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Abstract

The concept of Generalized Snapshot Isolation (GSI) has been recently proposed as a suitable ex-
tension of conventional Snapshot Isolation (SI) for replicated databases. In GSI, transactions may use
older snapshots instead of the latest snapshot required in SI, being able to provide better performance
without significantly increasing the abortion rate when write/write conflicts among transactions are low.
Its authors also state that GSI is needed because there is no non-blocking implementation of SI in asyn-
chronous systems, even when databases never fail, but they do not prove such statement. We justify such
property for ROWA (Read One, Write All) protocols in this paper by using the equivalence between
SI-schedules. Additionally, we show and prove that a replication protocol that uses SI replicas provides
GSI if and only if it provides overall atomicity and update transactions are committed in the same order
at all sites. This last property prohibits the usage of those mechanisms that exclusively order write/write
conflicting transactions instead of all transactions because they do not guarantee GSI.

1 Introduction

Snapshot Isolation (SI) is a transaction isolation level introduced in [2] and implemented (using multiver-
sion concurrency control) in several commercial database systems as Oracle, PostgreSQL, Microsoft SQL
Server or InterBase. SI provides a weaker form of consistency than serializability [3]. Indeed, SI allows
some read-only anomalies analyzed in [11]. Several researchers [9, 10] have recently demonstrated that,
under certain conditions on the workload, transactions executing on a database with SI produce serializ-
able histories. Nevertheless, in practice most applications run serializably under SI, including the most
widely-used database benchmarks TPC-B, TPC-C, and TPC-W. These characteristics turn SI into an attrac-
tive isolation level for a database programmer because it provides sufficient data consistency for non critical
applications while it maintains a good performance, since read-only activity introduces lower overheads in
the protocol. This property allows read-only transactions to be never either delayed, blocked or aborted un-
der SI, since they do not need read-locks, and they never cause update transactions to block or abort. This
behavior is important for workloads dominated by read-only transactions, such as those resulting from
dynamic content Web servers.

Many enterprise applications demand high availability since they have to provide continuous service
to their users. For achieving such availability, the common solution consists in deploying multiple replicas



of such application. This leads also to the replication of the information being used; i.e., to managing
replicated databases. The concept of Generalized Snapshot Isolation (GSI) has been recently proposed [8]
in order to provide a suitable extension of conventional SI for replicated databases based on multiversion
concurrency control. In GSI, transactions may use older snapshots instead of the latest snapshot required
in SI. Authors of [8] outline an impossibility result which justifies the use of GSI in database replication:
“there is no non-blocking implementation of SI in an asynchronous system, even if databases never fail”. In
a non-blocking replication protocol, transactions can start at any time without restriction or delay (including
those delays produced by group communication primitives).

Concurrently with that paper, Lin et al. [18] propose a definition of One Copy Snapshot Isolation (1CSI)
for ROWA (Read One Write All) protocols. From the previous impossibility result, it is not possible to
obtain the given isolation level with the replication protocols stated in [18]. Thus, their protocols should be
classified as GSI, instead of a strict SI for a replicated system.

In this paper, we prove that a non-blocking ROWA protocol can not implement SI. The proof is simple
and it is based on a condition that restricts the transaction start time in order to provide SI. The proof forces
the resulting protocol to be a blocking one. As SI is not implemented by non-blocking ROWA protocols, we
also study the basic requirements that such kind of protocols must verify in order to provide GSI using SI
replicas. The criteria for implementing GSI are: (i) Each submitted transaction to the system either commits
or aborts at all sites (atomicity); (ii) All update transactions are committed in the same total order at every
site (total order of committed transactions). Total order ensures that all replicas see the same sequence of
transactions, being thus able to provide the same snapshots to transactions, independently of their starting
replica. Without such order, those transactions without write/write conflicts might be applied in different
orders in different replicas. So, read-only transactions would be able to provide different results in different
replicas. Atomicity guarantees that all replicas take the same actions regarding each transaction, so their
states should be consistent, once each transaction has been terminated.

In the papers discussed above, ROWA certification-based replication protocols are provided. These
protocols are based on the use of atomic broadcast [5] to deliver in total order the update operations of
transactions for passing the certification at every database replica. The distributed protocol in [8] applies
the update operations of transactions in the same total order in all replicas while the protocol in [18] allows
more concurrency in the execution of the update operations of transactions at each replica, although it needs
to block the execution of starting transactions under certain circumstances. So, these protocols comply with
the requirements of GSI.

The contributions of this paper are twofold. First, a detailed formalization of the GSI definition and its
requirements is presented. Second, and as a result of the first one, we provide a complete characterization
of the GSI protocols that allows us to state that several kinds of optimizations are not possible if GSI must
be ensured. For instance, the use of simpler types of broadcast protocols (those that do not enforce a total
order), or the design of replication protocols that allow the concurrent execution of transactions without
write/write conflicts (and their application at remote sites in different orders) and that never block the start
of a transaction, such as some implementations of O2PL [1].

The rest of the work is organized as follows. Section 2 introduces the concept of multiversion histories
based on [3]. Sections 3 and 4 give the concepts of Snapshot Isolation and Generalized Snapshot Isolation,
using a similar notation to that of [8]. In Section 5, the structure of ROWA protocols is introduced. Con-
ditions for One Copy Snapshot Isolation and One Copy Generalized Snapshot Isolation are introduced in
Sections 6 and 7 respectively. Finally, conclusions end the paper.

2 Multiversion Histories

In the following, we define the concept of multiversion history for committed transactions using the theory
provided in [3]. To this end, we first define the basic building blocks for our formalizations, and then the
different definitions and properties will be shown.

A database (DB) is a collection of data items, which may be concurrently accessed by transactions. A
history represents an overall partial ordering of the different operations concurrently executed within the
context of their corresponding transactions. Thus, a multiversion history generalizes a history where the
database items are versioned.



To formalize this definition, each transaction submitted to the system is denoted by 7;. A transaction is
a sequence of read and write operations on database items ended by a commit or abort operation. Each 7;’s
write operation on item X is denoted W;(X;). A read operation on item X is denoted R;(X;) stating that
T; reads the version of X installed by 7j. Finally, C; and A; denote the T;’s commit and abort operation
respectively. We assume that a transaction does not read an item X after it has written it, and each item is
read and written at most once. Avoiding redundant operations simplifies the presentation!. The properties
studied in this paper only require to deal with committed transactions.

Each version of a data item X contained in the database is denoted by X;, where the subscript stands
for the transaction identifier that installed that version in the DB. The readset and writeset (denoted by R.S;
and W S; respectively) express the sets of items read (written) by a transaction 7;. Thus, T; is a read-only
transaction if W'S; = () and it is an update one, otherwise.

LetT" = {11,..., T, } be a set of committed transactions, where the operations of 7; are ordered by <r,.
The last operation of a transaction is the commit operation. To process a transaction 7; € 7', a multiversion
scheduler must translate 7;’s operations on data items into operations on specific versions of those data
items. That is, there is a function A that maps each W;(X) into W;(X;), each R;(X) into R;(X;) for some
T; € T. Each C; remains untouched.

Once presented the basic elements relevant for our discussion, we define the Multiversion History as
follows:

Definition 1. A Complete Committed Multiversion (CCMV) history H over T is a partial order with order-
ing relation < where:

L. H = WUg,crp 1) for some translation function h.
2. <D UTieT <
3. Ri(Xj;) € H,i#j=W;(X;)€ HANC; < Ri(Xj;)

In the previous Definition 1 the first condition indicates that each operation submitted by a transaction is
mapped into an appropriate multiversion operation. The second one states that the CCMV history preserves
all orderings stipulated by transactions, whilst the last condition says that if a transaction reads a concrete
version of a data item, it was written by a transaction that committed before the item read.

Definition 1 is more specific than the one stated by Bernstein [3], since the former explicitly includes
committed transactions. Hence, a new version may not be read until the transaction that installed the new
version commits.

In general, two histories over the same set of transactions are view equivalent [3] if they contain the
same operations, have the same reads-from relations, and produce the same final writes. The notion of
equivalence of CCMV histories reduces to a simple condition, if the following reads-from relation is used:
T; reads X from T; in a CCMV history H, if R;(X;) € H.

Let H and H' be two CCMV histories over the same set of committed transactions 7'. Both of them
have the same writes, moreover all write operations are final as all versions they produce are different. If
R;(X;) € H and R;(X;) € H' then they will have the same reads-from relations. Thus, two CCMYV histories
H and H' are equivalent, denoted as H = H', if and only if they have the same operations.

In following sections, we use the following conventions:

T = {T1,..., T, } the set of committed transactions.
Any history H is a CCMV history over T
Foreachitem X € DB:

VeT‘(X, H) = {XJ : WJ(XJ) € H} U{Xo} is the set
of versions of the data item X installed in H, being X
its initial version.

3 Snapshot Isolation

In SI, reading from a snapshot means that a transaction 7; sees all the changes made by transactions that
committed before the transaction started its first operation. The results of its writes are installed when the

'In fact, they can be removed using local variables in the program of the transaction [21].



transaction commits. However, a transaction 7; successfully commits if and only if there is not a concurrent
transaction 7} that has already committed and some of the written items by 7}, are also written by 7;. From
our point of view, histories generated by a given concurrency control providing SI may be interpreted as
multiversion histories with time restrictions.

Let H be a history and ¢t: H — R a mapping such that it assigns to each operation op € H its real
time occurrence t(op) € R, verifying: op < op’ in H = t(op) < t(op’). The mapping ¢() totally orders all
operations of H, and the total order < is compatible with the partial order <. For simplicity, we assume
different times for different operations; that is, t(op) = t(op’) < op = op’. The pair (H, t) defines a schedule
of H, and it is denoted H;. It is clear that each compatible mapping with the partial order of the history
determines the obtained schedule. On the sequel we consider any schedule H; as a schedule of a history H.

We define the “commit time” (¢;) and “begin time” (b;) for each transaction 7; € 1" in a schedule H; as
¢i = t(C;) and b; = t(first operation of T;), holding b; < ¢; by definition of ¢() and <.

In the following, we formalize the concept of snapshot of the database. Intuitively it comprises the latest
version of each data item. A sample of a SI-schedule mightbe: b171(wo) w1 (x1) ¢1 b2 r2(w1) 72(20) b373(yo) wa(ws) c3 wa(y2)
C2.

As this example shows, each transaction is able to read the latest committed version of each item it
accesses. Thus 7% has read version 1 of item X since 7% has generated such version and it has already
committed when 75 started. But it only reads version 0 of item Y since no update of such item is seen by
Ts. This is true despite transactions 7> and 73 are concurrent and 7> updates X, because the snapshot taken
for T3 is previous to the beginning of 7. This provides the basis for defining what a snapshot is.

Definition 2. The snapshot of the database DB art time T € R for a schedule H., is:
Snapshot(DB, Hy,T) = UxcppllatestVer(X, He, )}
where the latest version of an item X € DB at time 7 is:

latestVer(X,Hy, 7) = Xp € Ver(X,H):
AXreVer(X,H):cp <cp <)

From the previous definition, it is simple to show that a snapshot is modified each time an update
transaction commits. If 7 = ¢, and X, € Ver(X, H), then latestVer(X, He, ¢m) = Xm.

In order to formalize the concept of SI-schedule, we utilize a slight variation of the predicate impacts
for update transactions presented in [8]: “Two transactions Tj, T; € T impact at time 7 € R in a schedule
H, (denoted T} impacts T; at 7) if the predicate WS; YW S; #0 A 7 < ¢; < ¢; holds.”

Definition 3. A schedule H, is a SI-schedule if and only if for each T; € T':

1. ifRi(Xj) € H then X; € Snapshot(DB, Hz, b;);
2. foreachT; € 1T': =(1 impacts T; at b;).

The previous definition is directly inspired from [8]. Its first condition states that all the versions read
by a transaction 7; are obtained from Snapshot(DB, Hy, b;); that is, are obtained from the snapshot of the
database DB at the time the transaction starts its first operation. The second condition states that any pair
of transactions 7} and 7}, writing over some common data items, can not overlap their time intervals [b;, ¢;]
and [b;, ¢;]. In other words, they have to be executed one after the other.

Other definitions of SI have been provided in the literature. It was firstly introduced as a multiversion
concurrency control in [2]. It states that transactions read operations obtain data versions committed when
the transaction started. Read operations never blocked as long as the snapshot can be maintained. On
the other hand, transaction’s writes are reflected in its snapshot. Concurrent updates are invisible to the
transaction. In order to prevent lost updates [2], it applies the First-Committer-Wins rule. A transaction will
successfully commit only if no other transaction has already committed writes to items that the transaction
intends to write. A similar definition to [2] has also been used in [10, 15, 18, 25]. In [8], where we
have taken most of the notations of our work, the GSI concept is introduced (see Section 4) and by means
of the notion of impacting transactions with the read and commit rules, it can be inferred SI (denoted
as Conventional SI, CSI, in [8]). The definition of SI-schedule is also introduced in [18] as an execution
allowed by a SI scheduler, but the notion of latest version is not explicitly introduced in that definition.

In the previous Section, the concept of view equivalence between two histories has been introduced.
We explore now a notion of equivalence between SI-schedules.



Definition 4. Let H; and Hj, be two SI-schedules. H; is SI-equivalent to H;,, denoted H; =s; H,,, if and
only if for any T;, T; € T the following conditions hold:

1. IfWSiNWS; #0: ¢ <cjinHy & ¢ < c§inHy,
2. IfWS;NRS; #0: c; <bjin Hy < c; <b; in H,,

The first condition indicates that transactions with write/write conflicts must be committed in the same
order in both schedules; and the second condition states that in the case of a transaction that reads a version
installed by a previous transaction in one of the schedules, the same version will be read in the other
schedule. Definition 4 of SI-equivalence is obtained from [18]. It is based on the fact that both schedules
are Sl-schedules and does not use the concrete operations in the histories; it only uses the definitions
of items to be read or written by the transactions. This motivates the next property, stating that if two SI-
schedules are SI-equivalent, all transactions contained in them have read and written the same item versions
in both schedules. As a result, both schedules are also equivalent (in a general sense, as defined at the end
of Section 2).

Property 1. Let H: and H;, be two SI-schedules. If H, =s1 H,, then H = H'.

Proof. Let R;(X;) € H, H; is a SI-schedule, thus Definition 3 states that X; = latestVer(X, Hy, b;).
By Definition 2, ¢; < b; and #Xx € Ver(X,H): ¢; < ¢ < b;. Assume ¢ < ¢, < b} in H,, and
Xk € Ver(X, H'). In that case, X; is not the latest version of X for the transaction 7} in H;,; and, as the
RS; is the same for the transaction 7} in H and H’, it reads a different version of X in H and H'.

By first condition in Definition 4, ¢; < ¢, = ¢; < ¢, in Hy, and by second condition in Definition 4,
¢x < by = cp < b;j in Hy. As the WSy, is the same for the transaction 1% in H; and Hy,, Xy € Ver(X, H).
Therefore, 3 X, € Ver(X,H): ¢i < ¢, < bj. By contradiction, X; # latestVer(X, H¢,b;). In conclusion,
for any R;(X;) € H, the statement R;(X;) € H' holds.

Consequently, T; reads the same versions in H and H’, thus it produces the same writes in both histories.
Considering W;(X;) € H, and since the W S; is the same for the transaction 7 in H' and H, then W;(X;) €
H'.

Thus, H and H' have the same operations, and as showed two CCMYV histories are equivalent if they have
the same set of operations. Therefore, we conclude that H = H'. o

SI-equivalence allows SI-schedules to differ in the time occurrence of operations, but it has to maintain
a relative order among certain key operations of transactions: commit and first operations. However,
conditions in Definition 4 can not be used to show if an arbitrary schedule H;, is equivalent to a given
SI-schedule H;. This is because in a multiversion history a transaction may read any available version of a
data item, and conditions in Definition 4 do not restrict that fact.

It is simple to show that if a concurrency control algorithm returns to a transaction the current snapshot
at the time of its first read operation and the algorithm updates the DB at commit time if no transaction
impacts with it (or in the contrary case, aborts it), then the algorithm produces Sl-schedules.

4 Generalized Snapshot Isolation

The concept of Generalized Snapshot Isolation (GSI) was firstly applied to replicated databases in [8]. A
hypothetical concurrency control algorithm could have stored some past snapshots. A transaction may
receive a snapshot that happened in the system at the time of its first operation, and the algorithm may
commit the transaction if no other transaction impacts with it from that past snapshot. Thus, in GSI, a
transaction can observe an older snapshot of the DB but the write operations of the transaction are still
valid update operations for the DB at commit time.

Definition 5. A schedule H; is a GSI-schedule if and only if for each T; € T there exists a value s; € R
such that s; < b; and.:

1. ifRi(X;) € H then X; € Snapshot(DB, Hy, s;);
2. foreach T; € T: —=(T; impacts T; at s;)



If for all 7; € T, s; = b;, then H; is a Sl-schedule. Thus, Definition 5 includes as particular case
Definition 3. A simple observation of the definition concludes that if s; < b; for a I; € T such that RS; # 0
then there exists an item X € RS; for which latestVer(X, Hy, si) # latestVer(X, He, b;); that is, the
transaction 7; has not seen the latest version of X at time b;. There was a transaction T3, with Wy (X;) € H
such that s; < ¢ < b;. Condition (2) also establishes that the time intervals [s;, ¢;] and [s;, ¢;] do not overlap
ifWS;WS; #0.

The value s; in Definition 5 plays the same role as b; in Definition 3. Thus, it is possible to think that if
the operations in the GSI-schedule obtained from the history H had been ‘on time’ then the schedule would
have been a SI-schedule.

Let’s see an example of how a GSI-schedule can be transformed into a SI-schedule. Suppose the fol-
IOWil'lg GSI-schedule: biri (Io) w1 (I1) c1bars (.’Eo) ’I“Q(Zo) b3 r3 (yo) w3 (IE3) C3 W2 (y2) Cc2.

In this schedule, transaction 1% reads z( after the commit of 7 appears. This would not be correct for
a SI-schedule (since the read version of X is not the latest one), but it is perfectly valid for a GSI-schedule,
taken the time point of the snapshot provided to 7> (i.e. s2) previous to the commit of 77, as it is shown:
b1 71 (z0) s2 wi(z1) €1 ba r2(x0) T2(20) bz r3(yo) ws(s)cs wa(yz) co.

Thus, to turn this GSI-schedule into a SI-schedule, it is just needed to move the beginning of 7% back to
s2, and consequently, the resulting schedule will be a SI-schedule: b1 71 (zo) bz w1 (z1) ¢1 72(20) r2(20) b3 r3(yo) ws(x3) c3
w2 (y2) ca.

However, this schedule does not fit the definition of b;, which was described as the time of the first
operation a transaction performs. Thus, such first operation of transaction 7> must be also moved in the
SI-schedule, resulting in the following: b1 r1 (o) b2 r2(x0) w1 (x1) 1 r2(20) b r3(yo) ws(ws) cs wa(y2) ca.

The following property describes the previous transformation in a formal way:

Property 2. Let H; be a GSI-schedule. There is a mapping t': H — R such that Hy is a SI-schedule.

Proof. Let T; be a transaction with RS; # () and s; < b; in Hy. In order to make the proof simple we con-
sider transactions in which all read operations are done before any write operation. Let Ri (X}, )...Ri(P;,)...Ri(Z;.)
be the sequence of read operations in the same order imposed by <r,. Let Tj, be the first transaction with
W;.(Sj,) € H such that s; < ¢j, < b; and S € RS;. We move the time occurrence of the read operations of
the transaction 7T; in the same order <1, as follows: ¢'(R;(P;,)) = si + €;, where ¢;, = 0 for the first read,
and > 5y € < Cjs — si. For the rest of operations op € H, t'(op) = t(op). It is simple to show that this new
mapping is compatible with < of H.

For this transaction T;, =(T}; impacts T; at b;) in Hy because —(T; impacts T; at s;) forevery T; € T
and being b; = s;. Only the read operations of 7; have been moved; the commit operations, that may
modify the predicate impacts, have not changed their time occurrences. In Hy, for each R;(P;,) of T3,
P;, = latestVer(P,Hy ,b}). Again, b; = s;, and P;, = latestVer(P, Hy, $;).

The previous process is done for any transaction 7; such that in Hy, s; < b;. This process is finite and
the resulting schedule is a SI-schedule. O

The next definition is the generalization of SI-equivalence (Definition 4) between GSI-schedules.

Definition 6. Let H: and Hj, be two GSI-schedules. Hy is GSI-equivalent to Hy, (denoted H; =cs1 Hy,) if
and only if, for any T}, T; € T the following conditions hold:

1. IfWSiNWS; #0: ¢ <cjinHy & ¢ < cinHy,
2. IFWSiNRS; #0: ¢i <sjinHy < c; <sjinHy,

If two GSI-schedules are GSI-equivalent then their CCMV histories are also view equivalent.
Property 3. Let H: and H;, be two GSI-schedules. If Hy =cs; Hj, then H = H'.

Proof. This proof is the same as the proof of Property 1 if we substitute b; by s;, b} by s’; and Conditions
(1) and (2) of Definition 4 by Conditions (1) and (2) of Definition 6 respectively. O

We remark that the definition of GSI-equivalence allows a GSI-schedule to be equivalent to a SI-
schedule, but the reverse case is, in general, not true. In particular the SI-schedule H,: obtained in Property 2
for H; satisfies H; =¢sr Hy.



Finally, it is also important to note that GSI-schedules allow read-only transactions to obtain versions
of their accessed items arbitrarily old. This could be an inconvenience for many applications, since the
freshness of the accessed data is unknown. An appropriate generalization of Definition 5 would include a
third property of a GSI-schedule, in order to bound the freshness of the snapshot provided to the transaction,
in terms of a distance function d:

3. d(Snapshot(s;), Snapshot(b;)) € [0, k]

The above mentioned distance function d could be defined in a variety of ways, ranging from a time-based
one (e.g. d(Snapshot(s;), Snapshot(b;)) = b; — s;) to more complex value-based specifications, using the
number of changed items, or even the relative value change on items read by a transaction.

S The ROWA Strategy

The GSI concept is particularly interesting in replicated databases, since many replication protocols execute
each transaction initially in a delegate replica, propagating later its updates to the rest of replicas. This
means that transaction writesets cannot be immediately applied in all replicas at a time and, due to this,
the snapshot being used in a transaction might be “previous” to the one that (regarding physical time
in a hypothetical centralized system) would have been assigned to it. So, in this Section we consider a
distributed system that consists of m sites. I,, = {1..m} is the set of site identifiers. Sites communicate
among them by reliable message passing. We make no assumptions about the time it takes for sites to
execute and for messages to be transmitted. We assume a system free of failures. Each site k runs an
instance of the database management system and maintains a copy of the database DB. We will assume
that each database copy, DB* with k € I, provides the Snapshot Isolation consistency level.

We use the transaction model of Section 2. Let T' = {T;: i € I,} be the set of transactions submitted to
the system; where I, = {1..n} is the set of transaction identifiers.

The ROWA [12] strategy? is quite general and replication protocols implementing this strategy will vary
in their concrete implementation [1, 4, 6, 7, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25]. The ROWA approach
may range according to the next two parameters: when updates take place, either before committing the
transaction (eager) or after (lazy); and, where updates take place, either each database object has a primary
replica where all updates are initially applied, propagating them to the secondary replicas (primary copy)
or each replica may accept updates (update everywhere).

An archetypal example of a replication protocol following the ROWA strategy is as follows: once all
operations of a transaction have been locally applied, the writeset is collected and sent to the rest of replicas
in order to commit the transaction. Atomic broadcast based replication protocols [16, 17,22, 25, 18] ensure
that all replicas receive writesets in the same order. When a writeset is delivered to a replica, it is firstly
checked against local conflicting transactions. As a result of this, the writeset may be applied (aborting
all local conflicting transactions) or not. In other works, either priorities are used to avoid the latency
introduced by the atomic broadcast [1] or by epidemic propagation using vector clocks [13]. However,
both approaches [1, 13] need a Two Phase Commit protocol or a quorum [13] for the commitment of a
transaction. In all cases, a submitted transaction may become blocked as a consequence of the DBMS
activity. Hence, a “non-blocking” ROWA strategy is defined as the one where a transaction never becomes
blocked by the replication protocol during its execution at a replica. Finally, if we assume that every
transaction is going to be committed at every site, we consider that is committed as soon as it has been
firstly committed at any replica.

The ROWA strategy defines for each transaction 7; € T', the set of transactions {1} : k € I,,} in which
there is only one, denoted 77"°"), verifying RS:"**™ = RS, and WS"*) — Ws,; for the rest of the
transactions, 177, k # site(i), RS* = () and W SF = W S;. An update transaction reads at one site and writes
at every site, while a read-only transaction only exists at its local site. Without generalization loss, in the
rest of the paper we only consider update transactions with non-empty readsets.

2Since we have assumed a system free of failures, we only consider a ROWA strategy. Otherwise, a ROWAA approach is needed,
i.e., writes will only be applied on the available replicas, but all our discussion is orthogonal to failures and can be seamlessly extended
to a system where failures might arise.



Let 7% = {T}: i € I} be the set of transactions submitted at each site k € I,,, for the set 7. Some of
these transactions are local at k£ while others are remote ones. Every submitted transaction will commit at
all replicas or at none if we want to maintain the full replicated feature in the system.

Assumption 1 (Atomicity). H* is a CCMV history over T* for all sites k € Iy,

We consider that each DB provides SI. In the considered distributed system there is not a common
clock or a similar synchronization mechanism. However, we can use a real time mapping ¢: U, ., (H k-
R* that totally orders all operations of the system. This mapping is compatible with each partial order <*
defined for H* for each site k € I,,. Under this mapping, each DB" generates SI-schedules.

Assumption 2 (SI Replicas). HF is a SI-schedule of the history H* for all sites k € Ip.

In order to study the level of consistency implemented by a non-blocking ROWA protocol is necessary to
define the one copy schedule (1C-schedule) obtained from the schedules at each site. In the next definitions,
properties and theorems we use the following notation: for each transaction 1, i € I,,, C"™ denotes the
commit operation of the transaction 7; at site min(i) € I, such that C;’nin(i) = mingey,, {cF} under the
considered mapping #().

Definition 7. Let T' = {T;: i € I,} be the set of submitted transactions to a replicated database system
with a non-blocking ROWA strategy that verifies Assumption 1 and Assumption 2. Let S = J,., (H *) be
the set formed by the union of the CCMV histories H* over 1% = {IF: i € I,}. Andlett: S — R* be the
mapping that totally orders the operations in S.

The 1C-schedule, Hy, = (H,t': H — R"), is built from S and t() as follows:

Foreachic I, andk € I,,,

1. remove from S operations such that:
Wz(Xz)k , with k # site(1), or
ck , with k # min(i)

2. H is obtained with the rest of operations in S after

step 1, applying the renaming:

Wz(Xz) _ Wi(Xi)Site(i)
Ri(X;) = Ri(X;)*®, and

3. Finally, t'() is obtained from t() as follows:
Y (Wi(Xi)) = t(Wi(X)*e®)
t(Ri(X;)) = t(Ri(X;)*), and
t'(Cy) =1(c""Y)

As t'() receives its values from ¢(), we write, H; instead Hy.. In the 1C-schedule Hy, for each transaction
T;, is trivially verified b; < ¢; because the ROWA strategy guarantees that for all k£ # site(i), bf“e(i) < bk
The 1C history H, that is formed by the operations over the logical DB, is also a CCMV history over 7'.
We prove this fact informally. By the renaming (3) in Definition 7, each transaction 73, has its operations
over the data items in RS; and W S;, and <7 is trivially maintained in a partial order < for H, because H;
contains the local operations of Tf“e(i). H is also formed by committed transactions, under Assumption 1;
for each T;, C; € H. Finally, if R;(X;) € H, then R;(X;)**® ¢ g=ite®) Ag g js a CCMV history
over T°%¢(®) then O3V < R;(X;)*"**(). By defining O] < ™" in § then C[""") < Ry(X;)* e
and so C; < R;(X;). Thus H can be defined as a CCMV history over 7'.

Condition (2) on Definition 7 ensures that a transaction is committed as soon as it has been committed
at the first replica. Finally, no restriction about the beginning of a transaction is imposed in this definition.
Hence, this definition is valid for the most general case of non-blocking protocols.

Although Assumptions 1 and 2 are included in Definition 7, they do not guarantee that the obtained
1C-schedule is a SI-schedule. This is best illustrated in the following example, where it is shown how
the 1C-schedule may be built from each site SI-schedules. In this example two sites and the next set of
transactions are considered:

Ty ={R:(Y), Wi (X)}, To={Ra(Z),W2(X)},
T3 = {R3(X),W3(2)}, Ti={Ra(X),Ra(Z), Wa(Y)}



Figure 1 illustrates the mapping described in Definition 7 for building a 1C-Schedule from the SI-
schedules seen in the different nodes I,,,. T» and T3 are locally executed at site 1 (RS> # 0 and RS3 # ()
whilst 73 and T4 are executed at site 2 respectively. The writesets are afterwards applied at the remote sites.

Schedules obtained at both sites are SI-schedules, i.e. transactions read the latest version of the com-
mitted data at each site. The 1C-schedule is obtained from Definition 7. For example, the commit of 73
occurs for the 1C-schedule in the minimum of the interval between C1 and C?) and so on for the remaining
transactions.

—Ti— T: T —Ti—
s W(X)C! R{ZYWLXYC: R{XYW{(ZYC: W(Y)'C:
— — T T T
=2 RYPW(XYC: WY ZC3 ROXYRAZYWLYYC: WXYC3
T. T, T, T.
LRVHWO)C  R{Z)WX)C: ROGW(Z)C: ROGR(ZIW(Y)C. o

Figure 1: Execution not providing SI nor GSI.

In the 1C-schedule of Figure 1, T4 reads X; and Z3 but the X version exists between both (since X»
was installed at site 1). 71 and 7%, satisfying that WS, (W .Sz # 0, are executed at both sites in the same
order. As 77 and 75 are not executed in the same order with regard to 73, the obtained 1C-schedule is
neither SI nor GSI.

6 One Copy Snapshot Isolation Schedules

The 1C-schedule H; obtained in Definition 7 is a SI-schedule if it verifies the conditions given in Definition
3. The question is what conditions local SI-schedules, Hy, have to verify in order to guarantee that H; is
a SI-schedule. Definition 4 of Sl-equivalence provides a starting point because if H; is a SI-schedule, it
would be SI-equivalent to each SI-schedule Hf. Taking into account the first condition of SI-equivalence
in Definition 4, we consider a kind of ROWA protocols that guarantee the same total order of the commit
operations for the transactions with write/write conflicts at every site.

Under the next assumption, it is ensured that conflicting transactions are executed as stated in Prop-
erty 4.

Assumption 3 (Total order of conflicting transactions). For each pair T;, T; € T with WS;(\ WS; #
0: F < cf holds for all SI-schedules HF with k € I,

Property 4. Under Assumption 3, the 1C-schedule H; verifies that For each pair T;, T; € T: —(T; impacts T; at b;).

Proof. By Assumption 2, at any site k € I,,,, for each pair 7, T € T*: ~(T} impacts T} at b¥). That is,
WSFNWSE =0V =(bF <cf <cf).

(a) If WSy W SF = 0, by definition of 7 and 73, W S; W S; = 0. Then, —(1} impacts T} at b;).

(b)Let WSF N\ WSF # 0. Again, by definition of 7} and T;, W S; W S; # 0. Hence, either —(T} impacts TF at b¥)
or —~(TF impacts TF at b¥). Thus, cf < b¥ or ¢¥ < bF holds. By Assumption 3, ¢f < ¥ for all sites
k € Ip,. Thus, ¢f < b¥ forall k € I,. In particular, csitel) o bj“e(”. By definition of H;: ¢; < ¢; and
¢ < 9 < p; holds.

Suppose that 7); impacts T; at b; in H¢. Thatis, WS; \WS; # 0 and b; < ¢; < ¢;. A contradiction with
¢i < ¢j is obtained. Therefore, —(7}; impacts T; at b;).

Analogously, if T; impacts T at b; in Hy. Thatis, WS; W S; # 0 and b; < ¢; < ¢;. A contradiction with
¢i < bj is obtained again, and therefore, —(7; impacts Tj at by). O

However, the execution of write/write conflicting transactions in the same order at all sites does not
offer SI nor GSI, as it has been shown in the example of Figure 1. In this example only 7} and 7% had



write/write conflicts and they have been executed in the same order at every site. Therefore, it is needed
that a transaction reads the latest installed version in the system of a data item.

Assumption 4 (Latest-version read). For each pair of transactions 13, T; € T with W S; (| RS; # 0: they
verify that if c; < b; in Hy then c;m(” < btel) g feite®,

k2

Under Assumptions 3 and 4 it is easy to proof the next Theorem. It states that the 1C-schedule is a
SI-schedule.

Theorem 1. Under Assumption 3 and Assumption 4, the 1C-Schedule H. is a SI-schedule.

Proof. By Property 4 the condition (2) in Definition 3 of SI-schedule is verified for H;. We only need to
prove the statement:

“if Ri(X;) € H then X; = latestVer(X, Hy, b;)”.
Suppose R;(X;) € H and X; # latestVer(X, Hy,b;). There is a version X, installed by some transaction
Ty such that ¢; < ¢ < b;.
If R;(X;) € H, by Definition 7 of H,, R;(X;)*"¢(" ¢ H*"*(")  From Assumption 2, it is always satisfied
that X;Zte(l) = latestVer(X e, I-.Itm.e(l), piite)y. o
Also, Assumption 1 ensures that Cf’t_e(’) € Ho"® and X" ¢ Ver(Xite® H5D) As X € WS; WSy,
by Assumption 3, if ¢5*®) < cj”e“) then ¢ < c;. Since this contradicts the initial supposition, we have
that cjite(i) < cSite®
Finally, X € WS, RS; and ¢, < b; in H; by the supposition. Taken into account Assumption 4, if ¢, < b;
in H, then ¢S < psite®
In conclusion, X ™) € Ver(Xsite® frsited) and cjite(i) < gt < psite@ - Therefore, X;“e(i) #
latestVer(X®®  He® p2te@y and H*® is not a SI-schedule against Assumption 2. The Theorem
holds. O

It is easy to show that every 1C-schedule that is a SI-schedule satisfies Assumption 4. Thus, Assump-
tion 4 is a sufficient and necessary condition while Assumption 3 is a sufficient condition. In the ROWA
protocols considered in Section 5, Assumption 4 emphasizes that a transaction must see the latest installed
version in the system. In other words, a transaction must remain blocked until Assumption 4 becomes true.
As the considered ROWA protocol only sends the write set to remote sites, it can not be checked whether
another site has installed a new version. As a straight consequence of this, it is not possible to abort the
transaction violating the SI level. Thus, only a blocking ROWA protocol may obtain the SI level.

One approach to obtain SI is by sending the read and write sets of transactions to all sites in order
to know if some transaction has missed a more recent version. Sending the read set to all sites is costly
(leading to lower performance, poor scalability and higher abortion rates) but, on the other hand, stronger
isolation levels than SI may be obtained, more precisely serializable as it has been pointed out in [8].
Another alternative approach is to atomic broadcast the transaction identifier before its execution at its
local replica to all available nodes and delay its execution until the message is delivered.

7 One Copy Generalized Snapshot Isolation Schedules

If we assume a total order of the commitment of transactions at all sites, this will imply that each DB*
installs in the same total order the same snapshots. Under this assumption, a transaction may locally see an
older snapshot as long as it does not impact with other transactions. In the following, we assume this total
order of snapshots’ installation. Under this assumption, it can be shown (Theorem 2) that the 1C-schedule
obtained with SI replicas guarantees the conditions to become a GSI-schedule.

Assumption 5 (Total order of committed transactions). For each pair T;, T; € T': c¢f < c§ holds for all
SI-schedules HF with k € I,,.

Theorem 2. Under Assumption 5, the 1C-schedule Hy is a GSI-schedule.
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Proof. The schedule H; of the history H is a GSI-schedule if and only if for each 7; € 1" there exists a
value s; € ®" with s; < b; and:

1. If Riy(X;) € H,then X; € Snapshot(X, Hy, s;).
2. Foreach pair T}, T; € T': (1} impacts T; at s;)

Let us examine each case in detail:

Suppose R;(X;) € H, then R;(X;)®*"*® ¢ H**®  Thus, by Assumption 2, it is always satisfied that
X;“e(i) = latestVer(XS”e(i), Hfite(i), b:ite(i)).
Let Tpa"” be a transaction with R:(Yy,)* ) € H**( for some item v***() ¢ DB**® and ;" <
cpite(@  The time ¢35 defines the last time in H;***” from which the transaction 7:°"**” no longer reads
a version of a data item. By Assumption 1, 7},, € 17" and R;(Y),) € H.
We first prove that A7, € T: X, € Ver(X,H) Acj < ¢ < cp,. One can note that if this property is
false then the version X, will be more up-to-date than X; when T; read Y,,. The 1C-schedule H; will
not be a GSI-schedule nor Sl-schedule. The proof is done by contradiction in a very simple way from
Assumption 5. Suppose, there exists such a transaction 7 € T with X, € Ver(X, H) and ¢; < ¢r < ¢p-
If j = po, then there is not such a 7 € T'. If j # po, by the total order Assumption 5 and Assumption 1:
c;“e(i) < ciite(i) < cf,ffe(i). Consequently, X;ite(i) + latestVer(XS“e(i), H:ite(i), bfite(i)).
It is important to note that ¢52* defines the moment where 7°*“") reads the latest version for H;"*.
Hence, ¢,, will define for H; the time instant of 7;’s snapshot. If there exists a transaction 7, with
WS,(,1>(] RS; # 0, then 7; will not see the versions installed by 7),,. As a result, we have that bfite(i) <
site(d
P1
In the following, we define the possible time interval for s; so that condition (1) of a GSI-schedule holds.
Assume that there exists a subset of transactions {7}, : x = 0,.., L} C T'such that in Hy: ¢p, < ¢p, < ... <
epy, < b; With WS, M RS; #0forx=0,..,L. We define s; € (¢p,, cp,) if L #0,0rs; =b; if L =0.
For any s; previously defined X; = latestVer(X, H:, s;). By the first proved property A7, € T: X, €
Ver(X,H) A¢j < cr < ¢p,- Therefore, X; € Snapshot(X, Hy, s;).

The second case may be split as well in two different cases: whether the snapshot has been taken at
the begin of the transaction or earlier.
(a) Let T; € T be a transaction such that s; = b;. Since s; = b;, we have that L = 0. As Assumption 5
implies Assumption 3 when W S; W .S; # 0; then by Property 4, =(T; impacts T; at s;) holds.
(b) Let T; € T be a transaction with s; # b; and s; € (¢p,,cp,). Thatis, L # 0. Suppose there
is a transaction T; € T such that T; impacts T; at s;. Thus, WS; \WS; # 0 A si < ¢;j < ¢.. By
Assumption 5, ¢; < ¢; implies (:;”e(i) < "% By Assumption 2, as H"**(") is a SI-schedule, the predicate
(T impacts TV at b)) holds. Therefore, ¢} < 57V If 0 < ¥ then, by
Assumption 5, ¢; < ¢p, < s; holds in H;. A contradiction with the supposition. Then, c¢52*® < cjite(i) and
cpo < ¢;. By the definition of c,, and ¢,,, since b5"**) < 51 the predicate c,, < ¢; < ¢p, also holds.
Redefine s; to be in the sub-interval (c;, ¢p, ) Of (¢p,, ¢p, ). Both conditions of Definition 5 are verified. In
particular, —(Tj impacts T; at s;), and thus, for each possible 7 that may potentially impact with 75 at s;
we may proceed in the same way as we previously did and select the adequate sub-interval of (cy,, ¢;, ) for
s; at which (7 impacts T; at s;) holds. O

The assumption of total order of committed transactions has been recently used by some database
replication protocols that work under SI replicas [8, 15, 18, 19]. Assumption 5 is a sufficient condition but
not a necessary one, because the GSI level obtained by ROWA protocols depends on the starting point of
transactions. These protocols use an atomic broadcast protocol for writeset propagation, and thus all com-
mitted transactions are totally ordered. In [18] those delivered writesets that do not intersect are allowed to
proceed concurrently, and this may imply that they might be applied in different orders in different repli-
cas. However, this creates holes in the writeset list being managed by this protocol and, as a result, local
transactions are blocked until these holes disappear. When this happens, the effects of these concurrent
writeset applications are the same as those of an application in total order, and the local transactions are
then allowed to begin.

The assurance of this total order in the application of transactions in all replicas also leads to the typical
certification carried out in this kind of protocols. All delivered writesets are ordered in the same way in
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all replicas and a conflict checking is made in order to certify each transaction. This implies that local
transactions that collide with such writesets must be aborted. Moreover, this kind of certification can be
locally performed, without needing an additional voting round among replicas (the needed coordination
has been achieved using the total order broadcast).

Unfortunately, in some cases a local DBMS may abort the application of some writeset (e.g., due to a
deadlock, or due to a local failure), but the replication protocol has to be prepared to manage appropriately
these events. To this end, such writeset applications must be retried until they are successful, and the order
of their application must be correctly ensured. Some protocols have already described this kind of events
(e.g., [18]).

Finally, the need of blocking local transactions when the total order cannot be ensured is a little flaw
that might generate a serious performance loss for these blocked transactions. To reduce this problem,
some complementary techniques must be used to ensure that writesets are quickly applied [19].

8 Conclusions

This paper studies ROWA protocols for database replication, where each replica uses a DBMS providing SI
isolation level. ROWA replication protocols exclusively based on propagating the writeset of transactions
may not achieve one copy SI consistency level unless they do block the beginning of transactions until they
get the latest system snapshot. This potential blocking of transactions makes the main attraction of SI, the
non-blocking execution of read operations, not feasible. This is the main reason for introducing GSI in
database replication scenarios.

This paper establishes that the sufficient condition for obtaining a GSI consistency level is the same
total order of committed transactions. This fact limits the kind of replications protocols to be implemented
in a replicated setting in order to obtain GSL

To sum up, all the properties that have been formalized in our paper seem to be assumed in some
previous works, but none of them carefully identified nor formalized such properties. As a result, we have
provided a tight theoretical basis for designing and developing future replication protocols with GSI.
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