
Performance Evaluation of a Metaprotocol for Database Replication Adaptability

M. I. Ruiz-Fuertes and F. D. Muñoz-Escoı́

Instituto Tecnológico de Informática

Universidad Politécnica de Valencia

Camino de Vera, s/n. 46022 Valencia, Spain

Email: {miruifue,fmunyoz}@iti.upv.es

Abstract—Common solutions to database replication use
a single replication protocol. This approach lacks flexibility
for changing scenarios or when dealing with heterogeneous
client application requirements. Our proposal is a metaprotocol
that supports several replication protocols which may follow
different replication techniques or provide different isolation
levels. With our metaprotocol, replication protocols can ei-
ther work concurrently with the same data or be sequenced
for adapting to dynamic environments. Experimental results
demonstrate its low overhead and measure the influence of
protocol concurrency on system performance.

I. INTRODUCTION

Many replication protocols have been designed and stud-

ied, proving that different protocols provide different fea-

tures (consistency guarantees, scalability, etc.) and obtain

different performance results depending on the environment

characteristics (workloads, network latencies, access pat-

terns, etc.). Protocols performance was compared in recent

studies such as [1], which presented the ROWAA approach

as the most suitable for the general case, and [2], based

on total order broadcast. For a particular scenario with

certain workload, access pattern and isolation requirements,

a specific protocol can be chosen as the most suitable.

Thus, common solutions analyze the general case of their

environment and choose their protocol accordingly. But this

initially chosen protocol remains in the system while the

environment evolves, degrading its performance or even be-

ing incapable of meeting new client requirements. This way,

when dealing with dynamic scenarios or when concurrent

client applications have different requirements (e.g. different

isolation levels), a more adaptable solution is needed.

A sign that this adaptability is demanded by real applica-

tions is represented by Microsoft SQL Server. It supports

two concurrency controls simultaneously: one optimistic,

based on row versioning [3]; and one pessimistic, based on

locks. Thus, it concurrently supports different isolation levels

–mainly, snapshot isolation and serializable, respectively.

However, no academic result had yet raised this support

to middleware level for database replication systems by

enabling several replication protocols to work concurrently.

This work has been partially supported by FEDER and the Spanish MEC
under grants TIN2006-14738-C02-01 and BES-2007-17362, and IMPIVA
and EU FEDER under grant IMIDIC/2007/68.

To meet this adaptability requirement, we have designed a

metaprotocol that supports the concurrency of a set of con-

sistency protocols. With our metaprotocol, each concurrent

application can take advantage of the protocol that better

suits its needs: e.g., an application with long transactions will

prefer pessimistic replication to ensure their commitment (as

the longer the transaction, the higher the probability of abor-

tion in optimistic techniques due to conflicts with concurrent

transactions). Additionally, each protocol can be replaced if

the application access pattern is drastically modified or if

the overall system performance changes due to specific load

variations or network or infrastructure migrations. This way,

adaptability is provided at two levels: a) outward adapt-

ability, which makes the system able to deal with different

concurrent requirements, and b) forward adaptability, which

allows the system to adapt to dynamic characteristics in the

environment or in the clients themselves.

The metaprotocol was first presented in [4] with its com-

plete pseudocode. This paper continues that work, providing

an experimental evaluation of the metaprotocol overhead

and the potential performance penalty of every possible

combination of protocols when working concurrently.

The rest of this paper is structured as follows. Section II

summarizes the main aspects of the metaprotocol. Section III

presents the experimental results. Section IV discusses some

related work and, finally, Sect. V concludes the paper.

II. METAPROTOCOL

The metaprotocol function is to support multiple replica-

tion protocols concurrently at each replica, properly manag-

ing the dependencies between them. It also allows a working

protocol to be exchanged when it is detected that another

one would fit better (a common situation in dynamic envi-

ronments). This protocol exchange is seamlessly performed:

already started transactions end their execution using the

protocol they started with, while new ones use the new

protocol. Thus, processing does not need to be halted.

A. Supported Protocols

Currently, three replication protocols have been tested

with our metaprotocol. As some common characteristics are

needed in order to make concurrency feasible or, at least,

practical, all protocols follow the same replica consistency

model (sequential) [5]. Thus, each targeted protocol is a

representative of three protocol families based on FIFO total

order broadcast [2]: active, certification-based and weak

voting replication. All these families are update-everywhere

[6] (to send its request, a client chooses one server, which

is known as the delegate server), so they are decentralized

replication protocols. On the other hand, each replication

protocol may provide different transaction isolation levels,

which can be exploited by different client applications.

In active replication, the delegate broadcasts the client

request to all replicas in total order. Later, server replicas,

including the delegate, execute and commit the transaction

in the order it was delivered. Due to the sequential execution

of transactions, no abortion arises in this replication model,

which can provide any isolation level supported by the local

database management system (DBMS).

In certification-based replication, transactions are first

locally executed in their delegate server and their writesets

(set of written objects) and, in some isolation levels, also

their readsets (set of read objects), are broadcast to all

replicas. After delivery, a deterministic certification phase,

based on conflicts with concurrent transactions, starts in all

replicas to determine if such transaction can commit or not.

In weak voting replication, transactions are also locally

executed and then their writesets are broadcast. But in this

case, only the delegate (since readsets are never broadcast

in this kind of protocols) is in the position to validate

a transaction –again, based on conflicts with concurrent

transactions–, broadcasting later its decision to all replicas.

The transaction metadata needed when all protocols are

working is compound by the writeset and a timestamp of the

transaction begin. With this information, certification-based

and weak voting techniques can provide snapshot isolation.

Additionally, if the underlying DBMS features a serializ-

able concurrency control, weak voting techniques provide

1-copy-serializability at no extra cost. On the contrary,

certification-based techniques need to broadcast readsets to

provide the same isolation level. As readset management is

costly, certification-based replication is normally used only

for snapshot isolation. Thus, we do not consider readsets.

Each of the targeted protocols presents advantages and

disadvantages. Active replication is pessimistic and forces

all replicas to completely execute every transaction, which

increases the system load but ensures that no transaction

ever aborts. This is very useful for long transactions that

otherwise will have a high probability of being aborted

due to conflicts with concurrent transactions. The other two

techniques are both optimistic. Weak voting techniques may

provide 1-copy-serializability without the need of working

with readsets, but they require an extra broadcast that forces

non-delegate replicas to wait. Certification-based replication

achieves fast certification of transactions, but it is not practi-

cal for isolation levels stronger than snapshot, due to readset

management. The metaprotocol adaptability allows to switch

to the most appropriate protocol at any moment to exploit all

the advantages, while trying to overcome the disadvantages.

B. Metaprotocol Outline

Two shared lists are maintained by the metaprotocol

in each replica: the log list, with the history of all the

system transactions (can be purged as suggested in [2]);

and the tocommit list, with the transactions pending to

commit in the underlying database. These lists, initially

empty, contain transactions from all the protocols working at

the moment. Each transaction has an associated type, which

represents its current status and, thus, is modified during

the transaction lifetime. Possible types are the following: a)

resolved, a committable (or already committed) transaction

with writeset info available; b) c-pending, a transaction with

writeset info available but not yet committable (e.g. a weak

voting transaction waiting for its voting message); and c)

w-pending, a transaction with no writeset info available (i.e.

an active transaction not yet committed).

A brief outline of the major steps of the metaprotocol at

one replica, Rk, is depicted in Fig. 1A. Roughly speaking,

protocols send messages in step I, which are processed in

step II depending on the message type. In the following

steps (Fig. 1B), the metaprotocol delegates transaction man-

agement on the installed protocols, which have access to

all shared variables. These include the log and tocommit

lists and two integer counters: L-TOI and N-TOI. Based

on their delivery order, transactions are assigned a unique

TOI, or total order index. Variable N-TOI, initialized to 1,

stores the index for the next transaction to be delivered.

Variable L-TOI, initialized to 0, stores the index of the last

committed transaction in the replica. These counters provide

logical timestamps for transactions.

Active transactions (Fig. 1Ba) do not need a validation

phase: all commit in the order established by the broadcast.

Thus, when an active message arrives, the transaction is

added to both lists and marked as w-pending. As its writeset

will be only known after commitment, it prevents subsequent

certifications from being completed, as writesets are needed

to determine if transactions present write conflicts. Transac-

tion dependencies will be explained in detail later.

Messages from the certification-based protocol (Fig. 1Bc)

contain a writeset which has to be certified. This certification

is based on two integers representing the transaction start

and end, respectively: bot, begin of transaction, set before

broadcasting to the current value of L-TOI –its validity

as logical timestamp of transaction start is ensured by a

conflict detection mechanism [7]–, and toi, the total order

index set at reception. With a negative result, the transaction

is aborted. Otherwise, it is added to both lists. Certifica-

tion can obtain a pending result if there are concurrent

w-pending transactions or conflicting transactions whose

certification/validation phase is incomplete, i.e. c-pending

transactions. This creates a dependency between the trans-

A) Metaprotocol algorithm B) Protocol modules for message processing

I. Propagate message Mn related to transaction Ti: a) Active c) Certification-based
1. broadcast Mn〈Ti〉 process(Mn〈Ti〉): process(Mn〈Ti〉):

a. Ti.toi := N-TOI++ a. validate(Ti)
II. Upon delivery of Mn related to transaction Ti: b. Ti.log entry type := w-pending (check conflicts with concurrent transactions)
1. call Ti.protocol for process(Mn〈Ti〉) c. Ti.committable := true b. if validation == negative

d. append to log and tocommit (if Ti conflicts with a resolved)
III. Committing thread: i. if Ti.delegate == Rk

1. Ti := head(tocommit) b) Weak voting (transaction is local)
2. if Ti.committable == true process(Mn〈Ti〉): rollback(Ti)

a. if Ti.delegate 6= Rk 1. if Mn contains a writeset ii. else
i. call Ti.protocol for apply(Ti) a. Ti.toi := N-TOI++ discard Ti

b. call Ti.protocol for commit(Ti) b. Ti.log entry type := c-pending c. else
c. L-TOI := Ti.toi c. if Ti.delegate == Rk i. if validation == positive
d. if Ti.log entry type == w-pending i. Ti.committable := true (no conflicts and ∄ w-pending)

i. Ti.log entry type := resolved d. else Ti.log entry type := resolved
ii. resolve w-dependencies(Ti) i. Ti.committable := false Ti.committable := true

e. if Ti.log entry type == c-pending e. append to log and tocommit ii. if validation == pending
i. emit vote for Ti 2. else (Mn is a voting message) (conflicts with c-pending or ∃ w-pending)
ii. if Ti.outcome == commit a. if Mn.vote == commit Ti.log entry type := c-pending

Ti.log entry type := resolved i. Ti.committable := true Ti.committable := false
iii. else ii. Ti.log entry type := resolved iii. Ti.toi := N-TOI++

delete Ti from log b. if Mn.vote == abort iv. append to log and tocommit

iv. resolve c-dependencies(Ti, Ti.outcome) i. delete Ti from log and tocommit

f. delete Ti from tocommit c. resolve c-dependencies(Ti, Mn.vote)

Figure 1. Metaprotocol and protocol modules at replica Rk

action being certified and each of the previously delivered

transactions that create the indecision.

When the delivered message contains a writeset from the

weak voting protocol (Fig. 1Bb), the transaction is added

to both lists and marked as c-pending as its outcome is

unknown until commit time in the delegate node or the

arrival of the voting message in the rest of nodes. In the

pseudocode, the validation is based on the local concurrency

control: waiting to commit turn and trying to commit the

transaction in the delegate. If the commitment succeeds, a

positive vote is broadcast (reliably but without total order)

to all replicas. Otherwise, a negative vote is sent.

The reception of a voting message for a weak voting

transaction changes the transaction status and resolves the

dependencies between this transaction and subsequent ones.

The third major step of the pseudocode consists in com-

mitting the first transaction in the tocommit list, provided

that it is committable. This is performed sequentially by the

metaprotocol, one transaction at a time, following the list

order (provided by the total order broadcast). When applying

remote writesets, conflicts with local transactions may arise.

At this point, our conflict detection mechanism [7] aborts

those local transactions allowing the correct remote writeset

application. After commitment, active transactions obtain

their writeset and possible dependencies are resolved. In the

case of weak voting transactions, the outcome is used to

resolve dependencies and to emit the vote.

As seen in the pseudocode, the common processing

is carried out by the metaprotocol (maintenance of data

structures, sending and reception of messages, scheduling

of transactions. . .), which calls the corresponding protocol

when protocol-specific processes have to be done (treatment

of messages, commitment of transactions. . .). On the other

hand, communication with client applications remains in

the protocols, thus preserving previous client-protocol in-

terfaces. This way, the system presents high modularity and

protocols remain very simple and easy to maintain (required

adaptations to work within the metaprotocol only consist

in simplifications), while they are still able to introduce

some optimizations in their specific methods (e.g. a pre-

certification process prior to broadcast, which may save

useless network communication and subsequent processing).

C. Dependencies Between Protocols

Concurrency can lead to inefficient systems due to nat-

ural differences in the behavior of the protocols. Several

dependencies may arise when certifying transactions in

certification-based protocols, or when validating weak voting

transactions in the delegate node, if such validation is

performed in a phase similar to the certification.

These dependencies, a natural and inevitable consequence

of the concurrency between different replication techniques,

introduce additional waiting times. Thus, it is important to

understand them and to carefully study their implications,

as they may have a notable impact on system performance.

A transaction, in order to be successfully certified or

validated, must know the writesets of all concurrent and

previously delivered transactions that will eventually com-

mit. However, this may not be immediately known, as there

is some pending information in the entries of the log list.

First, the writesets of w-pending transactions are unknown

until their commit time. Second, the final termination of

c-pending transactions is not yet known (e.g. weak voting

transactions waiting to their vote). This pending information

prevents the certification/validation of a transaction Tk from

finishing in two ways: a) Tk cannot check for conflicts with

Figure 2. Dependencies between transactions

a w-pending transaction Tw, as Tw’s writeset is not yet

available (here we say that Tk has a w-dependency with

Tw); and b) although a c-pending transaction Tc’s writeset is

known and thus Tk can check for conflicts, the final outcome

for Tc is yet unknown due to a pending vote or another

dependency (here we say that Tk has a c-dependency with

Tc). Notice that a conflict should only cause the abortion of

Tk if conflicting transaction Tc’s final outcome is a commit.

Note also that a transaction Ti may present several depen-

dencies, i.e. depend on several previous transactions, and it

will not be considered as resolved until all its dependencies

are resolved. At that moment, the dependencies caused by

Ti on following transactions will be resolved in cascade.

Let us consider an example situation to review the steps

of the metaprotocol. Suppose that all three protocols are

executing, so transactions from all of them are delivered

at replica Rk. Suppose also that, at a given moment, the

tocommit list is empty. At this moment, an active transaction

A is delivered. A is directly appended to the lists, marked as

committable and w-pending. The commitment of A begins.

Then, a weak voting transaction W, writing objects x and y,

is delivered. Suppose Rk is not its delegate replica. Thus,

W is added to the lists, marked as c-pending and non-

committable until its vote arrives. A new transaction is deliv-

ered: C1, a certification-based transaction that writes objects

y and z. C1 obtains a pending result in its certification,

as there is a concurrent w-pending transaction (A) and C1

presents write conflicts with W, which is c-pending (thus, C1

has two dependencies). This pending certification forces C1

to be marked as c-pending and, thus, non-committable until

both dependencies are resolved. Later, another certification-

based transaction C2 is delivered. C2, which writes object z,

is also marked as c-pending and non-committable because

of the conflict with C1 and the existence of A. The current

stage corresponds to Fig. 2a (where dashed arrows represent

dependencies). At this moment, A finally ends its commit

operation and its writeset is collected: it wrote objects u

and v. Now it is time to resolve the w-dependencies of

C1 and C2. As A does not conflict with them, both w-

dependencies are just removed. Figure 2b represents the

current situation. Now, the voting message for W is delivered

with a commit vote. So W is now committable and some

c-dependencies can be resolved. As W presented conflicts

with C1 and W is going to commit, C1 must abort. Due

to the termination of C1, more c-dependencies are resolved

on cascade, thus removing all the dependencies presented

by C2, that becomes committable. This stage is depicted in

Fig. 2c. Any committable transaction at the head position of

the tocommit list is eventually committed.

III. EXPERIMENTAL RESULTS

Naturally, there is a trade-off between the high level

of adaptability provided by the metaprotocol and system

performance. Tests were conducted to measure two as-

pects. a) The overhead introduced by the metaprotocol

management. To this end, stand-alone versions of the active,

weak voting and certification-based replication protocols

were implemented. Later, we run each protocol in both

the stand-alone manner and as the only available protocol

within the metaprotocol. Differences in performance will

give a measure of the metaprotocol overhead. b) The penalty

in performance due to protocol concurrency. All possible

combinations of protocols were tested in concurrency within

the metaprotocol. Measures were taken separately for each

protocol, thus showing, e.g., the variations on completion

time for certification-based transactions when executed in a

pure certification-based system or when another protocol is

also working and some dependencies arise.

System Model: We assume a partially synchronous

distributed system where each node holds a replica of

the database. For local transaction management each node

has a local DBMS on top of which a database replication

middleware system is deployed. This middleware uses a

group communication service (abbr., GCS) that provides a

total order multicast. Failures are not considered in this

paper, but will be analyzed and managed in future work.

Test Description: To accomplish the analysis, we use

Spread as GCS and PostgreSQL as underlying DBMS provid-

ing snapshot isolation by means of a multiversion concur-

rency control. Transactions access a database with a single

table (the smaller the database, the greater the probability of

conflicts and, thus, of dependencies) of 10,000 rows and two

columns. The first column is the primary key; the second,

an integer field subject to updates made by transactions.

Both the metaprotocol and the stand-alone protocols were

tested in our replication middleware MADIS [8] with 2 and

4 nodes. Each node has an AMD Athlon(tm) 64 Processor

at 2.0 GHz with 2 GB of RAM running Linux Fedora Core

5 with PostgreSQL 8.1.4 and Sun Java 1.5.0, and intercon-

nected by a 1 Gbit/s Ethernet. Transactions are initiated at

a fixed pace in each replica in order to obtain system input

rates of 20, 40, 60 and 80 TPS (transactions per second).

Each transaction writes 20 rows (a fixed number of items,

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

A
AC
AW

ACW
Stand-alone A

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

A
AC
AW

ACW
Stand-alone A

Figure 3. Active replication. Transaction length with (a) 2, (b) 4 replicas.

as the protocol tasks do not depend on transaction length).

This workload was designed to meet the purpose of stressing

the system gradually with higher and higher input rates of

write-only transactions causing more and more conflicts and,

therefore, dependencies. We discard read operations, which

are only locally executed and have no conflicts. As a result,

we subject the system to a worst-case environment.

Scenarios: Active (A), certification-based (C) and weak

voting (W) techniques were tested in a stand-alone manner

and within the metaprotocol. In the latter case, combinations

of 1, 2 and 3 protocols were used (a total of 5 scenarios

for each technique, e.g. for active replication: Stand-alone A,

A, AC, AW and ACW). Each protocol managed a propor-

tional part of the issued transactions, which were analyzed

separately to compute length and abortion rate. The plotted

results are means with their 95% confidence interval.

Results: Protocols do not show important differences

in response time when executed in a stand-alone manner

or as the only protocol within the metaprotocol. Indeed,

performance is virtually the same at low input rates or when

using a system of 4 replicas. Only when 2 replicas must

support a high input rate, differences appear. Thus, the main

factor to consider is the penalty due to concurrency between

different techniques. This concurrency is appropriate when

multiple client applications access the same database in

different ways. The active technique is pessimistic while

the other two are optimistic. This different approach limits

the performance: optimistic techniques are forced to wait to

the processing of pessimistic transactions, thus reducing the

advantages of their optimism. Indeed, as soon as there is

one active transaction in the tocommit queue, all non-active

subsequent transactions in the queue establish a dependency

with it. This dependency lasts until the active transaction

is committed. Moreover, weak voting replication is handi-

capped by the second broadcast needed to emit the vote:

non-delegate replicas must wait for the delegate to validate

the transaction and for the vote to arrive. All these drawbacks

join when mixing active and weak voting replication, leading

to poorer performance in AW and ACW scenarios.

Figure 3 corresponds to the active technique (recall that it

never aborts transactions). Response times for active transac-

tions increase when adding the optimistic certification-based

technique (AC). A more important degradation occurs when

combining active and weak voting techniques, specially with

heavy workloads (i.e., with 60 and 80 TPS).

Results from certification-based techniques are presented

in Fig. 4. Again, ACW is the worst scenario, where longer

transaction times also raise the abortion rate. A degradation

is also observable in the CW scenario due to the handi-

cap suffered by weak voting transactions. Other scenarios

do not involve important difficulties for certification-based

transactions. When 4 replicas are used, some behavioral

trends observed in a 2-replica system are maximized. Thus,

configurations that performed well for 2 replicas have better

performance, as each node is less loaded.

The weak voting technique is an excellent option when

readsets must be considered for validation, as it avoids the

collection and transmission of readsets. Unfortunately, as

already explained, system perfomance is reduced (Fig. 5).

Figure 6 show the output TPS, i.e. the amount of commit-

ted transactions per second in the whole system. It is clearly

seen how some combinations have an excellent performance

while others degrade as load or system size increase.

Final remarks: The trade-off between adaptability and

performance must be carefully analyzed in each system.

Nevertheless, the CW combination has shown an excellent

performance. This can be combined with the flexibility

already offered at DBMS level by Microsoft SQL Server,

which concurrently supports snapshot and serializable isola-

tion levels. Thus, when the middleware is deployed on top of

such DBMS, our metaprotocol can provide a straightforward

support for both isolation levels in replicated environments.

To our knowledge, no other solution offers at a middleware

layer such degree of transparency and functionality.

IV. RELATED WORK

No academic result, apart from our previous work in [4],

presents a valid solution for a database replication system

capable of supporting concurrent replication protocols.

A different approach was developed in [9], where a

single replication protocol supports multiple isolation levels.

Unfortunately, the resulting protocol is complex and it lacks

the modularity and maintainability of our metaprotocol.

The idea of a single replication protocol providing a

flexible behavior was also studied in [10], with the AKARA

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

C
AC
CW

ACW
Stand-alone C

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

C
AC
CW

ACW
Stand-alone C

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80

%
 a

b
o

rt
io

n

input TPS

C
AC
CW

ACW
Stand-alone C

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

C
AC
CW

ACW
Stand-alone C

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

C
AC
CW

ACW
Stand-alone C

 0

 2

 4

 6

 8

 10

 12

 14

 16

 20 40 60 80

%
 a

b
o

rt
io

n

input TPS

C
AC
CW

ACW
Stand-alone C

Figure 4. Certification-based replication. With 2 replica nodes: (a) length of committed transactions, (b) length of aborted transactions, (c) abortion rate.
With 4 replica nodes: (d) length of committed transactions, (e) length of aborted transactions, (f) abortion rate.

protocol. With it, a transaction can be executed in an active

or a passive manner, thus taking advantage of the best

characteristics of each replication protocol. Unfortunately,

AKARA needs the database to be partitioned in conflict

classes and classifies each transaction regarding the accessed

classes. This allows a straightforward conflict detection but

forces to know the entire transaction before its execution,

thus precluding interactive transactions. Moreover, conflict

classes are usually entire tables, which leads to a coarse-

grained conflict detection. On the other hand, our metapro-

tocol (using the mechanisms described in [7]) provides a

row-level conflict detection, which allows the execution of

interactive transactions, as no partition in the database is

needed. Finally, although AKARA performs better, it has to

be noted that it uses the TPC-C benchmark where a new

request is only triggered by the completion of the previous

one, and read-only transactions are included in the load.

The problem of protocol exchange, or dynamic protocol

update (abbr., DPU), has been broadly discussed [11]–[13].

However, DPU solutions provide adaptability by replacing

the working protocol and do not consider protocol concur-

rency (except, perhaps, for a short transition phase).

V. CONCLUSION

Adaptability is a desirable feature for all systems, espe-

cially for those more sensitive to changes in the environment.

Moreover, client applications of database replication systems

may demand different requirements that can be better served

with different replication techniques.

We study the performance of a metaprotocol that supports

the concurrent execution of several replication protocols

based on atomic broadcast: active, certification-based and

weak voting replication. Experimental results demonstrate

that our metaprotocol introduces very low overhead when

compared with stand-alone versions of the same replication

protocols. On the other hand, inherent differences in the

protocol behaviors may penalize concurrency. We show and

explain that certain combinations of protocols should be

avoided if performance is a major system goal. Other proto-

col combinations, however, showed excellent performance.

As future work, a load monitor will be developed to

automatically decide the best protocol for each transaction,

depending on relevant environmental characteristics.

REFERENCES

[1] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and
G. Alonso, “How to Select a Replication Protocol According
to Scalability, Availability, and Communication Overhead.” in
SRDS. IEEE-CS, 2001, pp. 24–33.

[2] M. Wiesmann and A. Schiper, “Comparison of Database
Replication Techniques Based on Total Order Broadcast,”
IEEE TKDE, vol. 17, no. 4, pp. 551–566, 2005.

[3] K. L. Tripp and N. Graves, “SQL Server 2005 Row Ver-
sioning-Based Transaction Isolation,” Microsoft, Tech. Rep.,
2006.

[4] M. I. Ruiz-Fuertes, R. de Juan-Marı́n, J. Pla-Civera, F. Castro-
Company, and F. D. Muñoz-Escoı́, “A Metaprotocol Outline
for Database Replication Adaptability,” in OTM Workshops
(2), ser. LNCS, vol. 4806. Springer, 2007, pp. 1052–1061.

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

W
AW
CW

ACW
Stand-alone W

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

W
AW
CW

ACW
Stand-alone W

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80

%
 a

b
o

rt
io

n

input TPS

W
AW
CW

ACW
Stand-alone W

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

W
AW
CW

ACW
Stand-alone W

 0

 2

 4

 6

 8

 10

 20 40 60 80

ti
m

e
 (

s
)

input TPS

W
AW
CW

ACW
Stand-alone W

 0

 2

 4

 6

 8

 10

 12

 14

 16

 20 40 60 80

%
 a

b
o

rt
io

n

input TPS

W
AW
CW

ACW
Stand-alone W

Figure 5. Weak voting replication. With 2 replica nodes: (a) length of committed transactions, (b) length of aborted transactions, (c) abortion rate. With
4 replica nodes: (d) length of committed transactions, (e) length of aborted transactions, (f) abortion rate.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80

o
u

tp
u

t
T

P
S

input TPS

A
C
W

AC
AW
CW

ACW
Stand-alone A
Stand-alone C
Stand-alone W

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80

o
u

tp
u

t
T

P
S

input TPS

A
C
W

AC
AW
CW

ACW
Stand-alone A
Stand-alone C
Stand-alone W

Figure 6. Output TPS with (a) 2, (b) 4 replicas.

[5] L. Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Trans.
Comput., vol. 28, no. 9, pp. 690–691, 1979.

[6] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
G. Alonso, “Database Replication Techniques: A Three Pa-
rameter Classification.” in SRDS, 2000, pp. 206–215.

[7] F. D. Muñoz-Escoı́, J. Pla-Civera, M. I. Ruiz-Fuertes,
L. Irún-Briz, H. Decker, J. E. Armendáriz-Iñigo, and J. R.
González de Mendı́vil, “Managing Transaction Conflicts in
Middleware-Based Database Replication Architectures,” in
SRDS. IEEE-CS, 2006, pp. 401–410.

[8] L. Irún-Briz, H. Decker, R. de Juan-Marı́n, F. Castro-
Company, J. E. Armendáriz, and F. D. Muñoz-Escoı́,
“MADIS: A Slim Middleware for Database Replication,” in
Euro-Par, ser. LNCS, vol. 3648. Springer, 2005, pp. 349–
359.

[9] R. Salinas, J. M. Bernabé-Gisbert, and F. D. Muñoz-Escoı́,
“SIRC, a Multiple Isolation Level Protocol for Middleware-
based Data Replication,” in ISCIS. IEEE-CS Press, 2007,
pp. 1–6.

[10] A. Correia, J. Pereira, and R. Oliveira, “AKARA: A Flexible
Clustering Protocol for Demanding Transactional Workloads,”
in OTM Conferences (1), ser. LNCS, vol. 5331. Springer,
2008, pp. 691–708.

[11] B. Bhargava, A. Helal, K. Friesen, and J. Riedl, “Adaptability
Experiments in the RAID Distributed Database System,” in
SRDS, 1990, pp. 76–85.

[12] U. Fritzke Jr., R. P. Valentim, and L. A. F. Gomes, “Adaptive
Replication Control Based on Consensus,” in SDDDM: Work-
shop on Dependable Distributed Data Management. ACM,
2008, pp. 1–10.

[13] O. Rütti, P. T. Wojciechowski, and A. Schiper, “Structural and
Algorithmic Issues of Dynamic Protocol Update,” in IEEE
Intnl. Parallel and Distributed Processing Symposium, 2006.

