
Amnesia Issue in Majority Progress Condition

Rubén de Juan-Marı́n, Luis Irún-Briz and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

{rjuan, lirun, fmunyoz}@iti.upv.es

Technical Report TR-ITI-ITE-07/12

R
.d

e
Ju

an
-M

ar
ı́n

et
al

.:
A

m
ne

si
a

Is
su

e
in

M
aj

or
ity

P
ro

gr
es

s
C

on
di

tio
n

T
R

-I
T

I-
IT

E
-0

7/
12





Amnesia Issue in Majority Progress Condition

Rubén de Juan-Marı́n, Luis Irún-Briz and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/12

e-mail: {rjuan, lirun, fmunyoz}@iti.upv.es

Abstract

Replication is used for providing highly available and fault-tolerant information systems, which are
constructed on top of replication and recovery protocols. Important aspects when designing these systems
are the failure model assumed and the progress condition adopted. Replicated transactional systems
usually assume the crash-recovery with partial amnesia failure model, and the majority partition progress
condition. But, despite the large use of such combination most of these works do not handle accurately a
very special phenomenon that can lead to diverging states in different replicas causing, when happening,
critical situations.

1 Introduction
Transactional replication has become a key factor in providing fault-tolerant, highly available information
systems, providing at the same time good performance levels. Performance can be improved forwarding
client requests to their closest replica [16, 17], or by using load-balancing algorithms [1, 13, 18]. And fault
tolerance and high availability are reached forwarding such requests to non-failed nodes in a transparent
way. In last years these techniques have been making use of Group Communication System (GCS for short)
[7] as it is detailed in [20], because they provide communication primitives and membership mechanisms,
which are very important in replicated systems.

Important aspects when designing transactional replicated systems are how they manage membership
changes –which alter their performance, fault tolerance and high availability support– and the adopted
progress condition that must fulfil in order to go on working.

For managing the membership events they make use of recovery components which deal with these
situations attending the failure model adopted. The most commonly used failure models in transactional
systems are fail-stop and crash-recovery with partial amnesia, as defined in [8], being the last one the
most widely used in latest proposals for shortening the recovery times of updated nodes. But, its use arises
the amnesia phenomenon [11] which must be correctly managed for solving different state evolutions in
different nodes. In relation to the progress condition, most of these works have adopted the majority of
alive replicas progress condition –primary partition [7]–.

In this paper we first outline with a simple example (look at Section 5.1) a replicated consistency
problem which arises when combining the amnesia phenomenon –non-correctly handled– with a specific
replicated system composition allowed by the majority partition progress condition. A problem that can
lead different state evolutions among the members of the replicated system.

Later, we formalize this problem, establishing the replicated system conditions that would generate it,
and the properties that must be fulfilled for overcoming it.

Despite being a rare problem, it should be accurately managed for avoiding critical situations. There-
fore, we present two different approaches for overcoming it, being each one of them interesting for trans-
actional replicated systems with different characteristics. On one hand, we present a solution for critical

1



systems where already performed and committed work at replicated system level can not be undone nor
lost. On the other hand, we propose the use of a technique used in partitionable systems, reconciliation,
whose main advantage is its zero overhead in normal work.

The rest of the paper is structured as follows. In Section 2 we detail the system model. Section
3 presents the amnesia phenomenon, how it is manifested and how it can become a problem. Later, we
perform a short formalization about progress conditions in Section 4. In Section 5 we outline and formalize
the amnesia issue with the progress condition, presenting some solutions in Section 6. Finally, related work
is included in Section 7, and Section 8 concludes the paper.

2 System Model
Our model considers a replicated transactional system, which is compound by several replicas, where each
replica is located in a different node. These nodes belong to a partially synchronous distributed system:
their clocks are not synchronized but the message transmission time is bounded. The state is fully replicated
in each node, so each replica has a copy of the whole state. State changes are performed between the
boundaries of transactions.

The replicated system uses a GCS, supporting point-to-point and broadcast deliveries. A FIFO and reli-
able communication is assumed. Transaction updates are propagated to all replicas using atomic broadcast:
i.e. total order delivery.

The GCS includes a group membership service, who knows in advance the identity of all potential
system nodes. These nodes can join the group and leave it either explicitly or implicitly by crashing. The
GCS provides Virtual Synchrony[4] guarantees, thus each time a membership change happens, it supplies
consistent information about the current set of reachable members. This information is given in the format
of views. Sites are notified about a new view installation with view change events.

The view notification mechanism is extended with node application state information providing the
enriched view synchrony [3] approach. This makes simpler and easier the support of system cascading
reconfigurations. These enriched views (e-view) not only inform about active nodes, but they also inform
about the state of active nodes: outdated or up-to-date. The use of e-views refines the primary partition
model into the primary subview model, therefore the system only can work when a progress condition is
fulfilled1 as detailed in [9]. At the same time the state consistency is ensured because only the primary
subview is able to work in partition scenarios. For similar reasons, only fully updated replicas can serve
client requests.

3 The Amnesia Phenomenon
Replicated transactional systems have usually adopted the fail-stop failure model [8]. The reasons for
adopting this failure model are: (a), it is the failure model mainly used in distributed systems; (b), its
simplicity. In fact, when a replica crashes it is not recovered but substituted by a new one –transferring to
it the whole state–. Therefore, the system must not generate and maintain special information for recovery
purposes.

However, assuming this failure model implies some drawbacks when the recovery information to be
transferred is large –a common situation in replicated databases. Hence, the larger the information to be
transferred the longer it takes to make a replica become active. This will imply, in the replicated system, the
following consequences: (a) longer periods with decreased fault tolerance support, since only fully updated
replicas can be used to guarantee the correct and consistent state evolution in the replicated system, (b)
higher times of unavailability if the replicated system does not fulfill the progress condition (i.e. systems
based on primary partitions).

In order to avoid all the above presented issues in replicated systems, researchers have opted for as-
suming the crash-recovery with partial amnesia failure model [8]. In this case, when a crashed replica

1This characteristic prevents the system from working in the starting phase until a primary subview is reached. Therefore, during
this initial phase, the recovery protocol must not perform any work.

2



reconnects the system recovers it transferring only the state it has missed; thus, transferring less informa-
tion and minimizing the previous issues.

With the assumption of this failure model, the system is forced to determine correctly the subset of
information that must be transferred to the recovering node. If it is not correctly determined, the state
reached in the recovered node can diverge from the real consistent replicated state, leading to an undesired
situation. In [10, 11] we have already described this situation naming it as amnesia phenomenon, which
manifests at two different levels:

• Transport level. At this level, it implies that the replica does not remember which messages have
been received. Actually, the amnesia implies that received messages non-persistently stored are lost
when the node crashes, generating a problem when they belong to transactions that the replicated
system has committed but which have not been already committed in the crashed node, because
message delivery does not really imply correctly processed as demonstrated in [21].

• Replication level. The amnesia is manifested here in the fact that the node “forgets” which were the
really committed transactions. Usually, the internal log used by the underlying databases can be used
for solving this.

3.1 A Generic Solution
We have also proposed a generic solution for overcoming this in [10, 11]. The proposed solution consists in
forcing each replica to enqueue persistently the broadcast messages as soon as they are delivered, removing
them from this queue as soon as they are correctly processed. Then, when a crashed node reconnects, before
asking about its missed changes to an updated replica it will check its queue of received and not applied
messages (i.e. a log-based solution [5]). Obviously, this is not the unique solution that can be adopted for
solving this problem, being possible also to apply version-based techniques [6].

3.2 Amnesia Formalization
As previous step for describing the progress condition issue when the amnesia phenomenon manifests we
need to formalize the amnesia problem. To do so, we consider a replicated transactional system, N =
{n1, n2, ..., nn}, compound by n replicas, being n > 2 (primary partition assumption [7]). It uses an eager
update everywhere protocol based on a GCS which provides an atomic broadcast primitive for spreading
messages and virtual synchrony. It also uses constant interaction, broadcasting each transaction updates in
a single message.

In this system, we identify each installed view –working view– as Vx, being x the view identifier. Tx =
{Tx,1, Tx,2, ..., Tx,m} are the transactions delivered (and not aborted in this view –aborted transactions are
not considered because they are not relevant for recovering purposes–). As the system uses the atomic
broadcast primitive [15] for spreading transactions, all alive nodes deliver the broadcast transactions in the
same order, using this order at execution time. This order is being reflected by the second subindex.

∀ny ∈ Vx we denote as TD
x,ny

the transactions subset of Tx really delivered to ny and, respectively,
TC

x,ny
the transactions subset of Tx really committed in ny; fulfilling TC

x,ny
⊆ TD

x,ny
. Virtual synchrony [7]

ensures that TD
x,ny

= Tx. View transitions are represented as Vx → Vx+1.
Then ∀Vi → Vi+1 triggered by a node crash, it will be at least one node nl : nl ∈ Vi \Vi+1. Consider-

ing that Ti = {Ti,1, Ti,2, ..., Ti,m} is the transactions set delivered and committed in the replicated system
during Vi, it can be assumed that ∀nk ∈ Vi ∩ Vi+1:

Ti = TD
i,nk

= TC
i,nk

= {Ti,1, Ti,2, ..., Ti,m}

While ∀nl ∈ Vi \ Vi+1, without a successful delivery primitive [21] it might happen the following
Ti = TD

i,nl
6= TC

i,nl
, where:

TC
i,nl

= {Ti,1, Ti,2, ..., Ti,m−s}, being 0 ≤ s ≤ m

3



In spite of assuming that s ∈ {0, ..,m} for simplicity reasons in this paper, it is also possible sometimes
that s > m due to workload reasons.

When nl reconnects to the system, it triggers a new view Vi+x, being x > 1. Later, the system must
update nl through the recovery process, transferring to it its lost transactions, which are:

• Transactions forgotten from its last seen view, Vi: TF
i,nl

= Ti,m−s+1, ..., Ti,m

• Transactions missed during its disconnection: TM
nl

= Ti+1 ∪ ... ∪ Ti+x−1

Then, for solving the amnesia phenomenon –forgotten state– when recovering nl the two following
properties must be provided:

• Property 1: nl must remember its last committed transaction, Ti,m−s;

• Property 2: the replicated system must maintain and provide a way for obtaining the transactions
subset TF

i,nl
or their associated updates.

Once this forgotten state has been updated in the recovering replica, the recovery protocol can start
with the recovery process itself, transferring missed data: TM

nl
.

Notice that our generic solution, outlined in Section 3.1 and presented in [10, 11], fulfills both proper-
ties. This is due to the fact that the persisted queue contains the messages associated to TF

i,nl
.

4 Progress Condition
Progress condition is the condition that must be fulfilled by a replicated system to be enabled to work.
Usually, replicated systems have adopted the primary partition condition [7]. So, in this case the replicated
system is allowed to work if a majority of its replicas is alive. In [9] it has been demonstrated how this
progress condition can refer either to a majority of updated nodes –more restrictive– or a majority of alive
nodes detailing the differences between them.

4.1 Progress Condition Formalization
Considering a replicated transactional system, N = {n1, n2, ..., nn}, compound by n replicas –with n >
2–, we represent with Nx that it has a working view, Vx, while with N∗

x that it has not any working view,
being Vx the last working view installed in the system. Minority partitions are represented by V∗y , where y
is the last working view seen by the members of this partition.

Thus, we can say that it is in a working view, Nx, if it has a Vx : card(Vx) >= bn
2 c+1. Contrarily, we

say that it is in a non-working view N∗
x . Minority partitions, V∗x , always fulfil that card(V∗x) < bn

2 c+ 1.
For formalization reasons, we use two different view counters: one for total installed views –first

subindex–, and another one for working installed views –second subindex. The first subindex is used
for noticing that membership changes also occur in non-majority partitions, installing “views”, although
usually authors only use the view concept for partitions which fulfil the progress condition. So, this first
counter is increased in any members group view change –but it has not any purpose in a real system–,
while the second one is only increased when a new working view is installed –being the counter that must
be used in a real system–. Possible view transitions are shown in table 1.

5 Amnesia Consistency Problem in Progress Condition
As we have said combining the amnesia problem –which appears when the replicated system adopts the
crash-recovery with partial amnesia failure model– with the replicated system progress condition –primary
partition– can lead the replicated system to state inconsistencies. The problem is that the system is unable to
guarantee the correct system data state progress. This inconsistency problem can be seen with the following
example.

4



TRANSITION CASES
Node Addition

T1: Vx,j ∪ V∗k,l → Vx+1,j+1

T2: V∗x,j ∪ V∗k,l → V∗max(x,k)+1,max(j,l)

T3: V∗x,j ∪ V∗k,l → Vmax(x,k)+1,max(j,l)+1

Node Removal
T4: Vx,j → Vx+1,j+1

T5: Vx,j → V∗x+1,j

T6: V∗x,j → V∗x+1,j

Table 1: View Transitions.

5.1 A Problem Sample
Consider that the information system of a hospital is compound by three replicas, α = {R1, R2, R3}, and
all the hospital terminals work against it. All three replicas are fully updated –with the same state– and
working at the instant t0. Then, a doctor introduces a first patient diagnosis in the system through T1 –
including the necessary analysis that need to be performed for refining it–, being delivered and committed
in all replicas. After performing and studying these analysis, the doctor introduces in the system that the
patient has forbidden to eat some particular food –becuase its ingestion can derive in severe health patient
consequences– through T2. T2 is delivered to all replicas, but only committed in R1. This is due because R2

and R3 nodes crash before being able to commit T2, moreover, R2 and R3 lose the T2 associated message
because the replication protocol does not persist it. R2 and R3 crash implies that the hospital information
system does not fulfil the primary partition progress condition, so it stops working. Once the hospital IT
staff has repaired R2 and R3, these replicas are reconnected to the system, but in this view change it also
crashes R1. Then the information system fulfils the progress condition, but it arises a consistency problem,
R2 and R3 have not seen the T2 changes. So, as they fulfil the progress condition they can go on working,
but if they work they will start from the state reached after committing T1 and not T2 –the last really
committed transaction in the replicated transactional system– leading to a diverging state evolution to R1

state –which is the correct one.
It must be said that this situation or another combination of events that leads to a similar situation is

very improbable in a replicated system. And this probability diminishes as long as the number of replicas
increases. But, it must be correctly managed in order to avoid undesired situations in the replicated consis-
tent state. In the previous example, the inconsistency can imply that the patient eats something that it has
forbidden, causing severe damages in his health.

As previous step to presenting possible solutions that can be applied for solving this problem, we will
formalize it.

5.2 Problem Formalization
Assume a replicated transactional system, N = {n1, n2, ..., nn}, compound by n replicas, being n > 2.

∀T5 transitions triggered by node crash/es it will be at least one nl : nl ∈ Vx,j \ V∗x+1,j .
Considering that Tj = {Tj,1, Tj,2, ..., Tj,m} is the transactions set delivered and committed in the repli-

cated system during Vx,j , it can be assumed that ∀nk ∈ Vx,j ∩ V∗x+1,j :

Tx = TD
j,nk

= TC
j,nk

= {Tj,1, Tj,2, ..., Tj,m}

While ∀nl ∈ Vx,j \ V∗x+1,j , as it has been formalized in subsection 3.2, it might happen the following:
Tj = TD

j,nl
6= TC

j,nl
, where:

TC
j,nl

= {Tj,1, Tj,2, ..., Tj,m−s}, being 0 ≤ s ≤ m.

5



Due to the amnesia phenomenon we will distinguish minority partitions, V∗z,j –which is used in a
generic way–, between V̌∗z,j and V̂∗z,j . First ones, are minority partitions whose last seen view is j, but
they can not ensure that they do not have the amnesia phenomenon in relation to this view because all
their nl nodes that have seen the j view fulfil that nl : nl ∈ Vx,j \ V∗x+1,j . While second ones, V̂∗z,j , are
minority partitions that have seen also the j view, and at least one of their nodes that has seen j fulfills
nm ∈ Vx,j ∩ V∗x+1,j .

Later, if in the first transition of type T3 to a new working view, Vk,j+1 –recall that the last installed
working view in the system was Vx,j–, the new installed view fulfils the following:

Vk,j+1 = A ∪B where:

• A = {nl ∈ Vx,j \ V∗x+1,j : nl /∈ V̂∗z,j : x + 1 < z < k}, are the nodes that were alive in the last
working view, but crashed –so they were not alive in any V∗x+1,j– triggering the view change that
lead Nj → N∗

j , and did not belong to any minority view that can recover the whole j view.

• B = {nk /∈ Vx,j ∩ V̂∗z,j : x < z < k}, are the nodes that did not belong to the last working view,
and that have not recovered the whole j view in any minority partition.

Then, the new reached majority is enabled to go on working. But, in this situation a problem can arise
if the s term for A nodes fulfils that s > 0. This is because this new installed majority will be unable to
reach the last consistent replicated state –the one reached after applying Tj,m–, due to the fact that:

• ∀nl ∈ A it is fulfilled that TF
j,nl

6= ∅

• ∀ns ∈ B it is either fulfilled that TD
j,nk

= TC
j,nk

= ∅ or TF
j,nl

6= ∅

So, the arising consistency problem conditions are:

• Condition 1: T3 transition → Vk,j+1

• Condition 2: Vk,j+1 = A ∪B

• Condition 3: ∀nl ∈ A it is fulfilled that TF
j,nl

6= ∅

The properties that must fulfil the replicated system to avoid this possible situation are similar to the
ones proposed for solving the general amnesia phenomenon in subsection 3.2: in fact the Prop. 1 is
necessary as it is defined in 3.2, while the Prop. 2 must be slightly modified to overcome this problem:

• Property 2: each node nl ∈ A must maintain and provide a way for obtaining its TF
j,nl

transactions
subset or associated updates, instead of trusting in “the replicated system”.

Our generic solution, outlined in Section 3.1 and presented in [11, 10], fulfils also both properties, as
explained in the next section.

6 Solutions
In this section we provide different approaches for solving this problem in replicated systems.

Persisting Messages. This solution is in fact our generic approach presented in Section 3.1. So, the
idea consists in storing persistently the delivered messages in each replica as an atomic step of the delivery
message, being only possible to delete them once they have been correctly processed in the replica.

Working in this way it is always ensured that ∀T5 transition triggered by node crashes –reaching
V∗x+1,j– all nl ∈ A has persisted its TF

j,nl
. Thus, when they reconnect and start their recovery process they

can apply them. So, if in the first transition of type T3 to –reaching Vk,j+1– it is fulfilled that Vk,j+1 =
A ∪ B, then the A nodes in spite of having the TF

j,nl
6= ∅, they have permanently stored the messages

associated TF
j,nl

. Hence, they are able to reach the last consistent state of the replicated system, avoiding
diverging state evolutions, when the amnesia problem is combined with a T3 transition.

6



Obviously, persisting messages as soon as they are delivered implies an overhead during the replication
work. A study of this overhead cost is presented in [11]. An overhead that will penalize constantly the
replication work in order to avoid problems for situations that will rarely occur.

Mobile approach. So, another possible solution is to do nothing and assume these situations can happen.
In this case, the idea is that among the alive nodes that compound the new primary partition –instead of not
having the last consistent state– decide a new last consistent replicated state, allowing the system to go on
working from this point, the Tj,m−s with highest m− s value of A nodes.

Later, when a replica which really reached the last consistent state of the replicated system reconnects,
it must undo the transactions not processed in the new consistent replicated state before being recovered.

This solution avoids the overhead of persisting messages and simply implies to undo –in very rare
occasions– some transactions –usually very few–. This solution is similar in concept to some approaches
used in reconciling processes for partitionable systems [2].

Selecting Alternative. Which solution must be adopted? It depends. The first solution solves the
problem ensuring that committed transactions are not lost, but implies a constant overhead during the
normal work for solving a problem that will rarely happen. While the second solution avoids the problem
without implying any overhead, but some transactions must be undone when this improbable scenario
happens. So, it depends on the replicated system tolerance to undo some already committed transactions.
If this tolerance is critical we have to select the first approach, while if there are not important problems of
undoing some committed transactions, the second one can be adopted.

7 Related Work
As far as we know, there are not published works in replicated systems literature which study possible
arising problems when combining the amnesia phenomenon –associated to the crash recovery with partial
amnesia failure model– with the most extended progress condition in replicated systems.

In relation to the amnesia phenomenon different works have presented several results as [10, 11, 12, 14]
where this phenomenon has been studied for specific recovery protocols [12, 14] or in a more generic way
as in [10, 11].

It must be also noticed that in [21], authors analyzed the basic phenomenon which underlies behind the
amnesia problem. They also proposed in such paper the concept of successful delivery that when correctly
implemented, it overcomes both the amnesia generic problem and the amnesia issue with the progress
condition presented in this paper.

In [19], authors realised that the adoption of the crash-recovery failure model in replicated systems, in
spite of being more realistic implied some problems that they solved combining checkpointing and message
logs at communications level.

Anyway, in [19, 21] authors do not formalize the amnesia phenomenon and do not study the associated
problem when combined with the majority progress condition.

8 Conclusions
In this paper we have shown how combining the amnesia phenomenon, which arises when replicated
systems assume the crash recovery with partial amnesia failure model, with a particular scenario allowed
for the most commonly used progress condition –majority partition– in these replicated systems can lead
to diverging replicated state evolutions. We have formalized it, and proposed the properties that must be
ensured in order to overcome these undesired situations. Later, we have proposed two different approaches
for solving this problem, being interesting each one for different replication scenarios.

This phenomenon in spite of being very rare can cause catastrophic consequences in consistency con-
cerned replicated systems, so in these systems it must be accurately managed.

9 Acknowledgements
Work supported by FEDER and the Spanish MEC grant TIN2006-14738-C02.

7



References
[1] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. A comparative evaluation of transparent scaling

techniques for dynamic content servers. In ICDE, pages 230–241. IEEE Computer Society, 2005.

[2] Mikael Asplund, Simin Nadjm-Tehrani, Stefan Beyer, and Pablo Galdámez. Measuring Availabil-
ity in Optimistic Partition-tolerant Systems with Data Constraints. In International Conference on
Dependable Systems and Networks (DSN), June 2007.

[3] O. Babaoǧlu, A. Bartoli, and G. Dini. Enriched view synchrony: A programming paradigm for
partitionable asynchronous distributed systems. IEEE Trans. Comput., 46(6):642–658, 1997.

[4] Kenneth P. Birman and Robbert Van Renesse. Reliable Distributed Computing with the ISIS Toolkit.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1993.

[5] F. Castro, J. Esparza, M.I. Ruiz, L. Irún, H. Decker, and F.D. Muñoz. CLOB: Communication support
for efficient replicated database recovery. In 13th Euromicro PDP, pages 314–321, Lugano, Sw, 2005.
IEEE Computer Society.

[6] F. Castro, L. Irún, F. Garcı́a, and F. D. Muñoz. Fobr: A version-based recovery protocol for replicated
databases. In PDP, pages 306–313, 2005.

[7] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A comprehensive
study. ACM Computing Surveys, 4(33):1–43, 2001.

[8] Flaviu Cristian. Understanding fault-tolerant distributed systems. Communications of the ACM,
34(2):56–78, 1991.

[9] Rubén de Juan-Marı́n. (n/2+1) alive nodes progress condition. In Sixth European Dependable Com-
puting Conference, EDCC-6, 2006.

[10] Rubén de Juan-Marı́n, Luis Irún-Briz, and Francesc D. Muñoz-Escoı́. Recovery strategies for linear
replication. In ISPA, pages 710–723, 2006.

[11] Rubén de Juan-Marı́n, Luis Irún-Briz, and Francesc D. Muñoz-Escoı́. Supporting amnesia in log-
based recovery protocols. In Euro American Conference on Telematics and Information Systems,
EATIS, Faro, Portugal, 2007.

[12] Rubén de Juan-Marı́n, Marı́a Idoia Ruiz-Fuertes, Jerónimo Pla-Civera, Luis Héctor Garcı́a-Muñoz,
and Francesc D. Muñoz-Escoı́. On Optimizing Certification-Based Database Recovery Supporting
Amnesia. In XV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 07), Torremolinos, Spain,
June 2007.

[13] Sameh Elnikety, Steven Dropsho, and Willy Zwaenepoel. Tashkent+: Memory-aware load balancing
and update filtering in replicated databases. In Proc. EuroSys 2007, pages 399–412, March 2007.

[14] Luis H. Garcı́a-Muñoz, Rubén de Juan-Marı́n, J. E. Armendáriz, and Francesc D. Muñoz-Escoı́.
Adding amnesia support and compacting mechanisms to replicated database recovery. Technical
report, ITI-ITE-07/08, Instituto Tecnológico de Informática, 2007.

[15] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullender, editor,
Distributed Systems, chapter 5, pages 97–145. ACM Press, 1993.

[16] Yi Lin, Bettina Kemme, Marta Patiño-Martı́nez, and Ricardo Jiménez-Peris. Middleware based data
replication providing snapshot isolation. In Fatma Ozcan, editor, SIGMOD Conf., pages 419–430.
ACM, 2005.

[17] Marta Patiño-Martı́nez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso. Middle-r:
Consistent database replication at the middleware level. ACM Trans. Comput. Syst., 23(4):375–423,
2005.

8



[18] Christian Plattner and Gustavo Alonso. Ganymed: Scalable replication for transactional web appli-
cations. In Hans-Arno Jacobsen, editor, Middleware, volume 3231 of Lecture Notes in Computer
Science, pages 155–174. Springer, 2004.

[19] Luı́s Rodrigues and Michel Raynal. Atomic broadcast in asynchronous crash-recovery distributed
systems and its use in quorum-based replication. IEEE Trans. Knowl. Data Eng., 15(5):1206–1217,
2003.

[20] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding replication in
databases and distributed systems. In ICDCS, pages 464–474, Washington, DC, USA, 2000. IEEE
Computer Society.

[21] M. Wiesmann and A. Schiper. Beyond 1-Safety and 2-Safety for replicated databases: Group-Safety.
In 9th International Conference on Extending Database Technology, pages 165–182, 2004.

9


