

A Basic Replication and Recovery Protocol
for the MADIS Middleware Architecture

J. E. Armendáriz, J. R. Garitagoitia, J. R. González de Mendívil, F. D. Muñoz-Escoí

Technical Report ITI-ITE-05/01

J.
E.

 A
rm

en
dá

riz
, J

. R
. G

ar
ita

go
iti

a,
 J.

 R
. G

on
zá

le
z

de
 M

en
dí

vi
l,

F.
 D

. M
uñ

oz
-E

sc
oí

:
A

 B
as

ic
 R

ep
lic

at
io

n
an

d
R

ec
ov

er
y

Pr
ot

oc
ol

 fo
r t

he
 M

A
D

IS
 M

id
dl

ew
ar

e
A

rc
hi

te
ct

ur
e

 IT

I-
IT

E-
05

/0
1

A Basic Replication and Recovery Protocol for the MADIS
Middleware Architecture

J.E. Armendáriz1, J.R. Garitagoitia1, J.R. González de Mendı́vil1, F.D. Muñoz-Escoı́2

Technical Report ITI-ITE-05/01

1 Dpto. Matemática e Informática 2 Instituto Tecnológico de Informática
Universidad Pública de Navarra Universidad Politécnica de Valencia

Campus de Arrosadı́a 31006 Pamplona, Spain Camino de Vera s/n 46022 Valencia, Spain
Ph./Fax: (+34) 948 16 80 56/95 21 Ph./Fax: (+34) 96 387 72 45/72 39

Email: {enrique.armendariz, joserra, mendivil}@unavarra.es, fmunyoz@iti.upv.es

Abstract

In this paper we present a basic replication protocol for the MADIS middleware architecture [1]; it pro-
vides a JDBC interface that eases replication and recovery protocols integration. The protocol is based on the
optimistic two phase locking protocol proposed by Carey et al. in [2], without needing lock management or
previous transaction knowledge on the middleware component. This fact avoids to reimplement on the repli-
cation protocol component features that can be obtained in a simple way from the local Database Management
System (DBMS). The replication protocol is formalized and proved using a formal transition system. The
1-copy-serializability property for database replication is obtained from the combination of assumed serializ-
ability on the local DBMSs and the unique message ordering imposed by the replication protocol. An outline
of several enhancements and variations for this protocol is also introduced.

1 Introduction

Database replication is a way to increase system performance and fault-tolerance of a given system [3]. Although
most commercially available solutions and the large majority of deployments use asynchronous updates in a shared
nothing architecture, there is an increasing demand for additional guarantees. This demand has been addressed
by a set of proposals for eager update replication [4]. Many research works manage the eager update replication
by alternative approaches to provide data consistency: by way of distributed lock management as in [2, 3]; or, by
means of group communication systems [5, 7–15].

Database replication ranges from middleware based approaches [7–10, 15–17] where replication is controlled
in a layer between clients and database replicas, to integrated solutions as in [3, 11–14] which integrate replica
control into the kernel of a database management system (DBMS). The advantage of the latter approach is that it
is integrated in the same software as the centralized solution and it increases the throughput. On the other hand,
middleware based replication simplifies and restrains the development due to the fact that most database internals
remain inaccessible. Furthermore, middleware solutions can be maintained independently of the DBMS and may
be used in heterogeneous systems. Middleware replication is useful to integrate new replication functionalities
(availability, fault-tolerance, etc.) for applications dealing with database systems that do not provide database
replication [7,9,10,15,16]. In addition, it needs additional support (metadata) for the replica control management

1

performed by the replication protocol, i.e. like retrieving global object identifiers. This introduces an additional
overhead in the system that affects the transaction response time. Nevertheless, the main goal is to coordinate
replica control with concurrency control. Current solutions must re-implement database features like lock mech-
anisms [17] (at middleware level, SQL statements do not indicate the exact records to be accessed) whilst others
have special requirements [7, 9, 10].

In recent approaches [1,8], applications do not have to be modified, they maintain the same interface, like JDBC.
Concurrency control is taken at two levels, the underlying database replication provides concurrency control for
active local transaction providing a given transaction isolation level [18], while the middleware manages conflicts
among different replicas giving a global isolation level.

In this paper, we present an eager update everywhere replication protocol adapted to the MADIS architec-
ture [1]. It follows the idea of the atomic commitment protocol, more precisely the 2 Phase Commit (2PC)
protocol, and it is an adaptation of the Optimistic 2PL protocol proposed by Carey et al. [2]. We need no lock
management at the middleware level since we rely on the serializable behavior of the underlying DBMS. Besides,
it uses basic features present in common DBMS (e.g. triggers, procedures, etc.) to generate the set of metadata
needed to maintain each data item and conflict detection among transactions. This allows the underlying database
to perform more efficiently the task needed to support the replication protocol, and simplifies its implementation.
We also provide several enhancements and modifications for this basic replication protocol that vary from opti-
mizing its response time, to an acceptance of multiple transaction isolation guarantees, and finally to a sketch of
the recovery protocol, based on the ideas presented in [17].

The contributions of this paper are threefold: (a) It provides a formal correctness proof of a variation of the
O2PL protocol [2]. We have not found a proof of this kind for the original O2PL protocol nor any of its varia-
tions. (b) Our replication protocol is able to manage unilateral aborts generated by the underlying DBMS. Only
a few current replication protocols are able to manage such kind of aborts [19]. (c) We present an example of a
lock-based replication protocol that delegates such a lock management to the underlying DBMS, simplifying the
development of the replication protocol in the middleware layer.

The rest of the paper is organized as follows: Section 2 introduces the system model, the communication and
database module as well as the transaction and execution model. A formal description of the Basic Replication
Protocol in a failure free environment is given in Section 3. The correctness proof is shown in Section 4. Section 5
introduces some further topics dealing with several BRP enhancements and implementation details. It explains
how to reduce the response time of the BRP using the assumption that unilateral aborts are quite odd. It adds
queues to the protocol so that remote transactions are allowed to wait in order to reduce the abortion rate of
conflicting transactions. We continue with an implementation issue which is that most of the commercial DBMSs
do not provide ANSI serializable behavior [18] but snapshot isolation, thus the implementation of this protocol will
lead to a 1-copy-snapshot-isolation protocol [8]. The last topic is about failures and recovery issues. We propose a
recover protocol based on database dynamic partitions that permits current active transactions to continue working
and the execution of user transactions on the recovering node even though it is still being recovered. Finally,
conclusions end the paper.

2 System model and definitions

The system (Figure 1) considered in this paper is an abstraction of the MADIS architecture [1]. It is composed by
N sites (or nodes) which communicate among them using reliable multicast featured by a group communication
system [5, 6]. We assume a fully replicated system. Each site contains a copy of the entire database and executes
transactions on its data copies. A transaction is submitted for its execution over its local DBMS via the middleware
module. The replication protocol coordinates the execution of transactions among different sites to ensure 1-
copy-serializability. In the following sections we do not consider failures. In Section 5, we briefly discuss these
questions.

2

Figure 1: Main components of the system.

Communication system. Communication among sites is mainly based on reliable multicast [5, 6]. Roughly
speaking, reliable multicast guarantees three properties: (i) all correct processes agree on the set of messages they
deliver; (ii) all messages multicast by correct processes are delivered; and, (iii) no spurious messages are ever
delivered. These properties are enough for our replication protocol. Reliable broadcast imposes no description of
the order in which messages are delivered. Besides, its cost is low in terms of physical messages per multicast.
This low cost is one of the reason to select it for the replication protocol [20]. For some messages the protocol
also uses the traditional reliable unicast.

Database. Each site includes a DataBase Management System (DBMS) storing a physical copy of the repli-
cated database. We assume that the DBMS ensures ACID properties of transactions and satisfies the ANSI SQL
serializable transaction isolation level [18]. The DBMS, as it is depicted in Figure 1 gives to the middleware
some common actions. DB.begin(t) begins a transaction t. DB.submit(t, op), where op represents a set of
SQL statements, submits an operation in the context of the given transaction. DB.notify(t, op) informs about
the success of an operation. It returns two possible values: run when the submitted operation has been success-
fully completed (the transaction submitting the operation will no longer perform an operation until it receives the
run notification); or abort due to DBMS internals, e.g. deadlock resolution, enforcing serialization, etc. As a
remark, we also assume that after the successful completion of a submitted operation by a transaction, it can be
committed at any time. In other words, a transaction may be unilaterally aborted by the DBMS only while it is
performing a submitted operation. Finally, a transaction ends either by committing, DB.commit(t), or rolling
back, DB.abort(t).

We have added two functions which are not provided by DBMSs, but may easily be built by database triggers,
procedures and functions [1]: DB.WS(t) retrieves the set of objects written by t and the respective SQL update
statements. In the same way, the set of conflictive transactions between a write set and current active transactions
(an active transaction in this context is a transaction that has neither committed nor aborted) at a given site is
provided by getConflicts(WS(t)) = {t′ ∈ T : (WS(t′) ∪ RS(t′)) ∩ WS(t) 6= ∅}, where T is the set of
transactions being executed in our system.

Transactions. Client applications access the system through their closest site to perform transactions by way
of actions introduced in Figure 1. As it was pointed out, this is an abstraction. As a matter of fact, applications
employ the same JDBC interface as the underlying DBMS, except actions to be performed when they wish to
commit. Each transaction identifier includes the information about the site where it was first created (t.site),
called its transaction master site. It allows the protocol to know if it is a local or a remote transaction. Each

3

Figure 2: Execution example of a local (left) and a remote transaction (right).

transaction has a unique priority value (t.priority) based on transaction information.
A transaction t created at site i (t.site = i) is locally executed and follows a sequence initiated by create(t)

and continued by multiple begin operation(t, op), end operation(t, op) pairs actions in a normal behavior. The
begin commit(t) action makes the replication protocol start to manage the commit of t at the rest of replicas.
The end commit(t, op) notifies about the successful completion of the transaction on the replicated databases.
However, an abort(t) action may be generated by the local DBMS or by a replication protocol decision. For
simplicity, we do not consider an application abort.

3 Replication Protocol Description

Informally, each time a client application issues a transaction (local transaction), all its operations are locally
performed over its master site. The remaining sites enter in the context of this transaction when the application
requests for the commitment of the transaction. All update operations are grouped and sent to the rest of available
sites, without any further assumption about message ordering, following a read one write all available approach
(ROWAA) [3]. If the given transaction is a read only one, it directly commits. This replication protocol is different
from the eager update everywhere protocol model assumed by [4]. Instead of sending multiple messages for each
operation issued by the transaction, only three messages are needed per transaction: one containing the remote
update, another one for the ready message, and, finally, a commit message.

All updates are applied in the context of another local transaction (remote transaction) on the given local
database where the message is delivered. This node will send back to the transaction master site a message saying
it is ready to commit the given transaction. When the reception of ready messages is finished, that is, all nodes
have answered to the transaction master site, it sends a message saying that the transaction is committed. Figure 2
shows an execution, depicting actions and message exchange, of a local transaction (left) and its respective remote
execution when everything goes fine.

Our replication protocol relies for conflict detection on the mechanism implemented in the underlying DBMS
which guarantees an ANSI SQL serializable isolation level [18]. This assumption frees us from implementing
locks at the middleware level. This latter assumption is not enough to prevent distributed deadlock [3]. We have
avoided this problem using a deadlock prevention schema based on priorities. In the following, we present this
replication protocol as a formal state transition system using the formal model of [21]. In Figure 3, a formal
description of the signature, states and steps of the replication protocol for a site i is introduced. An action can be
executed only if its precondition is enabled. The effects modify the state of the system as stated by the sequence of

4

Signature:
{∀ i ∈ N, t ∈ T, m ∈ M, op ∈ OP : createi(t),begin operationi(t, op), end operationi(t, op),begin commiti(t),

end commiti(t, m), local aborti(t), receive remotei(t, m), receive readyi(t, m), receive commiti(t, m),
receive aborti(t, m), receive rem aborti(t, m),discardi(t, m)}.

States:
∀ i ∈ N, ∀ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, aborted, committed},

initially (node(t) = i ⇒ statusi(t) = start) ∧ (node(t) 6= i ⇒ statusi(t) = idle).
∀ i ∈ N, ∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initially Vi = 〈0, N〉.

Transitions:

createi(t) // node(t) = i //
pre ≡statusi(t) = start.
eff ≡DBi.begin(t); statusi(t) ← active.

begin operationi(t, op) // node(t) = i //
pre ≡statusi(t) = active.
eff ≡DBi.submit(t, op); statusi(t) ← blocked.

end operationi(t, op)
pre ≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff ≡ statusi(t) ← active;

if node(t) 6= i then
sendRUnicast(〈ready, t, i〉) to node(t);
statusi(t) ← pre commit.

begin commiti(t) // node(t) = i //
pre ≡statusi(t) = active.
eff ≡ statusi(t) ← pre commit;

participantsi(t) ← Vi.availableNodes \ {i};
sendRMulticast(〈remote, t, DBi.WS(t)〉,

participantsi(t)).

end commiti(t, m) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = {source}∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

participantsi(t) ← participantsi(t) \ {source};
sendRMulticast(〈commit, t〉,

Vi.availableNodes \ {i});
DBi.commit(t); statusi(t) ← committed.

receive readyi(t, m) // t ∈ T ∧ node(t) = i //
pre ≡statusi(t) = pre commit ∧ ‖participantsi(t)‖ > 1∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

participantsi(t) ← participantsi(t) \ {source}.

local aborti(t)
pre ≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff ≡ statusi(t) ← aborted; DBi.abort(t);

if node(t) 6= i then
sendRUnicast(〈rem abort, t〉) to node(t).

receive commiti(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡statusi(t) = pre commit ∧m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.commit(t); statusi(t) ← committed.

receive remotei(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡statusi(t) = idle ∧ m = 〈remote, t, WS〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

conflictSet ← DBi.getConflicts(WS);
if ∃ t′ ∈ conflictSet : ¬higher priority(t, t′) then

statusi(t) ← aborted;
sendRUnicast(〈rem abort, t〉) to node(t)

else // The deliv. remote has the highest priority or no conflicts
∀ t′ ∈ conflictSet :

DBi.abort(t′);
if statusi(t

′) = pre commit ∧ node(t′) = i then
sendRMulticast(〈abort, t′〉,

Vi.availableNodes \ {i});
statusi(t

′) ← aborted;
DBi.begin(t); DBi.submit(t, WS);
statusi(t) ← blocked.

receive aborti(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡statusi(t) /∈ {aborted, committed}∧

m = 〈abort, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.abort(t); statusi(t) ← aborted.

receive rem aborti(t, m) // node(t) = i //
pre ≡statusi(t) /∈ {aborted, committed}∧

m = 〈rem abort, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

sendRMulticast(〈abort, t〉,Vi.availableNodes \ {i});
DBi.abort(t); statusi(t) ← aborted.

discardi(t, m) // t ∈ T //
pre ≡statusi(t) = aborted ∧m ∈ channeli.
eff ≡ receivei(m). // Remove m from channel

¦ functionhigher priority(t, t′) ≡ node(t) = j 6= i
∧ (a ∨ b ∨ c)

(a) node(t′) = i ∧ statusi(t
′) ∈ {active, blocked}

(b) node(t′) = i ∧ statusi(t
′) = pre commit∧

t.priority > t′.priority
(c) node(t′) = k ∧ k 6= j ∧ k 6= i ∧ statusi(t

′) = blocked∧
t.priority > t′.priority

Figure 3: State transition system for the Basic Replication Protocol (BRP). pre indicates precondition and eff
effects respectively.

5

instructions included in the action effects. Actions are atomically executed. It is assumed weak fairness for every
execution.

Figure 4: Valid transitions for a given statusi(t) of a transaction t ∈ T .

We will start with the states defined for this replication protocol. Each site has its own state variables (i.e., they
are not shared among other nodes). The statusi(t) variable indicates the execution state of a given transaction. All
the valid transitions for a given statusi(t) of a transaction t are shown in Figure 4. A local transaction may pass
over one of the following sequences of status transition: start ·active · (blocked ·active)∗ ·active ·pre commit ·
(committed|aborted)|start · (active · blocked)+ · aborted. A remote transaction may respectively have the next
status transitions: idle · blocked · pre commit · (committed | aborted) | idle · aborted | idle · blocked · aborted.
The participantsi(t) variable keeps track of the sites that have not yet sent the ready message to transaction t
whose master site is i. Vi is the system current view, which in this protocol description context, with a failure-free
assumption, is 〈0, N〉.

Each action is subscripted by the site at which it is executed. The set of actions includes: createi(t), begin ope-
rationi(t, op), end operationi(t, op), begin commiti(t) and end commiti(t, m). These actions are the ones
executed by the application in the context of a local transaction. The end operationi(t, op) is an exception to this.
It is shared with a remote transaction that sends the ready message to its transaction master site when the operation
has been completed. The begin commiti(t) action sends the write-set and update statements of a transaction t to
every site and starts the replica control for this transaction. This set of actions is entirely self-explanatory from
inspection of Figure 3.

The key action of our replication protocol is the receive remotei(m) one. Once it is received the remote
message at node i, the action of the protocol finds out the set of transactions that conflicts with the received write
set (WS) in the local database. The remote updates, for that WS, will only be applied if there is no conflicting
transaction at node i having a higher priority than the received one. The higher priority(t, t′) defines a dynamic
priority deadlock prevention function, since the transaction global priority depends on the state of the transaction
(statusi(t)) and its own priority (t.priority). As a remark, we will highlight that a delivered remote transaction
has never a higher priority than other conflictive remote transaction at node i in the pre commit state; this fact is
needed to guarantee the transaction execution atomicity.

If there exists a conflictive transaction at i with higher priority, the remote message is ignored and sends a remote
abort to the transaction master site. In this protocol version we do not allow transactions to wait among different
sites, therefore deadlock situations are trivially avoided. Finally, if the remote transaction is the one with the high-
est priority among all at i then every conflictive transaction is aborted and the transaction updates are submitted for

6

their execution to the underlying DBMS. Aborted local transactions in pre commit state with lower priority will
multicast an abort message to the rest of sites. The finalization of the remote transaction (end operationi(t, op)),
upon successful completion of DBi.submit(t,WS), is in charge of sending the ready message to the transaction
master site. Once all ready messages are collected from all available sites the transaction master site commits
(end commiti(t,m)) and multicasts a commit message to all available nodes. The reception of this message
commits the transaction at the remainder sites (receive commiti(t)).

When the remote updates fail while being applied in the DBMS (unilateral aborts), the local aborti(t) is re-
sponsible for sending the remote abort to the transaction master site. Once the updates have been finally applied
the transaction waits for the commit message from its master site. One can note that the remote transaction is in
the pre commit state and it is committable from the DBMS point of view.

4 Correctness Proof

This section contains the proofs (atomicity and 1-copy-serializable) of the basic replication protocol (BRP au-
tomaton), introduced in Figure 3, in a failure free environment.

Let us start showing that BRP is deadlock free, assuming that deadlocks involving exclusively local transactions
at a given site are directly resolved by the underlying local DBMS executing the local aborti(t) action. The BRP
does not permit a transaction to wait for another transaction at a different site. Any wait-for relation among
transactions at different sites are prevented when receive remotei(t,m) is executed. By inspection, its effects
∀ t′ ∈ DBi.getConflicts(WS(t)) : (DBi.abort(t′) ∧ statusi(t′) = aborted) if ∀ t′, higher priority(t, t′) is
true. On the contrary, statusi(t) = aborted, and the received remote transaction is not executed.

The BRP must guarantee the atomicity of a transaction, that is, the transaction is either committed at all available
sites or is aborted at all sites. If a transaction, t, is in pre commit state then it is committable from the local
DBMS point of view. Therefore, if a local transaction commits at its master site (node(t) = i) (i.e. it executes the
end commiti(t,m) action); it multicasts a commit message to each remote transaction it has previously created.
Such remote transactions are also in the pre commit state. Priority rules ensure that remote transactions in the
pre commit state are never aborted by a local transaction or a remote one. Thus, by the reliable communication
channels the commit message will be eventually delivered; every remote transaction of t will be committed via
the execution of the receive commitj(t,m) action with j 6= i. On the contrary, if a transaction t aborts, every
remote transaction previously created for t will be aborted. We formalize such behavior in the following properties
and lemmas.

Property 1. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the BRP automaton and t ∈ T , with
node(t) = i:

1. Let j ∈ N, j 6= i : sz.statusj(t) = committed then sz.statusi(t) = committed.

2. Let sz.statusi(t) = committed then ∃ z′ < z : sz′ .statusi(t) = pre commit.

3. Let z : sz.statusi(t) = committed ∧ z′ < z : sz′ .statusi(t) = pre commit then ∀ j ∈ N,∃ z′′, z′ ≤ z′′ <
z : sz′′ .statusj(t) = pre commit ∧ 〈abort, t〉 /∈ sz′′ .channelj .

4. Let sz.statusi(t) = committed then ∀ j ∈ N \ {i} : sz.statusj(t) ∈ {pre commit, committed}.

Proof. This property is easily proved by induction over the length of α or by contradiction. The property holds for
an initial state s0 : ∀ t ∈ T,∀ j ∈ N : s0.statusj(t) ∈ {start, idle}. By hypothesis, assume the property holds at
sz . The induction step is proved for each possible (szπz+1sz+1) transition of the BRP automaton.

7

(1.1) If sz.statusj(t) = committed the only possible enabled action for t is πz+1 = discardi(t,m) which does
not modify statusi(t). If sz.statusj(t) 6= committed, only πz+1 = receive commitj(t,m), node(t) = i,
makes sz+1.statusj(t) = committed. By its precondition (〈commit, t〉 ∈ sz.channelj), the only action
that sent this message was πz′ = end commiti(t,m), z′ < z+1. By its effects sz′ .statusi(t) = committed.
As it has been at the beginning of this proof this state never changes, thus sz+1.statusi(t) = committed.

(1.2) By the precondition of πz = end commiti(t,m) this is the only action that makes sz.statusi(t) =
committed true.

(1.3) In order to proof that there is no abort message, simply by inspecting the automaton specification there is
no transition from the aborted state to the committed state at node(t) = i. The 〈abort, t〉 message is sent
only if sz′′ .statusi(t) = aborted being z′′ ≤ z. Therefore, ¬∃ 〈abort, t〉 in sz′′ .channelj , ∀j ∈ N . In
the same way, there is no transition from{created, blocked, active} state to the committed state. By (1.2)
∃z′ < z : sz′ .statusi(t) = pre commit and by the effects of πz = end commit(t,m) concludes.

On the other hand, πz′ = begin commiti(t), node(t) = i, makes sz′ .participantsi(t) = N \ {i} ∧
sz′ .statusi(t) = pre commit. As sz.statusi(t) = committed and, as we have just proved, there is no gen-
eration of the 〈abort, t〉 message. Thus, ∀ z′′, z′ ≤ z′′ < z : sz′′ .statusi(t) = pre commit and by the proof
of (1.2) at least πz = end commi(t,m) hence sz.participantsi(t) = ∅. Therefore by the preconditions of
the end commit(t,m) and receive readyi(t,m) actions, we have that ∀ j ∈ N \ {i} : ∃ z′′, z′ < z′′ such
that 〈ready, t, source〉 in sz′′ .channeli with source = j. The only action that was able to send this mes-
sage was πz′′′ = end operationj(t, op). By its effects, z′′′.statusj(t) = pre commit and z′′′ < z∧z′ < z′′′

due to the fact the 〈remote, t, op = WS(t)〉 message was multicast in the effects of π′z .

(1.4) By Properties 1.2 and 1.3, ∃ z′′ < z such that sz′′ .statusj(t) = pre commit. ∀ z′′′ ≥ z′′ the local abortj(t)
is disabled; and by Property 1.3 receive abortj(t, m) and receive rem abortj(t,m) are not enabled for
the remote transaction t at j. The only actions may change sz′′ .statusj(t) are: receive commitj(t,m)
or receive remotej(t′,m). The former does sz.statusj(t) = committed and the latter affects statusj(t)
if and only if t ∈ DBi.getConflicts(WS(t′)) and higher priority(t′, t) is true. As node(t) = i ∧
statusj(t) = pre commit then ¬higher priority(t′, t) is true and t′ aborts. A new remote transaction may
not abort a remote transaction in the pre commit state.

The following liveness lemma states the atomicity of committed transactions.

Lemma 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the BRP automaton and t ∈ T with node(t) = i.
∃ j ∈ N : sz.statusj(t) = committed then ∃ z′ ≥ z : ∀ k ∈ N : sz′ .statusk(t) = committed.

Proof. If j 6= i by Property 1.1 (or j = i) sz.statusi(t) = committed; and by Property 1.4 ∀ j ∈ N \
{i} : sz.statusj(t) ∈ {pre commit, committed}. Without loss of generality, assume that sz is the first state where
statusi(t) = committed, by the effects of end commiti(t,m) = πz we have that 〈commit, t〉 ∈ sz.channelj .
By the reliability of the multicast ∃ z′ > z : sz′ .statusj(t) = pre commit ∧ 〈commit, t〉 ∈ sz′ .channelj , thus
the receive commitj(t,m) action will be enabled and by Property 1.4 and weak fairness of that action will be
executed at z′ > z ∧ πz′ = receive commitj(t,m). By its effects sz′ .status = committed.

We may formally verify that if a transaction is aborted then it will be aborted at all nodes in a similar way. This
is stated in the following Lemma.

Lemma 2. ∀ t ∈ T, node(t) = i : sz.statusi(t) = aborted ⇒ ∃ z′ ≥ z : ∀ j ∈ N, j 6= i, sz′ .statusj(t) ∈
{aborted, idle}.

8

Proof. We have the following cases:

1. If sz.statusi(t) = aborted, node(t) = i, and has reached this state due to a πz = local aborti(t) action
then sz−1.statusi(t) = blocked 6= pre commit. Thus, ∀ j ∈ N \ {i} we have that sz.statusj(t) = idle.

2. If sz.statusi(t) = aborted, node(t) = i, and has reached this state due to a πz = receive rem aborti(t,m)
action then site i multicasts an 〈abort, t〉 message to all nodes excluding i, which enables ∀j ∈ N \ {i} the
receive abort(t,m) action (if t had already been aborted in any j then no action would change its status on
j) and finally it will be executed at all sites leading to ∀ j ∈ Nstatusj(t) = aborted.

3. If sz.statusi(t) = aborted, node(t) 6= i, and has reached this state due to a πz = local aborti(t) action
then it sends a message to the transaction master site of t that will take us to (2).

4. If sz.statusi(t) = aborted, node(t) 6= i, and has reached this state due to a πz = receive aborti(t)
action enabled by an 〈abort, t〉 message in channeli. This message could have been generated by the
execution of the receive rem abortj(t,m), with j = node(t), that implicitly carries out the fact that
statusj(t) = aborted which multicasts a 〈rem abort, t〉 message to all nodes excluding j which leads to a
similar reasoning as depicted in (2).

5. If sz.statusi(t) = aborted, node(t) 6= i, and has reached this state due to a πz = receive remotei(t)
action. It sends a 〈rem abort, t〉 message to the transaction master site (node(t)) that leads us to (2).

Before continuing with the correctness proof we have to add a definition dealing with causality between actions.
Some set of actions may only be viewed as causally related to another action in any execution α. We denote this fact
by πi ≺α πj . For example, with node(t) = i 6= j, end operationj(t,WS(t)) ≺α receive readyi(t,m). The
following Lemma indicates that a transaction is committed if it has received every ready message from its remote
transaction ones. These remote transactions have been created as a consequence of the receive remotej(t,m)
action execution.

Lemma 3. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the BRP automaton and t ∈ T be a committed
transaction, node(t) = i, then the happens-before relations hold for the appropriate parameters: ∀j ∈ N \
{i} : begin commiti(t) ≺α receive remotej(t,m) ≺α end operationj(t, op) ≺α end commiti(t,m) ≺α

receive commitj(t,m).

Proof. Let t, node(t) = i, be a committed transaction. It has previously been with statusi(t) = active. An
action enabled is the begin commiti(t) action which multicasts to the rest of nodes the 〈remote, t, DBi.WS(t)〉
message. ∀j ∈ N, j 6= i the message is in channelj and the receive remotej(t,m) action will be invoked. As an
effect, the operation will be submitted to the DBj . As t is a committed transaction, it will not be aborted neither by
protocol itself or the DBj , therefore once the operation is done the end operationj(t, op) will be the only action
enabled for t at j. This last action will send the 〈ready, t〉 message to i. The reception of these messages (reliable
channels), except the last one, will successively call for the receive readyi(t,m) action. Respectively, the only
action enabled at site i for the last ready message will be the end commiti(t, m) action. This action will commit
the transaction at i and multicast the 〈commit, t〉 message to the rest of nodes. The only action enabled for t at j
(being j ∈ N, j 6= i) is the receive commitj(t,m) action that commits the transaction at the rest of sites.

In order to define the correctness of our replication protocol we have to study the global history (H) of com-
mitted transactions(C(H)). We may easily adapt this concept to our BRP automaton. Therefore, a new auxiliary
state variable, Hi, is defined in order to keep track of all the DBi operations performed on the local DBMS at the

9

i site. For a given α execution, Hi(α) plays a similar role as the local global history at site i, Hi, as introduced
in [3] for the DBMS. In the following, only committed transactions are part of the history, deleting all operations
that do not belong to transactions committed in Hi(α). The serialization graph for Hi(α), SG(Hi(α)), is defined
as in [3]. An arc and a path in SG(Hi(α)) are denoted as t → t′ and t

∗−→ t′ respectively. Our local DBMS
produces ANSI serializable histories [18]. Thus, SG(Hi(α)) is acyclic and the history is strict The correctness
criterion for replicated data is 1-copy-serializability, which stands for a serial execution over the logical data unit
(although there are several copies of this data among all sites) [3]. Thus, for any execution resulting in local
histories H1(α),H2(α), . . . ,HN (α) at all sites its serialization graph, ∪k SG(Hk(α)), must be acyclic so that
conflicting transactions are equally ordered in all local histories. The following property and corollary establish a
property about local executions of committed transactions.

Lemma 4. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the BRP automaton and i ∈ N . If there exist
two transactions t, t′ ∈ T such that t

∗−→ t′ in SG(Hi(α)) then ∃ z1 < z2 < z3 < z4 : sz1 .statusi(t) =
pre commit ∧ sz2 .statusi(t) = committed ∧ sz3 .statusi(t′) = pre commit ∧ sz4 .statusi(t′) = committed.

Proof. We firstly consider t → t′. ∃ opt < op′t′ and opt conflicts with op′t′ . Therefore, by construction of
Hi(α) : DBi.notify(t, op) = run < DBi.notify(t′, op′) = run. This fact makes true opt < op′t′ . However, we
have assumed that the DBi is serializable and satisfies ANSI serializable transaction isolation [18]. In such a case,
Hi(α) is strict serializable for write and read operations. Therefore, it is required that DBi.notify(t, op) =
run < DBi.commit(t) < DBi.notify(t′, op′) = run. The DBi.commit(t) operation is associated with
statusi(t) = committed. If we take t′ into account, DBi.notify(t′, op′) = run is associated with statusi(t) ∈
{active, pre commit}. As t′ achieves statusi(t′) = committed, it is due to the fact that it was previously with
statusi(t′) = pre commit. Note that Hi(α) keeps the same order as with ≺α. ∃ z2 < z′3 ≤ z3 : sz2 .statusi(t) =
committed ∧ sz′3 .statusi(t′) ∈ {active, pre commit}. By lemma conditions, t′ is committed and by Property 1.2
z3 < z4 ∧ sz4 .status(t′) = committed. Again, by Property 1.2 ∃ z1 < z2 ∧ sz1 .statusi(t) = pre commit. Thus,
property holds for t → t′, the t

∗−→ t′ case is proved by transitivity.

Corollary 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the BRP automaton and i ∈ N . If there exist
two transactions t, t′ ∈ T such that t

∗−→ t′ in SG(Hi(α)) then the following happens-before relations, with the
appropriate parameters, hold:

1. node(t) = node(t′) = i : begin commiti(t) ≺α end commiti(t,m)≺α begin commiti(t′)≺α end com-
miti(t′,m′).

2. node(t) = i ∧ node(t′) 6= i : begin commiti(t) ≺α end commiti(t,m) ≺α end operationi(t′,WS′)
≺α receive commiti(t′,m′).

3. node(t) 6= i ∧ node(t′) = i : end operationi(t,WS) ≺α receive commiti(t, m) ≺α begin com-
miti(t′) ≺α end commiti(t′,m′).

4. node(t) 6= i ∧ node(t′) 6= i : end operationi(t, WS) ≺α receive commiti(t,m) ≺α end opera-
tioni(t′,WS′) ≺α receive commiti(t′,m′).

Proof. By Lemma 4, ∃ z1 < z2 < z3 < z4 : sz1 .statusi(t) = pre commit ∧ sz2 .statusi(t) = committed ∧
sz3 .statusi(t′) = pre commit ∧ sz4 .status = committed. Depending on node(t) and node(t′) values the only
actions whose effects are those indicated in the Lemma 4. The happens-before relations are from Lemma 3, for
actions of the same transactions. For the t

∗−→ t′ condition in SG(Hi(α)), the commit of t happens before the
pre commit of t′.

In the following, we prove that the BRP protocol provides 1-copy-serializability.

10

Theorem 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the BRP automaton. The graph ∪k∈NSG(Hk(α))
is acyclic.

Proof. By contradiction. Assume there exists a cycle in ∪k∈NSG(Hk(α)) there are at least two different trans-
actions (t, t′ ∈ T) and two different sites (x, y ∈ N , x 6= y) such that those transactions are executed in different
order at x and y. Thus, we consider (a) t

∗−→ t′ in SG(Hx(α)) and (b) t′ ∗−→ t in SG(Hy(α)); being node(t) = i
and node(t′) = j. There are four cases under study:

1. i = j = x.

2. i = x ∧ j = y

3. i = j ∧ i 6= x ∧ i 6= y.

4. i 6= j ∧ i 6= x ∧ i 6= y ∧ j 6= x ∧ j 6= y.

In the following, we simplify the notation. The action names are shortened, i.e. begin commitx(t) by
bcx(t); end commitx(t,m) by ecx(t); receive remotex(t,m) by rrx(t); end operationx(t, op) by eox(t); and
receive commitx(t, m) by rcx(t).

CASE (1) By Corollary 1.1 for (a): bcx(t) ≺α ecx(t) ≺α bcx(t′) ≺α ecx(t′). (i)

By Corollary 1.4 for (b): eoy(t′) ≺α rcy(t′) ≺α eoy(t) ≺α rcy(t). (ii)

By Lemma 3 for t: bcx(t) ≺α rry(t) ≺α eoy(t) ≺α ecx(t) followed by (i) ≺α (via Lemma 3) bcx(t′) ≺α

rry(t′) ≺α eoy(t′). Thus, eoy(t) ≺α eoy(t′) in contradiction with (ii).

CASE (2) By Corollary 1.2 for (a): bcx(t) ≺α ecx(t) ≺α eox(t′) ≺α rcx(t′). (i)

By Corollary 1.2 for (b): bcy(t′) ≺α ecy(t′) ≺α eoy(t) ≺α rcy(t). (ii)

By Lemma 3 for t: bcx(t) ≺α rry(t) ≺α eoy(t) ≺α ecx(t); by (i) ≺α eox(t′), and by Lemma 3 for t′,
≺α ecy(t′). Thus eoy(t) ≺α ecy(t′) in contradiction with (ii).

CASE (3) As x and y are different sites from the transaction master site, only one of them will be executed
in the same order as in the master site. If we take into account the different one with the master site then we
will be under assumptions considered in CASE (1).

CASE (4) By Corollary 1.4 for (a): eox(t) ≺α rcx(t) ≺α eox(t′) ≺α rcx(t′). (i)

By Corollary 1.4 for (b): eoy(t′) ≺α rcy(t′) ≺α eoy(t) ≺α rcy(t). (ii)

By Lemma 3 for t at site y: bci(t) ≺α rry(t) ≺α eoy(t) ≺α eci(t) ≺α rcy(t). Applying Lemma 3 for
t at x: bci(t) ≺α rrx(t) ≺α eox(t) ≺α eci(t) ≺α rcx(t). Therefore, we have that eoy(t) ≺α rcx(t).
Let us apply Lemma 3 for t′ at y: bcj(t′) ≺α rry(t′) ≺α eoy(t′) ≺α ecj(t′) ≺α rcy(t′) and for site x:
bcj(t′) ≺α rrx(t′) ≺α eox(t′) ≺α ecj(t′) ≺α rcx(t′). Thus, we have eox(t′) ≺α rcy(t′). Taking into
account Lemma 3 for t we have: eoy(t) ≺α rcx(t) (via (i)) ≺α eox(t′) (via Lemma 3 for t′) ≺α rcy(t′), in
contradiction with (ii).

11

5 Further Topics

This section deals with variations of the BRP so as to increase its performance. We change the behavior of
remote transactions since they do not have to wait for sending the ready message until the end of the updates
execution. Another modification consists in implementing a queue that allows remote executions to wait so that
remote transaction abortions may be decreased.

We may add additional variations in order to change its transaction isolation level and the replica control guaran-
tees. We are currently implementing this protocol using PostgreSQL [22] as the underlying DBMS that guarantees
Snapshot Isolation level. In such a case, our replication protocol does not guarantee 1-copy-serializability [3] as
we have shown, but 1-copy-snapshot-isolation [8]. Nevertheless, we have to perform a slight modification of our
BRP so as to provide 1-copy-snapshot-isolation.

Finally, we provide how to deal with site failures and its recovery. We formally introduce a recovery protocol
along with the BRP as a state transition system. We rely on the group communication system [6] for the definition
of the database dynamic partitions associated to a node recovery.

5.1 BRP Enhancements

This basic replication protocol is a two phase commit (2PC) one, i.e. it must wait for the update application at
the rest of sites so as to send the commit message. The response time, θr(t), of a transaction t (node(t) = i) in
our system is determined by the sum of: the transaction processing at the master site, θDBi(t); multicasting the
remote message to the rest of sites, θMC(t); transaction updates processing at the rest of available sites θDBj (t);
and, finally, each remote site sends the ready message back to the master site, θUCj (t). Therefore, we have
θr(t) ≈ θDBi(t) + θMC(t) + maxj (θDBj (t)) + maxj (θUCj (t)). If we do assume that DBMS unilateral aborts
are rare, we will be able to send the ready message just before performing the operation on the DBMS. Hence,
the 2PC rule is modified, and we are not penalized by the execution of the update statements at the slowest site
of the system and our response time is reduced to (assuming reliable multicast and unicast time costs are similar):
θr(t) ≈ θDBi(t) + 2 ∗ θMC(t).

Our BRP lacks of fairness due to the fact that we do not allow to wait a remote transaction. The worst case
occurs whenever two conflicting transactions arrive at distinct ordering at two different sites and both reached the
pre commit state at their respective first-delivered sites. When the second remote message arrives, it will send a
rem abort message (see Figure 3) to its transaction master site. Hence, both transactions will be rolled back and
neither one will commit. This problem may be solved by the use of queues storing remote transactions pending to
apply. Once a transaction has been committed at a given site, the first enqueued remote transaction (suppose they
are ordered by priorities) is woken up by the protocol and checks again for current conflicting transactions.

It is important to note that the replication protocol itself exclusively imposes the total order among conflicting
concurrent transactions. We introduce the modifications of the BRP automaton so as to send the ready message
before the end of the operation on the database and allowing conflictive remote transactions to wait in Figure 5.
The optimization introduced for the ready message is given in the receive remotei(t,m) action. Once the
remote operation is going to be submitted to the database, we send the ready message. We rely for rolling back
transactions on their respective transaction master sites (node(t)) whenever a remote transaction, t′, with a higher
priority than a local conflictive transaction in the pre commit state reaches this node (see the higher pritority
function on Figure 5).

In this algorithm specification we have added two new state variables: queuei and removei in order to deal
with queues that allows a remote transaction, t, (or several) to wait at a given site j 6= node(t). The first variable
will store the content of the remote message for conflictive remote transactions whose priority is lower than any
other currently executing transaction. The latter is a boolean variable that manages the activation of a new action
execute remotei. This variable is set to true each time a transaction has been committed or rolled back, so any

12

other waiting remote transaction may be immediately executed. When a transaction is scheduled to be submitted
to the database, it sends the respective ready message as in the receive remotei(t,m) action.

5.2 Snapshot Isolation

Right now, we have only considered that the underlying DBMS provides ANSI serializable transaction isolation.
However, snapshot isolation [18] is a very popular solution used by the most popular DBMS vendors, like Post-
greSQL [22] or Oracle [23]. There have been some recent research about this fact for database replication in order
to provide something similar to 1-copy-serializability [3] for snapshot isolation. This approach is introduced in [8]
where the 1-copy-snapshot-isolation is presented for a middleware providing database replication with snapshot
transaction isolation for each DBMS. We may achieve this functionality in the replication protocol presented in
the paper, all we have to do is to perform the getConflicts(WS) function over write sets exclusively. Each
successful validation will send a ready message to the transaction master site that will commit and multicast the
updates to the rest of sites without needing to send an extra commit message.

5.3 About Failures and the Recovery Process

5.3.1 Introduction

Up to now we have considered that our system is free of failures; we have not taken into account any recovery
issue for our replication algorithm. Hereafter, we assume that our sites fail by crashing, once they crash they
immediately try to rejoin after their failure. The system will try to continue executing as long as it involves a
primary partition [5, 6]. If we consider this we will have to give a rough outline of a possible recovery process for
this algorithm; the recovery idea outlined is thoroughly explained in [17].

If we consider failures then our group communication system will provide a uniform reliable multicast [5, 6].
The group communication system will group messages delivered in views. These views have a global unique
identifier which allow every site to determine the view when a given site joined the group, since they are fired
each time a site joins or crashes. Hence, every message multicast in a given view (even by faulty nodes) will be
delivered in the same view (strong virtual synchrony property) [24]. Hence, a view serves as a synchronization
point to set up updates missed by crashed nodes; as a matter of fact we group crashed nodes and missed updates
by views in this recovery proposal.

The BRP automaton has to be modified in order to support failures. The protocol has to wait for the delivery of
the commit message even at the transaction master site, before committing the transaction. Otherwise, if a crash
occurs during the delivery of the commit message to any node (see Figure 3) an inconsistency among nodes will
occur. Since the failed node has committed a transaction the rest of nodes has not.

Therefore, a new transaction state, committable, has been introduced in the BRP automaton. This new state
reflects that a local transaction, i.e. a transaction executing at its transaction master site, has received all the ready
messages coming from the available nodes at a given view but it has not received the commit message yet. Up
to now (failure free environment), the local transaction was committed once the last ready message has been
received. This is not enough to prevent inconsistencies, as it has been pointed out before, since the transaction
master site may fail before delivering the commit message to any other site.

Besides, we have changed the end commiti(t,m) and receive commiti(t, m) actions. These slight modifi-
cations are shown in Figure 6. The end commiti(t,m) action multicasts the 〈commit, t〉 message to all avail-
able nodes (including itself) and switches statusi(t) to the committable state. As a direct consequence, the
receive commiti(t,m) action will be enabled for all available nodes. The precondition has been modified so as
to be activated for remote transactions in the pre commit state and local transactions in the committable state.

Our goal is to try to harm the fewer number of user transactions during the recovery process by defining dynamic
partitions on the database. These partitions are grouped by the site identifier of the recovering site and the missed

13

Signature:
{∀ i ∈ N, t ∈ T, m ∈ M, op ∈ OP : createi(t),begin operationi(t, op), end operationi(t, op),begin commiti(t),

end commiti(t, m), local aborti(t), receive remotei(t, m), receive readyi(t, m), receive commiti(t, m),
receive aborti(t, m), execute remotei,discardi(t, m)}.

States:
∀ i ∈ N, ∀ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, aborted, committed},

initially (node(t) = i ⇒ statusi(t) = start) ∧ (node(t) 6= i ⇒ statusi(t) = idle).
∀ i ∈ N, ∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : queuei ⊆ {〈t, WS〉 : t ∈ T, WS ∈ OP}, initially queuei = ∅.
∀ i ∈ N : removei : boolean, initially removei = false.
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initially Vi = 〈0, N〉.

Transitions:
createi(t) // node(t) = i //
pre ≡statusi(t) = start.
eff ≡DBi.begin(t); statusi(t) ← active.

begin operationi(t, op) // node(t) = i //
pre ≡statusi(t) = active.
eff ≡DBi.submit(t, op); statusi(t) ← blocked.

end operationi(t, op)
pre ≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff ≡ if node(t) = i then statusi(t) ← active

else statusi(t) ← pre commit.

begin commiti(t) // node(t) = i //
pre ≡statusi(t) = active.
eff ≡ statusi(t) ← pre commit;

participantsi(t) ← Vi.availableNodes \ {i};
sendRMulticast(〈remote, t, DBi.WS(t)〉,

participantsi(t)).

end commiti(t, m) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = {source}∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

participantsi(t) ← participantsi(t) \ {source};
sendRMulticast(〈commit, t〉,

Vi.availableNodes \ {i});
DBi.commit(t); statusi(t) ← committed;
removei ← true.

receive readyi(t, m) // t ∈ T ∧ node(t) = i //
pre ≡statusi(t) = pre commit ∧ ‖participantsi(t)‖ > 1∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

participantsi(t) ← participantsi(t) \ {source}.

local aborti(t)
pre ≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff ≡ statusi(t) ← aborted; DBi.abort(t); removei ← true.

receive commiti(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡statusi(t) = pre commit ∧m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.commit(t); statusi(t) ← committed; removei ← true.

discardi(t, m) // t ∈ T //
pre ≡statusi(t) = aborted ∧m ∈ channeli.
eff ≡ receivei(m). // Remove m from channel

receive remotei(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡statusi(t) = idle ∧ m = 〈remote, t, WS〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

conflictSet ← DBi.getConflicts(WS);
if ∃ t′ ∈ conflictSet : ¬higher priority(t, t′) then

insert with priority(queuei, 〈t, WS〉);
else // The deliv. remote has the highest priority or no conflicts
∀ t′ ∈ conflictSet :

DBi.abort(t′);
if statusi(t

′) = pre commit ∧ node(t′) = i then
sendRMulticast(〈abort, t′〉,Vi.availableNodes \ {i});

statusi(t
′) ← aborted;

sendRUnicast(〈ready, t, i〉) to node(t);
DBi.begin(t); DBi.submit(t, WS); statusi(t) ← blocked.

execute remotei

pre ≡¬empty(queuei) ∧ removei.
eff ≡ aux queue ← ∅;

while ¬empty(queuei) do
〈t, WS〉 ← first(queuei); queuei ← remainder(queuei);
conflictSet ← DBi.getConflicts(WS);
if ∃ t′ ∈ conflictSet : ¬higher priority(t, t′) then

insert with priority(aux queue, 〈t, WS〉);
else // The deliv. remote has the highest priority or no conflicts
∀ t′ ∈ conflictSet :

DBi.abort(t′);
if statusi(t

′) = pre commit ∧ node(t′) = i then
sendRMulticast(〈abort, t′〉,Vi.availableNodes \ {i});

statusi(t
′) ← aborted;

sendRUnicast(〈ready, t, i〉) to node(t);
DBi.begin(t); DBi.submit(t, WS); statusi(t) ← blocked;

queuei ← aux queue; removei ← false.

receive aborti(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡statusi(t) /∈ {aborted, committed} ∧m = 〈abort, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.abort(t); statusi(t) ← aborted; removei ← true.

¦ functionhigher priority(t, t′) ≡ node(t) = j 6= i ∧ (a ∨ b)
(a) node(t′) = i ∧ statusi(t

′) ∈ {active, blocked}
(b) node(t′) = i ∧ statusi(t

′) = pre commit ∧ t.priority > t′.priority

Figure 5: State transition system for the Basic Replication Protocol (BRP) enhanced to optimize the 2PC and
allowing remote transactions to wait.

14

view identifier; this ensures a unique identifier throughout the whole system. Partitions are created at all sites by
special transactions, called recovery transactions, which are started at the delivery of the recovery information by
a unique recoverer node.

Once a partition has been set up at the recoverer node, it sends the missed updates of that partition to the
respective recovering site. Previously alive nodes and even recovering nodes, whose partitions do not intersect
with this partition, will access a dynamic partition for reading; respectively, recovering nodes associated to that
partition may not access these objects in any way. Besides, local user transactions on recovering sites may start as
quickly as possible, when they reach the recovering state; they will even commit as long as they do not interfere
with its recover partitions (otherwise, they will get blocked).

Currently update transactions executing on previously alive nodes will be rolled back if they interfere with a
dynamic recovery partition. Partitions will remain until the given view is recovered. As updates are applied in
the underlying DBMS, the recovering node multicasts a message that frees the partition associated to that part
of the recovery. The process continues until all changes missed are applied in the recovering node. During this
recovery process a node may also fail. If it is a recovering site then all its associated recovery partitions will be
released. In case of a failure of a recoverer site the new oldest alive node will continue with the recovery process.

5.3.2 Description

We have to consider different actions each time a view change event is fired by the group communication system
(due to a site joini(W) or leavei(W) action). These view change events are managed by the membership mon-
itor [6], in our recovery protocol is represented by MMi. We have defined another automaton dealing with the
BRP protocol recovery issues and is introduced in Figures 7-9. Figure 7 shows the signature and states of this new
automaton. Specific recovery actions are introduced in Figure 8. Modifications of the replication protocol actions
are given in Figure 9.

We must add an extra metadata table on the database in order to store all the information needed to recover
nodes after their failure. This table, named MISSED, contains three fields: VIEW ID, NODES and OIDS. The first
field contains the view identifier which acts as an index to select the nodes crashed (or not recovered yet), NODES
and objects updated in that view (OIDS). Hence, each time a node crashes (leavei(W)) a new entry is added to
this table which fills the first two fields of this new row; this is done via a database stored procedure. Whenever a
transaction commits, it appends its write-set into the row corresponding to the current view. One can realize that
this new table may indefinitely grow, however we have automatized its cleaning. Thus, at the end of a node missed
view recovery process it is deleted from the respective entry. If at the recovered view there are no nodes left then
the row will be erased. As an implementation detail, it is important to note that the insertion of a new OID will
check if it belongs to previous views whose nodes are a subset of nodes included in the current view. This fact
avoids to recover several times the same object.

As we are in a middleware architecture, we have added two additional database stored procedures for recovery
purposes which are the following: recover me and recover other. The first one performs a “SELECT FOR
UPDATE” SQL statement over the objects to be recovered in a given view by the recovering node. The second
procedure is invoked at sites that were previously alive, i.e. on nodes where the recovery transaction’s associated
view has been applied. This procedure will rollback all previous transactions trying to update an object before per-
forming the “SELECT FOR UPDATE” SQL statement over the given partition. This prevents local transactions
from modifying the rows inside the partition.

As we continue with the recovery protocol, two new state variables at each site i: sitesi(j) and missedi(id)
have been added. The first one stores the state of each node j ∈ N (whether it is pending updates, joinining,
crashed, recovering, recoverer or alive; its possible transitions are shown in Figure 10), its respective age (the
view identifier, Vi.id, when it joined the system) and the recovering transactions associated to that node, as long
as it is in the recovering state (to recover). Respectively missedi represents the MISSED metadata table of the

15

Signature:
{∀ i ∈ N, t ∈ T, m ∈ M, op ∈ OP : createi(t),begin operationi(t, op), end operationi(t, op),begin commiti(t),

end commiti(t, m), local aborti(t), receive remotei(t, m), receive readyi(t, m), receive commiti(t, m),
receive aborti(t, m), receive rem aborti(t, m),discardi(t, m)}.

States:
∀ i ∈ N, t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, committable, aborted, committed},

initially (node(t) = i ⇒ statusi(t) = start) ∧ (node(t) 6= i ⇒ statusi(t) = idle).
∀ i ∈ N, ∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initially Vi = 〈0, N〉.

Transitions:
createi(t) // node(t) = i //
pre ≡statusi(t) = start.
eff ≡DBi.begin(t); statusi(t) ← active.

begin operationi(t, op) // node(t) = i //
pre ≡statusi(t) = active.
eff ≡DBi.submit(t, op); statusi(t) ← blocked.

end operationi(t, op)
pre ≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff ≡ statusi(t) ← active;

if node(t) 6= i then sendRUnicast(〈ready, t, i〉) to node(t);
statusi(t) ← pre commit.

begin commiti(t) // node(t) = i //
pre ≡statusi(t) = active.
eff ≡ statusi(t) ← pre commit;

participantsi(t) ← Vi.availableNodes \ {i};
sendURMulticast(〈remote, t, DBi.WS(t)〉,

participantsi(t)).

end commiti(t, m) // node(t) = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = {source}∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

participantsi(t) ← participantsi(t) \ {source};
sendURMulticast(〈commit, t〉,Vi.availableNodes);
statusi(t) ← committable.

receive readyi(t, m) // node(t) = i //
pre ≡statusi(t) = pre commit ∧ ‖participantsi(t)‖ > 1∧

m = 〈ready, t, source〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

participantsi(t) ← participantsi(t) \ {source}.

local aborti(t)
pre ≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff ≡ statusi(t) ← aborted; DBi.abort(t);

if node(t) 6= i then sendRUnicast(〈rem abort, t〉) to node(t).

receive commiti(t, m)
pre ≡statusi(t) ∈ {pre commit, committable}∧

m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.commit(t); statusi(t) ← committed.

receive remotei(t, m)
pre ≡statusi(t) 6= aborted ∧ m = 〈remote, t, WS〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

conflictSet ← DBi.getConflicts(WS);
if ∃ t′ ∈ conflictSet : ¬(higher priority(t, t′)) then

statusi(t) ← aborted;
sendRUnicast(〈rem abort, t〉) to node(t)

else // The deliv. remote has the highest priority or no conflicts
∀ t′ ∈ conflictSet :

DBi.abort(t′);
if statusi(t

′) = pre commit ∧ node(t′) = i then
sendURMulticast(〈abort, t′〉,Vi.availableNodes \ {i});

statusi(t
′) ← aborted;

DBi.begin(t); DBi.submit(t, WS); statusi(t) ← blocked.

receive aborti(t, m)
pre ≡statusi(t) 6= aborted ∧m = 〈abort, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.abort(t); statusi(t) ← aborted.

receive rem aborti(t, m) // node(t) = i //
pre ≡statusi(t) 6= aborted ∧m = 〈rem abort, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

sendURMulticast(〈abort, t〉,Vi.availableNodes \ {i});
DBi.abort(t); statusi(t) ← aborted.

discardi(t, m)
pre ≡statusi(t) ∈ {aborted, committed} ∧m ∈ channeli.
eff ≡ receivei(m). // Remove m from channel

¦ functionhigher priority(t, t′) ≡ node(t) = j 6= i ∧ (a ∨ b ∨ c)
(a) node(t′) = i ∧ statusi(t

′) ∈ {active, blocked}
(b) node(t′) = i ∧ statusi(t

′) = pre commit ∧ t.priority > t′.priority
(c) node(t′) = k ∧ k 6= j ∧ k 6= i ∧ statusi(t

′) = blocked∧
t.priority > t′.priority

Figure 6: State transition system for the BRP replication protocol in a faulty environment.

DBMS. It contains for each view the nodes crashed (or not recovered yet) and objects modified in the given view.
Initially all sites are up and alive. Afterwards, some site, or several with no loss of generality, may fail

(MMi.view change). At this point, our recovery protocol starts running, leavei(W). All nodes change the
state associated to that node to crashed; besides, a new entry in the MISSED table is added for this new view
identifier containing (as it was mentioned before): the new view identifier and the failed node. User transactions
will continue working as usual, nevertheless the respective transaction master sites will only wait for the ready

16

Signature:
{∀ i ∈ N, t ∈ T, m ∈ M op ∈ OP,W ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N} : createi(t, op),

begin operationi(t, op), end operationi(t, op), begin commiti(t), end commiti(t, m), local aborti(t),
receive remotei(t, m), receive readyi(t, m), receive commiti(t, m), receive aborti(t, m), receive rem aborti(t, m),
discardi(t, m), joini(W), leavei(W), receive recovery starti(m), receive view recoveredi(t, m),
receive missedi(t, m)}.

States:
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initially Vi = 〈0, N〉.
∀ i, j ∈ N : sitesi(j) ∈ {〈state, age, to recover〉 : state ∈ {alive, crashed, pending metadata, joining, recoverer, recovering}, age ∈ Z,

to recover ⊂ T}, initially sitesi(j) = 〈alive, 0, ∅〉.
∀ i ∈ N, ∀ id ∈ Z : missedi(id) ∈ {〈sites, oids〉 : sites ⊂ N, oids ⊂ O}, initially missedi(id) = ∅.

Figure 7: Signature and states for the BRP recovery protocol.

message coming from these new set of available nodes (ROWAA). When a transaction commits, each available
site stores objects updated in the entry associated to the current view identifier with the crashed node.

Actions to be done when a node failure happens (leavei(W)) involve several tasks in the recovery protocol
executing at an available node, apart from the ones dealing with the variables and metadata management that
we have mentioned before. It will rollback all remote transactions coming from the crashed node. Besides, if
the crashed site was recovering all its associated recovery transactions will be aborted too. Local transactions
executing at an available node whose statusi(t) = pre commit must remove from their participantsi(t) all
crashed nodes, this process may imply a multicast of a commit message to all available nodes, since all of them
have answered they were ready to commit. If the failed node was the recoverer, then the protocol must choose
another alive node as the new recoverer. This new recoverer site will continue performing the object transfer to
recovering and joining sites. If there exists any node whose state is pending metadata it will start the recovery
process for this node which we will depict in the following paragraph.

The membership monitor will enable the joini(W) action to notify that a node has rejoined the system. These
new nodes must firstly update their recovery metadata information, they are in the pending metadata state, and
may not start executing local transactions until they reach the recovering state. The recovery protocol will choose
one site as the recoverer by the function min age, in our case, the oldest one. Once a site is elected, it multicasts
its metadata recovery information (no object state transfer is done at this stage), which consist of its sitesi and the
updates exclusively missed by each new available node as a recovery start message. It is important to note that
these joining nodes may have obsolete metadata information regarding to previously stored info, apart from the
missed updates while they were crashed.

More actions have to be done while dealing with the join of new sites. Current local transactions of previously
available sites in the pre commit state must multicast the remote message to all pending metadata nodes
which appropriately increase their associated participantsi(t) variable. Otherwise, as these transactions are
waiting for the ready message coming from previously available nodes, all new available nodes will receive a
commit message from a remote transaction they did not know about its existence. This may be best viewed
with an example, let us consider a site that is only waiting for the ready message coming from a node available
at the previous view that has not crashed in this new view. Assume that the ready message is delivered in this
new installed view, then the transaction master site will multicast a commit message to all available nodes. This
includes all new joining nodes that will never treat this message since its associated remote transaction has never
been executed on their sites.

The recovery start message delivery, as its own name states, starts the recovery process. First of all, the
joining nodes update their metadata recovery information. Respectively, all available nodes have to begin the
associated recovery transactions. As we have mentioned at the beginning of this Section, we have added two
stored procedures in order to guarantee the definition of the partitions associated to the recovery of a given node.
The protocol defines several subsets, as many as views missed, for each joining node. Recovering nodes will

17

joini(W) // W ∈ {〈id, availableNodes〉 : id ∈ Z ∧ nodes ⊆ N} //
pre ≡MMi.view change = W∧

W.availableNodes \ Vi.availableNodes 6= ∅.
eff ≡ nodes ←W.availableNodes \ Vi.availableNodes;

if i ∈ Vi.availableNodes then
∀ t ∈ T :

if statusi(t) = pre commit ∧ node(t) = i then
sendURMulticast(〈remote, t, DBi.WS(t)〉, nodes);

participantsi(t) ← participantsi(t) ∪ nodes;
if W.availableNodes 6= N then

missedi(W.id) ← 〈N \W.availableNodes, ∅〉;
∀ j ∈ nodes : sitesi(j) ← 〈pending metadata,W.id, ∅〉;
oldest alive ← min age(sitesi(·),Vi,W);
if i = oldest alive then

sendURMulticast(〈recovery start, i, nodes,
sitesi(·), minimum missed(nodes)〉,
W.availableNodes);

Vi ←W .

¦ functionminimum missed(nodes) ≡
send info ⊆ {〈s, o〉 : s ⊂ N ∧ o ⊆ O} : send info ← ∅
∀ k ∈ [0,Vi.id] :

if ∃j ∈ nodes : j ∈ missedi(k).sites then
∀ l ∈ [k,Vi.id] : send info ← send info ∪missedi(l)
break

¦ functionmin age(sites(·),V,W) ≡
j ∈ N : j ∈ V.availableNodes ∩W.availableNodes∧

(sites(j).state = recoverer ∨ (sites(j).state = alive∧
(∀ k ∈ V.availableNodes ∩W.availableNodes, k 6= j :

sites(k).state = alive ∧ (sites(j).age < sites(k).age∨
sites(j).age = sites(k).age ∧ j < k))))

receive recovery starti(m)
pre ≡sitesi(i).state 6= crashed ∧ m = 〈recovery start,

recov id, nodes, m sites(·), m missed(·)〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

sitesi(·) ← m sites(·);
if i ∈ nodes then missedi ← missedi ∪m missed(·);
sitesi(recov id).state ← recoverer;
∀ j ∈ nodes :

sitesi(j).state ← joining;
∀ t′ ∈ generate rec trans(j, missedi(·),Vi);

sitesi(j).to recover ← sitesi(j).to recover ∪ {t′};
DBi.begin(t′); objs ← missedi(t

′.view id).oids;
if j 6= i then DBi.recover other(t′, objs)
else

DBi.recover me(t′, objs);
sitesi(i).to schedule ← sitesi(i).to schedule ∪ {t′};

statusi(t
′) ← blocked;

if i ∈ nodes then
∀ j ∈ Vi.availableNodes \ nodes∧

sitesi(j).state ∈ {joining, recovering} :
∀ t′ ∈ generate rec trans(j, missedi(·),Vi);

sitesi(j).to recover ← sitesi(j).to recover ∪ {t′};
DBi.begin(t′); objs ← missedi(t

′.view id).oids;
DBi.recover other(t′, objs); statusi(t

′) ← blocked;
∀ j ∈ Vi.availableNodes \ nodes∧

sitesi(j).state ∈ {alive, recoverer} :
∀ k ∈ {0,Vi.id ∧ j ∈ missedi(k).sites :

missedi(k).sites ← missedi(k).sites \ {j}.

¦ function generate rec trans(j, missed(·),V) ≡
txns ⊆ T : txns ← ∅
∀ k ∈ [0,Vi.id) :

if j ∈ missedi(k).sites then // t = 〈node, view〉 //
txns ← txns ∪ {recov transaction(j, k)}

receive missedi(t, m)
pre ≡sitesi(i).state = recovering ∧ statusi(t) = active∧

m = 〈missed, t, op〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.submit(t, op); statusi(t) ← blocked.

receive view recoveredi(t, m)
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) = active∧

m = 〈view recovered, t, id〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.commit(t); statusi(t) ← committed;
sitesi(id).to recover ← sitesi(id).to recover \ {t};
if sitesi(id).to recover = ∅ then

sitesi(id).state ← alive;
if (∀ j ∈ Vi.availableNodes : sitesi(j).state ∈

{alive, recoverer}) then
∀ j ∈ Vi.availableNodes : sitesi(j).state ← alive.

missedi(t.view).sites ← missedi(t.view).sites \ {id}.

leavei(W) // W ∈ {〈id, nodes〉 : id ∈ Z, nodes ⊆ N} //
pre ≡MMi.view change = W∧

Vi.availableNodes \W.availableNodes 6= ∅.
eff ≡ nodes ← Vi.availableNodes \W.availableNodes;

∀ t ∈ T :
if node(t) ∈ nodes then

DBi.abort(t); statusi(t) ← aborted
else if node(t) = i ∧ statusi(t) = pre commit then

participantsi(t) ← participantsi(t) \ nodes;
if participantsi(t) = ∅ then

sendURMulticast(〈commit, t〉,
Vi.availableNodes);

statusi(t) ← committable;
if Vi.availableNodes 6= ∅ then

missedi(Vi.id).oids ←
missedi(Vi.id).oids ∪DBi.WS(t);

else if t ∈ {t′ : t′ ∈ missedi(k).to recover, k ∈ nodes} then
DBi.abort(t); statusi(t) ← aborted;

∀ k ∈ nodes, sitesi(k).state ∈ {joining, recovering, alive} :
sitesi(k) ← 〈crashed,V.id, ∅〉

if ∃ k ∈ nodes : sitesi(k).state = recoverer then
sitesi(k) ← 〈crashed, {V.id, ∅}〉;
oldest alive ← min age(sitesi(·));
sitesi(oldest alive).state ← recoverer;
if i = oldest alive then
∀ j ∈ {n ∈ N : sitesi(n).state ∈ {joining, recovering}} :
∀ t ∈ sitesi(j).to recover :

sendRUnicast(〈missed, t, objects(t)〉) to j;
if ∃ j ∈ {j ∈ W.availableNodes :

sitesi(n).state = pending metadata} then
nodes ← {j ∈ N : sitesi(j).state = pending metadata};
sendURMulticast(〈recovery start, i, nodes,

sitesi(·), minimum missed(nodes)〉,
W.availableNodes);

Vi ←W .

Figure 8: Specific recovery state transition system for the BRP protocol.

18

createi(t) // node(t) = i //
pre ≡sitesi(i).state /∈ {crashed, pending metadata, joining}∧

statusi(t) = start.

begin operationi(t, op) // node(t) = i //
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) = active

end operationi(t, op)
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) = blocked∧

DBi.notify(t, op) = run.
eff ≡ // Recover transactions has no node(t)

if t ∈ sitesi(recovering site(t)).to recover then
if sitesi(i).state = recoverer then

statusi(t) ← active;
sendRUnicast(〈missed, t, op〉) to recovering site(t);

else if sitesi(i).state ∈ {joining, recovering} then
if recovering site(t) = i then

if op =⊥ then
statusi(t) ← active;
sitesi(i).to schedule ← sitesi(i).to schedule \ {t};
if sitesi(i).to schedule = ∅ then

sitesi(i).state ← recovering;
else

DBi.commit(t);
statusi(t) ← committed;
sitesi(i).to recover ← sitesi(i).to recover \ {t};
sendURMulticast(〈view recovered, t〉,

Vi.availableNodes \ {i})
if sitesi(i).to recover = ∅ then

sitesi(i).state ← alive;
else statusi(t) ← active // recovering site(t) = j //

else statusi(t) ← active // sitesi(i).state = alive //
else

statusi(t) ← active;
if node(t) 6= i then

sendRUnicast(〈ready, t, i〉) to node(t);
statusi(t) ← pre commit.

begin commiti(t) // node(t) = i //
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) = active.

local aborti(t)
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) = blocked∧

DBi.notify(t, op) = abort.

receive readyi(t, m) // node(t) = i //
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) = pre commit∧

‖participantsi(t)‖ > 1∧
m = 〈ready, t, source〉 ∈ channeli.

end commiti(t, m) // node(t) = i //
pre≡ sitesi(i).state 6= crashed ∧ statusi(t) = pre commit∧

participantsi(t) = {source}∧
m = 〈ready, t, source〉 ∈ channeli.

receive commiti(t, m)
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) ∈ {pre commit,

committable} ∧ m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m); // Remove m from channel

DBi.commit(t); statusi(t) ← committed;
if Vi.availableNodes 6= ∅ then

missedi(Vi.id).oids ← missedi(Vi.id).oids ∪DBi.WS(t).

receive remotei(t, m)
pre ≡sitesi(i).state 6= crashed ∧ sitesi(i).state 6= joining∧

statusi(t) 6= aborted ∧ m = 〈remote, t, WS〉 ∈ channeli.

receive aborti(t, m)
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) 6= aborted∧

m = 〈abort, t〉 ∈ channeli.

receive rem aborti(t, m)
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) ∈ {aborted,

committed} ∧ m = 〈rem abort, t〉 ∈ channeli.

discardi(t, m)
pre ≡sitesi(i).state 6= crashed ∧ statusi(t) = aborted∧

m ∈ channeli.

¦ functionhigher priority(t, t′) ≡
node(t) = j 6= i ∧ statusi(t) = delivered ∧ (a ∨ b ∨ c ∨ d)

(a) node(t′) = i ∧ statusi(t
′) ∈ {active, blocked}

(b) node(t′) = i ∧ statusi(t
′) = pre commit∧

t.priority > t′.priority
(c) node(t′) = k ∧ k 6= j ∧ k 6= i ∧ statusi(t

′) = blocked∧
t.priority > t′.priority

(d) @ k ∈ N : t′ ∈ sitesi(k).to recover

Figure 9: Add-ons on the state transition system of the BRP protocol so as to support recovery features.

invoke the recover me stored procedure of its underlying DBMS and the remainder will call the recover other
procedure. These partitions are executed by the recovery transactions. These transactions have no difference with
ordinary transactions, nevertheless their associated fields (〈node, view〉) are the recovering node and the view
being recovered so as to guarantee the uniqueness of recovery transactions in the whole system.

A recovery transaction is submitted to the database. The DBMS will invoke the respective stored procedure
answering with DBi.notify = run which enables the invocation of the end operation action of Figure 9.
Depending on the state of the node it will do different tasks. If it is a previously alive node (even a recovering
node whose partitions are different from this transaction) it will merely set its status to active. A recoverer
node will transfer the data associated to this partition to the recovering associated node via a missed message.
In case of the recovering (or joining) node associated to this partition, this action is invoked twice. The first
time (op = ⊥) is what we are considering at this point (the remainder invocation will be introduced in the next
paragraph), it sets the transaction status to active and if all its associated recovery transactions are active it will

19

Figure 10: Valid transitions for a given sitesi(j).state of a node j ∈ N at node i.

switch its node state to recovering, allowing user transactions to start running local transactions. At the same
time that this recovery process is about to start, there may be additional recovery processes going on yet. Hence,
these new joining nodes must start the recovery transactions associated to recovering nodes of previous view
changes which are started in the execution of the receive recovery start action.

The reception of a missed message at a recovering (or joining) node will apply all the updates on this node.
Again, this operation is submitted to the database and the protocol waits for its successful completion. Once all
changes have been applied, it commits the transaction and multicasts a view recovered message saying that the
missed view has been recovered and the partition may be released. This message delivery commits the given
recovery transaction and user transactions at the rest of nodes may modify values associated to these blocked
objects. When all recovery transactions associated to a node have been done, the node state of the recovering
node switches to alive and if all available nodes are alive the recoverer node will move to the alive state.

As a final remark, we may modify this recovery protocol in order to support a significatively large amount of
updated objects. The modification will consist of blocking the data repository and transfer the whole database to
the recovering node.

6 Conclusions

In this paper, we present a Basic Replication Protocol (BRP) for the MADIS middleware architecture, which pro-
vides a JDBC interface but enhanced to support replication by way of different replication protocols [1]. This
replication is 1-copy-serializable, given that the underlying DBMSs feature ANSI serializable transaction isola-
tion. We have formally described and verified its correctness using a formal transition system. This replication
protocol has the advantage that no specific DBMS tasks have to be re-implemented (e.g. lock tables, “a priori”
transaction knowledge). The underlying DBMS performs its own concurrency control and the replication protocol
compliments this task with replica control.

The BRP is an eager update everywhere replication protocol, based on the ideas introduced in [2]. All trans-
action operations are firstly performed on its master site, more precisely on its underlying DBMS, and then all
updates are grouped and sent to the rest of sites using a reliable multicast. However, our algorithm is liable to
suffer distributed deadlock. We have defined a deadlock prevention schema, based on the transaction state and a
given priority; besides, the information needed by the deadlock prevention schema is entirely local, i.e. no addi-

20

tional communication is needed among nodes. We have followed an optimistic approach, since we automatically
abort transactions with lower priority because we suppose that we are working in a low conflict environment.

A transaction is committed when all updates have been applied at all sites, i.e. all sites have answered to the
transaction master site about successful completion of transaction updates at each site. Our transaction response
time is penalized by the slowest node and the number of updates of the given transaction but it does support
unilateral abort. However, we have proposed a modification of the BRP that frees it from waiting for remote
transaction completion, since once the getConlicts function is satisfied, it sends a ready-to-commit message.
Besides, we have pointed out an improvement for our algorithm, to strength BRP fairness. We may add a queue so
as to avoid that conflicting concurrent transactions delivered in distinct order at different sites will be both aborted.
Our BRP may easily be ported to DBMS supporting transaction snapshot isolation, obtaining 1-copy-snapshot-
isolation [8]. We only have to change the getConflicts function so that it only checks for write conflicts.

We have coped with site failures and recovery. A sketch of a recovery protocol for the BRP has also been
introduced. It defines dynamic partitions associated to nodes being recovered and their missed views. These
partitions allow transactions on non-recovering sites to issue read operations. Respectively, recovering sites may
perform transactions as long as they do not interfere with objects being recovered.

Finally, we are adapting and implementing the BRP in MADIS. We have achieved some preliminary results. In
the future, we plan to use ordinary TPC-W benchmarks [25], since they introduce update operations mixed with
read operations, and a non-negligible conflict rate.

References

[1] L. Irún-Briz, H. Decker, R. de Juan-Marı́n, F. Castro-Company, J.E. Armendáriz, and F.D. Muñoz-Escoı́,
“Madis: A slim middleware for database replication,” in Procceedings of the 2005 Int’l Euro-Par Conference,
Lisbon, Portugal, Aug. 2005, Accepted.

[2] M. J. Carey and M. Livny, “Conflict detection tradeoffs for replicated data,” ACM Trans. on Database Sys.,
vol. 16, no. 4, pp. 703–746, Dec. 1991.

[3] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman, Concurrency Control and Recovery in Data-
base Systems, Addison Wesley, Reading, MA, EE.UU., 1987.

[4] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication and a solution,” in Proc. of the
1996 ACM SIGMOD International Conference on Management of Data, Canada, 1996, pp. 173–182.

[5] Alberto Bartoli, “Implementing a replicated service with group communication service,” Journal of Systems
Architecture: The EUROMICRO Journal. Elsevier North-Holland, vol. 50, no. 8, pp. 493–519, Aug. 2004.

[6] G.V. Chockler, I. Keidar, and R. Vitenberg, “Group communication specificactions: a comprehensive study,”
ACM Computing Surveys, vol. 33, no. 4, pp. 427–469, Dec. 2001.

[7] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso, “Scalable replication in database clusters,”
in Proc. of Distributed Computing, Toledo, Spain, Oct. 2000, pp. 315–329, LNCS 1914.

[8] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris, “Middleware based data replication providing
snapshot isolation,” in Proc. of ACM SIGMOD Int. Conf. on Management of Data, Baltimore (Maryland),
USA, June 2005, Accepted.

[9] F.D. Muñoz-Escoı́, L. Irún-Briz, P. Galdámez, J.M. Bernabéu-Aubán, J. Bataller, and M.C. Bañuls, “Glob-
Data: Consistency protocols for replicated databases,” in Proc. of the IEEE-YUFORIC’2001, Valencia,
Spain, Nov. 2001, pp. 97–104.

21

[10] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente, “Strong replication in the GlobData
middleware,” in Proc. of Workshop on Dependable Middleware-Based Systems (in DSN 2002), Washington
D.C., USA, 2002, pp. G96–G104.

[11] Bettina Kemme and Gustavo Alonso, “A new approach to developing and implementing eager database
replication protocols,” ACM Trans. on Database Sys., vol. 25, no. 3, pp. 333–379, Sept. 2000.

[12] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann, “Using optimistic atomic broadcast in
transaction processing systems,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 4, pp. 1018–1032, 2003.

[13] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-r, a new way to implement database
replication,” in Proc. of the 26th VLDB Conference, Cairo, Egypt, Sept. 2000, pp. 134–143.

[14] S. Wu and B. Kemme, “Postgres-r(si): combining replica control with concurrency control based on snaphot
isolation,” in Proc. of IEEE Intl. Conf. on Data Engineering, Tokio, Japan, Apr. 2005, pp. 422–433, IEEE-CS
Press.

[15] J. Esparza-Peidro, F.D. Muñoz-Escoı́, L. Irún-Briz, and J.M. Bernabéu-Aubán, “Rjdbc: a simple database
replication engine,” in 6th Int’l Conf. Enterprise Information Systems (ICEIS’04), Apr. 2004.

[16] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “C-jdbc: flexible database clustering middleware,” http:
//c-jdbc.objectweb.org Apr. 2005.

[17] J.E. Armendáriz, J.R. González de Mendı́vil, and F.D. Muñoz-Escoı́, “A lock-based algorithm for concur-
rency control and recovery in a middleware replication software architecture,” in Proc. of the 38th Hawaii
Int’l Conf. on System Sciences (HICSS’05), Big Island (Hawaii), USA, Jan. 2005, p. 291a, IEEE-CS Press.

[18] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil, “A critique of
ANSI SQL isolation levels,” in Proc. of the ACM SIGMOD International Conference on Management of
Data, San José, CA, USA, May 1995, pp. 1–10.

[19] F. Pedone, The database state machine and group communication issues (Thèse N. 2090), Ph.D. thesis,
École Polytecnique Fédérale de Lausanne, Lausanne, Switzerland, 1999.

[20] B. Kemme, A lock-based algorithm for concurrency control and recovery in a middleware replication soft-
ware architecture (ETH Nr. 13864), Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland,
2000.

[21] A.U. Shankar, “An introduction to assertional reasoning for concurrent systems,” ACM Computer Surveys,
vol. 25, no. 3, pp. 225–262, Sept. 1993.

[22] PostgreSQL: the world’s most advance open source database, http://www.postgresql.org [June
2005].

[23] “Data concurrency and consistency. oracle8 concepts, release 8.0: Chapter 23,” Tech. Rep., Oracle Corpora-
tion, 1997.

[24] R. Friedman, and R. van Renesse, “Strong and Weak Virtual Synchrony in Horus,” in Proc. of the Symposium
on Reliable Distributed Systems (SRDS’96), Ontario, Canada, Oct. 1996, p. 140-149, IEEE-CS Press.

[25] Transaction Processing Performance Council, http://www.tpc.org [June 2005].

22

