
Associating Replication and Recovery Protocols For Replicated Databases ∗

Luis H. Garcı́a-Muñoz, J. Enrique Armendáriz-Iñigo, Francisco D. Muñoz-Escoı́
Instituto Tecnológico de Informática, Valencia, España

{lgarcia, armendariz, fmunyoz}@iti.upv.es
Technical Report ITI-ITE-06/08

Database Replication consists in storage copies of the
data in multiple sites for increasing availability and perfor-
mance. However, it is necessary to maintain copies updated
to ensure consistency. The recovery task basically consists
in transferring the information lost during the failure inter-
val, from one or more replicas that have been active to re-
covering replicas, without altering the service capability.

A good replication system must use simple technics, tol-
erate work overload, keep consistency, provide operability
and avoid transactions rollback [6]. In a similar way, a good
recovery protocol must use simple technics, distribute in an
efficient way the recovery work among available sites and
allow the concurrency.

The main goal of this work is to present a revision of
the replication and recovery protocols developed in the last
years so that the reader can observe the different alternatives
and strategies used. Besides, the concepts related to Group
Communication Systems (GCS) and virtual synchrony [4]
are also reviewed. We will present a schematic comparison
through a table that summarizes the characteristics found.

In order to compare the replication protocols we will
consider [10]: 1)Server architecture(SA). Where are the
transactions executed in the first place, it can be primary
copy (PC) or update everywhere(UE). 2)Server interac-
tion(SI). Interaction between servers that contain replicas.
Constant interaction(C) or linear interaction(L). 3)Transac-
tion termination(TT). The way transactions terminate: vot-
ing termination (V) or non-voting termination(NV). 4)The
way data is updated(U): eager update(E) or lazy update(L).

For recovery protocols we consider: 1)Transference
model (TM). How the actual state of the database is trans-
ferred: Full database transfer (FDB), object version based
(VB) or resend lost messages (LB). 2)How concurrency
control is made during the recovery: in an optimistic(O)
or pessimistic(P) way, with a unique(U) or distributed(D)
manager and if it is version based(V),(Y)es/(N)o. 3)The
way to distribute the recovery work(WD): centralized(C) or
distributed(D).

∗This work has been funded by the MCYT and the MEC under projects:
TIC2003-09420-C02 and TIN2006-14738-C02.

When the primary target is to assure the replica consis-
tency, generally the eager update algorithms are used with
better results; when the primary target is performance, bet-
ter results with the lazy update algorithms are obtained.

If both the replication and recovery protocols are man-
aged at the middleware layer they can be easily adapted to
a variety of database management systems [8].

Considering the analysis made in [5] and this work, in
general we can say that older protocols do not consider
broadcast protocols based on GCS, and were made based
on optimistic or pessimistic concurrency control with vot-
ing transaction termination. Recently developed algorithms
propose to make widely use of GCS to implement replica
control, such as the use of total order multicast for writeset
delivery and used for conflict resolution too, membership
service for provide to system with a list of all active sites,
and handling the primary partition model and virtual syn-
chrony. This provides better performance than traditional
eager replica control mechanisms. The use of virtual syn-
chrony and Enriched View Synchrony (EVS) aids the sys-
tem to have a more realistic state of updated members en-
capsulating the reconfiguration process [9].

We can observe that the use of loggers can simplify the
replica and recovery task [6], but may increase the work in
the sites or the amount of messages and information to store
and send for achieving consistency. Other ambiguous things
remains for study, such as the use or not of a site as primary
logger for recovery: how big will the log become? or how
long must the loggers record the lost messages for a failed
site waiting for its recovery?.

The proposals for doing the recovering task in a paral-
lel form are a good idea for load balancing and time opti-
mization as in [8], but in that case, they are restricted to a
particular modeling for the database.

To combine the advantages of several replication and re-
covery algorithms without their disadvantages would be de-
sirable but in some cases as in [7] and [2] is not fully
possible. In [7] a configurable replication protocol is pre-
sented. This protocol can be configured for eager, lazy or
combined eager and lazy update. In addition to this, the re-



covery protocol is implicit in the replication algorithm. This
provides several advantages, such as a reduction in the abor-
tion rate, do not suspend the system activity during site re-
covery, avoid the necessity of log maintenance and no more
code for recovery algorithm must be added, but the trans-
action service time is usually longer than that of pure lazy
database replication protocols. In the framework presented
in [2] we could take the advantages for version-based and
log-based recovery protocols.

Minimizing the amount of information being transferred
with version-based strategies or combining it with log-
based strategies, distributing the recovery work for balance,
execution of transactions during the recovery time and low
space requirements for lost objects or messages are the de-
sirable characteristics for replication and recovery database
protocols. Several of these characteristics can be found in
[3], where only a more generalized application for the pro-
tocol would be desirable and a possibility for performance
decrement exists when we need to explore the writeset for
recording the identifiers of the objects when there are some
failed sites. Elsewhere, in [1] these disadvantages are dis-
carded and some tests will be done to confirm its advantages
and provide performance measurements.

References

[1] J. E. Armendáriz. Design and Implementation of Database
Replication Protocols in the MADIS Architecture. PhD the-
sis, Univ. Pública de Navarra, Pamplona, Spain, Feb. 2006.

[2] F. Castro, J. Esparza, M. I. Ruiz, L. Irún, H. Decker, and
F. D. Muñoz. Clob: Communication support for efficient
replicated database recovery. In PDP, pages 314–321, 2005.

[3] F. Castro, L. Irún, F. Garcı́a, and F. D. Muñoz. Fobr: A
version-based recovery protocol for replicated databases. In
PDP, pages 306–313, 2005.

[4] G. Chockler, I. Keidar, and R. Vitenberg. Group commu-
nication specifications: A comprehensive study. In ACM
Computing Surveys 33(4), pages 1–43, 2001.

[5] L. H. Garcı́a-Muñoz, J. E. Armendáriz, and F. D. Muñoz.
Recovery protocols for replicated databases - a minimal sur-
vey. Technical Report ITI-ITE-06/07, Inst. Tecnológico de
Informática, Valencia, Spain, Oct. 2006.

[6] J. Holliday. Replicated database recovery using multicast
communication. In NCA. IEEE-CS Press, 2001.

[7] L. Irún, F. Castro, F. Garcı́a, A. Calero, and F. Muñoz. Lazy
recovery in a hybrid database replication protocol. In XII
Jornadas de Concurrencia y Sistemas Distribuidos, 2004.

[8] R. Jiménez, M. Patiño, and G. Alonso. An algorithm for
non-intrusive, parallel recovery of replicated data and its
correctness. In SRDS, pages 150–159. IEEE-CS Press, 2002.

[9] B. Kemme, A. Bartoli, and Ö. Babaoglu. Online reconfig-
uration in replicated databases based on group communica-
tion. In DSN, pages 117–130. IEEE-CS Press, 2001.

[10] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Database replication techniques: a three parame-
ter classification. In SRDS, pages 206–215. IEEE-CS Press,
2000.

Table 1. Classification of replication and re-
covery protocols

Replication Recovery
SA SI TT U TM O/P D/U V WD

[9]

Full
DB
Transfer

UE C NV E FDB P U N C

Version
number

UE C NV E VB P U N C

Restrict
set of
objs.

UE C NV E VB P U N C

Log
Filter

UE C NV E VB P U Y C

Lazy
data
Transf.

UE C NV L VB P U N C

[6]

Bcast
writes
Log
upd.

UE L NV E LB P U N C

Bcast
writes
Augm.
bcast

UE L NV E LB P U N C

Delayed
bcast
Log
upd.

UE C NV E LB P U N C

Delayed
bcast
Augm.
bcast

UE C NV E LB P U N C

Single
bcast

UE C NV E 1 P U N C

[8] PC C NV E LB P U N D
[7] UE C V 2 VB O D Y D
[2] CLOB UE C NV E 3 O D Y C
[3] FOBr UE C V E VB O D Y D

[1]
BRP UE C V E VB O D Y D
ERP UE C NV E VB O D Y D
TORPE UE C NV E VB O D Y D

1. Considers full database transfer, is needed if a site is new or if it is
not in the record of views in the logger.

2. It is configurable, and may be hybrid.
3. VB for long-term failures, and LB for short-term ones.


