
CORBA Replication Support for Fault-Tolerance in a

Partitionable Distributed System∗

Technical Report ITI-ITE-06/01

Stefan Beyer and Francesc D. Muñoz-Escóı and Pablo Galdámez
Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia

Spain
{stefan, fmunyoz, pgaldamez}@iti.upv.es

Abstract

The Common Request Broker Architecture (CORBA) specification originally did not include
any support for fault-tolerance. The Fault-Tolerant CORBA standard was added to address this
issue. One drawback of the standard is that it does not cover fault-tolerance in the case of network
partitioning faults. However, wide area networks, over which distributed systems are often employed,
are especially susceptible to network partitioning.

The main contribution of this paper is the design of a fault-tolerance CORBA add-on for parti-
tionable environments. In contrast to other solutions, our modular design separates replication and
reconciliation policies from the basic replication mechanisms. This modularity allows the replication
and reconciliation strategies to be modified easily.

1 Introduction

The Common Request Broker Architecture (CORBA) [Obj04a] is a popular middleware framework to
construct distributed object systems. As distributed systems are subject to host and network failures,
fault-tolerance is an important aspect in the design of such systems. However, the CORBA specifica-
tion did originally not include any support for fault-tolerance. Since then, the Fault-Tolerant CORBA
specification (FT-CORBA) [Obj04c] has been added to introduce a degree of fault-tolerance to CORBA.
However, the standard has various drawbacks. One important shortcoming of FT-CORBA is that it
does not provide support for fault-tolerance in a partitioned network. Wide area networks, over which
distributed systems are often employed, are especially susceptible to network partitioning.

In this paper we present the architecture of a middleware add-on that adds fault-tolerance to CORBA
in a partitioned environment by means of replication. The system is part of the DeDiSys project
[OFG+06]. DeDiSys aims at providing fault-tolerance through add-ons for various middlewares. The
CORBA add-on presented here uses CORBA Portable Interceptors [Obj04b] to intercept calls to server
objects in a transparent manner and divert these calls through a replication manager. An underlying
group membership and communication service provides reliable communication.

In contrast to other systems, the modular design of the DeDiSys replication support allows different
replication and reconciliation policies to be implemented easily. The design of the replication support
is based on a separation of mechanism and policy. Replication mechanisms are basic primitives such as
creating a replica and changing its role, or the ability of managing object and replica references. In our
system these mechanisms are provided by a distributed replication manager. Many replication protocols

∗This work has been funded by the European Community under the FP6 IST project DeDiSys (Dependable Distributed
Systems, contract number 004152).

1



will have these mechanisms in common. In contrast, policies, such as the update propagationand recon-
ciliation policies, may vary between replication protocols. We extract such policy from the replication
manager and place it into a replication protocol component. The replication manager and the replication
protocol components provide fixed interfaces. New replication protocols can be implemented by replacing
the replication protocol component.

A default replication protocol [BBGME05] is included. The protocol allows operations in each par-
tition in a partitioned system to continue. Resulting conflicts can be resolved automatically by the
reconciliation support or manually by the application.

A non-CORBA prototype [BSMEG06] of our architecture has been implemented and we are currently
in the process of implementing the full CORBA system, taking into account the lessons learnt from the
prototype.

2 Related Work

In order to add fault-tolerance to CORBA, certain mechanisms, such as replication, are required. Existing
systems either implement the FT-CORBA [Obj04c] standard to provide fault-tolerance or suggest their
own fault tolerance extensions. There are two possible reasons for a system not to comply with the FT-
CORBA standard. Some systems reviewed here were simply developed before the standard was defined.
Other systems try to overcome some of the drawbacks associated with FT-CORBA. As DeDiSys is a
research project, aimed at partitionable distributed systems, which are not covered by the FT-CORBA
standard, we do not consider FT-CORBA compliance as the main factor for this review.

In literature, approaches to add fault-tolerance mechanisms to CORBA are typically classified into
three categories: In the integration approach, the ORB itself is modified to include the required fault
tolerance mechanisms. It is easy to provide transparency using this approach, but existing commercial
ORBs cannot be used. Orbix+Isis [ION94], Electra [LM97] and Maestro [VB98] are examples of systems
using the integration approach. More recently, the authors of [LNYY03] and [ZMMS04] have proposed the
integration of group communication support by modifying the CORBA Open Communication Interface
(OCI) and using the Pluggable Protocols Framework [KOS+99]respectively.

In the service approach, the mechanisms required to provide fault tolerance are provided as CORBA
services. This approach has the advantage that existing ORBs can be used. However, transparency is
difficult to achieve with this approach, as applications have to be aware of the fault tolerance services.
Object Group Services (OGS) [FGG96] and Newtop Object Group Service [MSEL99] provide services for
object group support which can be used to provide fault-tolerance. FTS [FH02], OPEN EDEN [GHN03],
IRL [BM03] and AQuA [RBC+03] are examples of reliable CORBA systems using the service approach,
although it can be argued that these systems also use elements of the interceptor approach.

In the interceptor approach, CORBA invocations are intercepted and redirected to fault tolerance
mechanisms. Recent systems make use of CORBA Portable Interceptors [Obj04b]. The only systems us-
ing a pure interception approach we are aware of are Eternal [MMSN98] [NMM97] and DAISY [BBC+04].

Three of the systems mentioned above - Maestro, FTS and Eternal - provide some support for network
partitioning. Therefore, these systems are reviewed here in more detail. Newtop also provides support
for network partitioning, but, as a mere object group toolkit, does not provide any support for reconciling
replica state after partitioning. Therefore, we do not discuss Newtop in detail here.

Maestro uses the integration approach. The system was developed before the FT-CORBA specifica-
tion existed. It is not a pure CORBA implementation, but was designed as a distributed object layer to
be used on its own or to be integrated in CORBA or in other distributed object technologies. The system
uses Ensemble [vRBH+98] as an underlying group communication and membership toolkit. Partitioning
is supported using a variation of the primary partition model [RSB93]. Only updates in one partition
are permanently accepted, but in contrast to the regular primary partition model, the decision on which
partition dominates is postponed until recovery time. At recovery time the partition with “the most
updated” state is chosen.

FTS is an attempt to remain close to the FT-CORBA specification, whilst also providing support
for partitioning. The system uses a mixture of the service and interceptor approaches. A group object
adapter (GOA) is provided as a CORBA object adapter. The GOA is implemented on top of the portable
object adapter (POA) to allow for object groups; that is, groups of replicas representing the same logical
object. The main drawback of FTS is that it only implements active replication, although the authors

2



claim it would be easy to adapt FTS to passive replication. In DeDiSys we use also use the idea of an
object adapter providing object group support. FTS uses the primary partition model for consistency
in case of network partitioning.

Eternal is probably the most advanced of the systems of which we are aware in terms of support for
partitioning, despite being one of the oldest systems. The system allows for active and passive replication.
The Eternal replication manager keeps track of replicated objects. CORBA messages are intercepted at
the transport level and are redirected using the Totem group communication toolkit [MMSA+96]. Totem
provides Eternal with the extended virtual synchrony model, which allows for network partitioning. As far
as we know, Eternal is unique in partition-aware CORBA systems, in that it does not use a variant of the
primary partition model, but does allow operations in all partitions to continue. A simple reconciliation
algorithm is provided. When the network partitions, a primary subgroup is chosen for each object.
However, operations are also allowed to continue in secondary subgroups. When subgroups are re-
merged, Eternal gives preference to the state contained in the primary subgroup. However, operations in
secondary subgroups are queued and applied after the state of the primary subgroup has been installed
in all the merging subgroups during recovery. Conflicts that cannot be resolved are reported to the
application.

In DeDiSys we make use of some techniques from Eternal, DAISY and FTS. In particular, we use
interception, as in Eternal and DAISY, and the implementation of the replication support as a CORBA
object adapter, as in FTS. In contrast to Eternal’s interception at the operating system level approach
we use DAISY’s approach of using portable interceptors, which were not available when Eternal was
designed. Furthermore, in DeDisys we aim at making replication and recovery flexible and configurable.
To this end we do not embed replication protocol and reconciliation policy in the replication manager, as
done in Eternal, but provide an easily interchangeable replication and reconciliation protocol component.

3 Design Principles

In order to design a replication support for partionable environments in CORBA we have followed the
following design principles:

Separation of Mechanism and Policy Our design distinguishes between replication mechanisms and
policy. Replication mechanisms are basic primitives, such as the ability to create a replica or manage
the relation between object references and replica references. The provided mechanisms can be
used in different ways to implement replication policies, such as the object state transfer policy
or the reconciliation strategy. Policies may vary, whereas mechanisms are provided to support
different policies. In conventional systems policies and mechanism are often embedded in the
same component. This makes it difficult to implement different policies. In DeDiSys, we extract
replication and reconciliation policy from the main replication component, which only provides
mechanisms that allow to implement a variety of policies.

Interception The DeDiSys concept is to provide a Middleware add-on rather than modifying existing
middleware. To achieve this in CORBA we intercept object invocations. To this end, CORBA
portable interceptors are used to pass control to the replication support. Interceptors are used on
both the client side and on the server side.

Client-Side Transparency Replication should be transparent to the client application. That is, the
client is not aware it is dealing with a replicated object and existing CORBA clients do not have
to be modified to use DeDiSys, apart from calling a simple initialisation routine.

Server-Side Transparency It is our goal to make server side integration of the replication support
as transparent as possible. However, the server application should have some control over the
replication support. Therefore, a simple interface provides mechanisms, such as replica creation,
and has to be used by the server application. Furthermore, server objects need to implement a
simple interface that allows the replication support to access their state. It is our goal to make
CORBA server applications as easy to port to DeDiSys as possible, whilst allowing configurability
of key parameters, such as number and location of replicas.

3



4 The DeDiSys Replication Model

DeDiSys aims to introduce fault-tolerance through replication. In this section we describe the failure
model we support and the replication model used to achieve this.

The “crash model” [Cri91] is assumed for node failures, and the “link failure model” [Sch93] for
communication services. As we cannot distinguish between a failed node and an isolated node until
recovery time, we treat every failure as partitioning. Partitions can occur in any number and order.
Recovery of partitioning can be in a different order in which the partitioning originally occurred.

In order to provide support for partitioning, DeDiSys uses the Spread group communication and
membership toolkit [ADS00]. Spread provides the extended virtual synchrony model [MAMSA94]. This
model simplifies the reconciliation process of potential replication protocols, as nodes are aware which
views have been installed in re-joining partitions.

We employ the passive replication model. In passive replication [BMST93] [GS97] requests are only
processed by one primary copy. Updates are then propagated to the secondary copies. The passive model
lends itself to a system where consistency is to be configured as it allows variations in the way updates
are propagated. If synchronous update propagation is used, a primary copy must propagate any updates
immediately; that is, before the result of the operation that has caused the update is returned to the
client. In asynchronous update propagation the result is returned and the propagation of state changes
performed some time later. We leave the choice of which update propagation paradigm to use to the
replication protocol.

The default replication protocol [BBGME05] allows operations in all partitions to continue. Object
state updates are propagated synchronously to those nodes that are reachable. If a primary copy of
an object is not reachable, the protocol promotes a secondary copy to a temporary primary copy. The
protocol therefore implements a “primary per partition model”. The protocol also includes a reconcili-
ation protocol that restores consistency when partitions are merged. Conflicts that occur when replicas
of the same object are written to in different partitions can be resolved automatically by the replication
protocol or manually by the application. However, the design of our system is such that many replication
and reconciliation protocols based on the passive replication model can be implemented.

5 Replication Support Integration in CORBA

Figure 1: Replication Support Overview

Figure 1 shows how the DeDiSys replication support is integrated in CORBA. Portable interceptors
are used to transfer control to the replication support, without client code having to be modified. The
client invokes an object in the standard CORBA way, using a logical object reference. The DeDiSys

4



replication support takes care of identifying the real object reference of the primary replica. The client-
side request interceptor is used to intercept object invocations, before they are sent. This interceptor
uses the replication manager (RM) to obtain the reference of the primary replica and redirects the
invocation to this primary replica. The replication manager is also used to trigger some replication
protocol specific tasks that might need to be executed before the invocation can begin.

On the server side, the server-side request interceptor also intercepts the incoming request, in
order to trigger replication protocol specific tasks. The object invocation is then executed in the standard
CORBA way. Before the result is returned to the client, control is again passed to the RM. At this stage
the replication protocol might require changes in the accessed object’s state to be propagated to the
secondary replicas of the object.

Before the request is delivered to the client application the reply is again intercepted on the client side
by the client-side reply interceptor. At this stage a replication protocol might trigger consistency
checks that could cause the invocation to be undone.

6 Object Reference Management

We distinguish between logical object references and replica references. When using the term
logical object reference, we are referring to the reference of a logical object. When using the term replica
reference we are referring to the actual reference of an object replica; that is, a reference of a real CORBA
implementation of a logical object.

Both types of references are standard CORBA object references. However, internally logical object
references only refer to an intermediate “dummy” object which is never invoked. The replication system
intercepts calls to these objects and redirects them using the actual replica reference. Only logical object
references are visible to client applications.

The replication support keeps track of which logical object references are associated with which replica
references.

7 Replication Manager

7.1 Overview

Figure 2: Replication Manager Overview

5



Figure 2 shows the replication manager (RM). The RM consists of various components. Only the
Replication Object Adapter (ROA) is visible to the server application. The ROA is a CORBA
object adapter. It internally uses CORBA’s Portable Object Adapter (POA) and provides standard
object adapter functionality, such as associating objects with object references. In addition, it manages
object replicas and allows replicas to be created and associated with a logical object. Client-side-only
RMs do not need a ROA.

The RM also interacts with a replication protocol component, in which replication protocol details,
such as update transfer policies, are implemented. By encapsulating such policy in a separate component
with a defined interface, the replication protocol can be changed easily.

The RM also provides an interface to the DeDiSys interceptors, in order to pass control to the
replication support.

Hence the RM provides three different interfaces, which are described in detail in the next section.
Furthermore, the RM is an “application” of the Spread group membership and communication service.

RMs on different nodes use Spread to exchange information on new replicas or to broadcast replica role
changes. Spread is also used by the RM to keep track of which replicas are reachable. To this end,
Spread callbacks handling the reception of group messages and new membership views are implemented
in the RM.

7.2 Server Interface

The only interface visible to the server application is the Replication Object Adapter (ROA) interface.
The ROA is a COPRBA object adapter. Internally it uses the Portable Object Adapter (POA), but
adds replication functionality. The following is the interface definition of the ROA:

public ROA(ORB orb, ReplicationManager rm);

public org.omg.CORBA.Object createReplicatedObject (String name, String className);

public org.omg.CORBA.Object getReplicatedObject (String name);

public org.omg.CORBA.Object registerPrimary (org.omg.CORBA.Object
objectToBeReplicated, Servant newReplica)
throws ServantNotActive, WrongPolicy;

public org.omg.CORBA.Object registerSecondary (org.omg.CORBA.Object
objectToBeReplicated, Servant newReplica)
throws ServantNotActive, WrongPolicy;

public void removeReplica (org.omg.CORBA.Object replica)

public void removeReplicatedObject (org.omg.CORBA.Object object)

The following example of a primary and a secondary replica being hosted on two server nodes illustrates
how the ROA interface is used to create object replicas. The code for the first server is as follows:

org.omg.CORBA.Object objectRef = roa.createReplicatedObject
("obj1", "org.dedisys.exampleApp.replicatedTestObjectImpl");

replicatedTestObjectImpl r1 = new replicatedTestObjectImpl();
org.omg.CORBA.Object priRef = roa.registerPrimary(objectRef, r1);

First, createReplicatedObject is used to obtain a new logical object reference. The method takes a
new string identifier for the object and the name of the object’s class as arguments. The method uses
the class name to create a dummy object for which a CORBA reference is obtained through the POA.
This reference is returned as the logical object reference for the replicated object. The logical object
reference is also mapped to the string object identifier in the RM’s datastructures.

6



Next, a servant is instantiated and registered as a primary with the ROA using registerPrimary.
The method associates the logical object reference with a servant. The object reference of the actual
primary is returned.

On node two a secondary copy of the object can now be created:

org.omg.CORBA.Object objectRef = roa.getReplicatedObject("obj1");

replicatedTestObjectImpl r2 = new replicatedTestObjectImpl();
org.omg.CORBA.Object secRef = roa.registerSecondary(objectRef, r2);

getReplicatedObject is used to obtain the logical object reference for the object. Then, a new servant
is created and registered with the ROA using registerSecondary. The method works very similar to
registerPrimary.

Whenever the internal state of the RM has been modified, it broadcasts its new state to the the local
RM’s on all nodes in the system. In order to achieve synchronisation between the nodes, these RM state
messages are sent as reliable atomic broadcasts.

7.3 Interceptor Interface

As described in section 5, there are four types of interceptors: the client-side request interceptor,
the client-side reply interceptor, the server-side request interceptor and the server-side reply-
interceptor. The RM provides an entry point for each of these interceptors to pass control to the
replication support:

public org.omg.CORBA.Object clientPreInvocation (org.omg.CORBA.Object object);

public void clientPostInvocation (org.omg.CORBA.Object replica);

public void ServerPreInvocation (org.omg.CORBA.Object replica,
ObjectClass oc,
ObjectMethod om,
Any[] arguments);

public void ServerPostInvocation (org.omg.CORBA.Object replica,
ObjectClass oc,
ObjectMethod om,
Any[] arguments);

The clientPreInvocation method takes a logical object reference, and returns the replica reference
of the primary object to the interceptor, so that the invocation can be redirected. ClientPostInvocation
is called when the client receive the result of the request. The method takes the reference of the actual
object that has just been invoked.

The methods ServerPreInvocation and ServerPostInvocation are the equivalent methods on
the server side, but take the object’s class, the actual method having been invoked and the method’s
arguments as additional parameters. The reason for these additional arguments is that some replication
protocols might need this information.

7.4 Replication Protocol Interface

The replication protocol component is used to implement replication protocol policy that may vary
between different replication protocols. Thus, the RM and the replication protocol need to provide
interfaces for each other. This section describes the RM interface provided for the replication protocol.
The replication protocol interface for the RM is described in section 8. The following is the definition of
the interface the RM provides:

public org.omg.CORBA.Object locatePrimary (org.omg.CORBA.Object objectRef);

public SpreadGroup getSecondaryNodes (org.omg.CORBA.Object primaryRef);

7



public org.omg.CORBA.Object makeNewPrimary (org.omg.CORBA.Object objectRef);

The method locatePrimary is used to request the replica reference of the primary replica for a given
logical object reference.

The getSecondaryNodes returns the nodes that host secondary replicas of a given primary replica.
We use the Spread toolkit for group membership and communication. Therefore, the set of nodes is
returned as an array of Spread group objects. The getSecondaryNodes method is usually used to obtain
the nodes to which objects updates have to be propagated to maintain replica consistency.

Finally, the method makeNewPrimary provides a means to trigger the election of a new primary in
case of node failure or partitioning making a primary object inaccessible. The method is typically called
when locatePrimary has failed. It returns the replica reference of the new primary.

8 The Replication Protocol Component

8.1 Overview

The replication protocol (RP) component encapsulates replication and reconciliation policies. We locate
reconciliation policy in a ReconciliationProtocol subcomponent of the RP, as the policies have to match
each other. For instance, a replication protocol that allows updates in each of the partitions of a parti-
tioned system requires a reconciliation policy that allows the system to recover from the inconsistencies
this might introduce.

The RM passes control to the RP before and after every object invocation, in order to allow the RP to
allow or deny certain object invocations to maintain consistency and to keep track of changes to objects
and maintain internal data structures that hold information necessary for reconciliation. The activities
of the RP in a healthy system vary from that in a system in which one or more nodes are not reachable,
as different data-structures have to be maintained in these different system modes. Furthermore, the RP
implements update propagation and reconciliation.

8.2 Modular Design

Different RPs can be implemented by modifying the RP component. To this end, the RP component
consists of an abstract ReplicationProtocol class, which should be extended, in order to implement
a replication protocol. ReplicationProtocol also provides default implementations of some methods,
that may or may not be overwritten by a particular replication protocol. A default update propagation
method is provided. The method can be called by any subclass implementing a specific replication
protocol to broadcast the state of a specific primary replica to all secondary copies. Furthermore, a
default method handling incoming replica updates is provided. This method just sets the state of all
the secondary copies it holds of a particular primary copy to that included in the message. Both the
update propagator and the incoming message handler can be overwritten by protocols that require more
specialised implementations.

8.3 Replication Protocol Interface

The RP component provides an interface to the RM. The following is a Java interface description of the
method a RP has to implement:

public org.omg.CORBA.Object clientPreInvoke (org.omg.CORBA.Object replica);

public void clientPostInvoke (org.omg.CORBA.Object replica);

public void serverPreInvoke (org.omg.CORBA.Object replica,
ObjectClass oc,
ObjectMethod om,
Any[] arguments) ;

8



public void serverPostInvoke (org.omg.CORBA.Object replica,
ObjectClass oc,
ObjectMethod om,
Any[] arguments);

public void setSystemMode (int mode);

The preInvoke methods are called by the RM before and after an object replica is invoked. These
methods have the same semantics as the equivalent methods of the RM’s interceptor interface described
in section 7.3.

As the RM keeps track of which replicas are available it is responsible for monitoring the system
mode. The system can be in normal mode or degraded mode. The RP also has to be aware of the
system mode. To this end the RM can make use of the setDegradedMode method to inform the RP of
any changes in system mode. Furthermore, the mode can be set to ”reconciliation mode”, which should
trigger the reconciliation subcomponent to start reconciliation.

The ReplicationProtocol superclass implements a method providing default update propagation
that can be called by any protocol implemented in a subclass:

void propagateUpdates (org.omg.CORBA.Object replica);

The method multicasts the latest state of the primary replica specified as an argument to the RPs on
nodes holding secondary copies of that replica. The destination nodes of the replica update message are
discovered using the RM interface described above.

8.4 The Reconciliation Subcomponent

The Reconciliation subcomponent consists of an abstract ReconciliationProtocol class, that has to
be extended by any particular reconciliation protocol implementation. The interface provided by this
abstract class is the same as that of the ReplicationProtocol class:

public org.omg.CORBA.Object clientPreInvoke (org.omg.CORBA.Object replica);

public void clientPostInvoke (org.omg.CORBA.Object replica);

public void serverPreInvoke (org.omg.CORBA.Object replica,
ObjectClass oc,
ObjectMethod om,
Any[] arguments) ;

public void serverPostInvoke (org.omg.CORBA.Object replica,
ObjectClass oc,
ObjectMethod om,
Any[] arguments);

public void setSystemMode (int mode);

Each of the ReplicationProtocol methods calls the equivalent ReconciliationProtocol before re-
turning. This provides an entry points for a reconciliation protocol before and after each invocation on
both the client side and the server side. Reconciliation protocols can use these entry points to update
reconciliation specific data-structures during degraded mode.

9 Replication Manager Implementation

9.1 Overview

The DeDiSys replication manager has been implemented in Java. Apart from the interfaces that are
provided, decision regarding the state kept in the RM and the way this state is synchronised on all nodes
have had to be taken. Furthermore, certain algorithms, such as the election of a new primary copy, have
had to be designed. This section describes these implementation details of our system.

9



9.2 Replication Manager State

The replication manager maps logical object references to replica references. To this end two tables are
used. The first table maps logical object references to replica references of primary copies. The second
table maps logical object references to lists of replica references of secondary copies. To provide reverse
lookup a third table, mapping replica references to their logical object id, is provided.

In addition, the RM, as a client of the group membership service, keeps track of the reachable nodes
in the system. These reachable nodes are maintained in a set data-structure.

Furthermore, the replication manager maps replica references to the names of the nodes that host
them, in order to allow replication protocols to propagate updates to the right nodes.

Finally, every logical object reference is associated with a string name.

9.3 Algorithms

9.3.1 Joining of a New Node

When a new node joins the system, the local RM component on the joining node, needs to obtain the
information contained in the existing RMs. To this end one of the existing RMs is chosen to propagate
their own state to the new node. The RM uses the same mechanism for its own replication as it does for
object replication. The RM in charge of propagating its state is essentially the ”primary copy” of the
RM.

In order to avoid complex voting protocols the primary RM is chosen according to a pre-defined
order1. On receiving a notification from the membership service that a new node has joined, the primary
RM serialises the state of its data-structures and sends it to the new node.

9.3.2 Creation of a new object

When a new object is created through the ROA the internal RM state on the node where the object
has been created changes. Before the object can be invoked, this state has to be propagated to all other
nodes. To this end, the state of the RM’s data structures is serialised and broadcasted. In order, to
synchronise the system and avoid concurrency issues when objects are created on different nodes during
this process, the RM state messages are sent as reliable broadcasts with total order.

9.3.3 Election of a new Primary

When the primary copy of an object is not available due to node failure or network partitioning, a
replication protocol can request the election of a new primary. To elect a new primary the RM chooses
a secondary copy of the object and promotes it to a temporary primary copy. The choice of replica to
promote is based on a pre-defined ordering, to avoid expensive voting.

After a local RM has changed it’s state, due to the election of a new primary, it has to broadcast its
new state to the other nodes in the system.

9.4 The Default Replication Protocol

DeDiSys includes a default replication protocol. The Primary Per Partition Partition Protocol (P4)
allows operations in all partitions to continue in degraded mode. The protocol makes use of the RM’s
facility to promote a secondary replica to a primary replica.

When partions are re-merged a reconciliation protocol is executed. Two versions of the reconciliation
protocol are provided. A manual protocol detects inconsistencies, such as updates to the same object
in more than one partition, but leaves the application to remove these inconsistencies. Automatic
reconciliation is also provided. In automatic reconciliation the state of the primary in one partition is
imposed on all conflicting primaries in other partitions.

The protocol is described and evaluated in [BBGME05].

1In the current prototype implementation, simple alphabetical order based on the node name is used

10



10 Conclusion and Future Work

In this paper we have described the design of our fault-tolerance support for CORBA. In contrast to most
approaches to fault-tolerance in CORBA and the Fault-Tolerance CORBA specification [Obj04c], the
system can cope with network partitioning. The system forms part of the DeDiSys project [OFG+06],
which aims at providing fault-tolerance add-ons for a variety of middlewares.

We have implemented our design in our own non-CORBA evaluation environment. The DeDiSys
Lite platform [BSMEG06] serves as both a first prototype implementation of DeDiSys and an evaluation
platform for replication protocols. However, it does not make use of CORBA.

We are currently implementing the architecture described here in CORBA using Java as an im-
plementation language, taking into account the experiences gained with our non-CORBA prototype.
After evaluating our implementation, the results obtained will be compared with implementations of the
DeDiSys approach in other middleware architectures which are currently being developed in parallel by
our project partners.

References

[ADS00] Yair Amir, Claudiu Danilov, and Jonathan Robert Stanton. A low latency, loss tolerant
architecture and protocol for wide area group communication. In DSN ’00: Proceedings of
the 2000 International Conference on Dependable Systems and Networks (formerly FTCS-
30 and DCCA-8), pages 327–336, Washington, DC, USA, 2000. IEEE Computer Society.

[BBC+04] Taha Bennani, Laurent Blain, Ludovic Courtes, Jean-Charles Fabre, Marc-Olivier Killijian,
Eric Marsden, and François Täıani. Implementing simple replication protocols using corba
portable interceptors and java serialization. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN 2004), pages 549–554, 2004.

[BBGME05] Stefan Beyer, M.C. Bañuls, P. Galdámez, and Francesc D. Muñoz-Escóı. Increasing avail-
ability in a replicated partionable distributed object system. Technical Report ITI-ITE-
05/10, Instituto Tecnológico de Informática, 2005.

[BM03] Roberto Baldoni and Carlo Marchetti. Three-tier replication for ft-corba infrastructures.
Softw. Pract. Exper., 33(8):767–797, 2003.

[BMST93] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. The primary-backup
approach, pages 199–216. ACM Press, Addison-Wesley, 1993.

[BSMEG06] Stefan Beyer, Alexander Sánchez, Francesc D. Muñoz-Escóı, and Pablo Galdámez. Dedisys
lite: An environment for evaluating replication protocols in partitionable distributed object
systems. In Proc. 1st International Conference on Availability, Reliability and Security,
2006.

[Cri91] Flaviu Cristian. Understanding fault-tolerant distributed systems. Commun. ACM,
34(2):56–78, 1991.

[FGG96] P. Felber, B. Garbinato, and R. Guerraoui. The design of a corba group communication
service. In SRDS ’96: Proceedings of the 15th Symposium on Reliable Distributed Systems
(SRDS ’96), page 150, Washington, DC, USA, 1996. IEEE Computer Society.

[FH02] Roy Friedman and Erez Hadad. Fts: A high-performance corba fault-tolerance service.
In WORDS ’02: Proceedings of the The Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS 2002), pages 61–68, Washington, DC,
USA, 2002. IEEE Computer Society.

[GHN03] Fab́ıola Greve, Michel Hurfin, and Jean-Pierre Le Narzul. Open eden: a portable fault
tolerant corba architecture. In Proc. of the Second International Symposium on Parallel
and Distributed Computing, pages 88–95, 2003.

11



[GS97] Rachid Guerraoui and André Schiper. Software-based replication for fault tolerance. Com-
puter, 30(4):68–74, 1997.

[ION94] IONA and Isis. An Introduction to Orbix+Isis, IONA Technologies Ltd. and Isis Distributed
Sytems Inc., 1994.

[KOS+99] Fred Kuhns, Carlos O’Ryan, Douglas C. Schmidt, Ossama Othman, and Jeff Parsons. The
design and performance of a pluggable protocols framework for corba middleware. In PfHSN
’99: Proceedings of the IFIP TC6 WG6.1 & WG6.4 / IEEE ComSoc TC on on Gigabit
Networking Sixth International Workshop on Protocols for High Speed Networks VI, pages
81–98, Deventer, The Netherlands, The Netherlands, 1999. Kluwer, B.V.

[LM97] Sean Landis and Silvano Maffeis. Building reliable distributed systems with CORBA.
Theory and Practice of Object Systems, 3(1):31–43, 1997.

[LNYY03] Dongman Lee, Dukyun Nam, Hee Yong Youn, and Chansu Yu. Oci-based group com-
munication support in corba. IEEE Transactions on Parallel and Distributed Systems,
14(11):1126–1139, november 2003.

[MAMSA94] Louise E. Moser, Yair Amir, P. Michael Melliar-Smith, and Deborah A. Agarwal. Extended
virtual synchrony. In The 14th IEEE International Conference on Distributed Computing
Systems (ICDCS), pages 56–65, 1994.

[MMSA+96] Louise E. Moser, P. M. Melliar-Smith, Deborah A. Agarwal, Ravi K. Budhia, and Colleen A.
Lingley-Papadopoulos. Totem: A fault-tolerant multicast group communication system.
Communications of the ACM, 39(4):54–63, 1996.

[MMSN98] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Consistent object replication in the
eternal system. Theor. Pract. Object Syst., 4(2):81–92, 1998.

[MSEL99] G. Morgan, S. K. Shrivastava, P.D. Ezhilchelvan, and M.C. Little. Design and implemen-
tation of a corba fault-tolerant object group service. In Proceedings of the Second IFIP
WG 6.1 International Working Conference on Distributed Applications and Interoperable
Systems, June 1999.

[NMM97] P. Narasimhan, L. E. Moser, and P. M. Melliar.Smith. Replica consistency of corba objects
in partitionable distributed systems. Distributed System Engeneering, 4:139–150, 1997.

[Obj04a] Object Management Group. The common object request broker architecture (corba) v.3.0.3,
March 2004.

[Obj04b] Object Management Group. The common object request broker architecture (corba) v.3.0.3.
chapter 11. portable interceptors, March 2004.

[Obj04c] Object Management Group. The common object request broker architecture (corba) v.3.0.3.
chapter 23. fault tolerant corba, March 2004.

[OFG+06] Johannes Osrael, Lorenz Froihofer, Karl M. Goeschka, Stefan Beyer, Francesc D. Muñoz-
Escóı, and Pablo Galdámez. A system architecture for enhanced availability of tightly
coupled distributed systems. In Proc. 1st International Conference on Availability, Relia-
bility and Security, 2006.

[RBC+03] Yansong (Jennifer) Ren, David E. Bakken, Tod Courtney, Michel Cukier, David A. Karr,
Paul Rubel, Chetan Sabnis, William H. Sanders, Richard E. Schantz, and Mouna Seri.
Aqua: An adaptive architecture that provides dependable distributed objects. IEEE Trans.
Comput., 52(1):31–50, 2003.

[RSB93] A. Ricciardi, A. Schiper, and K. Birman. Understanding partitions and the non partition
assumption. In IEEE Proc Fourth Workshop on Future Trends of Distributed Systems,
1993.

12



[Sch93] Fred B. Schneider. What good are models and what models are good? In Distributed
Systems, chapter 2, pages 17–26. ACM Press, Addison-Wesley, 2nd edition, 1993.

[VB98] Alexey Vaysburd and Ken Birman. The maestro approach to building reliable interoperable
distributed applications with multiple execution styles. Theor. Pract. Object Syst., 4(2):71–
80, 1998.

[vRBH+98] Robbert van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd, and David Karr.
Building adaptive systems using ensemble. Softw. Pract. Exper., 28(9):963–979, 1998.

[ZMMS04] Wenbing Zhao, Louise E. Moser, and P. M. Melliar-Smith. Design and implementation of
a pluggable fault-tolerant corba infrastructure. Cluster Computing, 7(4):317–330, 2004.

13


