the previous Definition 1, condition (1) suggests thatheaperation submitted by a transaction is
mapped into an appropriate multiversion operation. Camli2) states that the CCMV history preserves
all orderings stipulated by transactions. Condition (3akkshes that when a transaction reads a concrete
version of a data item, it was written by a transaction thatotted before the item was read.

Definition 1 is more specific than the one stated in [1], sifee former only includes committed
transactions and explicitly indicates that a new versioy mat be read until the transaction that installed
the new version has committed. In the rest of this Sectionpysesthe following conventiongi) T =
{T1, ..., T, } is the set of committed transactions for every defined hystamd(i7) any history is a CCMV
history overT'.

In general, two historie§H, <) and(H’, <’) areview equivalenfl] denotedH = H’, if they contain
the same operations, have the sagads-fronrelations, and produce the same final writes. The notion of
view equivalence of CCMV histories reduces to the simpledition H = H’, if the following reads-from
relation is usedJ; readsX fromT}, in history (H, <), if and only if R;(X;) € H.

As pointed before, the snapshot-based isolation levet$y aa CSI or GSI, include explicitly the time
notion in their definitions and therefore in order to work fwthem it is suitable to use schedules, that
contain simply the occurrence of the operations througle tim

Definition 2. Let (H, <) be a history and: H — Rt a mapping such that it assigns to each operation
op € H its real time occurrencé(op) € R™. The schedulél, of the history( H, <) verifies:

1. ifop,op’ € H andop < op’ thent(op) < t(op’).
2. ift(op) = t(op’) andop, op’ € H thenop = op’'.

The mapping() totally orders all operations dfH, <). Condition (1) states that the total orderis
compatible with the partial ordex. Condition (2) establishes, for sake of simplicity, thetasption that
different operations will have different times.

We are interested in operating with schedules, since itiatgs the work, but only with the ones that
derive from CCMV histories over a concrete set of transasif. One can note that an arbitrary time
labeled sequence of versioned operations, €R).(X;),t1), (W;(Xk),t2) and so on, is not necessarily
a schedule of a history. Thus, we need to put some restrictiormake sure that we work really with
schedules corresponding to possible histories.

Property 1. Let.S; be a time labeled sequence of versioned operations overd sansactionsl’, S; is
a schedule of a history ovér if and only if it verifies the following conditions:

there exists a mappirigsuch thatS = (|, .. T3).

€Ty
if op, op’ € T; andop <7, op’ thent(op) < t(op’) in S;.

if R;(X;) € Sandi # j thenW,(X,) € S andt(C;) < t(R;(X})).

A w0 dp R

if t(op) = t(op’) andop, op’ € S thenop = op'.



The proof of this fact can be inferred trivially. In the folling, we use an aditional conventiogiz)
A scheduleH; is a schedule of a historyf, <).

Note that every schedulé; may be represented by writing the operations in the totadiogd) induced
by t(). We define thécommit time” (¢;) and“begin time” (b;) for each transactioff; € T in a schedule
H,; asc¢; = t(C;) andb; = t(first operation ofT;), holdingb; < ¢; by definition oft() and <7,. We
are going to use these values when working with schedulesdier ¢o represent the time sequence sense,
apart from the operation that involves each value, sincadilifates the comprehension of some aspects
explained in this work.

In the following, we formalize the concept of snapshot of tagabase. Intuitively it comprises the
latest version of each data item. Let us consider the foligwiansactiong’, 7> andT5:

T, = {R1 (X)W1 (X) C1}
Ty = {R2(Z) Rao(X) W2(Y) Ca}
T3 = {Rs3(Y) W5(X) C5}

A sample of a posible schedule of these transactions migtitebfllowing one:
bl R1 (Xo) W1 (Xl) C1 b2 RQ(Z()) b3 R3(Y0) W3 (X3) C3 R2 (Xl) W2 (}/2)62.

As this example shows, each transaction is able to includs snapshot (and read from it) the latest
committed version of each existing item at the time suchsiation was started. Thd$ has read version
1 of item X sinceT; has generated such version and it has already committed Whetarted. But it
only reads versiof of item Z since no update of such item is seeriBy This is true despite transactions
T, andT3 are concurrent ands updatesX beforeT; reads such item, because the snapshot taken for
T, is previous to the commit of 5. This provides the basis for defining what a snapshot is. Far t
purpose, we need to define first the set of installed versibasdata itemX in a scheduled;, as the set
Ver(X,H) ={X;: W;(X,) € H} U {Xo}, beingXj its initial version.

Definition 3. The snapshot of the databaBe3 at timer € R* for a scheduld?; is defined as:
Snapshot(DB, Hy,7) = Jxcpg latestVer(X, Hy, 7)
where the latest version of each itefne DB at timer is the set:
latestVer(X, Hy,7) = {X, € Ver(X,H): (} X € Ver(X,H): ¢, < ¢, < 7)}

From the previous definition, it is easy to show that a snajpishoodified each time an update trans-
action commits. Ifr = ¢,,, and X, € Ver(X, H), thenlatestVer(X, Hy, ¢pm) = {Xm }-

In order to formalize some schedule-related concepts, Wieeaut slight variation of the predicate
impacts presented in [2]. Consider two transactidns?; € 7"

e T; impactsT; on write at timer € R™ in a scheduled;, denotedl’; w_impactsT; at 7, if the
following predicate holdsiWW.S; N WS; # 0 A 7 < ¢; < ¢;.

e T, impactsl; onread attime € R* in a scheduld?,, denoted; r_impactsT; at 7, if the following
predicate holdsWS; N RS; #0 A 7 < ¢; < ¢;.

From now on, when talking simply abompacts we will be referring to impacts on write, and we will
denoted it similarly ag’; impacts T;.

2.2 Generalized Snapshot Isolation Definition

A hypothetical concurrency control algorithm could haveretl some past snapshots. A transaction may
receive a snapshot that happened in the system before theofiits first operation. The algorithm may
commit the transaction if no other transaction impacts wtiflom that past snapshot. Thus, a transaction
can observe an older snapshot of the DB but the write op@sti the transaction are still valid update
operations for the DB at commit time. These previous idedis€¢he concept of GSI.



Definition 4. A scheduldd; is a GSI-schedule if and only if for ea@h € T there exists a valug; € R
such thats; < b; and:

1. if R,(X,) € H thenX; € Snapshot(DB, Hy, s;); and
2. foreachl; € T': ~(1}; impactsT; ats;).

Condition (1) states that every item read by a transactidonigs to the same (possible past) snapshot.
Condition (2) also establishes that the time interajsc;| and[s;, ¢;] do not overlap for any pair of
write/write conflicting transactions; and7};.

Considering the transactiofi§, 7>, 75 andT, described below,

Ty = {R(X) Wi (X) Cu}, Ty = {R2(Y) Wa(Y) Ca},
T3 = {R3(Z) W3(Z) W3(X) C3}, Ty = {Ra(Z) Rs(X) Cy}

the following schedule is an example of a GSI-schedule:
bl R1 (Xo) bg RQ(Y()) W1 (Xl) C1 b3 Rg(Zo) Wg(Z3) W3 (X3) C3 WQ(YQ) Co b4 R4(Z0) R4(X1) Cq.

In this schedule, transactidi can be executed concurrentlyf® andT; since it does not impact with
them, but7; andT35 cannot be executed concurrently siriégs; N WS, # 0. Note that transactioffy
readsX; (version of X established after the commit @1 ), despite that transactidfy, which established
a new versionX3, commits previously to the read operation ¥fin T,. This is perfectly correct for a
GSl-schedule, taking the time point of the snapshot usef,k{i.e. s,) previous to the commit df;, as it
is shown in the following schedule:

bl Rl (Xo) b2 RQ(Y()) W1 (Xl) C1 b3 Rg(Zo) W3(Z3) S4 W3(X3) C3 WQ(YQ) Co b4 R4(Z0) R4(X1) Cq.

Note also thaf, readsZ, although the snapshst is taken after a write operatidirs (Zs) of transac-
tion T5. This is possible because, as pointed in Definition 1, vassal data items are always established
after the transaction commitment, in our case

The intuition under this schedule in a distributed systethasthe message containing the modifications
of T3 (the write operations oX andZ) would have not yet arrived to the site at the time transactip
began. This may be the reason farto see this past version of item§ andZ. Precisely, the fact thasi
captures these delays into schedules makes its usage Bbudést environments attractive.

Remark 1. As observed in the example, we can conclude that if therésexigansactiorl; € 7' such

that conditions (1) and (2) from the Definition 4 are only ¥ied for a values;, < b; then there is an item
X € RS; for whichlatestVer(X, Hy,s;) # latestVer(X, Hy,b;). That is, the transactioff; has not

seen the latest version &f at the begin timé;, since there was a transactidn, with W, (Xy) € H such

thats; < cp < b;.

2.3 Conventional Snapshot Isolation and Serializability

In CSl reading from a snapshot means that a transaction k¢es apdates performed by transactions that
committed before the transaction started its first opematiccondition (1) and (2) of the Definition 4 holds
for s; = b; for atransactiofT; then it means that transacti@h sees the latest version of the items accessed
by the transaction and then we can affirm that the isolatieal lef such transaction is CSI.

When considering a schedule of a histéfy, if for all T; € T the level of each transaction is CSl then
the scheduldd; is aCSl-schedule

Let consider the previously proposed schedule:

b1 R1(Xo) ba Ra(Yo) Wi (X1) ¢1 bs R3(Zo) W3(Z3) sa W3(X3) 3 Wa(Y2) c2 ba Ra(Zy) Ra(X1) ca.

This schedule is not a possible CSI-schedule since, althtragsactiond’, 7> andTj; fulfill the CSI
level definition, condition (1) does not hold for transantif,. Transactionl is reading old versions
(X1, Zy) of the itemsX andZ, that does not match the latest version corresponding terthpshot at its
beginning, i.e. when, = b,.



We can think about a possible example of a CSl-schedule nssirgng that each transaction sees at its
beginning the last version of the items it uses by changirdithe when the snapshot for transactitn
(i.e. s4) is taken:

b1 R1 (Xo) b2 RQ(Y()) W1 (Xl) C1 b3 R3(Zo) Wg(Z3) W3 (X3) C3 S4 WQ(}/Q) C2 b4 R4(Z3) R4(X3) Cq.

This ensures that transacti@i really reads the latest versions &f and Z available at its beginning,
which are the ones established after the commitment ofadims73. Note that we can relax the condition
s; = b; ands; may be previous té; if there exists no write operation that modifies some of teend read
by T; between this two events.

Serializable level provides the highest transaction tgmta This level describes a serial transaction
execution, as if transactions had been executed one aftérerserially. In SER, as in CSl, a transaction
sees only data committed before its beginning. Howeverjal sxecution requires that transactions cannot
modify items read by another concurrent transaction. THuwstransactionl; verifies condition (1) and
(2) of the Definition 4 and besides the following condition:

3. foreachl; € T : —(T; riimpacts T; at s;)

then we can assure that the isolation level of such trarsaidiserializable (SER). This fact has been
already formally proved in [2]. Note that the serializabdgél achieved through the previous condition is
far more restrictive than the one provided by the generahdfn of a strict serializable history [35].

When considering a schedule of a histéfy, if for all 7; € T the level of each transaction is SER then
H,; is aSER-schedule

GSI

Figure 1: Relationship between database isolation leweisidered in this paper

It is easy to note that the different isolation levels présérin this work are related. The relationship
between these database isolation levels is clearly showheifrigure 1. As can be inferred trivially, the
CSl level is just a particular case of the GSI level definitioa. fors; = b;, when transactions see the
latest version of the database. Therefore, any CSI-schéslaktually a GSI-schedule.

At first sight, we could think that it is possible to reach ai@éable level coming from either CSI
or GSI. This means that it would be possible to have two diffedefinitions of the serializable level,
provided that transactions do not modify items read by agrotloncurrent transaction: a CSI-SER level
where transactions see the latest database snapshot o13ER3ével where they may see older snapshots.
However, the latter is not possible. If we have a GSI-schedbien there exists at leastfa € T' such
that WS, N RS; # 0 ands; < ¢, < b; by the Remark 1. Therefor&}, r_impacts T; at s; and hence a
non-CSl schedule cannot be a SER-schedule what implieSERtschedules are strictly contained in the
set of CSl-schedules.

It is important to note that the presented isolation defintiare given for each transaction regarding
other transactions. This implies a great flexibility sinbere can exist different sub-schedules in a global
schedule, each one of which may contain operations thall falfjiven isolation level in their respective
sub-schedules. Achieving this flexibility in replicatedsggms means allowing different transactions to be
executed concurrently with different isolation levels.

2.4 Abortion Causes in Centralized Database Implementatias

In order to study the behavior of a replicated database syste have to understand well how centralized
databases work. We have only considered up to now commitieddctions in order to define the different



isolation levels. However, it is necessary to know the gaesabortion causes of a centralized DBMS.
They have a great influence over replication protocol desigimce replication protocols must consider all
these causes in order to avoid anomalies when aborts arise.

Most commercial databases typically provide CSl level bipdk, e.g. Oracle [43] and PostgreSQL [44],
but only a few databases, such as Microsoft SQL Server [46}ige actually theeal theoretical definition
of a serializable level [35] (not the ANSI one that is moreargld). The main abortion reason is related
to the fact of ensuring the transaction’s isolation levels éplained above in this Section, there exist
two main approaches for determining how to resolve isotationflicts: thefirst-committer-winsand the
first-updater-wingules. In both cases, the ultimate effect is the same, i.abtot one of the concurrent
transactions updating the same data item. Nevertheles§irsh-updater-wins is more advantageous than
the first-committer-wins since conflict checks are perfaineach time a transaction performs an update
operation (or also a read operation in serializable). Asufdg2 shows, the first-updater-wins allows to
detect conflicts sooner and also avoids performing possiblecessary operations that will have to be
rolled back when transactions try to commit. Note how, in firg-committer-wins approach, if one of
the conflicting transactions commits, the other transadteeps performing operations even knowing that
it will abort when it tries to commit. On the contrary, if thedi-updater transaction had finally aborted,
the other transaction would have been blocked for a time cesgarily. Commonly, commercial databases
work by default with the first-updater-wins approach.

—X—{¥—{z—Al8l —X—Y—{zZA{B—A—

O—
N—

-
X

X—{€—p—O -

update of X O commit A abort

Figure 2: First-updater-wins and first-commiter-wins agrhes

The CSI level does not avoid deadlocks. Most databases aed loen locking implementation to pro-
vide CSI so deadlocks may arise between two transactiona Wi hold and are waiting for respective
locks. To detect and resolve deadlocks, a concurrencyadotk service should provide a deadlock de-
tector that aborts one of the deadlocked transactionsrifdtere schemes are possible for either avoiding
deadlocks (the call to acquire a lock checks whether by m@itor the lock the transaction would be-
come deadlocked), or associating timeouts with transastio locks and aborting the transaction when the
timeout expires. Replication protocols must consider headiocks may be resolved in order to work in
consequence, e.g. a deadlock between two transactions enagdlved by aborting one or even both of
them. Most commercial databases, including Oracle, PeSQL and SQL Server, provide mechanisms
for deadlock detection that usually resolve them by rollbagk one of the transactions involved in the
deadlock, thus releasing one set of data locked by thanhséate

Another critical feature of any database is data integfitgnsactions should leave items in a consistent
state following given rules, e.g. the sum of two items mugtbegreater than a value. Therefore, there
may be integrity rules that must be checked beyond isolassmes. This may lead to conflicts between
transactions, with which databases deal similarly to isataconflicts. Thus, integrity constraints may be
checked at write timefifst-updater-winy or checking may be delayed until commit tinfeegt-committer-
wins).

Finally, note that a transaction may also abort due to databgstem failures (e.g., a processor failure),
or just because a programmer chose to execute an abort call.

A replication protocol must consider all these kinds of dloorcauses. It needs to know what happens
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when an abortion occurs in order to proceed consequentlydm @anomalies and guarantee the correct
operation of the system. In general, abortions caused ligrsyiilures are not considered since it is quite
difficult to handle them due to its Byzantine nature. Thesml&iof situations would lead to disconnect
the replica from the system and a recovery protocol showeicibs reconnection when it gets recovered.
We consider also that users do not abort explicitly trarisast although there is no problem with this.
In our developed protocols, we do not distinguish betwefierdint causes of abortion since all the abort
situations can be treated in a similar way.

In this work, we are going to consider that a DBMS works as neostmercial databases do. That
is, the first-updater-wins technique rules the resolutibisolation conflicts and deadlock situations are
resolved by aborting one of the transactions involved in it.

Considering that most commercial databases support th&e@8] it seems interesting to study the be-
havior of a replicated database composed of DBMS replicagging CSI. Thus, in the following Section
we see how to study the isolation level of a replicated daaleorking with CSI replicas referred to a
corresponding equivalent centralized database.

3 One Copy Generalized Snapshot Isolation

Increasing system availability and also performance agentlin reasons for using data replication [1].
In order to maintain the data freshness and consistencyli@ated database system requires a database
replication protocol running at all sites. The traditioralrrectness criterion for replicated protocols is
the 1CS [35]. A replicated database history is 1CS if it isiegjent to a serial execution in a centralized
database. Many replication protocols verify such corressncriterion when the database management
system at each site implements the strict two phase locRRg), However, it is not clear which isolation
level is achieved when each database replica provides thiee@8, as most of commercial ones do.

In this Section, we study the conditions that a replicatiootqcol has to verify to obtain one-copy
GSI schedules. We set such conditions for ROWA (Read OnéeVidli) protocols since we consider
no failures. This is not especially realistic , but this altoto simplify the presentation and nevertheless
obtained conclusions can be directly extrapolated to a R@\&Bproach.

One can note that the GSI concept is particularly intergstimeplicated databases using ROWA proto-
cols and databases with CSI. A ROWA replication protocotexes each transaction initially in a delegate
replica, propagating later its updates to the rest of abldlaeplicas. This means that transaction write-
sets cannot be immediately applied in all replicas at a time therefore the snapshot being used by a
transaction might be 'previous’ to the one that would haverbassigned to it.

The conditions a replication protocol has to verify in orderbtain one-copy GSI schedules using
CSl replicas (proved in [4]) are: (i) Each submitted trarigacto the system either commits or aborts
at all sites &tomicity); (ii) All update transactions are committed in the samaltorder at every site
(total order of committed transactions Total order ensures that all replicas see the same segudnc
transactions, being thus able to provide the same snapshiméisactions, independently of their starting
replica. Without such order, those transactions withouteswrite conflicts might be applied in different
orders in different replicas. So, transactions would be ablread different versions in different replicas.
Atomicity guarantees that all replicas take the same astregarding each transaction, so their states
should be consistent, once each transaction has been &tethin

In the following, we first formalize the concept of the ongeggachedule for ROWA replication proto-
cols and then we expound the main result of the one-copy @$itien level in replicated environments.

3.1 ROWA Replication Protocols

We consider a failure free distributed system that consibts sites, being/,,, = {1..m} the set of site
identifiers. Sites communicate among them by message pas¥mmake no assumptions about the time
it takes for sites to execute and for messages to be traesiniiach sité runs an independent instance
of the database management system and maintains a copyd#ttimsé B, that is, we consider a fully-
replicated system. We will assume that each database cepygtetlD B* with k < I,,,, is managed by a
DBMS that provides the CSI level. We use the transaction mnoid8ection 2. Letl’ = {T;: ¢ € I,,} be
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the set of transactions submitted to the system, where {1..n} is the set of transaction identifiers. We
can also considef® = {TF: i € I,,}, i.e. the set of transactions submitted at eachisitel,,, for the set
T'. In general, the ROWA approach establishes that some of tinessactions are local atwhile others
are remote ones.

Formally, the ROWA strategy for replication defines for e&reimsactiori’; € 7' the set of transactions
{TF: k € I,,} in which there is only one, denotddf**“"), verifying RS:"*“) = RS, andW s:*“") =

i
site(i)

WS, ordered by<, . The rest of the transaction®® with k& # site(i), must have the same write
operations ag***“”’ and in the same order, i.&S* = § andiW' S* = W'S; with operationg* € T<("

and order<%g<;’;““). 77 determines the local transaction, i.e., the transaction executed at its
delegate replica or master site, whilst, k # site(i), is a remote transaction @, i.e., the updates of the
transaction executed at a remote site. An update transaretials at one site and writes at every site, while
a read-only transaction only exists at its local site. Inrést of the paper, we consider the general case of
update transactions with non-empty sets.

Note that we consider the general definition of the ROWA appihcand hence our discussion is inde-
pendent from any specific implementation of such strategy,it does not matter the techniques used to
achieve such behavior.

In a ROWA replication protocol, as stated before, updatediegh in a replica by a given transaction
are also applied in the rest of replicas. Since only comuhittansactions are relevant for our discussion,
the histories being generated at each site should be fstovierT*, as defined above. This implies that
each transaction submitted to the system either commitkrapdicas or in none of them, making possible
to maintain the concept of full replication. This leads te tbllowing assumption.

Assumption 1(Atomicity). (H*, <*)is a CCMV history ovef* for all sitesk € I,,,.

In the considered distributed system there is not a commaokar a similar synchronization mecha-
nism. However, we can use a real time mappind J,..; - (H*) «+ R* that totally orders all operations
of the system. This mapping is compatible with each partideo<” defined forld* for each sitek € I,,,.

In the following, we consider that eadhB* provides CSl-schedules under the previous time mapping.

Assumption 2(CSI Replicas) H} is a CSl-schedule of the histofyi*, <*) for all sitesk € I,,,.

In order to study the level of isolation implemented by a ROYtocol is necessary to define the
one copy scheduleC-schedulgobtained from the schedules at each site. A 1C-scheduleayleated
database describes its behavior as if it was a centralizetgrsyworking over a logical copy of the full
database. Thus, its isolation level is referred to that efdbrresponding centralized database.

Let S; be the complete schedulef the distributed system over a set of transactibfis k € I,, and
i € I,,. Thatis,S = J, H* andS;|* = H} beingS,|* the subschedule &, including only operations
of site k. The ROWA approach guarantees thatp;"“"') < t(op¥) with k # site(i) whenop; is an
update operation. This condition allows to avoid consiaginconsistencies, e.gf < t(W;(X;)*®).
However, note that® < <) je. aremote transactiéff* may commit befor@f“e(i).

In the next definitions, properties and theorems we use tl@vimg notation: for each transactidh,
i € I,,C™™ denotes the commit operation of the transaciipat sitemin(i) € I,, such that""") =
mingez, {cF} under the considered mappirt@). In the following, we proceed to define formally how a

1C-schedule is built from a given complete schedule of te#&iduted system.

Definition 5. LetT = {T;: ¢ € I,} be the set of committed transactions in a fully replicatethdase
system with a ROWA strategy that verifies Assumption 1 and#gion 2. LetS; be the complete schedule
of the system.

The 1C-scheduld], = (H,t': H — R™), is built from S, as follows:

Foreachi € I,, andk € I,
1. Remove fron$ operations such that:
Wi (X;)*, with k # site(i), or

28, is a time labeled sequence (through a mapping — R1) of a setS of versioned operations
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CF, with k # min(i)
2. H is obtained with the rest of operations fhafter step 1, applying the renaming:
Wi(X;) = Wi(X;)site®
Ri(X;) = Ri(X;)*"*(, and
C; = Cimm(i)
3. Finally, #'() is obtained fromt() as follows:

t(Wi(X;)) = t(Wi(Xi)site(i))
t/(Ri(Xj)) = t(Ri(Xj)site(i))' and
t/(Ci) _ t(C;nin(i))

Condition (1) establishes that a 1C-schedule is built frbmlocal operations of each transaction and
that the commit time of a transaction is defined by the firstimittime of the transaction at any site of the
system. Condition (2) defines the logical operations thatansidered to work over the logical copy of the
replicated database. This condition ensures that a triasas considered logically as committed as soon
as it has been committed in any replica. As condition (3est&t) receives its values from), preserving
the original time order. Thus, by condition (3) we can wrig instead ofH;.. In the 1C-scheduléi;,
for each transactioff;, is trivially verified b; < ¢; because the ROWA strategy guarantees that for all
k # site(i), b0 < bp.

Conditions of the Definition 5 make possible that all the dbads explained in the Property 1 are
verified by H;. Therefore, it can be proved that any 1C-schedilijederives from a schedule of a history
(H, <) for the set of transactioris.

Although Assumptions 1 and 2 are included in Definition 5ytde not guarantee that the obtained
1C-schedule is a CSl-schedule. This is best illustratetienfollowing example, where it is also shown
how the 1C-schedule may be built from each site CSl-schediighis example two sites and the next set
of transactions are considered:

T = {R:(Y), Wi (X),C1}, T2 ={R2(2), Wa(X),C2},
T3 = {R3(X),Ws(Z),Cs}, Tu={Ra(X),Ra(Z),Ws(Y),C4s}

Figure 3 illustrates the mapping described in Definition bWailding a 1C-schedule from the CSI-
schedules seen in the different nodgs T» andT3 are locally executed at site(RS> # ® andRS3 # 0)
whilst 77 and Ty are executed at site respectively. The writesets are afterwards applied at ¢neote
sites. Schedules obtained at both sites are CSl-schedelestansactions read the latest version of the
committed data at each site. The 1C-schedule is obtained Prefinition 5. For example, the commit
of Ty occurs for the 1C-schedule in the minimum of the intervalMesnC] andC? and so on for the
remaining transactions.

A _Ti_ T3 T3 _ Ty
Wi(X1)Ci  R3(Zo)W5(X2)C5;  R3(X2)W3(Z3)C3 W;(Ya)Ch
T? _Ti_ T? _Ti_
B
R?(Yo)W (X1)C3 W3(Z3)C3  RZ(X1)RF(Z3)Wj(Ya)Ci W3(X2)C3
108 Ty T, T3 Ty
R4 (YO)W1 (Xl)C1 RZ(ZO)WQ (XZ)CQ R3(X2)W3(Z3)C3 R4(X1)R4(23)W4(Y4)C4 Time

Figure 3: Replicated one-copy execution not providing G31@SI.

In the 1C-schedule of Figure 3 readsX; andZ; but theX, version exists between both (singe
was installed at sité). 7} andTx, satisfying thatV’ .S (| W .Sy # (), are executed at both sites in the same
order. AsT; andT; are not executed in the same order with regar@’(pthe obtained 1C-schedule is
neither CSI nor GSI

3Under the Assumptions (1) and (2), the obtained 1C-scheshdms to verify the conditions of thead committedsolation level
definition, although this has not formally proved. Nevelgiss, it is clear that the 1C-schedule provides an isoldtiesl weaker than
the original provided by each database replica.
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Thus, we need that transactions whose writesets interBést 0 W.S; # () be executed in the same
order, so as to observe at least the condition (2) of the Disiimd. However, this is not enough to guarantee
that the 1C-schedule be equivalent to a GSI-schedule artieriand of restrictions must be considered.

3.2 Main Result

As we will explain later in Section 4, most developed regimaprotocols under CSl replicas are based on
multicasting transaction writesets in total order, and nargnteeing the same commit order in all replicas.
Actually, the main issue in these protocols is to maintais thtal order of commits. As a result, since
all replicas generate CSl-schedules and their local srapé$iave received the same sequence of updates,
transactions starting at any site are able to read a patisnapshot, that perhaps is not the latest one, but
that is consistent with those of other replicas.

Assumption 3(Total order of committed transactiondjor each pairT;, T; € T, a unique order relation
cl < ¢ holds for allCSkschedulesif with k € I,,,.

The CcSkschedulesH} have the same total order of committed transactions. Withass of gener-
alization, we consider the following total order in the re$this section:c¥ < ¢§ < ... < ¢& for every
ke ln.

In the next property we are going to verify that, thanks to tibtal order, versions of items read by
a transaction belong to the same snapshot in a given timevathteThis interval is determined for each
transactiort; by two commit times, denoted}, andc;,. The former corresponds to the commit time of a
transactior?;, such that; reads an item front;, for the last time and from then it performs no other read
operation. The latter corresponds to the commit time of mstationT’;, , so that it is the first transaction
that verifiesiv S;, N RS; # 0 and modifies the snapshot of the transactiprin case thaf;, does not exist,
the correctness interval far, will extend frome;, to b;.

Property 2. Let H; be a1C-schedule verifying Assumption 3. For eathe T if R;(X;) € H then
X; € Snapshot(DB, Hy,7) andr € R satisfies;, <7 < ¢;, < b;.

Proof. Let ;" be a transaction such thats;, N RS: # 0 andc;’*"” defines the last time in; """
from which transactior;**” no longerreads fromz;"**”’ a version of a data item. By Assumption 2:
VY € WSiy N RS : {Y "D} = latestVer(Y*"e®  H "W pritet)y By Assumption 1 and Definition 5:

T;, € T ande;, < b;. ’

LetX € RS; be an item read by such that\ ¢ WS;, N RS; and{X;"*“"} = latestVer( X" H;"",
b)), We prove thaliT, € T: X, € Ver(X,H) A¢; < cr < c;y. Note that if this property is false, then
the versionX, will be more up-to-date thax; in H, whenT; reads fromT;,. The1C-scheduler, will
not be aGSkschedule. By contradiction, if there exisisandc; < ¢, < ¢;, then by Assumption 3 and 1:
sitelt) < gpite® < 2t Thus, x> is not the latest version if; ") atp; ("),

It is important to note that;"*“"”’ defines the moment whef’"**” reads the latest version fat; "
Hence;, will define for H, the time instant of’;'s snapshot. If there exists a transactiopwith W.s;, N
RS; # 0, thenT; will not see the versions installed liy, . Thus,b;"“®”) < ¢"* However, it may happen
in H, thatc;, < b;. In fact, this is the main reason to b& a GSI-schedule.
In conclusion, for allX € RS;, X; € Snapshot(DB, Hy, c;,) holds. This is valid for every, ¢;, < 7, until
the first transactiofT;, € T such thatVs,, N RS; # 0 or until b;(b; = b"**™) if there not exists such a
transaction. Therefore;, < 7 < ¢;, < b; holds.

O

The aim of the next theorem is to prove that the 1C-scheddasmted by any ROWA protocol that
verifies Assumption 3 are actually GSI-schedules; i.ey tmanply with all conditions stated in Definition
4. Whilst proving that a transaction always reads from thmesanapshot in a particular time interval is
easy (Condition 1), it is not trivial to prove that there has been any transaction that has impacted in that
interval (Condition 2). However, due to the total commiterdn induction proof is possible, showing that
the obtained 1C-schedule verifies all conditions in orddréd@ GSl-schedule.

Theorem 1. Under Assumption 3, thieC-scheduled; is a GSkschedule.
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Proof. H, is aGSIkschedule if it verifies Definition 4. Under Assumption 3 andt® CSkschedulesif
have the same total order of committed transactiefis: ¢5 < ... < ¢ for everyk € I,,. H; also verifies
such anordef; < c; < ... < ¢, because by Definition Binyer,, {cF} < minker,, {ci} with1 <i < j <n.
The rest of the proof is made by induction over such a totadpréirst, we define the subsets of transactions
for eachi € I,,: T(i) = {T1,T>,..., T;} C T and for eachk € I,: T*(i) = {TF,T%,...,TF} € T*. Using
these subsets we defidg (i) and H;(i). They are exactly equal t&F and H, respectively, except that
they only include the operations if () or 7'(¢). Thus, it is clear that} (n) = H} andH;(n) = H;.
Induction Base. H.(1) is aGSkschedule. There is only one committed transactiof(n). Therefore,
Definition 4 is trivially verified forH,(1).
Induction Hypothesis. H,(j) is aGSkschedula < j <i—1.
Induction Step. We will prove thatH, (i) is aGSI-schedule; € I,,. Note thatT'(i) = T(i — 1) U {T;}. As
H(i—1) is aGSkschedule, by Hypothesis, for any pai;, 7; € T'(i—1): —~(T; impactsT; ats}). Asc; < ¢
for 1 < j <i -1, by the considered total ordet(T; impactsT; ats;) in H.(3). If R;(X,) € H(i — 1) and
X, € Snapshot(DB, Hy(i—1),s;) for 1 < j <i—1thenR;(X,) € H(i). X, # X; because;"*"") < ¢V
andH;"**" is acSl-schedule and hence, € Snapshot(DB, H.(i), s;).
Therefore, in order to prove thai; (i) is aGSl-schedule, we only need to prove fire T that there exists
a values; < b; such that:

(8) if R;(X,) € H(i), X» € Snapshot(DB, H(i), s;) and

(b) for eachr; € T'(i) : —~(T; impactsT; ats;).
The begin time:"“” and the commit time;, of the transactiorT;, € 7(i) from whichT; reads for the
last time, allow us to define the sets:

Ti() = {T; € T: b;site(i) < C;ite(i) < Cfite(i)}

Ta(i) = {T; € T: e < 5" < p3e)
By Assumption 2yT; € Ty (i) : WS;nWS; = 0, i.e. H;"*‘") is acSkschedule, and by definition @f, € T
and again Assumption T; € T»(i) : WS; N RS; = (0. LetT;, € T»(i) be the last transaction such that
in the total order it verifiesV S;, N WS; # 0. Note that in theLC-schedule, obtained from Definition 5, a
commit timecj“e“) for a transaction ifTy (:) may change its relation with respectio but maintaining the
order relation with respect the other commit times. Lgte T (:) be the first transaction such that < b,
in H; andWSil NRS; 7'é 0 ThUS,Ci0 < Cip < Ciyp < b; holds inHt.
For any values; € (ci,,ci, ), () holds for Property 2 and (b) holds by the way € T has been defined.
For eachl; such that;, < ¢; < b, if Tj € T2(z) thenWS; nW.S; = 0. If not, T;, is not the last transaction
verifying such a condition; and if; € Ti (i) thenWS; N WS; = 0. Thus, these transactions do not impact
with T;. The rest of transactions do not either impact wittbecause their commit times are sooner than
Si.
To conclude, if there does not exigt, thens; = b, and therefore (a) and (b) holds. In case that it does not
existT;, thens; € (ci,,ci, ) and again (a) and (b) holds.

O

This proof has not been given before in any ROWA-based CSicegjpn protocol ensuring total order
for the commit operations of all transactions in the systeplicas. This theorem formally justifies such
protocols correctness and establishes that their regubimlation level is GSI. Additionally, it is worth
noting that Assumption 3 is a sufficient condition, but notessary, for obtaining GSI. Despite this,
replication protocols that comply with such an assumpti@neasily implementable. In order to conclude
this Section, we establish the correctness criterion fplicated protocols based on total order guarantees
and we study different implementations presented recaémtlye literature in the following Section.

3.3 Correctness Criteria for Database Replication Protocls

Database replication protocols are a particular case dfilalised algorithms. In traditional distributed
algorithms, correctness criteria of distributed algarithare formulated basing on a specific interface that
models the requirements for which the algorithm was devedojn order to prove algorithm’s correctness,
safety and liveness properties are defined on this interface

However, this is useless when working with database rejicgrotocols. In this case, transactions
compose the system interface. Thus, properties for themnectness proves need to be defined over the
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behavior of transactions. This properties must ensurettteateplicated database system works as if it
were a unigue data management system providing the regaotdion level.

For the kind of protocols proposed in this paper and the aptionms made about their operation in the
previous sections to study formally their behavior, thédi@ing correctness criteria may be useful in order
to facilitate their correctness proofs.

In order to ensure the system consistency, all transaatimss commit in the same order at all available
replica sites. Beside this safety property, a data refdingtrotocol must guarantee other liveness properties
such as the atomicity of a transaction:

e If atransaction commits at a site, it will finally commit at sites.

o If atransaction aborts at a site, it will finally abort at dlktsites where such transaction had started
or it will be discarded at all the sites where the transachiad not yet started.

Another interesting liveness property to consider is thatfinitely often transactions are submitted to
the system, infinitely often transactions will commit. Tlkissures fairness when submitting transactions
so that a transaction will never be aborted infinitely, if @ns to commit its changes.

Finally, it is also necessary to ensure that there can egislistributed deadlock situations.

4 Replication Protocols over CSl replicas

Several database replication protocols have been propodbd latter years. Most of them consider that
database replicas provide strict serializable isolatemel. This, however, is not the usual case since most
database vendors provide lower degrees of isolation letglh as CSI. Thus, current research is focused
on developing replication protocols over CSl replicas.

Although they provide a good performance, protocols basedatabase core modifications are not
very flexible. In order to adapt some protocols that workethwserializable database replicas [16] to work
with CSI ones [46], it is necessary to reimplement all theecmodifications performed previously. As
a result, most of database replication protocols are baseniddleware architectures that simplify the
development and maintenance of replication protocolssine database internals remain inaccessible.

Elnikety et al. [47, 2] formalized some useful isolationiss for replicated environments. They pointed
out in those works that CSI is impossible to achieve in a capdid setting without blocking transactions
(including read-only ones) on their start until writesetsath prior transactions are received and applied.
As a result of this, they introduced the GSI concept for thet fime, relaxing the required freshness for
the snapshot being taken when a transaction starts in i leplica. They also established two sufficient
conditions (one statically checked an one dynamic) thatantaee serializable execution for transactions
running under GSI.

In [47, 2], two implementation strategies based on certificefor GSI replication protocols are intro-
duced: the first uses centralized certification and the skases distributed certification. They compare
analytically the performance of the GSI level to CSI whemgsa centralized certification approach. The
model shows that the response time in GSI is generally loaar in CSI, but the abort rate in GSI may be
higher than in CSI since it compromises the data freshnesthelir following works [48, 49], they study
some aspects about the integrity of transactions when eggpigmote writesets and propose also some
enhancements, such as compacting writesets or a memorg &vear balancer that distributes queries so
that updates can be executed in-memory, to improve perimceand scalability of database replication
protocols.

Considering the former premises, Lin et al. proposed in [&liddleware replication protocol based
on a distributed certification scheme that provided the @&llas a centralized database system providing
that the underlying database replicas provided CSI. Invtloik, they consider a gray approach [50] where
the middleware does not handle the database as a black béx.a Ilnust not to reimplement features
provided by the underlying DBMS since it performs them muabrenefficiently. Replication protocols
could take advantage of these features and hence, theatiplicode can be separated from the regular
database operations. For example, the transaction writetsieval can be optimized easily using database
features.
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Besides, they propose in their work some optimizations lier rieplication middleware. Their mid-
dleware includes a mechanism that is able to apply concilyreaveral writesets that do not intersect
providing a better system performance. However, it is nemssto block the transaction start in order
to not lose the CSI level. There exists also another issue twohsidered in their protocol specification.
Consider that a certified writeset starts a local transadticone replica. It may become blocked by an-
other existing local transaction in that replica. The va@tapplication will stay blocked until the local
transaction tries to commit. Then the local transaction rgglize that it has to abort and it finally aborts.
However, transactions associated with certified writesetg become blocked by local transactions (that
should finally abort) during a long time. Furthermore, it spible that these transactions be aborted and
in consequence the writeset application must be reexetatazkbp the system consistency.

In order to avoid this, Mufioz et al. propose in [29] to inadollowing the gray approach, a block
detector in each database replica. The block detector & tabdletect the blocking situation before the
commit time. When it is detected, the replication protosahotified to operate as necessary. This allows
to abort the local transaction earlier and therefore thedieidare provides a higher performance since
writesets can be applied sooner. Its cost is quite low andatalows the protocols themselves to become
simpler. They have implemented and tested this mechanisimswapshot-based replication protocols and
the obtained results prove that the performance of thisagmtris better than a programmed check at the
middleware layer.

The impossibility result presented in [2] is formally pravby Gonzéalez de Mendivil et al. in [4],
together with the formal conditions required to obtain G$lai replicated system. In such work, it is
formally proved that replication protocols exclusivelysied on propagating transaction writesets cannot
achieve the strict one-copy equivalent CSl level unlesg bheck the beginning of transactions until they
get the latest system snapshot. Thus, they propose a meohfamireplication protocols based on the total
order broadcast of start message at the beginning of a transaction in order to guegdhé CSl level in a
replicated setting.

Due to this limitation, instead of using a strict one-copyl @¥el, we have proposed in a recent
work [51] to select theoutdatednessf the snapshot being taken when a transaction starts. Talkesn
possible to select which kind of snapshot isolation conmgksis needed by each transaction, ranging from
a default 1C-GSl to a 1C-CSI. Our proposed approach is faeraptimistic since transactions do not get
blocked even for the CSI case. It is only necessary to retstanh when conflicts arise and normally they
are detected soon and only a few operation may be rolled back.

Most protocol proposals provide excellent performanceAmlenvironments by using useful multicast
primitives. However, little research has been done reggrdihether these solutions can also be applied
to WANs. In [52], a detailed WAN based performance analy$idata replication protocols is presented
together with some optimizations proposed to circumveatlifmitations of the replication protocols in
WANSs. There exist also other works that show how to mainthggnapshot isolation in lazy replicated
systems. For example, Daudjee and Salem describe in [53 stgorithms that take advantage of the
local CSI concurrency controls to maintain global snapgaation in lazy replicated systems.

Replication protocols presented in the literature are ipdigtsed on the certification approach. How-
ever, no relevant works about using the weak-voting altérado obtain snapshot isolation in replicated
systems exist. We have studied this possibility in somenteaerks [38, 54]. Thus, we have proposed
some weak-voting protocols based on a middleware architethat are able to provide several isolation
levels. These preliminar works set the starting point fas thiork. In these works, as in this paper, we
present the replication algorithms based on a formal mddeeshis simplifies not only the proof of the
correction criteria of the protocols, but also their futimglementation.

5 System Formal Model

For our proposal, we have taken the advantage from our prewimrks [29] and other middleware archi-
tectures providing database replication [3]. Thus, sdweglication protocols are proposed in this work
taking advantage of the capabilities provided by a middtevaachitecture called MADIS [29]. For the
sake of the explanation of the replication protocols, artrab8on of the MADIS middleware architecture
is presented in this Section. In the following, we highligifferent aspects dealing with the design of the
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system and its operation.
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Figure 4: Main components of the system

The replicated system is composedfsites communicating by message exchange. We assume a
full replication system, i.e. each site includes an instapica DBMS which contains a copy of the entire
database. Users and applications submit transactions wyttem. The middleware forwards them to the
respective nearest (local) site for their execution. Thication protocol in each replica coordinates the
execution of the transactions among different sites torertbe required isolation level for the transactions.
The actions shown with arrows in Figure 4 describe how coreptainteract with each other. Actions may
easily be ported to the particular communication primgieed DBMS JDBC-like operations.

5.1 Communication System

Communication among sites is mainly based on the serviaesdad by a Group Communication System
(GCS) [31]. Basically, a GCS consists of a membership and@manication service [55]. Thenember-
ship servicanonitors the set of participating sites and provides theth wonsistent notifications in case
of failures, either real or suspected. Note that, althougtcensider the possibility of system failures, we
are not going to detail in this work the recovery algorithor, §ake of space lack.

Thecommunication servicgupports different messaging services that provide sewerssage delivery
guarantees. A reliable broadcast primitive_§roadcast) ensures that messages are always delivered to
correct processes despite failures. It also provides & dotker broadcast deliveryI{O_broadcast) that
guarantees all sites deliver messages in the very same &deh sitek has two input buffers for storing
messages depending on their delivery guarantees: onedaeliable broadcast messagés dhannely)
and another for the total order broadcast messafjés ¢hannely). Therefore, broadcasting a message
will imply filling the corresponding buffer in all destinatns, according to its delivery guarantees.

5.2 Database

We assume a DBMS ensuring ACID transactions and complyitig thie Sl level. The DBMS, as it is
depicted in Figure 4 gives to the middleware some commomwEtiD B.begin(t) begins a transaction
t*. DB.submit(t, op), whereop represents a set of SQL statements, submits an operatinatégizp) in
the context of the given transaction After a SQL statement submission, theB.noti fy(t, op) informs
about the successful completion of an operatiami; or, its rollback @bort) due to DBMS internals (e.g.
deadlock resolution, enforcing CSl level as fhist-updater-wingule determines, etc).

As a remark, we also assume that after the successful caoplefta submitted operation by a trans-
action, it can be committed at any time. In other words, asaation may be unilaterally aborted by the

4In the following, transactions are denoted by the lowerdattert.
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DBMS only while it is performing a submitted operation. Higaa transaction ends either by committing,
D B.commit(t), or rolling back,D B.abort(t). We have added two additional functions that DBMSs do
not provide by default, but may be built by standard datalmasehanisms [23, 29]. The database action
DB.WS(t) retrieves the transaction writeset, the set of pé&ilgect identi fier, value) for the objects
written by the transaction In a similar way, the functio® B.getCon flicts(W S(t)) provides the set of
conflicting transactions between a writeset and curremt@ones.

5.3 Transactions

Different transactions may be created in the replicatetesysEach transactianhas also a unique identi-
fier that contains the information about the site which wastlfircreated in4.site), called itstransaction
master site This field is used to know whether it is a local or a remotegeaion. Transactions created are
locally executed at its master site and then interact viagpkcation protocol with the other replicas when
the application wishes to commit the transaction, follag@nROWAA strategy. Thus, remote transactions
containing the writeset of the original transactiari¥ S) are executed in the rest of available sites of the
system.

A transaction also contains information about its isolafievel ¢.mmode). Each transaction can select
an isolation level (GSI, Sl or SER), depending on its requiats, at the beginning of its execution. In
general, the protocols presented in this work are able teigpedG S| level by default, given that transactions
are atomically committed at all sites and their commit isligtordered [4]. In order to obtain higher
isolation levels, such as serializable or CSl, it is onlyessary to set some constraints on the normal
operation of the protocols.

5.4 Protocols

The protocols presented in this work, are modeled as sttsition systems. Each state transition system
includes a set of state variables and actions, each one of shbscripted with the node identifier where
they are considered. State variables include their domemalsan initial value for each variable. The
value of the state variables defines the system state. Edicm &t the state transition system has an
enabling condition (preconditiopye in Figures), a logic predicate over the state variables. étioa can
be executed only if its precondition is enabled, i.e. if itedicate is evaluated toue on the current state.
The effects of an actiorefin Figures) is a sequential program that atomically modifiesstate variables;
hence, new actions may become enabled while others becwableti respectively. Weak fairness is
assumed for the execution of each action, i.e. if an actioniiginuously enabled then it will be eventually
executed. Although the state transition system seemsia stiatcture, it defines the algorithm’s execution
flow. This will be easy to understand after the explanatiamsrgfor each protocol operation. Without
generalization loss, we assume a failure free environnieatighout the protocols description.

6 Weak Voting Protocols

This technique, described firstly in [17], uses a weak vophgse for committing transactions, i.e. the
transaction master site takes the decision to commit ortakideak voting [33] replication protocols usu-
ally follow the eager-update-everywhere strategy: tratisas are locally executed and then changes are
propagated, following a ROWAA approach. All changes perfed by a transaction in the database are
grouped in a writeset and delivered to the rest of the sitésgus total order broadcast delivery. After
its application, a reliable delivery of a commit or abort se&ge from its master site will decide whether
the transaction must commit or however abort. This message dot need to be total ordered but must
be reliable to preserve the system consistency. The vasisgid to be weak as only the master site can
decide on the outcome of the transaction. Other serversotamituence this decision and must abide by
the master site decision. Figure 5 illustrates this tealiogsic operation.
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Figure 5: Weak voting replication scheme. When the systamaives a transaction from a client, it will
be submitted to an available site which executes transatdizally. When commit time is reached, the
transaction writeset is broadcast to all servers usingad tetler mechanism. Upon delivering the message
that contains the writeset of transaction at its master gitan determine if conflicting transactions have
been committed and consequently abort or commit the tréiosacThus, the master site sends a new
broadcast containing the outcome of the transaction (commaibort).

6.1 Basic Sequential Weak Voting Protocol

In this Section we present a basic weak voting protocol thatroits transaction sequentially in the database
replicas. This protocol avoids in advance possible cosftitat may happen between writesets of transac-
tions coming from remote sites and local transaction oparat Thus, when a writeset is being applied,
local transactions are not permitted to submit any possidlte operation to the database. Besides, before
applying writesets from remote transactions, it is neagsgaabort all existent conflicting transactions
in the local database. In this way, we are ensuring that thiteset application is going to be performed
correctly, since we have remove any possible conflictivesaation from the database and besides we are
allowing no other local transaction to submit any conflietaperation. However, writesets from remote
transactions may conflict between them. In order to avos] thé do neither permit a writeset to be submit-
ted to the local database if another transaction that stdxardinother writeset has not still finished, either
committing or aborting. In the following Section, we deberin detail the protocol operation.

6.1.1 Protocol Description

The protocol presented in this Section is modeled as a statsition system, as explained in Section 5.4.
Figure 8 shows the protocol signature, which is the set ofiptess actions it may ever execute. It contains
also the definition of the states variables of the transiggsiem and their corresponding initial values
and describes the set of possible actions, detailing thieggmditions and effects. Most actions are only
applicable to either the master site of the transactiotite = k) or the rest of remote sites of the replicated
system {.site # k). In the Figure 8,V stands for the number of site¥, represents the set of possible
transactions M the set of messages that can be exchangedtaidhe set of operations that can be
submitted to the database. We explain such algorithm oneitpees.

A transactiont may be created at any siteof the replicated database system, which will be considered
as its master site and where the transaction is consideradbasl transaction. It can start its execution
at any time, sincetatus,(t) = idle is the initial value for a transaction state. It invokbe createy(t)
action, where transaction is created in the local databegiéca and its status is set tative to allow
operations to be submitted.

The transaction creation action may be followed by a sequehgairs ofbegin_operationy(t, op) and
end_operation(t,op) actions. Each pair corresponds to a successful complefiarset of SQL state-
ments. The invocation ofi&gin_operation submits the SQL statement to the databd3B{.submit(t, op))
and sets its status teubmitted. It is important to consider that a local transaction mayflicwith a
writeset application of a remote transaction once exectitedzecute W Sy (t) action. Writeset modi-
fications must be applied atomically in the database, witlatlawing other local or remote transactions
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to conflict with the modified values, to achieve the corresfiog isolation level and also to prevent dis-
tributed and local deadlock situations. This may happenmveherite operation is submitted to the database
(type(op) = WRITE), as read operations will not conflict since we are adering databases complying
with the Sl level. Thus, a write operation will be submittedyoif there is no writeset being applied in the
databasews_run; = false).

After the submission of an operation to the database, tmsacion may be aborted by the DBMS
replica {ocal_aborty(t, op)). Thisis only possible for local transactions. The causedbortion are mainly
related to the enforcement of either the isolation levelnbegrity constrains, and also to local deadlock
resolutions. Thend_operationy(t) action will be eventually invoked after the operation is ceasfully
completed in the database. It sets the transaction statusitee, enabling the local transaction to submit
a new operation.

Once the transaction is done, it requests its commitment &gns of thehegin_commity(t) action,
asstatus = active after the last operation applied successfully inltlval database. In this action, the
transaction writeset needs to be collected from the datafia®;. W S(t)). If the transaction is a read
only transaction '’ S = ) the transaction will commit immediately. Otherwise, tieplication protocol
broadcast avritesetmessage to all the replicas using the total order delivedytha transaction status will
be changed tpre_commit.

Writeset message(\(riteset¢)) reception at the master site of the transactiogi{e = k), where
transaction should hawgatusy(t) = pre.commit, leads to the execution of the commit(t) action in
that site. In order to enable this action, it is also necgdbeat there is no other writeset being applied in the
database-{ws_runj) and there is no other local transaction waiting for comimit{(—local -tocommiity)
as well. This action will broadcast@mmitmessage with a reliable servicg proadcast) and sets the
transaction status ttwcommit in order to emphasize that this transaction is about to canBeiside this,
the variabldocal _tocommity, is set taruein order to point that there is a transaction waiting for msomit
message to finally commit into the local database. The mamadithis commitmessage is related to
recovery issues, but are not explained in this paper for ebkeevity. The reception of this message at the
transaction master site will finally commit the transactionthe local database replicar{d_commity(t))
and will set the variabléocal_tocommity to false, allowing other transactions to commit.

In the other sitest(site # k), the reception of a writeset messade{, ¢)) will create aremote
transaction to apply it in that site if thececute_W Sk (t) action becomes enabled. In order to guarantee the
global atomicity of a transaction, it is a must that a remadedaction, not yet submitted to execution, never
aborts a remote transaction already submitted to the dsgadraa local transaction waiting to its commit
message. For that reason, theecute_ W S (t) action requires that no other writeset is being applied in
the database-{ws_runy) and also that no local transaction is waiting dcal _tocommit;) for commit.

The execute W Si(t) action aborts all the local transactions conflicting witle tieceived writeset
(DBy.getConflicts(t.ws)). This is necessary to prevent remote transactions frorarhew blocked by
a conflicting local transaction. Afterward, it applies theteset in the databas@B;..submit(t, t.ws))
and sets the variables_run; to true until writeset application ends (either with the commitrnenthe
abortion of the remote transaction). It is important to nibt&t aborting all local conflicting transactions
before the execution of a remote transaction has severaleguences. If one of the conflicting local
transactions is in thgre_commit state, it is necessary to broadcastanrt message to abort its remote
transactions. This message will enable dhert_W S (t) at the sites where the writeset has been already
submitted éxecute W Sy (t)) and the remote transaction will be aborted in the localluza. However,
note that reliable broadcast latency is lower than totakpahe and that applying a writeset takes some
time. Hence, a reliable message with the abort decision neagietivered before the reception of the
writeset message, which is broadcast in total order as th®qul states, or before its application in the
local database. In both cases, where writeset applicatismibt been performediatus;(t) = idle),
this abort message will enable therly_decision(t) action and the remote transaction will immediately
abort, setting its status worted in order to discard the writeset message pending from remepthus,
the discardy(t) action discards writeset messageariteset¢)) of remote transactions that have been
aborted by an early decision of the master site, in order trajutee the progress allowing other writeset
messages in th&O_channely, to be processed. This action also allows to discard a wtitesssage
related to a local transaction that has been aborted duednflot with a writeset of a remote transaction.

Once the writeset is successfully applied, fanmit message has been received from the master site
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Signature:

{VE e N,teT,m € M,op C OP: createy(t), end_operation, (t, op), begin_operation, (t, op),
begin_commit (t), to.commity (t), end_commit (t), discardy (¢, m), early_decision, (t),
execute.WSy(t), end_operation.-WS, (¢, ws), local_aborty(t), commit-WS;(t), abort_-WS;(¢)}

States

Vk € N,t € T: statusy (t) € {idle, active, submitted, pre_.commit, await, tocommit,
committed, aborted}, initially statusy (t) = idle

Vk € N: TO_channely C {m: m = (ws, t) Vt € T}, initially TO_channel;, = 0

Vk € N: R.channel C {m: m = (commit, t) or m = (abort,t) Vt € T}, initially R_channel; = 0

Vk € N: local_tocommity : boolean initially local_tocommit; = false

Vk € N: ws_runy: boolean initially ws_runj = false
Transitions:
createy (t) [/l t.site =kll
pre = statusy (t) = idle
eff = statusy (t) < active
DBy, .begin(t)

begin_operation (t,op) [/l t.site = kll
pre = statusy (t) = active A ~(ws_rung A
type(op) = WRITE).
eff = statusy (t) < submitted
DBy, .submit(t, op)

end._operation, (t,op) [/l t.site =kl
pre = statusy (t) = submittedA

DBy, .notify(t,op) = run.
eff = statusy (t) < active

begin_commit, (¢t) //t.site =kl
pre = statusy (t) = active
eff=t. WS — DB, .WS(t)
if t. WS = ( then
statusy (t) < committed
D By,.commit(t)
else
statusy (t) < preccommit
T O broadcast({writeset t))

to_.commit (t) [/ t.site =kll

pre = m=(writeset t) firstin TO_channely,
A —ws_rung A —local_tocommity
A statusy (t) = pre.ccommit.

eff = remove(m) from TO_channely,
statusy (t) < tocommit
local_tocommity «— true
R_broadcast({commit, ¢))

end_commity (t) [/l t.site =kl
pre = statusy (t) = tocommitA
m=(commit, t) in R_channelj
eff = remove(m) from R_channely,
statusy (t) « committed
D By,.commit(t)
local_tocommit, « false

local.aborty (t,op) [/l t.site =kl
pre = statusy (t) = submittedA

DBy, .notify(t, op) = abort.
eff = statusy (t) < aborted

discardy (¢, m)
pre = statusy (t) = abortedA m=(., t) € anychannely,
eff = remove(m) from correspondinghannely,

execute. WSy (t) [l t.site # kll
pre = m=(writeset t) firstin TO_channely,
A ~ws-rung A —local_tocommity
A statusy (t) € {idle, tocommit}.
eff= remove(m) from TO_channely,
foreach t’ in DBy.getConflicts(t.WS)
DBjy,.abort(t")
if statusy (t') = pre.committhen
R_broadcast({abortt'))
statusy (t') < aborted
DBy, .begin(t)
DBy, .submit(t, t.W.S)
if statusy (t) = idle then
statusy, (t) < submitted
ws_runy < true

end_operation WS (t,ws) /lt.site # kll
pre =D By, .noti fy(t, ws) = run

A statusy, (t) = submitted.
eff = statusy (t) «— await

early_decision, (t) [/l t.site # kll
pre=m=(., t) in R_.channely
A statusy, (t) = idle.
eff= remove(m) from R_channely,
if m = (abort t) then
statusy, (t) < aborted
else ifm = (commit, t) then
statusy (t) < tocommit

abort WSy (t) /lt.site # kll
pre=m=(abort t) in R_.channelj,

A statust (k) € {await submitted.
eff= remove(m) from R_channely,

statusy, (t) <« aborted

DBy, .abort(t)

ws.runy, < false

commit - WSy (t) [/lt.site #kll

pre = (m=(commit, t) in R_channely,
A statusy (t) = await) V
(DBy,.notify(t,t.WS) = run
A statusy, (t) = tocommit).

eff=if statusy (t) = awaitthen

remove(m) from R_channely,

D By, .commit(t)
statusy, (t) < committed
ws_runy, «— false

Figure 6: The state transition system of the basic sequeweik voting protocol
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begin_operation, (t,op) [/l t.site = kI receive_starty, (t)

pre = statusy (t) = active A ~(ws_rung A pre =m=(start, t) firstin TO_channely,
(type(op) = WRITE V t.mode = SER)). A —local tocommity, N —ws_runy
eff = statusy (t) «— submitted A statusy (t) = tostart.
D By, .submit(t, op) eff= remove(m) from TO_channely,
if t.site = k then
createy (t) [/l t.site =kl DBy, .begin(t)
pre = statusy (t) = idle statusy (t) «— submitted
eff=if t.mode = CSl then D By, .submit(t, first-op)

statusy (t) «— tostart

T O broadcast({start,t))
else

statusy (t) < active

DBy, .begin(t)

Figure 7: Weak voting protocol modifications for CSI and SERel support

in early_decision action, transaction status will have been modifiedd¢mmit) and it will be waiting for
commit. Thus, remote transaction will finally commibgnmit _W Sy (t)) locally in that replica. Otherwise,
theend_operation W Sk (t, t.ws) for that site becomes enabled and it changes its statusdd, waiting

for the master site decision. The reception ebamit or abort message will enable the corresponding
actions ¢ommit_-W .S or abort_-W.S) and remote transaction will finally either commit or abartthat
replica. In both actions, the writeset application prodesshes and other writesets must be allowed to be
applied into the database §_run; < false).

6.1.2 Multiple Isolation Levels

The proposed protocol is able to satisfy by default the G&l|agiven that all transactions are atomically
committed at all sites and their commit is totally orderen ofder to provide higher isolation level, such
as CSl or serializable, some simple modifications for resitrg the protocol operation can be included.

In order to obtain a serializable level, transaction retslseust not intersect with the writesets of
other transactions committed previously, as it was poiitte8ection 2.3. When a transaction requires a
serializable environment.(node = SER), read operations must be considered as write opesatiarder
to guarantee the isolation level. Therefore, we need tadesobmitting read operations to the database if a
writeset is just being applied by modifying the preconditad thebegin_operationy(t, op) action.

It is important to remark that the proposed protocol onlydsetihe actual writeset, without including
the readset in the SER mode, to the rest of the sites. Thetprjay for avoiding the readset propagation
in the SER mode is to wait for the decision message, i.e. ilsi@eweak voting mechanism based on
two message rounds: a total order message round with theset#t and another reliable message round
with the final decision to commit or abort. This weak votingahanism also avoids the use ofjarbage
collectorsince it is not necessary to keep a log with the writesetsaofsactions that committed previously.

On the other hand, a CSl transaction isolation level may h&ged by usingtartpoints in the transac-
tions. Thesestart points guarantee that, when a transaction begins its érecitthas seen all the changes
applied in the system before that point. Thus, the protoamtbe modified in order to obtain CSlI level
when required, including a new action callegteive_start, (t) and also minor changes in theecate(t)
action, as seen in Figure 7.

If a CSl level is established for the transactiontart message must be broadcast to all the replicas at
its beginning, using a total order primitive. Afterwardettransaction must remain blockeddtusy (t) =
tostart), preventing new operations from being submittethe local database, until the reception of the
start message, ireceive_starty(t), in order to guarantee that transaction is going to see thstldatabase
snapshot and therefore ensuring the CSl level. Otherwig8SlI or serializable mode, the transaction can
start straight away its reading and writing phase.

6.1.3 Discussion

As seen before, the protocol presented in this Section isakweting replication protocol which fol-
lows the eager-update-everywhere strategy. Thus, tréosaare locally executed and then changes are
propagated before committing, following a ROWAA approagh.changes performed in the database are
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grouped in a writeset and delivered to the rest of the sitésgus total order broadcast delivery. Local
conflicting transactions are aborted to ensure a correteset application, and no other local transaction
or remote writeset application is allowed to interact witle database. After its successful application, a
reliable delivery of a commit or abort message from its mesite will decide whether the transaction must
commit or however abort.

Whilst most existing protocols are only able to provide aginisolation level (usually GSI with
database replicas supporting CSlI level), this replicgtiatocol offers a greater flexibility to applications
since it can operate with different isolation levels to sactions (GSI, CSl and SER) in a very simple way.
This protocol does not need the use of certification and hérege is no need of using a garbage collector.
Moreover, it is not necessary to propagate the readsetotader serial execution, as needed when using
other mechanism such as certification.

However, this initial approximation is fairly inefficientransactions are committed sequentially and it
does not allow local transaction to operate while a writésbeing applied in the database. Besides, since
local conflicting transactions must be aborted in order f@yapuccessfully a writeset, it is necessary to call
costly database methods so as to obtain the conflicting datedi. Thus, this protocol provides very poor
concurrency and therefore system performance becomésdegraded. Moreover, this protocol does not
guarantee the referential integrity nor the system coescst, since it only takes care of resolving isolation
conflicts between transactions, what actually limits i@qical application.

6.2 Enhanced Weak Voting Protocol with Block Detection

In essence, the protocol presented in the previous Sediquife pessimistic, as pointed out just above.
On one hand, writesets received from a remote site are apptie after another in each database replica.
On the other hand, this protocol avoids that the remote sgteebecome blocked by local transactions,
disabling for that purpose potential conflicting local santions’ access to the database. The main ob-
jective of the proposed protocol is simply to show that it @sgible to achieve the three isolation levels
considered (GSI, Sl and SER) with the very same protocol. évew due to its pessimistic nature, the
expected performance is quite poor. Nevertheless, sepptiahizations can be taken into account in order
to improve significantly its performance.

The first proposed protocol includes a deadlock preventitieisma in order to avoid that transactions
become blocked in the local database replicas. An initigrowement of this protocol is to consider the
replacement of this deadlock prevention mechanism withtactien mechanism as the one stated in [29]
that has been successfully applied in several works wiikfgatg results [56].

This mechanism is based on a block detection mechanismghatthe concurrency control support of
the underlying DBMS. Thereby, the middleware is enableddwiple a row-level control (as opposed to the
usual coarse-grained table control), while all transagifeven those associated to remote writesets) are
subject to the underlying concurrency control support. Bloek detection mechanism looks periodically
for blocked transactions in the DBMS metadata (e.g., ingthhéocks view of the PostgreSQL system
catalogue). It returns a set of pairs consisting of the ifierd of the blocked and blocking transactions
and the replication protocol will decide which one must @bbr the following, we describe the necessary
modifications for including this mechanism in the basic iggtlon protocol.

6.2.1 Protocol Description

The required modifications of the protocol in order to worlthwa block detector are minimal regarding the
original approach that tries to avoid blocking situatiohes related with the block prevention must be
replaced with the appropriated actions for dealing withchkonotified by the block detection mechanism.
Thus, in theezecute W Sy, (t) action, the operations for aborting all possible confligtiransactions before
submitting a remote writeset disappear. We do not needithestb make a database call in order to get the
existing transactions that conflicts with the writeset tsbbmitted getCon flictsy(t.ws)).

Instead of this, we need a new action callédck_detectiony(t,t'). This action permits addressing
issues related with blocking situations caused in the @s@bThe block detector mechanism will notify
the protocol automatically whenever a conflict is detectethe local databasdXBy..block Detector())
and then the protocol will decide which transactions mustidind which not.
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Signature:

{Vk e N,t € T,m € M,op C OP: createi(t),end-operation, (¢, op), begin_operation, (¢, op),
begin_commit, (t), to.commity (t), end_commit (t), discardy (¢, m), early _decision, (t),
execute.WSy(t), end_operation WS, (¢, ws), local_.abort (t), commit_- WS (t), abort-WS (t)

reexecute_WSy (t), block_detectiony (t,t')}
States

Vk € N,t € T: statusy(t) € {idle, active, submitted, pre_.commit, await, tocommit, committed, aborted},

initially statusy (t) = idle

TO_channely C {m: m = (ws, t) Vt € T}, initially TO_channel, = 0
R_channely, C {m: m = (commit,t) or m = (abort,t) Vt € T}, initially R-channel;, =0

VkeN:
VkeN:
Vk € N: local_tocommity, : boolean initially local_tocommit; = false
Vk € N: ws_runy: boolean initially ws_run, = false
Transitions:
createy (t) /lt.site =kll

pre = statusy (t) = idle
eff= statusy (t) < active
DBy .begin(t)

begin_operation, (t,op) //t.site =kl
pre = statusy (t) = active A ~(ws-runy A type(op)=wWRITE)
eff= statusy (t) < submitted

D By, .submit(t, op)

end._operation, (¢, op) [/lt.site =kl
pre = statusy (t) = submitted A D Bj,.notify(t, op) = run
eff= statusy (t) < active

begin_commit, (t) //t.site =kl
pre = statusy (t) = active
eff=t.WS — DB, . WS(t)
if t. WS = 0 then
statusy, (t) < committed
D By, .commit(t)
else
statusy, (t) < pre.commit
TO_broadcast({writeset t))

to_.commit(t) //t.site =kl
pre = m=(writeset t) firstin TO_channel, A —ws_runy
A =local_tocommity, A statusy (t) = precommit
eff= remove(m) from TO_channely
statusy (t) < tocommit
local_tocommity «— true
R_broadcast({commit, ¢))

end_commity (t) /I t.site =kl
pre = statusy (t) = tocommit
A m=(commit, t) in R_channely,
eff= remowve(m) from R_channely
statusy (t) < committed
D By,.commit(t)
local_tocommit, « false

local.aborty(t,op) [/l t.site =kl
pre = statusy (t) = submitted A D Bj.notify(t, op) = abort
eff= statusy (t) < aborted

discardy (¢, m)
pre = statusy (t) = abortedA m=(., t) € anychannely
eff= remowve(m) from correspondinghannely,

execute WSy (t) /t.site # kll
pre = m=(writeset t) firstin TO_channel, A —ws-runy

A =local _tocommity, A statusy(t) € {idle, tocommit}.
eff = remove(m) from TO_channely

DBy, .begin(t)

DBy, .submit(t, t.WS)

if statusy (t) = idle then

statusy (t) < submitted
ws-runy <« true

reexecute WSy (t) [l t.site # kll
pre= DBj,.notify(t,t.W.S) = abort
eff= DBy .submit(t,t.W.S)

end._operation WS, (t) //t.site # k/l
pre= DBj.notify(t,t.WS) =run A statusy(t) = submitted
eff = statusy (t) — await

early_decision, (t) //t.site # kI
pre=m=(., t) in Rchannel, A statusy(t) = idle
eff= remove(m) from R_channely,
if m = (abort t) then statusy (t) <« aborted
else ifm = (commit, t) then statusy, (t) < tocommit

abort WS, (t) /lt.site #kll
pre=m=(abort t) in R_channely,

A status, (k) € {await, submitted
eff = remove(m) from R_.channely,

statusy (t) «— aborted

DBy, .abort(t)

ws_runy, « false

commit WSy (t) [/lt.site #kll
pre = (m=(commit, t) in R_channel, A statusjy(t) = await) V

(DBy,.notify(t,t.WS) =run A statusy(t) = tocommit)
eff=if statusy (t) = awaitthen

remove(m) from R_channely,

D By,.commit(t)

statusy (t) < committed

ws_runy, « false

block.detectiony (t,t")
pre=t — t' € DBy.blockDetector() A t.site # k
At'.site = k A statusy(t) € {submitted tocommit}
eff= DBy.abort(t")
if statusy (t') = precommitthen R_broadcast({abortt'))
statusy (t') < aborted

Figure 8: The state transition system of the enhanced ségleeak voting protocol
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However, we do not need to deal with any block that may arigéénlocal databases of a replicated
system. Only block situations involving remote transawsiavith local transactions must be considered.
The protocol must guarantee that remote transactions alyfapplied. Thus, when a local transaction
blocks a remote oné site # k A t'.site = k), the local transaction must be aborted in order to guaeante
that the remote one makes progress. If the transaction babed thepre_commit state, and therefore
writeset has been already sent to all sites, it is necessdmoidcast anbort message< abort ¢ >) in
order to abort the transaction execution at all sites. Bidotween local transactions are not considered
in this action. We let them be resolved as each local DBMS idens appropriate. Note that only local
transactions that have not reached the_commit state may become blocked themselves and therefore
their resolution does not matter to the replication aldont Blocks between remote transaction may never
happen since remote writesets are sequentially submdatdtetdatabase and therefore there is no need to
worry about them.

We do not make any considerations about the internals of dtebdse replicas. Therefore, a remote
transaction submitted to a local database may abort by & decallock with operations from other local
transactions exiting in the database depending on how iaisngd. We a writeset is applied we do not
allow other operations to be submitted to the database. kHenwexisting operations from local transactions
may have not been yet planned by the database and therefxpagted situations may arise. Thus, if a
transaction associated to a remote writeset is aborted,itivéll be necessary to reattempt to apply the
writeset in the database until succeeebecute_-W Sk (t)). This is necessary to enforce that when aremote
writeset is submitted to the local database, it will finally d&pplied in order to guarantee the transaction
atomicity globally.

6.2.2 Discussion

The main improvement of this protocol is the block detectiaechanism. This detection mechanism
allows remote writesets to be directly submitted to the loiase replicas without worrying about checking
anything in the database. Conflicts with existing transactiwill not be prevented and instead they are
detected on the fly. This reduces the protocol overheade sinnecessary calls to database primitives are
avoided when there is no conflicting local transaction. Tleelbdetector notifies the replication protocol
when two transactions become blocked and therefore itdntewith the database only when it is strictly
necessary, i.e. when a blocking situation occurs.

The use of this detection mechanism is not a problem for &stgemultiple isolation levels. In fact,
the same modifications proposed in Section 6.1.2 are alsabdeiifor this case since its operation has no
influence on the necessary modifications.

However, transactions are still submitted sequentiallyhi® local replicas. This becomes a mayor
drawback when the system load increases as it limits itsipraframming level. Thus, in order to increase
its performance when working with heavy loads of transaxgtjave should increase its concurrency level
by allowing different transactions to be submitted to theabase.

6.3 Enhanced Concurrent Weak Voting Protocol

The inclusion of the block detector mechanism in the previprotocol enhances its performance since
reduces overhead related to communication with DBMS irtistcrHowever, as pointed out before, trans-
actions are executed sequentially in the local databadeaspmnd this becomes a burden on protocol
performance when working with heavy loads. Thus, allowiegesal transactions to be executed concur-
rently in a local replica would increase the throughput &f teplicated system.

Local transactions can run concurrently among them withneblem since local conflicting situations
are resolved locally and do not affect to the rest of the oagli Nevertheless, we have to be careful with
the remote writesets submission. In order to keep data stem&iy among the replicas, conflicting writesets
must be applied in the same order in all the sites. This appii®oth remote writesets and local writesets
of transactions that have request the commit. Thus, canflietritesets must be applied in a row, one at
a time. However, non-conflicting writesets can be conculyesubmitted to the database. To that end, it
is only necessary to keep a log with the writesets submitigti¢ database and not yet committed. This
allows to check in advance whether there is any conflictiaggaction and if that is not the case transaction
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may be progress concurrently in the local replica. If a teation associated to a remote writeset is aborted,
then it will be necessary simply to reattempt to apply theeset in the database until succeed. In any case,
it is very important to ensure that transactions finally cdtimthe very same order that the total order
broadcast establishes since otherwise inconsistencigsuisa in the replicated system.

6.3.1 Protocol Description

The deadlock detection mechanism introduced in the preypootocol, not only avoids performance over-
load but also allows local transactions to be concurreniycated with writesets applications. This implies
a higher degree of concurrency and therefore a better padioce. If a transaction associated to a remote
writeset is aborted, then simply it will be necessary totexapt to apply the writeset in the database until
succeedreezecute W Sy (t)).

In order to apply a remote writeset concurrently to othensections, we must ensure that there is
no conflicting transaction in the database. Thus, it is reaogsto keep track of writesets received in
total order through a list of writeset$i{(.S_submitted), either from local transactions intending to commit
or remote writesets submitted to the database. In both cHse® must be no conflicting transaction
(t. WS N WS_submitted = () so as to process the writeset in the corresponding actiagymmit for
writesets from local transactions aadecute W S.

The list of writesets must be conveniently handle wheneitbeea writeset message is processed,
including the received writeseti( S_submitted < W S_submitted Ut.W S) or whenever a transaction fi-
nally commits or aborts, removing the corresponding weatéom it (W S_submitted <« W S_submitted—
t.WS). This allows to keep an updated list of the writesets froam$actions that should finally commit,
unless their master site decides to abort. So, other wt#esay run concurrently in the local database,
after checking whether they conflict with existing trangats that should commit or not. Notice that it
is not necessary to worry about local transactions that arbpning operations (not yet trying to com-
mit) since they will be aborted when a conflict with a remosmgaction is detected by the block detector
(block detectiony(t,t")).

Finally, it is of vital importance that transactions comitstchanges in all replicas in the same order so
as to guarantee the consistency of the system. This is geathanks to the total order broadcast of the
writeset messages, that sets the order in which transactioould commit in all the replicas to keep data
consistency. In this protocol, we allow several transadito be submitted and be running concurrently
in a local replica. When concurrent transactions applieangles according to their respective remote
writesets, they may finish their application in a differerd@r from the sequence established by the total
order delivery. Therefore, we use a sequence of transaickentifiers cq_commit) that keeps the orderin
which writeset messages are received. Later, transaaiensnly allowed to commit, after applying their
changes, when they are the first in that sequefigefifst in sq_commit). This ensures that concurrent
transactions finally commit in the very same order in which tital order delivery established for all the
sites.

6.3.2 Discussion

The concurrent version of the protocol provides a greatdopmance specially when higher loads of trans-
actions are submitted to the replicated system. Thus, alfpwon-conflicting transactions to be executed
concurrently increases the concurrency level and thezefgstem throughput becomes increased.

In this case, in order to achieve multiple isolation leveison changes in the modifications for CSI
and SER level support proposed in Section 6.1.2 are requidamay use the same modifications, but
instead of the local variables used to control the acces$etimtal database replicds{al_tocommit; and
ws_rung) when astart message is receiveddceive_start(t)), we only need to wait on the commit of
the transactions submitted to database. Considering thévariables used in this last protocol, this would
imply wait until the list of writesets submitted to the datake becomes emptyi{S_submitted;, = ().
Thus, we ensure that the transaction waiting for the stagsauge will see the latest changes performed in
the database when it begins its operations.
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Signature:

{Vke N,t € T,m € M,op C OP: createy(t), end_operation, (t, op), begin_operation, (¢, op),
begin_commit (t), to.commity (t), end_commit (t), discard (t), ahead_decisiony(t),
execute.WSy(t), end_operation WS, (¢, ws), local_.abort (t), commit.- WS (t), abort-WS (t)

reexecute_WSy (t), block_detectiony (t,t')}
States

Vk € N,t € T: statusy (t) € {idle, active, submitted, pre_.commit, await, tocommsit, committed, aborted},

initially statusy (t) = idle
VkeN:
VkeN:
VkeN:
Vk€EN:
Transitions:
createy (t) /lt.site =kll
pre = statusy (t) = idle
eff= statusy (t) < active
DBy, .begin(t)
begin_operation, (t,op) //t.site =kl
pre = statusy (t) = active
eff= statusy (t) < submitted
D By, .submit(t, op)

end._operation, (t,op) [/lt.site =kl
pre = statusy (t) = submitted A D Bj,.notify(t, op) = run
eff= statusy (t) < active

begin_commit, (t) //t.site =kl
pre = statusy (t) = active
eff=t.WS — DB, . WS(t)
if t WS = 0 then
statusy, (t) < committed
D By, .commit(t)
else
statusy, (t) < pre.commit
TO_broadcast({writeset t))

to_.commit(t) //t.site =kl

pre = m=(writeset t) firstin TO_channely,
A statusy (t) = pre.ccommit
At.WS N WS_submittedy, = 0

eff= remove(m) from TO_channely
statusy (t) < tocommit
W S_submaitted «— W S_submitted, Ut. WS
sq-commity «— sq-commity.(t)
R_broadcast({commit t))

end_commity (t) /I t.site =kl
pre =m=(commit, t) in R_channel; A
statusy (t) = tocommit A (t) firstin sg_.commity
eff= remove(m) from R_channely,
remove((t)) from sq_commity,
W S_submaittedy, «— W S_submitted,, — t.W S
statusy (t) < committed
DBy, .commit(t)

local_aborty (t,op) [/l t.site =kl
pre = statusy (t) = submitted A D Bj.notify(t, op) = abort
eff= statusy (t) < aborted

discardy, (t)
pre = statusy (t) = abortedA m=(., t) € anychannelj
eff= remowve(m) from correspondinghannely,

TO-channel, C {m: m = (ws, t) Vt € T}, initially TO_channel;, = 0

R_channely, C {m: m = (commit,t) or m = (abort,t) Vt € T}, initially R-channel;, =0
sq-commity, C {t Vt € T}, initially sq-commity, = 0

W S_submittedy, C {t.WS Vt € T}, initially W S_submitted, = 0

execute WSy (t) /t.site # kll
pre = m=(writeset t) firstin TO_channely,
A statusy (t) € {idle, tocommit}
At WS N WS_submitted, = 0
eff= remove(m) from TO_channely
DBy, .begin(t)
DBy, .submit(t, t.WS)
W S_submatted, — W S_submitted, Ut.W S
sq-commiity, «— sq_commity.(t)
if statusy (t) = idlethen statusy (t) < submitted

reexecute. WSy (t) /lt.site # kll
pre= DBj,.notify(t,t.W.S) = abort
eff= DBj,.submit(t, t.WS)

end_operation WS, (t) //t.site # kll
pre=DBj.notify(t,t.WS) = run A statusy (t) = submitted
eff = statusy (t) — await

early_decision, (t) //t.site # kI
pre=m=(., t) in R_channel), A statusy(t) = idle
eff = remove(m) from R_channely
if m = (abort t) then statusy (t) <« aborted
else ifm = (commit, t) then statusy (t) < tocommit

abort WS (t) /lt.site # kll
pre=m=(abort t) in R_channely
A status: (k) € {await submitted
eff = remove(m) from R_.channely,
remove((t)) from sq_commity,
W S_submatted), «— W S_submitted, — t.W S
statusy, (t) <« aborted
DBy, .abort(t)

commit WSy (t) [/lt.site # kll

pre = (m=(commit, t) in R_channel, A statusy(t) = await) vV
(DBy.notify(t,t.WS) =run A statusg(t) = tocommit)
A (t) firstin sq_commity,

eff = if statusy (t) = awaitthen

remove(m) from R_channely,

remove((t)) from sq.commity,
W S_submatted), «— W S_submitted,, — t.W S
statusy (t) < committed
DBy, .commit(t)

block.detectiony (t,t")
pre=t — t’ € DBy.blockDetector() A t.site # Kk
At'.site =k A statusy(t) € {submitted tocommit}
eff= DBy.abort(t")
if statusy (t') = precommitthen R_broadcast({abortt’))
statusy (t') < aborted

Figure 9: The state transition system of the enhanced cosruwveak voting protocol
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7 Conclusions

7.1 Summary

In this paper, we study ROWA protocols for database repboatwhere each replica uses a DBMS pro-
viding CSl isolation level. Other works have proved that ROWplication protocols can not achieve the
1C-CsSl isolation level unless they do block the beginningrafsactions until they get the latest system
shapshot. This potential blocking of transactions is atgteawvback for its main advantage of non-blocking
executions of read operations.

This is the main reason for introducing GSI in database cafibn scenarios. This paper establishes
that the sufficient condition for obtaining a 1C-GSI coraisly level is ensuring that transactions commit
in the same total order in all replicas. All the propertieatthave been formalized in our paper seem to
be assumed in some previous works, but none of them carédightified nor formalized such properties.
So, we have provided a solid theoretical basis for desigaimydeveloping replication protocols with GSI,
and also some assumptions that may ease the implementat&plioation protocols.

As a result, we have also proposed a database replicatidogotdased on a middleware architecture
that is able to support different degrees of isolation (€3] and SER) on top of DBMSs supporting CSI.
This provides a great flexibility in the application deveatognt process. Its main advantage is that it does
not need a certification process but a weak voting one. Tlhisrépresents a novelty over CSI replicas,
since it usually reduces the abortion rate and avoids thelthieks certification presents, such as keeping
track of its log. Since the original proposed protocol iseatpessimistic, we have also pointed out other
enhanced protocols which include some optimizations fordasing the performance.

7.2 Future Lines

This paper has revisited some well-known ideas relateddlation levels of replicated databases and we
have made the proof of one of these replicated isolation1@«& S| level. All this work has brought out
new questions that may serve as the guideline for futureareke

We have worked with a concept of serializability achievedlaynamic rule that as said before it seems
to be more restrictive than the strict serializable levélug, it would be interesting to study formally which
is the relationship of the strict serializable level witle thnes presented in this paper.

Besides, using many of the explained concepts, we have pedpa set of protocols that are able to

ensure that they work as were defined.

Another future line of work should be implement these prots@ver an existing middleware archi-
tecture and test their performance not only among them, Isotwsith other replication mechanism not
based on a weak voting approach. For this purpose, it willdessary to develop new replication proto-
cols based on other replication techniques such as cetitiicand study how this kind of protocols may
provide different isolation levels in order to be able to qare with the ones proposed in this work.
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